
Johanna Tuominen | Tero Säntti | Juha Plosila

Feasibility Report on Asynchronous
Synthesis

TUCS Technical Report
No 765, April 2006

Feasibility Report on Asynchronous
Synthesis

Johanna Tuominen
Turku Centre for Computer Science (TUCS)
Lemminkäisenkatu 14 A, 20520 Turku, Finland
joeltu@utu.fi

Tero Säntti
Dept. of Information Techology, University
Lemminkäisenkatu 14-18 A, 20520 Turku, Finland
teansa@utu.fi

Juha Plosila
Dept. of Information Technology, University of Turku
Lemminkäisenkatu 14-18 A, 20520 Turku, Finland
juplos@utu.fi

TUCS Technical Report

No 765, April 2006

Abstract

The asynchronous design approach is an interesting alternative to the commonly
used synchronous approach because of its several benefits. Self-timed circuit have
potential for low-power and low-noise design. Moreover, the modularity and the
composability of asynchronous systems are favorable properties. This is partly
due to the chips getting larger and denser, resulting in serious difficulties in the
clock tree design. One of disadvantages has been the lack of commercial computer
aided design (CAD) tools. This paper presents synthesis flowtargeted for self-
timed VLSI circuits provided by Handshake Solutions. The performance of the
synthesis tool is compared with its synchronous counterpart in terms of area and
speed. We have chosen to use cache controllers as case study.

Keywords: Asynchronous, Synthesis, Haste, Power Consumption

TUCS Laboratory
Communication Systems

1 Introduction

Self-timed circuit have potential advantages making them an interesting option
in various application areas. With the advent of wireless and mobile high per-
formance computing platforms, and the limited operationallifetime of batteries,
low-power designs are required. Moreover, in many designs the synchronous op-
eration of the circuit is the main source of on-chip noise. The self-timed design
techniques have potential for low-power [11] and low-noisedesign [7]. As the
VLSI circuits get larger, maintaining the synchrony gets more and more difficult.
Therefore, the modularity and composability of asynchronous systems is a def-
inite advantage. For instance, the integration of an asynchronous module to an
existing system is easy, as no clock limitations need to be considered. One of
the disadvantages has been the lack of computer aided design(CAD) tools, which
support the design flow of the self-timed circuits. So far thedesign process have
been carried out using existing tools of which are mostly targeted to synchronous
system design. This includes a lot of full custom work, whichis very time con-
suming and therefore expensive. All together the use of, forinstance, VHDL in
asynchronous system design is somewhat problematic, and insome cases even
impossible.

In this study, we analyze the functionality of the design flowfor self-timed
circuit provided by Handshake Solutions [5]. The design entry is Haste, a pro-
gramming language targeted for this design flow. The purposeis to compare the
performance of Haste designs with the corresponding synchronous implementa-
tion. The synchronous designs are described using VHDL. Thecase study for the
comparison is cache controller.

The pioneers of computing predicted in [3], that programmers would want
unlimited amount of fast memory. Since fast memory is expensive, the most eco-
nomical solution is to apply memory hierarchy where each level is faster and more
expensive per byte than the next lower level [9]. Cache is denoted as the first level
of the memory hierarchy once the address leaves the CPU. Whenthe CPU finds a
requested data item in the cache, it is calledcache hit. When the CPU does not
find the data item in the cache, acache miss occurs. Then the data is retrieved
from lower level of the memory hierarchy (main memory), and placed into the
cache.

The performance of the self-timed synthesis tool is analyzed and compared
with its synchronous counterpart. As a case study we apply two cache constructs:
instruction cache and data cache. These caches are meant to be used in the REAL-
Java Project, which aims to design and implement a low-powerJava co-processor.
Even though some design flows are made according to the Java processors specifi-
cation, the most of them are well suited for modern Network-on-Chip applications
as well. Both caches are implemented using Haste and VHDL, after which they
are synthesized, and finally the results are compared.

Overview of the paper We proceed as follows. In section 2 we give an

1

overview of Handshake Technology, and shortly describe thedesign flow applied
in the asynchronous cache design. Section 3 compares general properties of the
cache architectures, and then presents the chosen one. Analysis and comparation
between synchronous and asynchronous design flows are presented in Section 4.
The results are presented in Section 5. Finally, in section 6we draw some conclu-
sions and describe the future work related to this paper.

2 Overview of the Applied Haste Design Flow

The purpose of this section is to give a short overview of the VLSI programming
languageHaste, which is the input format of the Handshake Technology design
flow. This design flow provides a tool set to design and synthesize self-timed
asynchronous VLSI-circuits [5]. More information on handshake circuits can be
found in [11]. The syntax of Haste is strongly influenced by Hoare’s CSP [6] and
Dijkstra’s guarded commands [4]. In year 1998, by the request of designers, non-
handshake channels were introduced into Haste language. Non-handshake signals
are used to design interfaces (for instance to synchronous domains). The language
was further refined and extended in 2004. However, the basic idea behind Haste
has not been affected. That is, to provide means to VLSI designer to design self-
timed circuit at abstract level without bothering about thedetails of self-timed
circuit operation [10].

The main focus in this paper is to analyze the functionality of the self-timed
design flow using tools provided by the Handshake Solutions.The full Handshake
Technology design flow is presented in [2], and the parts of the flow applied in this
work are shown in Figure 1.

htsim

Pre−Synthesis

Simulation Verilog Netlist

Behavioral

Simulation

Handshake Level

Optimization &

SimulationVerilog Netlist

Asynchronous
Verilog Netlist

htcomp

Circuit

Handshake

Haste Program

htmap

Figure 1: Design flow.

The design entry is Haste, a programming language specifically defined for
the design of VLSI circuits. The Haste program is then compiled using the com-
piler htcomp, which translates the source code into handshake circuit. Hence, the
connections between components are called handshake channels. At this point
it is possible to verify the functionality of the Haste source by using thehtsim,

2

which generates abstract models of the handshake components, allowing simu-
lations at the handshake level. Simulations can be conducted at behavioral level
also. This is done by compiling the Haste program to behavioral Verilog and us-
ing standard simulation software, in our case the Mentor Modelsim. The benefit
of this approach is that we can use the same testbench for pre-and post synthesis
simulations. Thehtsim simulator requires separate testbench, which is not appli-
cable with standard Verilog simulators. Thehtmap tool is used to optimize the
control and communication of each handshake channel and perform technology
mapping from Handshake circuit to asynchronous Verilog netlist. In this paper,
we have chosen to use UMC 0.13µm technology. Next scripts for optimizing the
logic and recalibrating the delay elements to match the new optimized logic are
generated using thehtlog andhtpost tools. The Verilog netlist is subsequently
optimized using Cadence PKS shell synthesis tool with the scripts generated in
the previous step. Finally, the correctness of the design isvalidated using Mentor
Modelsim simulator.

3 Cache Architectures

3.1 Design space limitations

The caches designed here are meant to be used in the REALJava project, which
aims to design and implement a low-power Java co-processor.Asynchronous
techniques are chosen to achieve good performance with low power consump-
tion and very easy integration with existing systems, as no clock limitations need
to be considered. Asynchronous self-timed circuit technology [12], where timing
is based on local handshakes between circuit blocks insteadof a global clock sig-
nal, provides a promising platform for obtaining highly modular low-power and
low-noise implementation. Even though the choices are madewith the REAL-
Java in mind, most of them are well suited for generic Network-on-Chip (NoC)
applications as well. The common characteristics would include high level of
parallelism, shared memories and moderate functional unitsize (typically 32 bit
processing units).

3.2 General properties of the cache implementation

Two essential questions arise when we are sketching the cache design: How do
we know if data item is in the cache? And if it is, how do we find it? If each block
has only one place where it can appear in the cache, the cache is said to bedirect
mapped. The mapping is usually defined by:(Blockaddress)mod(Numberof
blocksinthecache) [9]. Another extreme is when data item is placed on any lo-
cation in the cache, calledfully associative because a block in memory can be
associated with any entry in the cache, and thus to find given memory block from

3

fully associative cache, all entries are searched. In between these two extremes
areset associative caches, which have a fixed number of locations (sets) where
each block can be placed. For instance, a n-way set associative cache consist of a
number of sets, each of which consist of n blocks. Thus, one can consider the set
associative placement as combination of the direct mapped and fully associative
placements: a block is directly mapped into a set, and then all blocks in that set
are searched for a match. In general, the advantage of increasing the degree of as-
sociativity is that it usually decreases the miss rate [9]. However, this comes with
the expense of increased hit time. By adopting the two-way set associativity the
decrease in miss rate is most significant [9], and after that there is no significant
improvement. Thus, we have chosen the two-way set associative placement for
our implementation. The structure of one cache set is shown in Figure 2.

INDEX
TAG0

TAG1

DATA0

DATA1i

Figure 2: Structure of a cache set.

In our implementation the number of these caches sets is 16, and therefore the
number of cache blocks is 32. The cache address is 32 bits in length and consists
of index and tag parts. The data part of the cache line is 32 bits as well. The
caches are designed so that word lengths and cache sizes can be easily changed.
The structure of the cache line with bit positions is illustrated in Figure 3. Observe
that, the value of the index is the same for blocks that are located in the same set.

TAG INDEX DATA
64 ... 43 42 ... 32 31 ... 0

Figure 3: Cache line (showing bit positions).

The read operation from two-way set associative cache proceeds as follows:
First, we search a match for the index part of the received address from the cache.
If found, the two tags in the selected set are compared with the tag of the address.
In case of match, data from that location is returned. This situation is denoted as
cache hit. If the requested data is not located in the cache, the situation is called
a cache miss. In this case the data is then requested from the lower level of the
memory hierarchy, namely the main memory. The received datafrom the main
memory is written into the cache and given to the CPU.

The cache write operation is needed in two cases: the requested data is fetched
from the main memory, or the CPU writes data into the memory. However, the
cache write operation is similar in both cases. Since we haveadopted the set as-
sociative placement, we have to choose which block under which set is replaced.
TheLeast Recently Used (LRU) method relies on a corollary of locality: Re-
cently used blocks are likely to be used again, and thereforea good candidate for
disposal is the one that has been unused for the longest time [9]. However, the

4

LRU can be complicated to calculate on some occasions, and therefore we will
adopt thefirst in, first out (FIFO) method, which is an approximation of the
LRU. The FIFO method approximates the LRU method by determining the old-
est set rather than the least recently used. Moreover, the difference in accuracy
in terms of cache misses is small, and because the expenses ofLRU increases as
the block size increases, we will adopt theFIFO method. Thus, data is written
into the oldest cache set, whereas the block to be replaced ischosen randomly.
If data is written to the cache from the CPU side then the data is written in both
to the cache and to the main memory immediately. This approach is known as
write through policy, and we have adopted it because it is well suited for NoC
applications and other environments with multithreading and/or parallelism in the
presence of shared memories.

The REALJava co-processor, specified in [13], has two separate caches, namely
instruction cache and data cache. The instruction cache is read-only, where as the
data cache can be written or read. The interface of the data cache is shown in
Figure 4. The instruction cache has similar interface except the write operation
from the CPU’s side is eliminated. Therefore, for the rest ofthis section, we will
illustrate the architectural aspects using data cache.

32

M
E

M
O

R
Y

C
P

U

CACHEd_in

Hit

dv_mem

rd_mem

32

data_2_mem

data_from_mem

32

R/W

addr_in

32

d_out

32

addr_2_mem

32

Figure 4: Simplified cache interface.

The interface, shown in Figure 4, is applied to both asynchronous and syn-
chronous cache implementations, in the CPU to cache interface there are five sig-
nals. Read not write (r/w) is used to indicate whether the CPU wants to read
or write to the memory. There are two data channels, one for reading (dout) and
one for writing data (din), and one address channel (addrin). Thehit is set′1′

by the cache in case of a cache hit, otherwise it remains′0′. The data out and hit
signals are both used to indicate to the CPU that the cache is ready to accept new
requests. The cache to memory interface also contains five signals. Data valid to
memory (dvmem) and read memory (rdmem) are control signals, which are used
to issue read access from the cache side and write access fromthe memory side,
respectively. Data and address channels are similar to the CPU interface. All of
the address and data channels are 32 bits wide.

5

3.3 Asynchronous cache design

The timing diagram of the asynchronous cache read operationis shown in Figure
5. The read operation consist of four sequential handshakes: At first the CPU
request read access (HS1) to the cache. When the access is granted, the address
is loaded to the cache. If the result of the cache search is amiss, the read request is
forwarded to the main memory (HS2). Then, the cache waits until there is valid
data from the main memory. The main memory has the initiativeon the third
handshake (HS3), which signals that the memory read is completed. Once the
cache has received the data from the memory it performs the cache write operation
and outputs the requested data to the CPU (HS4). After the fourth handshake is
completed the cache is ready to accept new requests.

HS1

HS2

HS3

HS4
da

ta
_f

ro
m

m
em

m
emc_

in

d_
ou

t

Cache Main Memory Cache

Time

ad
dr

_2

Figure 5: Timing diagram for asynchronous data cache.

If the result of the read operation ishit, the handshakes two and three are
skipped, and the result is directly returned to the CPU(HS4), and a new operation
can be requested. Thus, the fourth handshake serves as an cache valid signal in
read operation, and therefore when it is completed the CPU knows that the cache
is ready accept new operation request.

The write operation consists of two handshakes. In the first phase the CPU
requests write access to the cache(HS1), and when the access is granted, the data
and address are transferred to the cache. In the second phasethe cache updates
the data in the cache memory and writes it to the main memory(HS2). After
the second handshake the cache is ready to accept new commands but the main
memory may still be processing the write command. Thereforethe next command
may be stalled until the previous write command is completed. This happens only
if the next command requires access to the main memory, readsfrom already
cached memory locations can be completed. The haste code fordata cache and
the test environment can be found in AppendixA.

3.4 Synchronous cache design

In order to compare the performances of the caches designed using Haste, we im-
plemented synchronous versions of these two caches using VHDL. The interfaces
are similar than in Figure 4, and the operation is consistentwith the asynchronous

6

implementation. Thus, the timing diagram for the synchronous cache read opera-
tion (read miss assumed) is shown in Figure 6.

Time

m
em

ad
dr

_2

c_
in

d_
ou

t

da
ta

_f
ro

m
m

em

CacheCache MemoryMain

clk

Figure 6: Timing diagram for synchronous data cache.

The address request is read in, and the cache search operation is performed
during one clock period. During the second clock period the data is sent to the
main memory. Then the cache waits as long as the main memory sets the data
valid signal high. Then one clock cycle is used to store the received data in the
cache and the fourth clock period is used to output the data tothe CPU. Notice
the similarity that synchronous cache uses four clock cycles to complete the read
operation whereas the asynchronous uses four handshakes. If the read operation
results cache hit, then this is indicated to the CPU usinghit signal, then only two
clock cycles are needed for this operation. The VHDL code forthe synchronous
data cache and the applied test environment can be found in AppendixB.

4 Implementation Issues

The storage structure of a two way set associative cache was described using
record statement [1].Record types are heterogeneous, that is elements may have
different types. By adopting the record statement we define one cache set, as
shown in Figure 2. Then we can define an array of these records.Now each cell
in the array has the properties of the record defined for the cache set. This turned
out to be very effective and flexible method to describe a generic cache mem-
ory. Moreover, the read and write operations to the cache were easy to implement
using afor loop. Overall, the VHDL description follows the simplified timing
diagram, shown in Figure 6.

4.1 Haste descriptions

The storage structure for asynchronous caches were implemented using Haste
type tuple, which has same kind of properties with the record type in VHDL.
For instance, the cache line, shown in Figure 3, can be definedto form a tuple
type:

cacheData = [[bool22, bool10, bool32]]

and now we can define variables using the tuple type, for instance:

7

cacheLine = cacheData

where the size of the tuple is the sum of the sizes of the constituent types [10],
in this case it is 64. We are using the[[]] brackets to define the tuple where the
contents are indexed MSB first, and therefore in our example tuple the contents are
indexed by[[2, 1, 0]]. For instance, the cache index can be accessed by following
notation:cacheLine.1. By adopting the tuple construct, we were able to design
the cache memory which resembles the corresponding VHDL implementation.
The asynchronous cache implementations are consistent with the timing diagram
shown in Figure 5.

4.2 Discussion on design environments

In general it is not fair to compare directly these two languages, because VHDL
has been developed for a long time by a large community, whereas the Haste is
fairly new language with a smaller group behind it. There area lot of ready made
source code libraries for VHDL. Also VHDL is a bit easier to use (tools are older,
resulting in more sophisticated user interfaces etc.). However the design of asyn-
chronous circuits using VHDL is cumbersome, even impossible in some cases.
Haste on the other hand is developed for the design of asynchronous circuits. One
major difference between these two languages is the level ofcontrol the designer
has. In Haste the way the code is written heavily effects the resulting synthesized
structures. This is due to the fact that Haste is based on the idea ofsyntax driven
synthesis.

After the experiences gained during design of the caches forthis paper we
would like to see future versions of Haste with a few improvements. Currently
Haste implements all of the communication channels using four-phase handshak-
ing. An option to choose between 2 and 4 phase handshakes would give the de-
signer more control. Also a language structure similar to the “for - generate”
statement in VHDL would provide a flexible way of creating large parameteriz-
able structures. Finally a possibility to define data validity scheme (early vs. late)
would simplify integration to surrounding environment.

5 Synthesis Results

5.1 Test environment

All the designs were optimized using Cadence PKS shell synthesis tool with UMC
0.13µm technology, after which VHDL netlists for synchronous caches and Ver-
ilog netlists for asynchronous caches were written. The delays for each cache
circuit were written in the standard delay format (SDF). Thepost synthesis simu-
lation is done using the Modelsim simulator for all designs.The design under test
(DUT) is surrounded by the test environment as shown in Figure 7.

8

DUT

C
P

U

S
D

R
A

M

Test environment

Figure 7: Test environment for the caches.

In all four cases the test environment is generated using VHDL. The technical
properties of the SDRAM were chosen from the datasheets of Maxwell Technolo-
gies [8]. The adopted memory is 72SD3232 1 Gbit SDRAM, which operates on
100MHz clock frequency. TheCAS latency was chosen to be three, and there-
fore the memory access time for single read or single write is90 ns.

5.2 Performance evaluation

The operation of the asynchronous and synchronous caches iscyclic, due to the
similar design approach. For instance, compare the timing diagrams for syn-
chronous and asynchronous read operation (miss assumed), shown in Figure 6
and 5, respectively. In both cases the operation is divided either four handshakes
(asynchronous) or four operative clock cycles (synchronous). Notice that, the syn-
chronous cache runs on quite slow clock frequency,fclk = 100MHz, because of
this architecture.

The read access times are shown in Table 1.

Table 1: Read access times.

Instruction caches Data caches

Sync. Async. Sync. Async.

Hit [ns] 20 28 30 28

Miss [ns] 110 125 120 133

At first, lets consider the synchronous cache designs. The difference in access
times between the instruction cache and data cache implementations are10ns for
both read hit andread miss cases. Next, we carry on similar comparison for
the access times of the asynchronous caches. Observe that, in case of aread hit,
both the data and instruction cache have equally good performance. Moreover the
difference inread miss operation is relatively small. Finally, we compare the four
cache implementations together. Instruction caches are faster than data caches due
to their simpler structure. Furthermore, synchronous designs are slightly faster

9

than the asynchronous ones, but the difference decreases when the comparison is
carried out between the data caches. Especially in the case of a hit in the data
cache the asynchronous version is actually a bit faster.

The write access time comparison between the data cache implementations is
shown in Table 2. In this case the asynchronous data cache performs cache write
faster than the corresponding synchronous one. However, these access times are
for the cache write operation, so for instance, if the CPU requests read operation,
which results as cache miss, the cache might not get direct read access to the main
memory, because the duration of the write operation in main memory is 90 ns.

Table 2: Write access times

Sync. Async.

Cache write [ns] 30 20

Conventionally, the asynchronous systems have some amountarea overhead
comparing with their synchronous counterparts, and therefore one goal in the de-
velopment of Handshake technology design flow has been to reduce this overhead
[10]. The areas of the caches are shown in Table 3.

Table 3: Areas

Instruction caches Data caches

Sync. Async. Sync. Async.

Total Area [µm2] 153570.82 95162.69 157004.35 99460.23

Relative Areas 1.6 1 1.6 1

The results are stunning, the area overhead is now problem ofsynchronous
systems. In both cases the synchronous cache has60% larger area than the corre-
sponding asynchronous one. In the time domain both design styles provide simi-
lar performance with only marginal differences. Moreover,asynchronous designs
have potential for low-noise and low-power behavior [7]. Inmany designs noise is
caused to a large extent by the synchronous operation of the circuit. As chips grow
larger and the energy consumption increases, the portion ofthe noise induced by
the synchronous operation will increase. The clock dictated operation forces a
great deal of gates and flip-flops in the chip to change their states at the same mo-
ment. This behavior can be demonstrated by measuring the current profile of the
circuit. For synchronous designs the current profile is dominated clock induced
high peaks. Unfortunately, we were not able to measure the current profiles for

10

Haste designs due to the technology related problems, and issues related to this
new Haste design flow. However, it is fair to assume that the asynchronous design
should have better performance in terms of on-chip noise andpower consumption,
which makes the asynchronous implementation more attractive.

6 Conclusions and Future Work

Considering the speed of operation, the caches achieved comparable performance
for both the asynchronous and the synchronous design styles. However the asyn-
chronous style using Haste was significantly smaller in terms of area. The VHDL
coded synchronous caches were actually as much as60% larger. This was a sur-
prising result, since asynchronous designs have been discredited on grounds of
area overhead for a long time. Taking in to account the performance in time
domain and the area required for the designs, we can say that Haste seems to
provide an attractive alternative for logic synthesis. This is accentuated even fur-
ther by the well known facts that asynchronous systems provide smoother current
profiles, resulting in lesser noise, and generally lower power consumption. Also
asynchronous subcomponents can be composed to a complete system without any
problems in finding an optimal clock frequency for the whole system. This al-
lows components of a given system to be updated without the need to update all
the other components as well. NoC system designers are already starting to fa-
vor asynchronous communication structures for the network, so it would be only
logical to remove the clock from the processing elements also.

We plan to further investigate the possibilities of the Haste tool set. As the next
step, regarding these cache designs, we plan to implement animage manipulation
algorithm on an FPGA demonstration board and test it with both data caches cre-
ated for this paper. Haste provides an option to create a synchronized version of
the design, so it can be easily programmed to an FPGA. The performance of the
synchronized version is of course degraded, but the functionality will be correct.
By analyzing the relative performance metrics of the FPGA implementations and
the results obtained for this paper we can draw some indicative relations for the
performance of a given actual asynchronous design and its synchronized FPGA
prototype.

References

[1] J. R. Amstrong and F. Gail Gray,VHDL Design Representation and Synthesis,
2nd ed. New Jersey, United States of America: Prentice Hall,2000.

[2] F. te Beest, M. Verra, A. Peeters, M. de Wit, and E. Woutersen,Handshake
Technology Design Flow Manual, ver. 4.3, Handshake Solutions, Koninklijke
Philips Electronics N.V., October 2005, The Netherlands.

11

[3] A. W. Burks, H. H. Goldstine, J. von Neumann,Preliminary discussion of
the logical design of an electronic computing instrument, Report to the U.S.
Army Ordinance Department, 1946.

[4] E. W. Dijkstra, A Discipline of Programming, Prentice-Hall International,
1976.

[5] Handshake Solutions,http://www.handshakesolutions.com.

[6] C. A. R. Hoare,Communicating Sequential Processes. Series in Computer
Science, Prentice-Hall Int. 1985.

[7] P. Liljeberg, J. Tuominen, S. Tuuna, J. Plosila, and J. Isoaho,Self-Timed Ap-
proach for Noise Reduction in NoC, In Interconnect-Centric Design for Ad-
vanced SoC and NoC, chapter 11, Kluwer Academic Publishers,April 2004.

[8] Maxwell Technologies,http://www.maxwell.com

[9] D. A. Patterson and J. L. Hennessy,Computer Architecture A Quantitative
Approach, 3rd ed. San Fransisco, CA, United States of America: Morgan
Kaufmann Publishers, Inc, 2003.

[10] A. Peeters and M. de Wit,Haste Manual, ver. 2.9, Handshake Solutions,
Koninklijke Philips Electronics N.V., 2005, The Netherlands.

[11] A. Peeters,Single-Rail Handshake Circuits, Ph.D Thesis, Eindhoven Uni-
versity of Technology, 1996.

[12] J. Sparsø, and S. Furber,Principles of Asynchronous Circuit Design - A
System Perspective, Kluwer Academic Publishers, 2001.

[13] T. Säntti, and J.Plosila,Architecture for an Advanced Java Co-Processor, In
Proc. of International Symposium on Signals, Circuits and Systems, ISSCS
2005, July 2005, Iasi, Romania.

7 Appendix A: Haste code for data cache

7.1 Asynchronous data cache
// Asynchronous data cache
// Port Purpose
// c_in consist of input data, address, and a read/write bit.
// d_out requested data out to the CPU
// addr_2_mem address request to the main memory
// data_from_mem requested data from memory
// data_2_mem CPU writes to cache, data is written throug to
// the main memory
// Type declarations

int16= type [0..16]

&int22= type[0..22]
&int32= type[0..32]

12

&byte= type[0..1023]

&bool10= type [[bool,bool,bool,bool,bool,bool,bool,bool,bool,bool]]

&bool22= type
[[bool,
bool,bool]]

&bool32= type
[[bool,
bool,bool,bool,bool,bool,bool,bool,bool,bool,bool,bool,bool]]

&data= type [[bool,bool10,bool22,bool32]]
&cache_data= type [[bool22, bool32]]
&addr= type [[bool10,bool22]]

// Global variable declarations

&tmp_c_in: var data narb: ff
&memory_data: var bool32 narb: ff
&tmp_addr: var addr narb: ff
&tmp_data_2_mem: var bool32 narb: ff

// Main procedure, which is divided into two sub procedures: cm and mmu
// The cm procedure handles write, and read operations into the cache,
// and controls the cache memory.
// The mmu procedure is mainly an interface between cache and main memory.

& dcache: main proc(c_in?chan data pas & d_out!chan bool32 &
addr_2_mem!chan addr & data_from_mem?chan bool32 pas \\ & data_2_mem!chan bool32).

begin

&c: chan bool
&d: chan bool
&e: chan bool
|

cm(c_in, c, d, d_out,e)||mmu(data_from_mem, c, d, addr_2_mem,e, data_2_mem)

end

&cm: proc(c_in?chan data pas & mmu_dv?chan bool & enable_mmu!chan bool & d_out!chan
bool32 & enable_data_2_mem!chan bool).

begin

//variable declarations

&m_indx: var bool10 narb:
&m_tag: var bool22 narb:
&m_data: var bool32 narb:
&tmp_enable_mmu: var bool
&tmp_mmu_dv: var bool
&rd_mode: var bool ff := true
&dec_number: var byte ff:=0
&cache_hit: var bool ff
&fifo_out: var bool32 arb!
&tmp_enable_data: var bool ff
&hit0: var bool ff := false
&hit1: var bool ff := false
&hit2: var bool ff := false
&hit3: var bool ff := false
&hit4: var bool ff := false
&hit5: var bool ff := false
&hit6: var bool ff := false
&hit7: var bool ff := false
&hit8: var bool ff := false
&hit9: var bool ff := false
&hit10: var bool ff := false
&hit11: var bool ff := false
&hit12: var bool ff := false
&hit13: var bool ff := false
&hit14: var bool ff := false
&hit15: var bool ff := false
&cache_contents0: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents1: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents2: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents3: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents4: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents5: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents6: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents7: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents8: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents9: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents10: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents11: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]

13

&cache_contents12: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents13: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents14: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents15: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents16: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents17: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents18: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents19: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents20: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents21: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents22: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents23: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents24: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents25: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents26: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents27: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents28: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents29: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents30: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_contents31: var cache_data narb: := [[0 fit int22 cast bool22, 0 fit int32 cast bool32]]
&cache_index0: var bool10 narb! := [[false,false,false,false,false,false,false,false,false,false]]
&cache_index1: var bool10 narb! := [[false,false,false,false,false,false,false,false,false,false]]
&cache_index2: var bool10 narb! := [[false,false,false,false,false,false,false,false,false,false]]
&cache_index3: var bool10 narb! := [[false,false,false,false,false,false,false,false,false,false]]
&cache_index4: var bool10 narb! := [[false,false,false,false,false,false,false,false,false,false]]
&cache_index5: var bool10 narb! := [[false,false,false,false,false,false,false,false,false,false]]
&cache_index6: var bool10 narb! := [[false,false,false,false,false,false,false,false,false,false]]
&cache_index7: var bool10 narb! := [[false,false,false,false,false,false,false,false,false,false]]
&cache_index8: var bool10 narb! := [[false,false,false,false,false,false,false,false,false,false]]
&cache_index9: var bool10 narb! := [[false,false,false,false,false,false,false,false,false,false]]
&cache_index10: var bool10 narb! := [[false,false,false,false,false,false,false,false,false,false]]
&cache_index11: var bool10 narb! := [[false,false,false,false,false,false,false,false,false,false]]
&cache_index12: var bool10 narb! := [[false,false,false,false,false,false,false,false,false,false]]
&cache_index13: var bool10 narb! := [[false,false,false,false,false,false,false,false,false,false]]
&cache_index14: var bool10 narb! := [[false,false,false,false,false,false,false,false,false,false]]
&cache_index15: var bool10 narb! := [[false,false,false,false,false,false,false,false,false,false]]
&i: var int16 ff := 0

|

forever do

c_in?tmp_c_in;
rd_mode:= tmp_c_in.3;

(if (tmp_c_in.2 = cache_index0) * (tmp_c_in.1 =cache_contents0.1) then
fifo_out:= cache_contents0.0 || hit0 := true

or (tmp_c_in.2 = cache_index0) * (tmp_c_in.1 = cache_contents1.1) then
fifo_out:= cache_contents1.0 || hit0 := true

else
hit0:=false
fi)

||

(if (tmp_c_in.2= cache_index1) * (tmp_c_in.1=cache_contents2.1) then
fifo_out:= cache_contents2.0 || hit1 := true

or (tmp_c_in.2= cache_index1) * (tmp_c_in.1=cache_contents3.1) then
fifo_out:= cache_contents3.0 || hit1 := true

else
hit1:=false
fi)

||

(if (tmp_c_in.2= cache_index2) * (tmp_c_in.1=cache_contents4.1) then
fifo_out:= cache_contents4.0 || hit2 := true

or (tmp_c_in.2= cache_index2) * (tmp_c_in.1=cache_contents5.1) then
fifo_out:= cache_contents5.0 || hit2 := true

else
hit2:=false
fi)

||

(if (tmp_c_in.2= cache_index3) * (tmp_c_in.1=cache_contents6.1) then
fifo_out:= cache_contents6.0 || hit3 := true

or (tmp_c_in.2= cache_index3) * (tmp_c_in.1=cache_contents7.1) then
fifo_out:= cache_contents7.0 || hit3 := true

else
hit3:=false
fi)

||

14

(if (tmp_c_in.2= cache_index4) * (tmp_c_in.1=cache_contents8.1) then
fifo_out:= cache_contents8.0 || hit4 := true

or (tmp_c_in.2= cache_index4) * (tmp_c_in.1=cache_contents9.1) then
fifo_out:= cache_contents9.0 || hit4 := true

else
hit4:=false
fi)

||

(if (tmp_c_in.2= cache_index5) * (tmp_c_in.1=cache_contents10.1) then
fifo_out:= cache_contents10.0 || hit5 := true

or (tmp_c_in.2= cache_index5) * (tmp_c_in.1=cache_contents11.1) then
fifo_out:= cache_contents11.0 || hit5 := true

else
hit5:=false
fi)

||

(if (tmp_c_in.2= cache_index6) * (tmp_c_in.1=cache_contents12.1) then
fifo_out:= cache_contents12.0 || hit6 := true

or (tmp_c_in.2= cache_index6) * (tmp_c_in.1=cache_contents13.1) then
fifo_out:= cache_contents13.0 || hit6 := true

else
hit6:=false
fi)

||

(if (tmp_c_in.2= cache_index7) * (tmp_c_in.1=cache_contents14.1) then
fifo_out:= cache_contents14.0 || hit7 := true

or (tmp_c_in.2= cache_index7) * (tmp_c_in.1=cache_contents15.1) then
fifo_out:= cache_contents15.0 || hit7 := true

else
hit7:=false
fi)

||

(if (tmp_c_in.2= cache_index8) * (tmp_c_in.1=cache_contents16.1) then
fifo_out:= cache_contents16.0 || hit8 := true

or (tmp_c_in.2= cache_index8) * (tmp_c_in.1=cache_contents17.1) then
fifo_out:= cache_contents17.0 || hit8 := true

else
hit8:=false
fi)

||

(if (tmp_c_in.2= cache_index9) * (tmp_c_in.1=cache_contents18.1) then
fifo_out:= cache_contents18.0 || hit9 := true

or (tmp_c_in.2= cache_index9) * (tmp_c_in.1=cache_contents19.1) then
fifo_out:= cache_contents19.0 || hit9 := true

else
hit9:=false
fi)

||

(if (tmp_c_in.2= cache_index10) * (tmp_c_in.1=cache_contents20.1) then
fifo_out:= cache_contents20.0 || hit10 := true

or (tmp_c_in.2= cache_index10) * (tmp_c_in.1=cache_contents21.1) then
fifo_out:= cache_contents21.0 || hit10 := true

else
hit10:=false
fi)

||

(if (tmp_c_in.2= cache_index11) * (tmp_c_in.1=cache_contents22.1) then
fifo_out:= cache_contents22.0 || hit11 := true

or (tmp_c_in.2= cache_index11) * (tmp_c_in.1=cache_contents23.1) then
fifo_out:= cache_contents23.0 || hit11 := true

else
hit11:=false
fi)

||

(if (tmp_c_in.2= cache_index12) * (tmp_c_in.1=cache_contents24.1) then
fifo_out:= cache_contents24.0 || hit12 := true

or (tmp_c_in.2= cache_index12) * (tmp_c_in.1=cache_contents25.1) then
fifo_out:= cache_contents25.0 || hit12 := true

else
hit12:=false
fi)

15

||

(if (tmp_c_in.2= cache_index13) * (tmp_c_in.1=cache_contents26.1) then
fifo_out:= cache_contents26.0 || hit13 := true

or (tmp_c_in.2= cache_index13) * (tmp_c_in.1=cache_contents27.1) then
fifo_out:= cache_contents27.0 || hit13 := true

else
hit13:=false
fi)

||

(if (tmp_c_in.2= cache_index14) * (tmp_c_in.1=cache_contents28.1) then
fifo_out:= cache_contents28.0 || hit14 := true

or (tmp_c_in.2= cache_index14) * (tmp_c_in.1=cache_contents29.1) then
fifo_out:= cache_contents29.0 || hit14 := true

else
hit14:=false
fi)

||

(if (tmp_c_in.2= cache_index15) * (tmp_c_in.1=cache_contents30.1) then
fifo_out:= cache_contents30.0 || hit15 := true

or (tmp_c_in.2= cache_index15) * (tmp_c_in.1=cache_contents31.1) then
fifo_out:= cache_contents31.0 || hit15 := true

else
hit15:=false
fi);

cache_hit := (hit0 + hit1 + hit2 + hit3 + hit4 + hit5 + hit6 + hit7 +
hit8 + hit9 + hit10 + hit11 + hit12 + hit13 + hit14 + hit15);

if cache_hit = true then
d_out!fifo_out
else
(if (rd_mode=true) then

(tmp_enable_mmu := true ||
tmp_enable_data := false);
tmp_addr:=[[tmp_c_in.2, tmp_c_in.1]]

else
(tmp_enable_mmu := false ||
tmp_enable_data:= true);
tmp_data_2_mem:=tmp_c_in.0

fi);

(enable_mmu!tmp_enable_mmu ||
enable_data_2_mem!tmp_enable_data);

mmu_dv?tmp_mmu_dv;

(if (tmp_mmu_dv = true) then

m_indx:=tmp_c_in.2;
m_tag:=tmp_c_in.1;
m_data:=memory_data;
d_out!m_data

or (tmp_mmu_dv = false) then
m_indx:=tmp_c_in.2;
m_tag:=tmp_c_in.1;
m_data:=tmp_c_in.0
else
skip
fi);

(if i < 15 then i:=i+1
or i = 15 then i:=0
else

skip
fi) || (dec_number:= m_indx cast byte);

(if i=0 then

(cache_index0 := m_indx) ||
(if dec_number <= 510 then (cache_contents0 := [[m_tag, m_data]])
else (cache_contents1 := [[m_tag, m_data]])
fi)
else
skip
fi)

16

||

(if i=1 then
(cache_index1 := m_indx) ||
(if dec_number <= 510 then (cache_contents2 := [[m_tag, m_data]])
else (cache_contents3 := [[m_tag, m_data]])
fi)
else
skip
fi)

||

(if i=2 then

(cache_index2 := m_indx) ||
(if dec_number <= 510 then (cache_contents4 := [[m_tag, m_data]])
else (cache_contents5 := [[m_tag, m_data]])
fi)
else
skip
fi)

||

(if i=3 then
(cache_index3 := m_indx) ||
(if dec_number <= 510 then (cache_contents6 := [[m_tag, m_data]])
else (cache_contents7 := [[m_tag, m_data]])
fi)
else
skip
fi)

||

(if i=4 then

(cache_index4 := m_indx) ||
(if dec_number <= 510 then (cache_contents8 := [[m_tag, m_data]])
else (cache_contents9 := [[m_tag, m_data]])
fi)
else
skip
fi)

||

(if i=5 then

(cache_index5 := m_indx) ||
(if dec_number <= 510 then (cache_contents10 := [[m_tag, m_data]])
else (cache_contents11 := [[m_tag, m_data]])
fi)
else
skip
fi)

||

(if i=6 then

(cache_index6 := m_indx) ||
(if dec_number <= 510 then (cache_contents12 := [[m_tag, m_data]])
else (cache_contents13 := [[m_tag, m_data]])
fi)
else
skip
fi)

||

(if i=7 then
(cache_index7 := m_indx) ||
(if dec_number <= 510 then (cache_contents14 := [[m_tag, m_data]])
else (cache_contents15 := [[m_tag, m_data]])
fi)
else
skip
fi)

||

(if i=8 then (cache_index8 := m_indx) ||
(if dec_number <= 510 then (cache_contents16 := [[m_tag, m_data]])
else (cache_contents17 := [[m_tag, m_data]])
fi)

17

else
skip
fi)

||

(if i=9 then
(cache_index9 := m_indx)||
(if dec_number <= 510 then (cache_contents18 := [[m_tag, m_data]])
else (cache_contents19 := [[m_tag, m_data]])
fi)
else
skip
fi)

||

(if i=10 then
(cache_index10 := m_indx) ||
(if dec_number <= 510 then (cache_contents20 := [[m_tag, m_data]])
else (cache_contents21 := [[m_tag, m_data]])
fi)
else
skip
fi)

||

(if i=11 then
(cache_index11 := m_indx) ||
(if dec_number <= 510 then (cache_contents22 := [[m_tag, m_data]])
else (cache_contents23 := [[m_tag, m_data]])
fi)
else
skip
fi)

||

(if i=12 then
(cache_index12 := m_indx) ||
(if dec_number <= 510 then (cache_contents24 := [[m_tag, m_data]])
else (cache_contents25 := [[m_tag, m_data]])
fi)
else
skip
fi)

||

(if i=13 then
(cache_index13 := m_indx) ||
(if dec_number <= 510 then (cache_contents26 := [[m_tag, m_data]])
else (cache_contents27 := [[m_tag, m_data]])
fi)
else
skip
fi)

||

(if i=14 then (cache_index14 := m_indx) ||
(if dec_number <= 510 then (cache_contents28 := [[m_tag, m_data]])
else (cache_contents29 := [[m_tag, m_data]])
fi)
else
skip
fi)

||

(if i=15 then (cache_index15 := m_indx)||
(if dec_number <= 510 then (cache_contents30 := [[m_tag, m_data]])
else (cache_contents31 := [[m_tag, m_data]])
fi)
else
skip
fi)
fi
od
end

&mmu: proc(data_from_mem?chan bool32 pas & mmu_dv!chan bool &
enable_mmu?chan bool & addr_2_mem!chan addr & enable_data_2_mem?chan bool & data_2_mem!chan bool32).

18

begin

&tmp_enable: var bool
&tmp_dv: var bool
&tmp_data: var bool
|

forever do

(enable_mmu?tmp_enable ||
enable_data_2_mem?tmp_data);

(if (tmp_enable =true) then
addr_2_mem!tmp_addr;
data_from_mem?memory_data;
tmp_dv:=true
else
tmp_dv:=false
fi)

||

(if (tmp_data = true) then
data_2_mem!tmp_data_2_mem
else
skip
fi);

mmu_dv!tmp_dv
od
end

7.2 Test environment for asynchronous data cache

-- Title : asynchronous dcache
-- Project :

-- File : t_dcache.vhd
-- Author : Johanna Tuominen <joeltu@utu.fi>
-- Company :
-- Last update: 2006/03/30
-- Platform : VHDL’93

-- Description: testbench for asynchronous data cache

-- Revisions :
-- Date Version Author Description
-- 2006/02/24 1.0 joeltu Created

-- channel purpose
-- z_r activate request
-- data_from_mem incoming channel data
-- data_from_mem_a incoming handshake channel acknowledge
-- data_from_mem_r incoming handshake channel request
-- addr_2_mem outgoing handshake channel data
-- addr_2_mem_r outgoing handshake channel request
-- addr_2_mem_a incoming handshake channel acknowledge
-- d_out outgoing handshake channel data
-- d_out_a incoming handshake channel acknowledge
-- d_out_r outgoing handshake channel request
-- data_2_mem outgoing handshake channel data
-- data_2_mem_r outgoing handshake channel request
-- data_2_mem_a incoming handshake channel acknowledge
-- c_in incoming channel data
-- c_in_r incoming handshake channel request
-- c_in_a incoming handshake channel acknowledge

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use std.textio.all;
use work.all;

entity t_dcache is

end t_dcache;

architecture test of t_dcache is

component dcache

19

port (
z_r : in std_logic;
data_from_mem : in std_logic_vector(31 downto 0);
data_from_mem_a : out std_logic;
data_from_mem_r : in std_logic;
addr_2_mem : out std_logic_vector(31 downto 0);
addr_2_mem_r : out std_logic;
addr_2_mem_a : in std_logic;
d_out : out std_logic_vector(31 downto 0);
d_out_a : in std_logic;
d_out_r : out std_logic;
data_2_mem : out std_logic_vector(31 downto 0);
data_2_mem_r : out std_logic;
data_2_mem_a : in std_logic;
c_in : in std_logic_vector(64 downto 0);
c_in_r : in std_logic;
c_in_a : out std_logic);

end component;

for all : dcache
use entity work.dcache;

signal z_r, data_from_mem_a, data_from_mem_r, addr_2_mem_r,
addr_2_mem_a, d_out_a, d_out_r, data_2_mem_a, data_2_mem_r,
c_in_a, c_in_r : std_logic;

signal addr_2_mem, d_out : std_logic_vector(31 downto 0);
signal data_from_mem, data_2_mem: std_logic_vector(31 downto 0);
signal c_in : std_logic_vector(64 downto 0);

begin

i_dcache: dcache
port map (

z_r => z_r,
data_from_mem => data_from_mem,
data_from_mem_a => data_from_mem_a,
data_from_mem_r => data_from_mem_r,
addr_2_mem => addr_2_mem,
addr_2_mem_r => addr_2_mem_r,
addr_2_mem_a => addr_2_mem_a,
d_out => d_out,
d_out_a => d_out_a,
d_out_r => d_out_r,
data_2_mem => data_2_mem,
data_2_mem_r => data_2_mem_r,
data_2_mem_a => data_2_mem_a,
c_in => c_in,
c_in_r => c_in_r,
c_in_a => c_in_a);

-- reset

environment: process
begin
z_r <= ’0’;
wait for 500 ns;
z_r <= ’1’;
wait for 15 ms;
assert false report "end simulation" severity failure;

end process environment;

-- CPU => cache
-- purpose: produces input data for data cache

request_data_from_cache: process

variable tmp_data : bit_vector(64 downto 0);
variable l : line;
file req_cache : text open read_mode is

"/export/home/joeltu/haste/projekti/sync/data2c.in";

begin
c_in <= (others => ’0’);
c_in_r <= ’0’;
wait for 1000 ns;
c_in_r <= ’1’; -- repeat once
if not (endfile(req_cache)) then

readline(req_cache,l);
read(l,tmp_data);
c_in <= To_StdLogicVector(tmp_data);
wait until c_in_a = ’1’;
wait for 0.1 ns;
c_in_r <= ’0’;
wait until c_in_a = ’0’;

end if;

20

wait for 500 ns;
for i in 0 to 15 loop -- repeat 15 times

c_in_r <= ’1’;
wait for 0.1 ns;
if not (endfile(req_cache)) then

readline(req_cache,l);
read(l,tmp_data);
c_in <= To_StdLogicVector(tmp_data);
wait until c_in_a = ’1’;
wait for 0.1 ns;
c_in_r <= ’0’;
wait until c_in_a = ’0’;

end if;
wait for 500 ns;

end loop; -- i
wait;

end process request_data_from_cache;

-- cache => main memory
-- purpose: request data from main memory when needed

read_data_from_mem: process
variable tmp_data : bit_vector(31 downto 0);
variable l : line;
file mem_data : text open read_mode is

"/export/home/joeltu/haste/projekti/sync/memory.in";
begin

for i in 0 to 11 loop
data_from_mem <=(others =>’0’);
addr_2_mem_a <= ’0’;
data_from_mem_r <= ’0’;
wait on addr_2_mem_r until addr_2_mem_r = ’1’ ; -- wait request
addr_2_mem_a <= ’1’;
wait until addr_2_mem_r = ’0’;
addr_2_mem_a <= ’0’;
wait for 90 ns;
data_from_mem_r <= ’1’;
if not (endfile(mem_data)) then

readline(mem_data,l);
read(l,tmp_data);
data_from_mem <= To_StdLogicVector(tmp_data);
wait until data_from_mem_a =’1’;
data_from_mem_r <= ’0’;
wait until data_from_mem_a = ’0’;

end if;
end loop;
wait;

end process read_data_from_mem;

-- cache => CPU
-- Outputs the requested data

instruction_out : process
begin
loop -- repeat forever

d_out_a <= ’0’;
wait on d_out_r until d_out_r =’1’;
d_out_a <= ’1’;
wait until d_out_r = ’0’;
d_out_a <= ’0’;

end loop;
end process instruction_out ;

-- cache => main memory
-- write through operation

data_write_mem : process
begin
loop -- repeat forever

data_2_mem_a <= ’0’;
wait on data_2_mem_r until data_2_mem_r =’1’;
data_2_mem_a <= ’1’;
wait until data_2_mem_r = ’0’;
data_2_mem_a <= ’0’;

end loop;
end process data_write_mem ;

end test;

21

8 Appendix B: VHDL Code for data cache

-- Title : cache_pkg
-- Project :

-- File : cache_pkg.vhd
-- Author : Johanna Tuominen <joeltu@utu.fi>
-- Last update: 2006/03/09
-- Platform : VHDL’93

-- Description: Passes parameters to the synchronous cache controller.

-- Revisions :
-- Date Version Author Description
-- 2006/01/09 1.0 joeltu Created

library ieee;
use ieee.std_logic_1164.all;

package cache_pkg is

-- General parameters

-- Structure of the cache block
-- ##

-- TAG | INDEX | DATA --

-- Bits: 22 | 10 | 32 --

-- Width of the data bus.
constant data_bits : natural := 32;

-- Number of bits needed to represent memory address.
constant addr_bits : natural := 32;

-- Number of sets in the cache
constant cache_index : natural := 16;

-- Number of bits in the index
constant index_size : natural := 10;

-- Number of bits the tag
constant tag_size : natural := 22;

end cache_pkg;

package body cache_pkg is

end cache_pkg;

-- Title : d_cache.vhd
-- Project :

-- File : d_cache.vhd
-- Author : Johanna Tuominen <joeltu@utu.fi>
-- Company :
-- Last update: 2006/03/30
-- Platform : VHDL’93

-- Description: Synchronous 32 bit data cache.

-- Revisions :
-- Date Version Author Description
-- 2006/01/18 1.0 joeltu Created

--
-- Port name: Purpose:
-- clk clock signal
-- rst asynchronous reset (active low)
-- d_rd_cache reading is enabled by the cpu
-- d_wr_cache writing is enabled by the cpu
-- dv_from_mem data is valid from main memory
-- d_add_2_cache cpu request data
-- d_in data in to cache (cpu side)

22

-- mem_wr_dcache data in to cache (memory side)
-- cache_wr_mem data out to main memory
-- d_addr_2_mem cache fetches data from main memory
-- d_rd_mem enables memory reading.
-- d_hit cache hit
-- d_out data out from cache (to cpu side)

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use work.cache_pkg.all;

entity d_cache is

port (
clk : in std_logic;
rst : in std_logic;
d_rd_cache : in std_logic;
d_wr_cache : in std_logic;
dv_from_mem : in std_logic;
d_add_2_cache : in std_logic_vector(addr_bits - 1 downto 0);
d_in : in std_logic_vector(2*data_bits-1 downto 0);
mem_wr_dcache : in std_logic_vector(data_bits-1 downto 0);
cache_wr_mem : out std_logic_vector(data_bits-1 downto 0);
d_addr_2_mem : out std_logic_vector(addr_bits - 1 downto 0);
d_rd_mem : out std_logic;
d_hit : out std_logic;
d_out : out std_logic_vector(data_bits - 1 downto 0));

end d_cache;

architecture arch of d_cache is

-- function declarations

function replace_block(b_code: integer) return integer is

variable r_code: integer;
variable i : integer;

begin

i := b_code;
if i < cache_index - 1 then

i := i + 1;
else

i := 0;
end if;

r_code := i;
return r_code;

end;

function choose_tag_2_replace (ctag : integer) return std_logic is
variable rtag : std_logic;
variable ptag : integer := 0;

begin
if ptag < ctag then

rtag := ’1’;
ptag := ctag;

else
rtag := ’0’;
ptag := ctag;

end if;
return rtag;

end;

-- type and signal declarations

type d_cache_block is record
index: std_logic_vector(index_size - 1 downto 0);
tag_1: std_logic_vector(tag_size - 1 downto 0);
tag_2: std_logic_vector(tag_size - 1 downto 0);
data_1: std_logic_vector(data_bits - 1 downto 0);
data_2: std_logic_vector(data_bits - 1 downto 0);

end record;

type d_cache_matrix is array (0 to cache_index-1) of d_cache_block;

signal d_cache_contents : d_cache_matrix;
signal atag : std_logic_vector(tag_size - 1 downto 0);
signal aind : std_logic_vector(index_size - 1 downto 0);
signal adat : std_logic_vector(data_bits - 1 downto 0);
signal mdat : std_logic_vector(data_bits - 1 downto 0);

23

signal tmp_d_out : std_logic_vector(data_bits - 1 downto 0);
signal d_miss : std_logic;
signal wr_ind : integer;
signal wr_prev : integer;
signal wind : integer;
signal replace : std_logic;
signal cpu_wr_2_cache : std_logic;
signal mem_wr_2_cache : std_logic;
signal write_through : std_logic;

begin -- arch

-- cpu request either read or write access from the data cache

operation_request_from_cpu: process (clk, rst)
begin -- process instr_in
if rst = ’0’ then -- asynchronous reset (active low)

atag <= (others => ’0’);
aind <= (others => ’0’);
adat <= (others => ’0’);

elsif clk’event and clk = ’1’ then -- rising clock edge
if d_rd_cache = ’1’ then

atag <= d_add_2_cache(addr_bits - 1 downto index_size);
aind <= d_add_2_cache(index_size - 1 downto 0);

elsif d_wr_cache = ’1’ then
atag <= d_in(2*data_bits-1 downto 42);
aind <= d_in(41 downto 32);
adat <= d_in(data_bits-1 downto 0);

else
null;

end if;
end if;

end process operation_request_from_cpu;

-- Process to handle writes to cache.
-- write operation from cpu to memory is implemented as a
-- write through, that is both cache and memory are updated
-- in every write operation.

write_2_cache: process (clk, rst)
begin
if rst = ’0’ then -- asynchronous reset (active low)

write_through <= ’0’;
wr_prev <= 0;
for i in 0 to (cache_index - 1) loop
d_cache_contents(i).index <= (others => ’1’);
d_cache_contents(i).tag_1 <= (others => ’1’);
d_cache_contents(i).tag_2 <= (others => ’1’);
d_cache_contents(i).data_1 <= (others => ’1’);
d_cache_contents(i).data_2 <= (others => ’1’);

end loop;
write_through <= ’0’;

elsif clk’event and clk=’1’ then -- rising clock edge
if cpu_wr_2_cache = ’1’ then

if replace = ’1’ then
d_cache_contents(wr_ind).index <= aind;
d_cache_contents(wr_ind).tag_1 <= atag;
d_cache_contents(wr_ind).data_1 <= adat;
write_through <= ’1’;
wr_prev <= wr_ind;

elsif replace = ’0’ then
d_cache_contents(wr_ind).index <= aind;
d_cache_contents(wr_ind).tag_2 <= atag;
d_cache_contents(wr_ind).data_2 <= adat;
write_through <= ’1’;
wr_prev <= wr_ind;

else
write_through <= ’0’;

end if;
elsif mem_wr_2_cache = ’1’ then

if replace = ’1’ then
d_cache_contents(wr_ind).index <= aind;
d_cache_contents(wr_ind).tag_1 <= atag;
d_cache_contents(wr_ind).data_1 <= mdat;
wr_prev <= wr_ind;

elsif replace = ’0’ then
d_cache_contents(wr_ind).index <= aind;
d_cache_contents(wr_ind).tag_2 <= atag;
d_cache_contents(wr_ind).data_2 <= mdat;
wr_prev <= wr_ind;

else
null;

end if;

else
null;

end if;

24

else
null;
end if;

end process write_2_cache;

-- controls write operations: (cpu => cache), (cache => memory), (memory => cache).

write_control: process (clk, rst)
begin
if rst = ’0’ then -- asynchronous reset (active low)

cpu_wr_2_cache <= ’0’;
mem_wr_2_cache <= ’0’;

elsif clk’event and clk = ’1’ then -- rising clock edge
if (d_wr_cache = ’1’ and dv_from_mem = ’0’) then -- write request from cpu

cpu_wr_2_cache <= ’1’;
mem_wr_2_cache <= ’0’;

elsif (dv_from_mem = ’1’ and d_wr_cache = ’0’) then -- write request from main memory
mem_wr_2_cache <= ’1’;
cpu_wr_2_cache <= ’0’;

else
cpu_wr_2_cache <= ’0’;
mem_wr_2_cache <= ’0’;

end if;
end if;

end process write_control;

-- Data is requested from memory in case of cache miss.

rd_from_mem: process (clk, rst)
begin
if rst = ’0’ then -- asynchronous reset (active low)

d_addr_2_mem <= (others => ’0’);
d_rd_mem <= ’0’;

elsif clk’event and clk = ’1’ then -- rising clock edge
if d_miss = ’1’ then

d_addr_2_mem(addr_bits - 1 downto index_size)<=atag;
d_addr_2_mem(index_size - 1 downto 0)<=aind;
d_rd_mem <= ’1’;

else
d_rd_mem <= ’0’;

end if;
end if;

end process rd_from_mem;

-- Requested data is received from memory.

data_from_mem: process (clk, rst)
begin
if rst = ’0’ then -- asynchronous reset (active low)

replace <= ’0’;
wr_ind <= 0;
wind <= 0;
mdat <= (others => ’0’);
d_out <= (others => ’0’);

elsif clk’event and clk=’1’ then -- rising clock edge
if dv_from_mem = ’1’ and d_rd_cache = ’0’ then

mdat <= mem_wr_dcache(data_bits-1 downto 0);
d_out <= mem_wr_dcache(data_bits-1 downto 0);
wr_ind <= replace_block(wr_prev);
wind <= conv_integer(aind);
replace <= choose_tag_2_replace(wind);

else
d_out <= tmp_d_out;

end if;
else

null;
end if;

end process data_from_mem;

-- If cache is written then the same data is written to main memory.

wr_2_mem: process (clk, rst)
begin
if rst = ’0’ then -- asynchronous reset (active low)

cache_wr_mem <= (others => ’0’);
elsif clk’event and clk = ’1’ then -- rising clock edge

if write_through = ’1’ then
cache_wr_mem(data_bits - 1 downto 0)<= adat;

else
null;

end if;

25

else
null;

end if;

end process wr_2_mem;

-- read request from cpu.

rd_data_from_cache: process (clk, rst)
begin
if rst = ’0’ then -- asynchronouns reset (active low)

d_miss <= ’0’;
tmp_d_out <= (others => ’0’);
d_hit <= ’0’;

elsif clk’event and clk = ’1’ then -- rising clock edge
if d_rd_cache = ’1’ then

for i in 0 to cache_index - 1 loop
if (d_cache_contents(i).index = aind) and (d_cache_contents(i).tag_1 = atag) then
tmp_d_out <= d_cache_contents(i).data_1;
d_miss <= ’0’;
d_hit <= ’1’;

elsif d_cache_contents(i).tag_2 = atag then
tmp_d_out <= d_cache_contents(i).data_2;
d_miss <= ’0’;
d_hit <= ’1’;

else
d_miss <= ’1’;
d_hit <= ’0’;

end if;
end loop; --i

else
d_hit <= ’0’;
d_miss <= ’0’;

end if;
else

null;
end if;

end process rd_data_from_cache;

end arch;

8.1 Test enviroment for synchronous data cache

-- Title : t_d_cache.vhd
-- Project :

-- File : t_d_cache.vhd
-- Author : Johanna Tuominen <joeltu@utu.fi>
-- Company :
-- Last update: 2006/03/30
-- Platform : VHDL’93

-- Description: Test bench for data cache

-- Revisions :
-- Date Version Author Description
-- 2006/01/19 1.0 joeltu Created

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use std.textio.all;
use work.cache_pkg.all;

entity t_d_cache is

end t_d_cache;

architecture test of t_d_cache is

component d_cache is
port(
clk : in std_logic;
rst : in std_logic;
d_rd_cache : in std_logic;
d_wr_cache : in std_logic;
dv_from_mem : in std_logic;
d_add_2_cache : in std_logic_vector(addr_bits - 1 downto 0);
d_in : in std_logic_vector(data_bits-1 downto 0);
mem_wr_dcache : in std_logic_vector(data_bits-1 downto 0);

26

cache_wr_mem : out std_logic_vector(data_bits-1 downto 0);
d_addr_2_mem : out std_logic_vector(addr_bits - 1 downto 0);
d_rd_mem : out std_logic;
d_hit : out std_logic;
d_out : out std_logic_vector(data_bits - 1 downto 0));

end component;

signal clk : std_logic := ’0’;
signal rst : std_logic := ’0’;
signal d_rd_cache : std_logic:=’0’;
signal d_wr_cache : std_logic:=’0’;
signal dv_from_mem : std_logic;
signal d_add_2_cache : std_logic_vector(addr_bits - 1 downto 0) :=(others => ’0’);
signal d_in : std_logic_vector(data_bits-1 downto 0) :=(others => ’0’);
signal mem_wr_dcache : std_logic_vector(data_bits-1 downto 0) :=(others => ’0’);
signal cache_wr_mem : std_logic_vector(data_bits-1 downto 0);
signal d_addr_2_mem : std_logic_vector(addr_bits - 1 downto 0);
signal d_rd_mem : std_logic;
signal d_hit : std_logic;
signal d_out : std_logic_vector(data_bits - 1 downto 0);
signal wr_data : std_logic:=’0’;
signal rd_data : std_logic:=’0’;

begin -- test

dut: d_cache
port map (
clk => clk,
rst => rst,
d_rd_cache => d_rd_cache,
d_wr_cache => d_wr_cache,
dv_from_mem => dv_from_mem,
d_add_2_cache => d_add_2_cache,
d_in => d_in,
mem_wr_dcache => mem_wr_dcache,
cache_wr_mem => cache_wr_mem,
d_addr_2_mem => d_addr_2_mem,
d_rd_mem => d_rd_mem,
d_hit => d_hit,
d_out => d_out);

--clock generation

clock: process
begin
wait for 5 ns; clk <= not clk;

end process clock;

-- reset and control signal generation

control: process
begin
rst <= ’0’;
wait for 50 ns;
rst <= ’1’;
wait for 200 ns;
rd_data <= ’1’; -- cache read
wait for 10 ns;
rd_data <= ’0’;
wait for 500 ns;
rd_data <= ’1’; -- cache read
wait for 10 ns;
rd_data <= ’0’;
wait for 500 ns;
rd_data <= ’1’; -- cache read
wait for 10 ns;
rd_data <= ’0’;
wait for 500 ns;
rd_data <= ’1’; -- cache read
wait for 10 ns;
rd_data <= ’0’;
wait for 500 ns;
rd_data <= ’1’; -- cache read
wait for 10 ns;
rd_data <= ’0’;
wait for 500 ns;
rd_data <= ’1’; -- cache read
wait for 10 ns;
rd_data <= ’0’;
wait for 500 ns;
rd_data <= ’1’; -- cache read
wait for 10 ns;
rd_data <= ’0’;
wait for 500 ns;
rd_data <= ’1’; -- cache read
wait for 10 ns;
rd_data <= ’0’;
wait for 500 ns;

27

wr_data <= ’1’; -- cache write (cpu)
wait for 10 ns;
wr_data <= ’0’;
wait for 500 ns;
wr_data <= ’1’; -- cache write (cpu)
wait for 10 ns;
wr_data <= ’0’;
wait for 500 ns;
wr_data <= ’1’; -- cache write (cpu)
wait for 10 ns;
wr_data <= ’0’;
wait for 2000 ns;
assert false report "end simulation" severity failure;

end process control;

read_data_from_mem: process

variable tmp_data : bit_vector(data_bits-1 downto 0);
variable l : line;
file d_mem_data : text open read_mode is "/export/home/joeltu/haste/projekti/sync/dmemory.in";

begin
wait on d_rd_mem until d_rd_mem = ’1’;
if not (endfile(d_mem_data)) then

readline(d_mem_data,l);
read(l,tmp_data);
mem_wr_dcache <= To_StdLogicVector(tmp_data);
dv_from_mem <= ’1’;

wait for 90 ns;
end if;
dv_from_mem <= ’0’;

end process read_data_from_mem;

read_data_from_cache: process

variable tmp_data : bit_vector(data_bits-1 downto 0);
variable l : line;
file d_req_cache : text open read_mode is "/export/home/joeltu/haste/projekti/sync/dcache.in";

begin
wait on rd_data until rd_data = ’1’;
d_rd_cache <= ’1’;
if not (endfile(d_req_cache)) then

readline(d_req_cache,l);
read(l,tmp_data);
d_add_2_cache <= To_StdLogicVector(tmp_data);
wait for 5 ns;
d_rd_cache <= ’0’;

end if;
end process read_data_from_cache;

write_data_2_cache: process
variable tmp_data : bit_vector(2*data_bits-1 downto 0);
variable l : line;
file d_wr_data : text open read_mode is "/export/home/joeltu/haste/projekti/sync/data2c.in";

begin
wait on wr_data until wr_data = ’1’;
d_wr_cache <= ’1’;
if not (endfile(d_wr_data)) then

readline(d_wr_data,l);
read(l,tmp_data);
d_in <= To_StdLogicVector(tmp_data);
wait for 5 ns;

d_wr_cache <= ’0’;
end if;

end process write_data_2_cache;

end test;

28

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology

• Department of Mathematics

Åbo Akademi University
• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 952-12-1717-0
ISSN 1239-1891

