
Vesa Halava | Tero Harju | Tomi Kärki

Relational codes of words

TUCS Technical Report
No 767, April 2006

Relational codes of words

Vesa Halava
Department of Mathematics and
TUCS - Turku Centre for Computer Science
University of Turku FIN-20014 Turku, Finland
Supported by the Academy of Finland under grant 208414.
vehalava@utu.fi

Tero Harju
Department of Mathematics and
TUCS - Turku Centre for Computer Science
University of Turku FIN-20014 Turku, Finland
harju@utu.fi

Tomi Kärki
Department of Mathematics and
TUCS - Turku Centre for Computer Science
University of Turku FIN-20014 Turku, Finland
topeka@utu.fi

TUCS Technical Report

No 767, April 2006

Abstract

We consider words, i.e., strings over a finite alphabet together with a compatibility
relation induced by a relation on letters. This notion generalizes that of partial
words. The theory of codes on combinatorics on words is revisited by defining
(R, S)-codes for arbitrary relations R and S. We describe an algorithm to test
whether or not a finite set of words is an (R, S)-code. Coding properties of finite
sets of words are explored by finding maximal and minimal relations with respect
to relational codes.

Keywords: code, relational code, partial word, NP-completeness

TUCS Laboratory
Discrete Mathematics for Information Technology

1 Introduction

Codes are an essential tool in information theory, and the theory of variable length
codes is firmly related to combinatorics on words [2]. The object of the theory is
to study factorization of words into sequences of words taken from a given set.
In the semigroup X+ generated by a code X there does not exist two distinct
factorizations in X for any word. This coding property can be strengthened by
requiring that two nearly similar, i.e., compatible words, have the same, or at least
similar, factorizations. This is attained here by introducing word relations and
relational codes. The similarity of words is described by using relations on letters
of the alphabet. If some of the letters in a message are changed to related letters,
the message can still be factorized, in other words decoded, in a proper manner.
Thus these codes possess some error correction capabilities.

As an example we may think of a digital clock with at most one broken led.
The possible interpretations of the following display are 01 : 32, 81 : 32, 07 : 32
and 01 : 92. Thus with some extra information we may still conclude the right

time quite reliably despite of the broken led. Note that the similarity relation does
not need to be transitive. There is a difference of one led between the displays of
numbers 5 and 6 and also 6 and 8, but you cannot confuse 5 and 8 with each other
if only one malfunctioning led is possible.

On the other hand, we may think of situations where part of the information
is just missing. This is the concept of partial words introduced by J. Berstel and
L. Boasson in 1999 [1]. Partial words can be interpreted as total words with a “do
not know” symbol ♦. Two partial words are said to be compatible if there exists
a total word such that by replacing each ♦ symbol of the partial words with the
letter in a corresponding position of the total word we make the two partial words
equal. For example, we see that the following partial words are compatible by
comparing them with the total word “knowledge”.

k n ♦ w l ♦ d g e
♦ n o w ♦ ♦ d g ♦
k n o w l e d g e

Word relations can also model this kind of missing information. Namely the com-
patibility relation of partial words can be seen as a special case of word relations
induced by a relation on letters of the alphabet A♦ = A ∪ {♦}.

Combinatorics on partial words has been widely studied under the recent
years; see [3–10]. Motivation for this research comes from the study of biolog-
ical sequences such as DNA, RNA and proteins. In sequence comparison you
align two sequences, for example genes, in order to find correspondence between
them. This alignment corresponds to a construction of compatible partial words.

1

Clearly also the word relations can be made to describe this phenomenon with
specific similarity relations on symbols. Another important operation in molecu-
lar biology is DNA sequencing. There the role of partial words as well as word
relations is to model the task of fragment assembly. We introduce gaps (indicated
by ♦) in DNA pieces (addg, dgtgc, ccad) to let the nucleotides align perfectly.

♦ ♦ a d d g ♦ ♦ ♦
♦ ♦ ♦ ♦ d g t g c
c c a d ♦ ♦ ♦ ♦ ♦

Partial words have also been considered in DNA computing as good solutions to
DNA encodings [14].

In this paper we introduce word relations together with (R, S)-codes for given
compatibility relations R and S of words, and we consider algorithmic questions
on these codes. We show that the maximal relation problem is NP-complete. In
this problem one is given a finite set X and a compatibility relation S induced by
letters, and one is to determine whether X is an (R, S)-code for some compatibil-
ity relation R induced by at least k pairs.

We end this section with some notation. An alphabet A is a nonempty finite set
of symbols and a word over A is a (finite or infinite) sequence of symbols from A.
The empty word is denoted by ε. The sets of all finite words and finite nonempty
words over A are denoted by A∗ and A+, respectively. With the operation of
catenation A∗ is a free monoid and A+ is a free semigroup generated by the letters
of A. The length of a word w, denoted by |w|, is the total number of (occurrences
of) letters in w. The ith symbol of the word w is denoted by w(i). A word w is a
factor of a word u (resp. a left factor or a prefix, a right factor or a suffix), if there
exist words x and y such that u = xwy (resp. u = wy, u = xw). If w = uv then
we denote v = u−1w.

For subsets L, K ⊆ A∗, we let

LK = {uv | u ∈ L, v ∈ K},

L+ =
⋃

i≥1

Li, L∗ = L+ ∪ {ε},

L−1K = {u−1w | u ∈ L, w ∈ K}.

2 Word relations

Let R ⊆ X × X be a relation on a set X . We often write x R y instead of
(x, y) ∈ R. Then R is a compatibility relation if it is both reflexive and symmetric,
i.e., (i) ∀x ∈ X : x R x, and (ii) ∀x, y ∈ X : x R y =⇒ y R x.

The identity relation on a set X is defined by

ιX = {(x, x) | x ∈ X}

2

and the universal relation on X is defined by

ΩX = {(x, y) | x, y ∈ X}.

Subscripts are often omitted when they are clear from the context. Clearly, both
ιX and ΩX are compatibility relations on X .

A compatibility relation R ⊆ A∗ × A∗ on the set of all words will be called a
word relation if it is induced by its restriction on the letters, i.e.,

a1 · · ·am R b1 · · · bn ⇐⇒ m = n and ai R bi for all i = 1, 2, . . . , m

whenever a1, . . . , am, b1, . . . , bn ∈ A.
Let S be a relation on A. By 〈S〉 we denote the compatibility relation gen-

erated by S, i.e., 〈S〉 is the reflexive and symmetric closure of the relation S.
Sometimes we need to consider the restriction of a relation R on a subset X
of A∗. We denote RX = R ∩ (X × X). Words u and v satisfying u R v are
said to be compatible or, more precisely, R-compatible. For example, in the bi-
nary alphabet A = {a, b} the compatibility relation R induced by 〈{(a, b)}〉 =
{(a, a), (b, b), (a, b), (b, a)} makes all words with equal length compatible with
each other. In the ternary alphabet {a, b, c} we have abba R baab but, for instance,
words abc and cac are not compatible.

Clearly a word relation R satisfies the following two conditions:

multiplicativity: u R v, u′ R v′ =⇒ uu′ R vv′,
simplifiability: uu′ R vv′, |u| = |v| =⇒ u R v, u′Rv′.

However, a word relation R does not need to be transitive. From now on
the relations on words considered in this presentation are supposed to be word
relations induced by some compatibility relation on letters.

Let 2X denote the power set of X , that is, the family of all subsets of X
including the empty set ∅ and X itself. For a word relation R on A∗, let the
corresponding function R : 2A∗

→ 2A∗

be defined by

R(X) = {u ∈ A∗ | ∃ x ∈ X : x R u}.

If X contains only one word w ∈ A∗, we denote R(X) shortly by R(w). The
function R is multiplicative in the following sense.

Proposition 1. Let R be a word relation on A∗. Then R(X)R(Y) = R(XY) for
all X, Y ⊆ A∗. Especially, R(X)∗ = R(X∗) for all X ⊆ A∗.

Proof. Suppose that w belongs to R(X)R(Y). Then there exist words u ∈ R(X)
and v ∈ R(Y) such that w = uv. In other words there exist x ∈ X and y ∈ Y such
that u R x and v R y. By the multiplicativity of the relation R we have uv R xy,
and thus w ∈ R(XY).

Conversely, let w belong to R(XY). Then there exist words x ∈ X and
y ∈ Y such that w R xy. By the definition of a word relation this means that

3

|w| = |x|+ |y|. Thus w can be factored into two parts u and v satisfying w = uv
with |u| = |x| and |v| = |y|. By simplifiability of R, we have u R x and v R y.
Hence, w = uv ∈ R(X)R(Y).

By induction, we see that R(X)n = R(Xn) for all n ≥ 0. Thus, also the
second claim follows.

Example 1. Consider partial words introduced by Berstel and Boasson in [1]. A
partial word of length n over an alphabet A is a partial function

w : {1, 2, . . . , n} → A.

The domain D(w) of w is the set of positions p ∈ {1, 2, . . . , n} such that w(p)
is defined. The set H(w) = {1, 2, . . . , n} \ D(w) is the set of holes of w. To
each partial word we may associate a total word w♦ over the extended alphabet
A♦ = A ∪ {♦}. This companion of w is defined by

w♦(p) =

{

w(p) if p ∈ D(w),
♦ if p ∈ H(w).

Thus, the holes are marked with the “do not know” symbol ♦. Clearly, partial
words are in one-to-one correspondence with words over A♦.

The compatibility relation of partial words is defined as follows. Let x and y be
two partial words of equal length. The word x is contained in y if D(x) ⊆ D(y)
and x(k) = y(k) for all k in D(x). Two partial words x and y are said to be
compatible if there exists a partial word z such that z contains both x and y. Then
we write x ↑ y.

From another viewpoint partial words with compatibility relation ↑ can be
seen as words over the alphabet A♦ with the relation

R↑ = 〈{(♦, a) | a ∈ A}〉.

Namely, consider two compatible partial words x and y. Let z be a partial word
which contains both x and y. Suppose that their companions are x♦ = a1 · · ·an,
y♦ = b1 · · · bn and z♦ = c1 · · · cn. According to the definition of compatible
partial words, we have four possibilities for each position i ∈ {1, 2, . . . , n}:

(i) ci = ♦, ai = bi = ♦
(ii) ci 6= ♦, ai = ♦, bi = ci

(iii) ci 6= ♦, bi = ♦, ai = ci

(iv) ci 6= ♦, ai = bi = ci.

We see that in each case ai R↑ bi, and thus x♦ R↑ y♦. On the other hand, for
R↑ -compatible words x♦ = a1 · · ·an and y♦ = b1 · · · bn we may find a word
z♦ = c1 · · · cn such that the corresponding partial words x and y are contained
in z and therefore x ↑ y. We simply choose the letter ci in such a way that it
corresponds to one of the cases (i)−(iv) above. Thus, partial words are equivalent
to words on alphabet A♦ with a specific relation R↑ and all results concerning
word relations can be applied also for the compatibility relation of partial words.

4

3 Relational codes

Let R and S be two word relations on the monoid A∗. A subset X ⊆ A∗ is an
(R, S)-code if for all n, m ≥ 1 and x1, . . . , xm, y1, . . . , yn ∈ X , we have

x1 · · ·xm R y1 · · ·yn =⇒ n = m and xi S yi for i = 1, 2, . . . , m.

If S is the identity relation ι, then an (R, S)-code is called a strong R-code, or
shortly just an R-code. A strong R-code is always a set where the elements are
pairwise incompatible, but the converse is clearly false. An (R, R)-code is called
a weak R-code. An (ι, ι)-code is simply called a code. The definition coincides
with the original definition of a variable length code.

Consider the partial ordering of the word relations: R1 ⊆ R2 if u R1 v implies
u R2 v. The following proposition manifests Galois type connections of different
relational codes. This is illustrated in Figure 1.

ι

...

R1

R2

...

Ω

ι

...

S1

S2

...

Ω

Figure 1: The Galois type connection of relational codes: an (R2, S1)-code is also
an (R1, S1)-code and (R2, S2)-code.

Proposition 2. (i) Let R1, R2 and S be word relations on A∗ with R1 ⊆ R2. If
X is an (R2, S)-code, then X is an (R1, S)-code.

(ii) Let R, S1 and S2 be relations on A∗ and let S1 ⊆ S2. If X is an (R, S1)-
code, then X is an (R, S2)-code.

Proof. For (i), suppose that X is an (R2, S)-code, and let x1, . . . , xm, y1, . . . , yn ∈
X satisfy

x1 · · ·xm R1 y1 · · · yn.

5

Then also x1 · · ·xm R2 y1 · · · yn, which implies that n = m and hence xi S yi for
all i = 1, 2, . . . , m.

For (ii), suppose that X is an (R, S1)-code. Let x1, . . . , xm, y1, . . . , yn ∈ X
satisfy

x1 · · ·xm R y1 · · ·yn.

Then n = m and xi S1 yi for all i = 1, 2, . . . , m, and thus xi S2 yi for all i =
1, 2, . . . , m.

When we consider unions and intersections of word relations the previous
result implies the following corollary.

Corollary 1. Let X be an (R1, S1)-code and let R2 and S2 be two words relations
on A∗. Then X is an (R1 ∩ R2, S1 ∪ S2)-code.

Proof. Since R1 ∩ R2 ⊆ R1, X is an (R1 ∩R2, S1)-code by Theorem 2(i). Since
S1 ⊆ S1 ∪ S2, X is an (R1 ∩ R2, S1 ∪ S2)-code by Theorem 2(ii).

For sets that are both (R, S1)-codes and (R, S2)-codes the coding property can
be preserved also when the S-relation is restricted to the intersection of S1 and S2

relations.

Proposition 3. Let X be both an (R, S1)-code and an (R, S2)-code. Then it is
also an (R, S1 ∩ S2)-code.

Proof. Let the words x1, . . . , xm, y1, . . . , yn ∈ X satisfy x1 · · ·xm R y1 · · · yn.
Therefore n = m and xi Sj yi for all i = 1, 2, . . . , m and for both j = 1 and
j = 2. Thus xi (S1 ∩ S2) yi for all i = 1, 2, . . . , m, and, consequently, X is an
(R, S1 ∩ S2)-code.

Note that X is not necessarily an (R1 ∪ R2, S)-code even when it is both an
(R1, S1)-code and (R2, S1)-code.

Example 2. Define X = {ab, c}, R1 = 〈{(a, c)}〉 and R2 = 〈{(b, c)}〉. Clearly,
X is both an (R1, ι)-code and an (R2, ι)-code. Now choose R = R1 ∪ R2 =
〈{(a, c), (b, c)}〉. Then we have ab R cc. Thus X is not an (R1 ∪ R2, ι)-code.

The next theorem shows that the (R, S)-codes are always codes in the usual
meaning, but (R, S)-codes can be more restrictive. If a subset X ⊆ A∗ is an
(R, S)-code for the relations R and S different from the identity relation, it means
that the words in X∗ can be uniquely factored, and, moreover, in X the relations
R and S have a special order.

Theorem 1. Every (R, S)-code X is a code such that RX ⊆ SX .

Proof. Suppose that X is an (R, S)-code. Then X must be a code. Indeed, oth-
erwise, there exists a nontrivial relation x1 · · ·xm = y1 · · · yn with x1, . . . , xm,
y1, . . . , yn ∈ X , where we may assume that x1 6= y1, and in particular |x1| 6= |y1|.
Since X is an (R, S)-code, we have x1 · · ·xm R y1 · · ·yn, and hence also x1 S y1.

6

Since S is a word relation, this implies that |x1| = |y1|; a contradiction. The
latter claim follows directly from the definition of an (R, S)-code in the case for
n = m = 1.

Note that the converse of Theorem 1 is not true. As in the previous example,
assume that X = {ab, c}. Now X is a code. Let S = ι and R = 〈{(a, c), (b, c)}〉.
We do have RX ⊆ SX , but X is not an (R, S)-code, since abRcc.

By the previous theorem every (R, S)-code is an (ι, ι)-code, but we may say
even more.

Theorem 2. Every (R, S)-code is an (R, R)-code.

Proof. Suppose that X is an (R, S)-code. By Theorem 2(ii), X is an (R, Ω)-
code. This simply means that if x1 · · ·xm R y1 · · · yn with xi, yj ∈ X , then m = n
and |xi| = |yi| for all i = 1, 2, . . . , m. Then, by the simplifiability of the word
relations, we have xi R yi for all i = 1, 2, . . . , m.

Theorem 2 gives another proof for Theorem 1. Namely every (R, S)-code is
an (ι, S)-code by Theorem 2(i) and thus an (ι, ι)-code by the previous theorem.

Note that the roles of the relations R and S are not symmetric. Indeed, not all
(R, S)-codes are (S, S)-codes. To see this, consider once again X = {ab, c}, and
suppose that R = 〈{(a, c)}〉 and S = 〈{(a, c), (b, c)}〉. Now X is an (R, R)-code,
but not an (S, S)-code.

Finally, we give a new characterization to relational codes using the previous
results.

Theorem 3. A subset X ⊆ A∗ is an (R, S)-code if and only if X is an (R, R)-code
such that RX ⊆ SX .

Proof. Suppose first that X is an (R, S)-code. Then it is also an (R, R)-code
by Theorem 2 and by the definition of an (R, S)-code we have RX ⊆ SX . Con-
versely, let X be an (R, R)-code and RX ⊆ SX . Now consider words x1, . . . , xm,
y1, . . . , yn ∈ X satisfying x1 · · ·xm R y1 · · · yn. Since X is an (R, R)-code, we
have n = m and xi R yi for all i = 1, 2, . . . , m. By the assumption RX ⊆ SX , we
have xi S yi for all i = 1, 2, . . . , m.

4 Algorithm for relational codes

In [16] A.A. Sardinas and G.W. Patterson gave their famous algorithm for decid-
ing whether a given set X of words is a code or not. F. Blanchet-Sadri proved
in [5] that the corresponding problem for partial words is decidable. The proof
seems to be quite technical compared to the case of total words. It is based on a
domino technique by Head and Weber introduced in [13]. Here we give a simple
algorithm for the more general problem of deciding whether a given set X is an
(R, S)-code or not. The essential part of the algorithm is to solve the problem for
(R, R)-codes. We use a suitable modification of the Sardinas-Patterson algorithm.

7

Algorithm 1. (Modified Sardinas-Patterson) Let the input be a finite set X ⊆ A+.
Let U1 = R(X)−1X \ {ε}, and define

Un+1 = R(X)−1Un ∪ R(Un)−1X

for n ≥ 1. Let i ≥ 2 satisfy Ui = Ui−t for some t > 0. Then X is a weak R-code
if and only if

ε 6∈
i−1
⋃

j=1

Uj.

The proof of correctness for this algorithm is modified from the proof for the
Sardinas-Patterson algorithm in [2]. We need the following lemma.

Lemma 1. Let X ⊆ A+. For all n ≥ 1 and 1 ≤ k ≤ n, we have ε ∈ Un if and
only if there exist u ∈ Uk and integers i, j ≥ 0 such that

uX i ∩ R(Xj) 6= ∅ and i + j + k = n. (1)

Proof. We prove the statement for all n by descending induction on k. Assume
first that k = n. If ε ∈ Un, then the condition (1) is satisfied with u = ε and i =
j = 0. Conversely, if the condition is satisfied, then i = j = 0 and {u}∩{ε} 6= ∅.
Thus u = ε and consequently ε ∈ Un.

Now let n > k ≥ 1 and suppose that the claim holds for n, n − 1, . . . , k + 1.
If ε ∈ Un, then by the induction hypothesis, there exists a word u ∈ Uk+1 and
integers i, j ≥ 0 such that uX i ∩R(Xj) 6= ∅ and i + j + (k + 1) = n. Thus there
exist words x1, . . . , xi, y1, . . . , yj ∈ X such that

ux1 · · ·xi R y1 · · · yj.

Now u ∈ Uk+1, and there are two cases: either there exists y ∈ R(X) such that
yu ∈ Uk or there exists v ∈ R(Uk) such that vu ∈ X . In the first case we have
y R y′ for some y′ ∈ X and

yux1 · · ·xi R y′y1 · · · yj.

Consequently there exist a word yu ∈ Uk and integers i, j + 1 ≥ 0 such that
yuX i ∩ R(Xj+1) 6= ∅ and i + (j + 1) + k = n. In the second case there exists
v′ ∈ Uk such that v R v′ and we have

vux1 · · ·xi R v′y1 · · · yj.

Hence there exist a word v′ ∈ Uk and integers i, j + 1 ≥ 0 such that v′Xj ∩
R(X i+1) 6= ∅ and j + (i + 1) + k = n.

Conversely, assume that there are a word u ∈ Uk and integers i, j ≥ 0 such
that uX i ∩R(Xj) 6= ∅ and i + j + k = n. Then

ux1 · · ·xi R y1 · · · yj

8

for some x1, . . . , xi, y1, . . . , yj ∈ X . If j = 0, then i = 0, k = n and u = ε. If
j > 0, then we consider two cases:

Case 1: Assume that |u| ≥ |y1|. We write u = y′
1v, where y′

1 R y1 and v ∈ A∗.
Then v ∈ Uk+1 and vx1 · · ·xi R y2 · vj. Thus vX i ∩ R(Xj−1) 6= ∅ and i + (j −
1) + (k + 1) = n. By the induction hypothesis, ε ∈ Un.

Case 2: Assume that |u| < |y1|. We write y1 = u′v, where u′ R u and v ∈ A+.
Then v ∈ Uk+1 and x1 · · ·xi R vv2 · vj . Thus vXj−1 ∩ R(X i) 6= ∅ and (j − 1) +
i + (k + 1) = n. Thus again ε ∈ Un by the induction hypothesis.

Theorem 4. The set X is a weak R-code if and only if none of the sets Un contains
the empty word.

Proof. If X is not a weak R-code, then there exist positive integers m and n and
words x1, . . . , xm, y1, . . . , yn ∈ X such that

x1 · · ·xm R y1 · · · yn and not x1 R y1

from which it follows that |x1| 6= |y1|. By symmetry we may assume that |x1| >
|y1|, i.e., x1 = y′

1u for some u ∈ A+ and y′
1 R y1. Now u ∈ U1 and uXm−1 ∩

R(Xn−1) 6= ∅. According to Lemma 1 we have ε ∈ Um+n−1.
Conversely, if ε ∈ Un, then choose k = 1 in Lemma 1. Hence, there exist a

word u ∈ U1 and integers i, j ≥ 0 such that i + j = n− 1 and uX i ∩R(Xj) 6= ∅.
Since u ∈ U1, we have y = xu for some x ∈ R(X) and y ∈ X . Furthermore,
x 6= y, since u 6= ε by the definition U1 = R(X)−1X \ {ε}. Since x ∈ R(X),
there exists x′ ∈ X such that x R x′. It follows from xuX i ∩ xR(Xj) 6= ∅ that
yX i ∩ R(x′Xj) 6= ∅. This means that X is not a weak R-code.

Note that there exist only finitely many different sets Un, since all the lengths
of the elements of Un are less than max{|x| | x ∈ X}. Secondly, if Ui = Uj then,
for any t ≥ 0, Ui+t = Uj+t. Thus once a repetition in the sequence U1, U2, . . .
is found, all Ui sets are found as well. Now it is clear by the previous theorem
and Theorem 3 that the (R, S)-coding property of a finite subset X of A∗ can be
verified using the following algorithm.

Algorithm 2. (Test for relational codes) Let the input be a finite set X ⊆ A+

and two word relations R and S.

1. Determine whether X is a weak R-code by Algorithm 1

2. If X is a weak R-code then check whether RX ⊆ SX . If RX ⊆ SX , then X
is an (R, S)-code; otherwise, it is not.

5 Minimal and maximal relations

Let X be a subset of A∗. We define minimal and maximal relations with respect
to X as follows. Let Smin(X, R) be the set of the relations S such that X is an

9

(R, S)-code, and for all S ′ with S ′ ⊂ S, X is not an (R, S ′)-code. Similarly, let
Smax(X, R) be the set of relations S such that X is an (R, S)-code, and for all S ′

with S ⊂ S ′, X is not an (R, S ′)-code. Relations belonging to Smin(X, R) (resp.
Smax(X, R)) are called minimal (resp. maximal) S-relations with respect to a set
X and a relation R.

Symmetrically, let Rmin(X, S) be the set of the relations R such that X is an
(R, S)-code, and for all relations R′ ⊂ R, X is not an (R′, S)-code. Also, let
Rmax(X, S)) be the set of the relations R such that X is an (R, S)-code, and for
all relations R ⊂ R′, X is not an (R′, S)-code. Relations belonging to Rmin(X, S)
(resp. Rmax(X, S)) are called minimal (resp. maximal) R-relations with respect
to a set X and a relation S.

We make a few easy observations.

Theorem 5. The minimal and maximal relations have the following properties:
Let X ⊆ A∗.

(i) X is not a code if and only if, for all word relations R and S, we have
Smin(X, R) = Smax(X, R) = Rmin(X, S) = Rmax(X, S) = ∅.

(ii) X is not an (R, R)-code if and only if Smin(X, R) = Smax(X, R) = ∅.

(iii) For all (R, R)-codes X , Smin(X, R) has a unique element.

(iv) For all (R, R)-codes, Smax(X, R) = {Ω}.

(v) For all codes, Rmin(X, S) = {ι}.

(vi) If S1 ⊂ S2, then for all R ∈ Rmax(X, S1) there exists R′ ∈ Rmax(X, S2)
such that R ⊆ R′.

Proof. (i): By Theorem 1, every (R, S)-code is a code. Thus, for noncodes, there
does not exist any maximal and minimal relations. On the other hand, if X is
a code, then at least for R = S = ι, the maximal and minimal relations are
nonempty.

(ii): By Theorem 2, every (R, S)-code is a weak R-code. Hence, if X is not
an (R, R)-code, then no maximal or minimal S-relations with respect to X and R
exist. Conversely, if X is an (R, R)-code, then Smin(X, R) and Smax(X, R) are
trivially nonempty.

(iii): Let S be the set of all relations S such that X is an (R, S)-code. By
Theorem 2(ii), the unique minimal S-relation with respect to X and R is the
intersection of all S ∈ S.

(iv): Follows directly from Theorem 2(ii).
(v): Follows directly from Theorem 2(i).
(vi): Let S1 ⊂ S2 and let R belong to Rmax(X, S1). By Theorem 2(ii), X is

also an (R, S2)-code. Hence either R is maximal with respect to S2 or R ⊂ R′ for
some maximal R′ with respect to S2.

10

Note that there may be several maximal relations belonging to Rmax(X, S),
though, by Theorem 5(ii) and (iii) Smin(X, R) always is a unique relation. For
example, in our Example 2 both relations R1 and R2 are maximal. With respect to
X these two word relations seem to have symmetric roles and they have the same
number of pairs of letters in the corresponding relation on A. This need not be the
case in general. A more complicated case can be seen later in Example 3.

The coding properties of an (R, S)-code X can be measured by defining the
maximal and minimal relations R and S. Next we will present two algorithms for
this purpose.

Algorithm 3. (X restriction) Let the input be a finite set X ⊆ A∗ and a word
relation R.

1. Set S = ι.

2. Find RX = {(x, y) ∈ X ×X | x R y}.

3. For all m ≥ 1 and for each pair of words x = a1 · · ·am and y = b1 · · · bm

in RX set S ← S ∪ 〈{(ai, bi)}〉 for i = 1, 2, . . . , m.

The previous algorithm can be used to find the minimal S relation with respect
to X and R.

Theorem 6. Let X be a finite (R, R)-code. The relation S obtained in Algorithm 3
is Smin(X, R).

Proof. Since X is an (R, R)-code, the unique minimal element S ′ belonging to
Smin(X, R) must be a subset of R. By Theorem 3, we have RX ⊆ S ′

X , and thus
RX = SX . (Note that this does not mean that S ′ = R, since in R there may be
pairs of letters which never occur in any compatible words of X .)

On the other hand, the algorithm ensures that for all x, y ∈ X the relation
x R y implies x S y, i.e, RX ⊆ SX . Also, the relation S is minimal. Indeed, if we
omit any pair (a, b) with a 6= b from S, then for some words x, y ∈ X with x R y,
we would have (x, y) /∈ S.

Finding the maximal R-relations in Rmax(X, S) is a more complicated task.
By Theorem 3 there are two properties that restrict the maximal R relations.
Namely we must have RX ⊆ SX , but at the same time X must be a weak R-
code. We do not know which one of these conditions is more restrictive.

In order to present the algorithm we define a new total order on word relations.
It is based on two orders of words in A∗. Assume that the alphabet A is totally
ordered by ≺, i.e., for each two letters a 6= b either a ≺ b or b ≺ a. Denote the
prefix of a word w of length n by prefn(w). The maximal common prefix of words
u and v is denoted by u ∧ v. The total order ≺ of A is extended to lexicographic
ordering ≺l and alphabetic ordering ≺a of A∗ by defining

u ≺l v ⇐⇒ u−1v ∈ A+ or pref
1
((u ∧ v)−1u) ≺ pref

1
((u ∧ v)−1v)

11

and
u ≺a v ⇐⇒ |u| < |v| or |u| = |v| and u ≺l v.

We use this ordering to define an ordering of pairs of letters. Define a function
ϕ : A × A → A2 by letting ϕ((a, b)) = ab. For two pairs of letters (a, b) and
(c, d), we define

(a, b) ≺ (c, d) ⇐⇒ ϕ((a, b)) ≺l ϕ((c, d)).

This, in turn, induces a total order on the compatibility relations on the letters. Let
R1 and R2 be two compatibility relations on A. Let r1 be the catenation of the
words ϕ((a, b)) for all pairs (a, b) ∈ R1 in the lexicographic order. Let r2 be the
corresponding word for the relation R2. Then

R1 ≺ R 2 ⇐⇒ r1 ≺a r2.

Now we are ready to present to desired algorithm.

Algorithm 4. (Maximal R) Let the input be a finite set X ⊆ A+ and a word
relation S.

1. Construct a directed graph of relations G = (V, E) such that the set of
vertices V is the set of all compatibility relations on A and the set of edges
is defined by

E = {(R1, R2) | R1 ⊆ R2 and |R2 \R1| = 1}.

2. Run through all the vertices in the order≺ of the relations R ∈ V . For each
vertex calculate whether X is an (R, S)-code or not using Algorithm 2. If
the answer is negative, then modify G by deleting the corresponding vertex
R, all the vertices R′ such that there is a path from R to R′ and all related
edges.

3. Set Rmax(X, S) to be the set of all the vertices R with no edges starting
from R.

Theorem 7. Let X be a finite subset of A+ and S a word relation on A. Algo-
rithm 4 finds all the relations R belonging to Rmax(X, S).

Proof. For each compatibility relations on A the algorithm decides whether X
is an (R, S)-code or not. This is done either by using Algorithm 2 or deleting
the corresponding vertex according to previous calculations. Namely, if X is not
an (R, S)-code for a relation R, then X is not an (R′, S)-code for all the rela-
tions R′ with R ⊆ R′ by Theorem 2(i). This justifies the modifications of the
directed graph in the step 2. The edges describe the order of the vertices and cor-
responding relations. Thus, after deleting all vertices corresponding to noncodes,
the remaining vertices with no outgoing edges must correspond to maximal rela-
tions.

12

The following example shows how the algorithm works in a four letter alpha-
bet {a, b, c, d}.

Example 3. Let X = {ab, bccb, ca} and S = 〈{(a, b), (a, c)}〉. The directed
graph of step 1 is illustrated in Figure 2. It is clear that X is a code, since it
is even a prefix code. With all the R relations with one generator the set X is
also an (R, S)-code. We notice that two first letters of each of the words in X
differ from the letters in the same position in other words. This means that at least
two relations are needed in order to achieve two different compatible words. In the
case R = 〈{(a, b), (a, c)}〉 the two compatible words ab and ca are valid since S =
R. Since the pair (b, c) is missing, all the words in X+ compatible with a word
beginning with bccb begin also with the same word. Thus X must be an (R, S)-
code. In the other cases with the generator set consisting of two elements we
have nontrivial compatibility relations such as bccb R ab.ca and bccb R ca.ab. Thus
Algorithm 2 gives a negative answer and these vertices are deleted. Consequently,
also the vertex Ω is deleted. The deleted vertices are marked with a double circle
in Figure 2. Hence in step 3 we set Rmax(X, S) = {〈(b, c)〉, 〈{(a, b), (a, c)}〉}.
Note that these two maximal R relations are by no means isomorphic. They do
not even have the same size.

Ω

〈{(a, b), (b, c)}〉

〈(a, c)〉

ι

〈{(a, b), (a, c)}〉 〈{(a, c), (b, c)}〉

〈(a, b)〉 〈(b, c)〉

Figure 2: The graphs G of the example 3

We consider briefly the complexity of Algorithm 4. Let us first suppose that
the alphabet is fixed. Then the construction of the graph G takes a fixed number
of operations. Similarly running through the graph can be done in a fixed time.
Thus the complexity of our algorithm is just a constant times the complexity of
Algorithm 2. This is essentially same as the complexity of the Sardinas-Patterson
algorithm. It is not clear that Algorithm 1 in the form it was presented terminates
in a polynomial time compared to the size of the input, but using a construction

13

in [11] it is easy to show that this test for unique deciphering can be done in time
O(n2), where n is the sum of the lengths of all words in the input set X . Actually
the test can be done even in time O(nm), where m is the number of words in X;
see also [15]. Thus finding all the maximal elements R with respect to a given set
X and a given word relation S can be done in polynomial time.

From another viewpoint, i.e., if we allow arbitrary alphabets, the problem of
finding maximal R relations is actually very difficult. The corresponding decision
problem is namely NP-complete; for more on NP-complete problems see [12].
Define the size of a word relation to be the number of pairs in the corresponding
compatibility relation of letters. Let us denote this number by sz(R). Define
the number MR(X, S) to be the maximal size of the relations in Rmax(X, S),
i.e., MR(X, S) = max{sz(R) | R ∈ Rmax(X, S)}. We formulate the following
problem:

Problem: MAXIMAL RELATION
Instance: A set X ⊆ A+, a relation S on A and a positive integer k
Question: Is MR(X, S) ≥ k?

The problem above is related to the following problem of graphs. Let G = (V, E)
be a graph. A set W ⊆ V is a vertex cover of G if for each edge (u, v) ∈ E at
least one of u and v belongs to W . The cover number c(G) of a graph G is the
minimal cardinality of a vertex cover in G.

Problem: VERTEX COVER
Instance: A graph G = (V, E) and a positive integer k
Question: Is c(G) ≤ k?

This problem is known to be NP-complete. A proof can be found in [12]. Next we
will show how to reduce this problem to the problem MAXIMAL RELATION.

Theorem 8. The problem MAXIMAL RELATION is NP-complete.

Proof. First we must show that MAXIMAL RELATION ∈ NP. This is clear
since, for a set X ⊆ A∗, a positive integer k, a relation S on A and an arbitrary
relation R on A with sz(R) ≥ k, we can verify in polynomial time whether X is
an (R, S)-code. If the answer is positive, then clearly MR(X, S) ≥ k.

Secondly our aim is to prove that the NP-complete problem VERTEX COVER
can be polynomially reduced to the problem MAXIMAL RELATION, i.e., solv-
ing the latter problem gives an answer also to the first problem. More formally,
it means that any input x of the problem VERTEX COVER can be turned into an
input f(x) of MAXIMAL RELATION in polynomial time and f(x) is a “yes” in-
stance of MAXIMAL RELATION if and only if x is a “yes” instance of VERTEX
COVER.

Next we define the function f which maps a pair (G, k) to a triplet (X, S, j) in
a following way. Assume that the graph G = (V, E) has vertices V = {v1, . . . , vn}
and edges E = {e1, . . . , em}. We may assume that the graph G has no isolated

14

vertices, i.e., vertices of degree zero, since they are not considered in VERTEX COVER
problem. For each edge ei = (vi1 , vi2) we define two words ivi1vi2 and iaa. Let
X consist of all these words for every i = 1, 2, . . . , m. We also choose S = ι and

j = |A|2 − 2k − (m2 −m)

for the alphabet

A = {1, 2, . . . , m} ∪ {a} ∪ {v1, . . . , vn}.

Thus it has the cardinality m + n + 1. Denote by ‖X‖ the sum of the lengths of
all words in X . Clearly |X| = 2m and since all the words are of length 3 we have
‖X‖ = 6m. Thus this construction is polynomial.

Now suppose that W is a vertex cover of G and |W | ≤ k. We show that there
is a relation R with sz(R) ≥ j such that X is an (R, ι)-code. First define

T = {(i, j) | i, j ∈ {1, 2, . . . , m}, i 6= j}

and
U = {(a, v) | v ∈ W} ∪ {(v, a) | v ∈ W}.

Now let us choose
R = Ω \ {T ∪ U}.

This relation satisfies sz(R) = |A|2 − 2|W | − (m2 −m) ≥ j by the assumption
|W | ≤ k. Now consider all possible pairs of words in X × X . All the words
beginning with a different letter i = 1, 2, . . . , m cannot be compatible by the
definition of T . Thus we have to compare only words starting with the same
letter. For each i = 1, 2, . . . , m there is only one such pair, namely (iv1v2, iaa).
Now since W is a vertex cover at least one of v1 and v2 belong to W . Thus at
least on of the relations (a, v1) and (a, v2) is in U . This means that all the words
of X are R-compatible only with themselves. Hence, X is an (R, ι)-code with
sz(R) ≥ j.

Conversely, suppose that there is a relation R of size sz(R) ≥ j such that X is
an (R, ι)-code. Define

W = {v ∈ V | (a, v) is not in R}.

Clearly we have to deny all the relations in T . Otherwise, iaa R jaa for two
different i and j in {1, 2, . . . , m} and the coding property is not valid. Thus, all
the possible compatible pairs of words start with a same letter i = 1, 2, . . . , m.
For each i we have a unique pair of words, namely (iv1v2, iaa). Since X is an
(R, ι)-code we have to have (iaa, iv1v2) /∈ R. Thus at least one of the relations
(a, v1) and (a, v2) is not in R. This implies that at least one of the vertices v1 and
v2 is in W and W is really a vertex cover of G. The number of letter pairs not
belonging to R is less than or equal to |A|2− sz(R) = 2k + (m2−m). By taking
into account that W is not based on m2 −m pairs in T ⊆ (A× A) \ R and R is
symmetric we conclude that |W | ≤ k.

15

References

[1] J. Berstel, L. Boasson, Partial words and a theorem of Fine and Wilf, Theo-
ret. Comput. Sci. 218 (1999) 135–141.

[2] J. Berstel, D. Perrin, Theory of Codes, Academic press, New York, 1985.

[3] F. Blanchet-Sadri, A Periodicity Result of Partial Words with One Hole,
Comput. Math. Appl. 46 (2003) 813–820.

[4] F. Blanchet-Sadri, Periodicity on partial words, Comput. Math. Appl. 47
(2004) 71–82.

[5] F. Blanchet-Sadri, Codes, orderings, and partial words, Theoret. Comput.
Sci. 329 (2004) 177–202.

[6] F. Blanchet-Sadri, Primitive Partial Words, Discrete Appl. Math. 148 (2005)
195–213.

[7] F. Blanchet-Sadri, A. Chriscoe, Local periods and binary partial words: an
algorithm, Theoret. Comput. Sci. 314 (2004) 189–216.

[8] F. Blanchet-Sadri, S. Duncan, Partial words and the critical factorization the-
orem, J. Combin. Theory, Ser. A 109 (2005) 221–245.

[9] F. Blanchet-Sadri, R.A. Hegstrom, Partial words and a theorem of Fine and
Wilf revisited, Theoret. Comput. Sci. 270 (2002) 401–419.

[10] F. Blanchet-Sadri, D.K. Luhmann, Conjugacy on partial words, Theoret.
Comput. Sci. 289 (2002) 297–312.

[11] M. Crochemore, W. Rytter, Jewels of Stringology, World Scientific Publish-
ing, 2002.

[12] M.R. Garey, D.S. Johnson, Computer and Intractability: A Guide to the The-
ory of NP-Completeness, Freeman, New York, 1979.

[13] T. Head, A. Weber, Deciding multiset decipherability, IEEE Trans. Inform.
Theory 41 (1995) 291–297.

[14] P. Leupold, Partial words for DNA coding, Lecture Notes in Comput. Sci.
3384 (2005) 224–234.

[15] M. Rodeh, A fast test for unique decipherability based on suffix trees, IEEE
Trans. Inform. Theory, vol. IT-28, no. 4 (1982), 648–651.

[16] A.A. Sardinas, G.W. Patterson, A necessary and sufficient condition for the
unique decomposition of coded messages, IRE Internat. Conv. Rec. 8 (1953)
104–108.

16

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology

• Department of Mathematics

Åbo Akademi University
• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 952-12-1721-9
ISSN 1239-1891

