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Abstract
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1 Introduction

A finite (deterministic) automaton consists of a finite set ofstatesand atransition
function, which describes the dynamics of the computation (see [15] for formal
definitions). The states of the automaton are divided intofinal (accepting) and
non-acceptingstates, and the type of the state after reading the last symbol de-
termines if the word belongs to the language accepted by the automaton or not.
Languages accepted by finite automata are calledregular. The Pumping Lemma
[15] makes it is clear that theemptiness problemof finite deterministic automata is
algorithmically solvable.

In this article, we study two variants of finite automata: Probabilistic automata
[11] and quantum automata of measure-once (MO) type [10]. Itis known that the
emptiness problems ofcut-point languagesandstrict cut-point languagesdefined
by probabilistic automata are undecidable [11],[1], and that so is the emptiness
problem cut-point languages defined by quantum automata [2]. Quite surprisingly,
the emptiness problem of strict cut-point languages determined by quantum au-
tomata turns out to be decidable [2]. The decision procedurefor the said problem
originates from the fact that the unitary matrices defining aquantum automata of
MO-type generate a set whose closure is analgebraic group. For any such group
(as well as for any algebraic set) there exists a finite set of defining polynomials,
and a decision procedure follows from Tarski’s general result for the real closed
fields (see [13] for a detailed representation).

In this article, we improve the undecidability results of [1] and [2] by con-
structing automata with undecidable emptiness problems ofsmaller size than found
previously. In [1] and [2] it has been shown that the emptiness problem for prob-
abilistic cut-point languages and quantum cut-point languages is undecidable for
automata sizes47 and43, respectively. Here we prove the undecidability results
for automata of sizes25, and21, respectively.

2 Preliminaries

A vector y ∈ Rn (seen as a column vector) is aprobability distribution, if its
coordinates are all nonnegative and sum up to1. A matrixM ∈ Rn×n is called a
Markov matrixor stochastic matrix, if all its columns are probability distributions.
We also say that a matrixM is doubly stochastic, if M andMT both are stochastic
matrices. Markov matricesM have the following property: ify is a probability
distribution, so isMy. More generally, matrices whose column entries sum up to
1 preserve vector’s coordinate sum:

n
∑

i=1

(My)i =

n
∑

i=1

n
∑

j=1

Mijyj =

n
∑

j=1

yj

n
∑

i=1

Mij =

n
∑

j=1

yj .

Hence the Markov matrices preserve theL1-norm

||x||1 = |x1| + . . .+ |xn|
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of all vectors with nonnegative coordinates. Clearly a product of two Markov ma-
trices is again a Markov matrix.

A unitary matrixU ∈ Cn×n is a matrix whose columns form an orthonormal
set with respect toHermitean inner product

〈x,y〉 = x∗
1y1 + . . .+ x∗

nyn,

wherec∗ stands for the complex conjugate ofc. The orthonormality of the columns
is equivalent toU∗U = I, whereU∗ is theadjoint matrixof U defined as(U∗)ij =
(Uji)

∗. Hence for a unitary matrixU we haveU∗ = U−1, and therefore also
UU∗ = I, which is to say that also the rows of a unitary matrix form an orthonor-
mal set.

Another equivalent characterization of the unitarity can be given in terms of
L2-norm

||x||2 =
√

〈x,x〉 =

√

|x1|2 + . . .+ |xn|2.
A matrix U is unitary if and only if||Ux||2 = ||x||2 for eachx ∈ Cn [7]. In the
sequel we denote||x||2 = ||x||, unless otherwise stated. It is plain that a product
of two unitary matrices is unitary.

Any subspaceV ⊆ Cn defines an (orthogonal)projectionby x 7→ xV , where
x = xV + xV ⊥ is the (unique) decomposition ofx with xV ∈ V andxV ⊥ ∈ V ⊥

(the orthogonal complement ofV ). Each projection is a linear mapping, and it can
be shown thatP ∈ Cn×n is a matrix of a projection if and only ifP 2 = P and
P ∗ = P .

A probabilistic automaton(PFA, see [11] for further details) over an alphabetΣ
is a triplet(x, {Ma | a ∈ Σ},y), wherey ∈ Rn (n = |Σ|) is aninitial probability
distribution, eachMa ∈ Rn×n is a Markov matrix, andx ∈ Rn is thefinal state
vectorwhoseith coordinate is1, if the ith state is final, and0 otherwise.

An equivalent definition of a probabilistic automaton can begiven by using a
transition functionδ : Q × Σ × Q 7→ [0, 1], whereQ = {q1, . . . , qn} is the state
set andδ(qi, a, qj) = (Ma)ji.

For any probabilistic automatonP we define a functionfP : Σ∗ → [0, 1] as
follows: If w = a1 . . . ar, whereai ∈ Σ, then

fP (w) = xTMar
· . . . ·Ma1y. (1)

The interpretation of (1) is as follows: theith coordinate the initial distributiony
stands for the probability of the automaton being initiallyin the ith state. Then,
after reading the first lettera1 of the input word, theith coordinate of vector
Ma1y represents the probability that the automaton has enteredith state. Similarly,
Ma2Ma1y represents the distribution of states after reading input lettersa1 anda2.
Finally, theith coordinate ofMar

· . . . ·Ma1y gives the probability that the automa-
ton is in theith state after reading the whole input word, andxTMar

· . . . ·Ma1y is
the probability that starting from the initial distribution of states and reading word
w, the automaton enters into one of the final states (corresponding to those coordi-
nates wherex has1). If w = a1 . . . ar, we use notationMw = Ma1 · . . . ·Mar

, so
we can rewrite (1) as

fP (w) = xTMwRy,
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wherewR = ar . . . a1 is themirror imageof wordw = a1 . . . ar. Also, instead
of the final state vector we could use thefinal state projection, which is a diagonal
matrix defined asPii = 1, if the ith state is final (in this casexi = 1), andPii = 0
otherwise (in this casexi = 0). It is then clear that

P (y1, . . . ,yn)
T = (P11y1, . . . , Pnnyn)

T ,

and hence the sum of coordinates ofPy is equal toxTy, and functionfP (w) can
be expressed as

fP (w) = ||PMwRy||1 , (2)

which is analogous to the form appearing in the definition of quantum automata.
A measure-once quantum automaton(MO-QFA) (see also [10]) over an al-

phabetΣ (n = |Σ|) is a triplet (P, {Ua | a ∈ Σ},y), wherey ∈ Cn is an
initial amplitude vectorof unit L2-norm, eachUa ∈ Cn×n is a unitary matrix,
andP ∈ Cn×n is themeasurement projection. A quantum automatonQ defines a
functionfQ : Σ → [0, 1] by

fQ(w) = ||PUwRy||2 . (3)

We also defineinteger-weighted automata(ZFA) (see [5] for details) exactly
as we defined PFA, but instead of initial distribution and Markov matrices, we have
an initial vector inZn and matrices with integer entries. As PFAs,ZFAs could also
be defined by the means of transition functionδ : Q × Σ × Q → Z. A ZFA Z

= (x, {Ma | a ∈ Σ},y) defines a functionfZ : Σ∗ → Z by

fZ(w) = xTMwRy.

For PFA and MO-QFA and a fixedλ ∈ [0, 1] we definecut-point languages
andstrict cut-point languages: For anyλ ∈ [0, 1] and automatonA,

L≥λ(A) = {w ∈ Σ∗ | fA(w) ≥ λ},

and
L>λ(A) = {w ∈ Σ∗ | fA(w) > λ}.

It is known that there are cut-point languages that are not regular [11].
In this article we study both problemsL≥λ(A) = ∅? andL>λ(A) = ∅?,

and construct PFAs and MO-QFAs having an undecidable emptiness problem of
smaller size than found previously.

As in [1] and [2], we prove the undecidability results by showing that for a
given instanceI of Post Correspondence Problem(PCP) (see [8]), one can con-
struct an automaton that accepts words if and onlyI has a solution. The following
theorem [9] is the basis of our constructions:

Theorem 1. For k ≥ 7, it is undecidable whether an instanceI = {(u1, v1), . . .,
(uk, vk)} of PCP has a solutionui1ui2 . . . uin = vi1vi2 . . . vin .

We will also use the following variant of PCP [4], [6]:
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Theorem 2. There are instancesI = {(u1, v1), . . . , (uk, vk)} of PCP such that
all minimal solutions1 ui1ui2 . . . uin = vi1vi2 . . . vin are of formi1 = 1, in = k,
and i2 . . . in−1 ∈ {2, . . . , k − 1}+. For k ≥ 7, it is undecidable whether such a
solution exists.

The instances of the above theorem are calledClaus instances. In fact, all
undecidability proofs of PCP known to author are for Claus instances.

3 Probabilistic automata

Let I = {(u1, v1), . . ., (uk, vk)} be an instance of the PCP. We can assume thatui
andvi are over a binary alphabetΣ = {1, 2}, and construct a PFAP such that for
someλ ∈ [0, 1] L>λ(P ) 6= ∅ if and only if I has a solution. We also explain how
to modify the construction to get a PFAP ′ such thatL≥λ(P

′) 6= ∅ if and only if I
has a solution.

Step 1. (EmbeddingI in integer matrices) Letσ : Σ∗ → N = {1, 2, 3 . . .} be the
bijection defined asσ(i1i2 . . . in) =

∑n
j=1 ij2

n−j .

The first target is to find, for somed, an embeddingγ : Σ∗ × Σ∗ 7→ Zd×d and
(column) vectorsx, y ∈ Zd such thatxTγ(u, v)y includes expression(σ(u) −
σ(v))2.

Obviously with

γ0(u, v) =





2|u| 0 0

0 2|v| 0
σ(u) σ(v) 1



 ,

x = (0, 0, 1)T and,y = (1,−1, 0)T we havexTγ0(u, v)y = σ(u) − σ(v), hence
the tensor products satisfy

(xT ⊗ xT )(γ0(u, v) ⊗ γ0(u, v))(y ⊗ y) = (xTγ0(u, v)y)2 = (σ(u) − σ(v))2.

However, the dimension of the matrixγ0(u, v)⊗γ0(u, v) is 9. A construction with
a smaller dimension was given in [1]:

γ(u, v) =



















22|u| 0 0 0 0 0

0 2|uv| 0 0 0 0

0 0 22|v| 0 0 0

σ(u)2|u| σ(v)2|u| 0 2|u| 0 0

0 σ(u)2|v| σ(v)2|v| 0 2|v| 0
σ(u)2 2σ(u)σ(v) σ(v)2 2σ(u) 2σ(v) 1



















. (4)

It is straightforward to see thatγ(u1, v1)γ(u2, v2) = γ(u1u2, v1v2), and by choos-
ing x1 = (0, 0, 0, 0, 0, 1)T , andy1 = (−1, 1,−1, 0, 0, 1)T we getxT1 γ(u, v)y1 =
1− (σ(u)−σ(v))2 . HencexT1 γ(u, v)y1 ≤ 1 always, andxT1 γ(u, v)y1 = 1 if and
only if u = v.

1A solution to PCP isminimal if it is not a concatenation of two solutions.
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We defineAi = γ(ui, vi) for eachi ∈ {1, . . . , k}. ClearlyI has a solution
if and only if xT1Aj1Aj2 . . . Ajny1 = 1 for somej1j2 . . . jn ∈ {1, . . . , k}+, and
xT1Aj1Aj2 . . . Ajny1 ≤ 1 anyway. As before, we denoteAj1Aj2 . . . Ajn = Aw,
wherew = j1j2 . . . jn, andAǫ is defined to be the identity matrix. ThusI has a
solution if and only ifxT1Awy1 > 0 for somew ∈ {1, . . . , k}+ (xT1 y1 = 1).

Remark 1. Notice that(x1, {A1, . . . , Ak},y1) is a ZFA with 6 states, over an
alphabet ofk symbols. Hence the problem “isfZ(w) > 0 for some nonempty
wordw”? is undecidable for integer-weighted automata.

Step 2. (Reducing the number of matrices) We can assume thatI is a Claus in-
stance. Since all solutionsui1 . . . uin = vi1 . . . vin of Claus instances havei1 = 1,
in = k, and i2 . . . in−k ∈ {2, . . . , k − 1}+ we can definex2 = (xT1A1)

T and
y2 = Aky1, B1 = A2, . . ., Bk−2 = Ak−1 to get anotherZFA Z = (x2, {B1,
. . ., Bk−2}, y2). Notice thatZ has6 states and is over an alphabet ofk − 2 sym-
bols. Moreover,fZ(w) = xT2 Bwy2 = xT1A1BwAky1, sofZ(w) > 0 for some
nonempty wordw if and only isI has a solution.

Step 3. (Reducing the number of matrices to2) Let us denote the transition
function of theZFA Z introduced in Step 2 byδ(qi, c, qj) = (Bc)ji for each
i, j ∈ {1, . . . , 6} andc ∈ {1, . . . , k− 2}. To find two matricesC1 andC2 that will
encode the essential properties ofB1, . . . , Bk−2, we encode thek − 2 input sym-
bols of automatonZ into binary strings and add some extra states adjacent to each
state ofZ that will decode the binary strings back to symbols in set{1, . . . , k−2}.
However, the stateq6 needs no decoder, since according to (4) we have, for eachc,
δ(q6, c, qi) = 1, if i = 6 and0 otherwise.

We will use an injective morphismψ : {1, . . . , k − 2}∗ → {1, 2}∗ defined as
ψ(i) = 1i−12 for i < k − 2, andψ(k − 2) = 1k−3. Now if {q1, . . . , q6} is the
state set of automatonZ, we define a new automatonZ ′ with statesqi,j, where
i ∈ {1, . . . , 5} andj ∈ {1, . . . , k − 3}, plus stateq6,1, so we have5(k − 3) + 1 =
5k − 14 states altogether forZ ′.

The transition functionδ′ of the automatonZ ′ will be defined as (for(i, r) 6=
(6, 6))

δ′(qi,j , 1, qr,s) =







δ(qi, k, qr), if j = k − 3, ands = 1,
1, if i = r < 5 andj + 1 = s < k − 2,
0 otherwise.

δ′(qi,j, 2, qr,s) =

{

δ(qi, j, qr) if s = 1,
0 otherwise,

δ′(q6,1, c, q6,1) = 1 for c ∈ {1, 2}, andδ′(qi,j, c, qr,s) = 0 for the cases not defined
before. See Figure 3 for a graphical representation of automatonZ ′.

Finally we enumerate all5k − 14 statesqi,j in some way, and define vector
x3 ∈ Z5k−14 such that all its coordinates are zero, except each corresponding to
stateqi,1 (i ∈ {1, . . . , 6}), whose value is chosen to be(x2)i. Vectory3 ∈ Z5k−14

is defined analogously. We denote the transition matrices ofthis new automaton by
C1 andC2. The dimension of the matrices is5k − 14.
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Figure 1: AutomatonZ ′. The weights of the arrows are not shown in the picture.

With these definitions,xT3 Cψ(w)Ry3 = xT2BwRy2 for eachw ∈ {1, . . . , k −
2}∗, andxT3 CwRy3 = 0, if w ∈ Σ+ is not in the image ofψ. HenceI has a
solution if and only if there is aw ∈ Σ+ such thatxT3 Cwy3 = 1. Notice again that
xT3 Cwy3 ≤ 1 for eachw ∈ Σ∗, soI has a solution if and only ifxT3Bwy3 > 0 for
somew ∈ Σ+.

Step 4. (Changing the initial and final vectors into probability distributions) For
i ∈ {1, 2} let

Di =





0 0 0
Ciy3 Ci 0

xT3 Ciy3 xT3 Ci 0



 ,

and notice that

DuDv =





0 0 0
Cuy3 Cu 0

xT3 Cuy3 xT3 Cu 0









0 0 0
Cvy3 Cv 0

xT3 Cvy3 xT3 Cv 0





=





0 0 0
Cuvy3 Cuv 0

xT3 Cuvy3 xT3 Cuv 0



 = Duv .

Hence withx4 = (0, . . . , 0, 1)T , y4 = (1, 0, . . . , 0)T , we have clearlyxT4Dwy4 =
xT3 Cwy3 if w 6= ǫ, andxT4 y4 = 0. Now eachDi is a(5k−12)× (5k−12)-matrix
andx4 andy4 are probability distributions. Furthermore,I has a solution if and
only if xT4Dwy4 > 0 for somew ∈ Σ∗.

Step 5.(Embedding the matrices in stochastic ones, Part 1) This andthe following
part of the construction is due to P. Turakainen [14]. Define(5k−10)× (5k−10)-
matricesE1 andE2 by

Ei =





0 0 0
ti Di 0
si rTi 0



 ,

whereti, ri, andsi are chosen such that the row and the column sums ofEi are
zero. Notice that the sum of coordinates ofti and ri are equal (both equal to
−∑

r

∑

s(Di)rs), hencesi is definable.
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It is easy to verify that

EuEv =





0 0 0
tu Du 0
su rTu 0









0 0 0
tv Dv 0
sv rTv 0



 =





0 0 0
tuv Duv 0
suv rTuv 0



 = Euv,

and that also the row and column sums ofEuv are zero.
Let x5 = (0,xT4 , 0)

T andy5 = (0,yT4 , 0)
T . ThenxT5Ewy5 = xT4Dwy4 and

hencexT5 Ewy5 > 0 for some wordw ∈ Σ∗ if and only if I has a solution.

Step 6. (Embedding the matrices in stochastic ones, Part 2) Let1 be ann × n-
matrix with all entries1. Clearly1

2 = n1, which implies that1i = ni−1
1 for

i ≥ 1. In the continuation,n will be chosen asn = 5k − 10. Since the row and
columns sums of eachEw (w 6= ǫ) are zero, we haveEw1 = 1Ew = 0, whenever
w 6= ǫ.

DefineF1 andF2 by Fi = Ei + c1, wherec ∈ N is chosen so large that each
entry ofF1 andF2 is positive. Then the sum of the entries ofFi in each column
(and row) is equal toc(5k − 10), and consequently matrices

Gi =
1

c(5k − 10)
Fi

are (doubly) stochastic. SinceEi1 = 1Ei = 0, we have

Fw = Ew + (c1)|w| = Ew + c|w|(5k − 10)|w|−1
1

wheneverw 6= 1, which implies that

Gw =
1

(c(5k − 10))|w|
Ew +

1

5k − 10
1.

Now lettingx6 = x5, y6 = y5 we get (to computexT6 1y6, recall thatx6 andy6

have exactly one coordinate equal to1, and all other coordinates0).

xT6Gwy6 =
1

(c(5k − 10))|w|
xT5Ewy5 +

1

5k − 10
.

HenceI has a solution if and only if there isw ∈ Σ∗ such that

xT6Gwy6 >
1

5k − 10
,

and(x6, {G1, G2},y6) is a (5k− 10 -state) PFAP such that theL> 1

5k−10

(P ) 6= ∅
if and only if I has a solution.

Remark 2. According to Theorem 2, we conclude that the problemL>λ(P ) is
undecidable for a5 · 7 − 10 = 25-state PFA over a binary alphabet.

Modification: Step 3.5. We can define matrices

C ′
i =

(

Ci 0
0 1

)

andx′
3 = (xT3 , 1)

T , y′
3 = (yT3 ,−1)T to notice thatx′T

3 C
′
wy′

3 = xT3 Cwy3 − 1.
Hencex′T

3 C
′
wy′

3 ≥ 0 if and only ifI has a solutionw ∈ Σ+. Then the construction
above gives an automatonP ′ with 5k− 9 states such thatL≥λ(P

′) 6= ∅ if and only
if I has a solution.
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4 Quantum Automata

Lemma 1. LetU1 =
1

5

(

3 −4
4 3

)

, U2 =
1

5

(

3 4i
4i 3

)

, andy = (1, 0)T . If

Uc1 · . . . · Ucry = Ud1 · . . . · Uds
y, (5)

wherec1 . . . cr, d1 . . . ds ∈ {1, 2}∗, thenr = s andci = di for eachi.

Proof. We say that a product
T1 · . . . · Tr, (6)

where eachTi ∈ {U1, U
−1
1 , U2, U

−1
2 } is reduced, if Ti ∈ {U1, U

−1
1 } =⇒ Ti+1 ∈

{U2, U
−1
2 } andTi ∈ {U2, U

−1
2 } =⇒ Ti+1 ∈ {U1, U

−1
1 }. Following the idea of

[12] we will show by induction onr that each reduced product (6), wherer > 0, is
of form

1

5r

(

ar ∗
br ∗

)

, (7)

wherear, br ∈ Z[i] andar is not divisible by5. To start with, the caser = 1 is
trivial andr = 2 can be treated by straightforward computation.

Now we assume that the claim holds for reduced products shorter thanr and
divide the induction step for reduced productT of lengthr + 1 into several cases:

1. T = U ǫ22 U
ǫ1
1 T

′, whereǫ1, ǫ2 ∈ {−1, 1},

2. T = U ǫ11 U
ǫ2
2 T

′, whereǫ1, ǫ2 ∈ {−1, 1},

3. T = U ǫ1U
ǫ
1T

′, whereǫ ∈ {−1, 1},

4. T = U ǫ2U
ǫ
2T

′, whereǫ ∈ {−1, 1}.

Multiplying (7) from left byU ǫ11 andU ǫ22 give recurrences
(

ar+1

br+1

)

=

(

3ar − ǫ14br
ǫ14ar + 3br

)

and

(

ar+1

br+1

)

=

(

3ar + ǫ24ibr
ǫ24iar + 3br

)

,

respectively, and hence we can find out that in case1

ar+1 = 3ar − ǫ14br = 3ar − ǫ14(ǫ24iar−1 + 3br−1)

= 3ar − ǫ1ǫ216iar−1 − 12ǫ1br−1

= 3ar − ǫ1ǫ225iar−1 + ǫ1ǫ29iar−1 − 12ǫ1br−1

= 3ar − ǫ1ǫ225iar−1 + ǫ1ǫ23i(3ar−1 + 4iǫ2br−1)

= (3 + ǫ1ǫ23i)ar − ǫ1ǫ225iar−1.

In the rest of the cases we havear+1 = (3 − ǫ1ǫ23i)ar + ǫ1ǫ225iar−1, ar+1 =
6ar − 25ar−1, andar+1 = 6ar − 25ar−1, respectively. In all the cases we can use
the induction assumption5 ∤ ar to get5 ∤ ar+1.

Denotingu = c1 . . . cr, v = d1 . . . ds ∈ Σ∗ We can write equation (5) in a
more compact way as

Uuy = Uvy, (8)
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where|u| = r and|v| = s. If (8) holds for someu 6= v, we can assume without
loss of generality thatUu = U1Uu′ andUv = U2Uv′ . Thus we get

U−1
v′ U

−1
2 U1Uu′y = y, (9)

whereU−1
v′ U

−1
2 U1Uu′ is a reduced product of lengthr + s ≥ 1, and we can write

(9) as
(

ar+s
br+s

)

=

(

5r+s

0

)

.

This contradicts the previously observed fact that5 ∤ ar+s. Notice that the same
contradiction can be obtained also if one of the wordsu or v is empty.

Corollary 1. Uuy 6= −Uvy for all wordsu andv.

Proof. If Uuy = −Uvy, then clearlyu 6= v, for otherwise we would havey = −y.
But if Uuy = −Uvy for u 6= v, we would have, as in the previous proof, a non-
trivial reduced product with left upper corner divisible with 5, again a contradic-
tion.

Corollary 2. The semigroup generated by unitary matricesU1 andU2 is free.

Proof. If Uu = Uv, then alsoUuy = Uvy, and the previous lemma implies that
u = v.

Foru, v ∈ Σ∗ we define

γ(u, v) =
1

2

(

Uu + Uv Uu − Uv
Uu − Uv Uu + Uv

)

(10)

If is a straightforward task to verify thatγ(u, v) is a unitary matrix, and that
γ(u1, v1)γ(u2, v2) = γ(u1u2, v1v2). Moreover,

γ(u, v)(1, 0, 0, 0)T =
1

2

(

(Uu + Uv)y
(Uu − Uv)y

)

. (11)

By Lemma 1,u = v if and only if the two last coordinates of (11) are zero. Hence
if we denotey1 = (1, 0, 0, 0)T and

P1 =









0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1









,

thenP1 is the projection onto the last two coordinates and we have

||P1γ(u, v)y1||2 = 0

if and only if u = v.

Step 1. (Embedding an instance of PCP in unitary matrices) Let againI =
{(u1, v1), . . . , (uk, vk)} be an instance of PCP,ui andvi over a binary alphabet
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Σ = {1, 2}. We defineAi = γ(ui, vi) for eachi ∈ {1, . . . , k}. HenceI has a
solution if and only if there existsw ∈ {1, . . . , k}+ such that

||P1Awy1||2 = 0.

Step 2.(Getting rid ofP1y1 = 0 and reducing the number of matrices) We assume
that I = {(u1, v1), . . . , (uk, vk)} is a Claus instance, i.e., an instance of PCP
such that all solutionsui1 . . . uin = vi1 . . . vin are of formi1 = 1, in = k, and
i2 . . . in−1 ∈ {2, . . . , k − 1}+.

We defineB1 = A2, . . ., Bk−2 = Ak−1. A new initial vector is defined as
y2 = Aky1, and a new final projection is defined asP2 = A−1

1 P1A1. SinceA1

andAk are unitary, it is easy to see that||y2|| = 1, and thatP2 is a projection.
Since alsoA−1

1 is unitary, we have

||P2Bwy2||2 =
∣

∣

∣

∣A−1
1 P1A1BwAky1

∣

∣

∣

∣

2
= ||P1A1BwAky1||2 ,

so ||P2Bwy2||2 = 0 if and only if I has a solution. Moreover,||P2y2||2 =
||P1A1Aky|| 6= 0, since by the assumption,u1uk 6= v1vk.

Step 3.(Reducing the number of matrices to 2) Define

C1 =











B1 0 · · · 0
0 B2 . . . 0
...

...
. . .

...
0 0 · · · Bk−2











andC2 =















0 I 0 · · · 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 · · · I

I 0 0 · · · 0















.

C1 andC2 are clearly unitary4(k − 2) × 4(k − 2)-matrices. Let also

P3 =











P2 0 · · · 0
0 P2 · · · 0
...

...
. . .

...
0 0 · · · P2











andy3 = (yT2 ,0
T , . . . ,0T )T .

It is easy to verify thatC2C1C
−1
2 = diag(B2, . . . , Bk−2, B1), which implies

thatCi2C1C
−i
2 = diag(Bi+1, . . . , Bk−2, B1, . . . , Bi). Now C−1

2 = Ck−3
2 , so the

inverse can be always replaced with a positive power, and hence for any word
w ∈ {1, . . . , k − 2}∗ there is a wordw′ ∈ Σ∗ such thatCw′ = diag(Bw, . . .).

On the other hand, bothC1 andC2 are block matrices with exactly one nonzero
block in each row and column. The said property always inherits to the products
formed ofC1 andC2, and henceCw for anyw ∈ Σ∗ is a block matrix that has at
most one nonzero block in each row and column, but any nonzeroblock inCw is
of formBw′ , wherew′ ∈ {1, . . . , k − 2}∗.

HenceI has a solution if and only if||P3Cwy3||2 = 0 for somew ∈ Σ∗.
Notice carefully that||P2y2||2 6= 0 implies that also||P3y3||2 6= 0. This is a very
important feature in this step, since if we would have||P2y2||2 = 0 (as would be
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the case without Step 2), the new automaton would always allow words of form

2r(k−2), since
∣

∣

∣

∣

∣

∣
P3C

r(k−2)
2 y3

∣

∣

∣

∣

∣

∣

2
= ||P3y3||2 for eachr ∈ Z.

Step 4. (Setting the threshold) Notice that sinceI − P3 is a projection orthogonal
toP3, we have

||Cwy3||2 = ||P3Cwy3||2 + ||(I − P3)Cwy3||2 ,

and since||Cwy3|| = 1 always (eachCw is unitary), we have

||(I − P3)Cwy3||2 ≤ 1

with equality if and only ifI has a solution. Therefore,

||(I − P3)Cwy3||2 ≥ 1

for somew ∈ Σ∗ if and only if I has a solution.
Let 0 < λ < 1 and define, for eachi ∈ Σ,

Di =

(

Ci 0
0 1

)

.

Let alsoy4 = (
√
λyT3 ,

√
1 − λ)T ∈ R4k−7, and

P4 =

(

I − P3 0
0 0

)

.

NowD1 andD2 are(4k − 7) × (4k − 7)-matrices, and

||P4Dwy4||2 =
∣

∣

∣

∣

∣

∣

√
λ(I − P3)Cwy4

∣

∣

∣

∣

∣

∣

2
= λ(1 − ||P3Cwy3||2).

Thus||P4Dwy4||2 ≥ λ for some wordw ∈ Σ∗ if and only if I has a solution.
If an automata with defining constants inQ[i] is required, one can chooseλ =

9
25 , for example.

From the construction it follows thatQ = (P4, {D1,D2},y4) is MO-QFA
such thatL≥λ(Q) 6= ∅ if and only if I has a solution.

Remark 3. Letting k = 7 we see that the problem studied is undecidable for a
21-state MO-QFA over a binary alphabet. Skipping Step 3 we could as well obtain
the undecidability result for a4-state MO-QFA over a5-symbol alphabet.
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[12] S. Świerczkowski: On a free group of rotations of the euclideanspace. Inda-
gationes Mathematicae 20, 376–378 (1958).

[13] James Renegar:On the Complexity and Geometry of the First-order Theory
of the Reals. Parts I, II, and III. Journal of Symbolic Computation 13(3),
255–352 (1992).

[14] Paavo Turakainen:Generalized automata and stochastic languages. Proceed-
ings of American Mathematical Society 21, 303–209 (1969).

[15] Yu Sheng: Regular Languages. In G. Rozenberg and A. Salomaa (eds):
Handbook of Formal Languages, Springer (1997).

12
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