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Abstract
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1 Introduction

A finite (deterministic) automaton consists of a finite sestatesand atransition
function which describes the dynamics of the computation (see [@5fdrmal
definitions). The states of the automaton are divided fimal (accepting) and
non-acceptingstates, and the type of the state after reading the last dydebo
termines if the word belongs to the language accepted by utwraton or not.
Languages accepted by finite automata are caélgdlar. The Pumping Lemma
[15] makes it is clear that themptiness problerof finite deterministic automata is
algorithmically solvable.

In this article, we study two variants of finite automata: &oilistic automata
[11] and quantum automata of measure-once (MO) type [103. Khown that the
emptiness problems a@lt-point languagesindstrict cut-point languagesdefined
by probabilistic automata are undecidable [11],[1], anat o is the emptiness
problem cut-point languages defined by quantum automat&)@je surprisingly,
the emptiness problem of strict cut-point languages deteuinby quantum au-
tomata turns out to be decidable [2]. The decision procefturthe said problem
originates from the fact that the unitary matrices definirguantum automata of
MO-type generate a set whose closure iskyebraic group For any such group
(as well as for any algebraic set) there exists a finite seebifhithg polynomials,
and a decision procedure follows from Tarski's general ltefsu the real closed
fields (see [13] for a detailed representation).

In this article, we improve the undecidability results of find [2] by con-
structing automata with undecidable emptiness probleramalfler size than found
previously. In [1] and [2] it has been shown that the empsna®blem for prob-
abilistic cut-point languages and quantum cut-point laggs is undecidable for
automata size47 and43, respectively. Here we prove the undecidability results
for automata of size85, and21, respectively.

2 Preliminaries

A vectory € R" (seen as a column vector) ispaobability distribution if its
coordinates are all nonnegative and sum up.té matrix M € R™*" is called a
Markov matrixor stochastic matrixif all its columns are probability distributions.
We also say that a matrix/ is doubly stochastidf M andM” both are stochastic
matrices. Markov matriced/ have the following property: ity is a probability
distribution, so isMy. More generally, matrices whose column entries sum up to
1 preserve vector’s coordinate sum:

n n n n n n
D (My)i=3"% Miy; =3 ;3 My =3y,
=1 =1 j=1

i=1 i=1 j=1
Hence the Markov matrices preserve thenorm
llly = [21] + ... + [
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of all vectors with nonnegative coordinates. Clearly a paaf two Markov ma-
trices is again a Markov matrix.

A unitary matrixU € C"*™ is a matrix whose columns form an orthonormal
set with respect télermitean inner product

wherec* stands for the complex conjugatecfThe orthonormality of the columns
is equivalent td/*U = I, whereU* is theadjoint matrixof U defined agU™);; =
(Uj3)*. Hence for a unitary matrix/ we haveU* = U~!, and therefore also
UU* = I, which is to say that also the rows of a unitary matrix form ahanor-
mal set.

Another equivalent characterization of the unitarity candiven in terms of

Lo-norm
2 2
2lly = i@ @) = /lea> + ... + [zal”

A matrix U is unitary if and only if||{Ux||, = ||z||, for eachx € C" [7]. In the
sequel we denotgz||, = ||z||, unless otherwise stated. It is plain that a product
of two unitary matrices is unitary.

Any subspacéd” C C™ defines an (orthogonaprojectionby x — xy, where
x = xy + xy. is the (unique) decomposition efwith 2y € V andz, . € V+
(the orthogonal complement &f). Each projection is a linear mapping, and it can
be shown that? € C"*" is a matrix of a projection if and only iP> = P and
P*=P.

A probabilistic automatorfPFA, see [11] for further details) over an alphabet
is atriplet(x, {M, | a € ¥},y), wherey € R™ (n = |X]) is aninitial probability
distribution, eachM, € R™*" is a Markov matrix, andec € R" is thefinal state
vectorwhoseith coordinate id, if the ith state is final, and otherwise.

An equivalent definition of a probabilistic automaton cangbeen by using a
transition functions : @ x ¥ x @ — [0, 1], where@ = {q1,...,q,} is the state
setandi(q;, a, q;) = (My) i-

For any probabilistic automatoR we define a functioryp : ¥* — [0,1] as
follows: If w = a4 ... a,, wherea; € ¥, then

fe(w)=aM, ... - M,y. (1)

The interpretation of (1) is as follows: thi#h coordinate the initial distributiony
stands for the probability of the automaton being initiatiythe ith state. Then,
after reading the first lettes; of the input word, theith coordinate of vector
M,y represents the probability that the automaton has entdrethte. Similarly,
M,, M,y represents the distribution of states after reading irgitetisa; andas.
Finally, theith coordinate of\/,,. -. . .- M,, y gives the probability that the automa-
ton is in theith state after reading the whole input word, affd\V/,,,. - .. .- M,y is
the probability that starting from the initial distributioof states and reading word
w, the automaton enters into one of the final states (correpgno those coordi-
nates wheree hasl). If w = a; ... a,, we use notatiod/,, = M, - ... - M,,, SO
we can rewrite (1) as

fp(w) = wTMwRy,
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wherew® = q, ...a; is themirror imageof word w = a; ...a,. Also, instead
of the final state vector we could use theal state projectionwhich is a diagonal
matrix defined ag’; = 1, if the ith state is final (in this case; = 1), andP; =0
otherwise (in this case; = 0). Itis then clear that

P(y1)° .. 7yn)T = (Pllyla s aPnTLyn)T)

and hence the sum of coordinatesRyj is equal tox”y, and functionfp(w) can
be expressed as

fr(w) = [|PMyryl|; , )

which is analogous to the form appearing in the definitionw@um automata.

A measure-once quantum automatO-QFA) (see also [10]) over an al-
phabety (n = |X]) is a triplet (P,{U, | a € X},y), wherey € C" is an
initial amplitude vectorof unit Ly-norm, eachl/, € C™*™ is a unitary matrix,
and P € C™*" is themeasurement projectiorA quantum automatofy defines a
function fg : ¥ — [0, 1] by

fow) = ||PU,ry|. ©)

We also definenteger-weighted automat@.FA) (see [5] for details) exactly
as we defined PFA, but instead of initial distribution and kéarmatrices, we have
an initial vector inZ™ and matrices with integer entries. As PFE&AS could also
be defined by the means of transition function Q x ¥ x Q — Z. A ZFA Z
= (x,{M, | a € ¥}, y) defines a functiorf; : ¥* — Z by

fz(w) = :cTMwRy.

For PFA and MO-QFA and a fixed € [0, 1] we definecut-point languages
andstrict cut-point languagesFor any\ € [0, 1] and automatom,

Lxa(A) ={w € " [ fa(w) = A},

and
Laxn(A) ={w e X" | fa(w) > A}

It is known that there are cut-point languages that are rmptlae [11].

In this article we study both problemb>,(A) = 0? andL.)(A) = 0?,
and construct PFAs and MO-QFAs having an undecidable esgstiproblem of
smaller size than found previously.

As in [1] and [2], we prove the undecidability results by slwmgvthat for a
given instanceZ of Post Correspondence ProblefRCP) (see [8]), one can con-
struct an automaton that accepts words if and @nhas a solution. The following
theorem [9] is the basis of our constructions:

Theorem 1. For k > 7, itis undecidable whether an instanée= {(u1,v1), ...,

(ug,v)} of PCP has a solutiom,;, u;, ... u;, = v, v, ...0;,.

We will also use the following variant of PCP [4], [6]:

3



Theorem 2. There are instance$ = {(uy,v1),..., (ux, vx)} of PCP such that
all minimal solution$ w; u;, ... u;, = v;,v;, ...v;, are of formi; = 1, i, = k,
andis...i, 1 € {2,...,k — 1}". For k > 7, it is undecidable whether such a
solution exists.

The instances of the above theorem are calléalsinstances. In fact, all
undecidability proofs of PCP known to author are for Clawsgances.

3 Probabilistic automata

LetZ = {(u1,v1), ..., (ug,vr)} be an instance of the PCP. We can assumewthat
andwv; are over a binary alphab&t = {1, 2}, and construct a PF& such that for
some\ € [0,1] L. (P) # 0 if and only if Z has a solution. We also explain how
to modify the construction to get a PHA such thatL>(P’) # 0 if and only if Z
has a solution.

Step 1.(EmbeddingdZ in integer matrices) Let : ¥* — N = {1,2,3...} be the
bijection defined as (iyiz . ..in) = Y5, ;2" 7.

The first target is to find, for somé& an embedding : ¥* x ¥* — 7%d and
(column) vectorse, y € Z? such thatz”y(u, v)y includes expressiof(u) —

o(v))2.

Obviously with
2l 00
Yo (u,v) = 0 olvl
o(u) o(w) 1

x = (0,0,1)T and,y = (1,—-1,0)T we havex’vq(u,v)y = o(u) — o(v), hence
the tensor products satisfy

(@ ®@ax")(0(u,v) @ y0(u,0))(y @ y) = (@ 70(u,0)y)* = (0(u) — o (v))?.

However, the dimension of the matrix(u, v) ® o (u, v) is 9. A construction with
a smaller dimension was given in [1]:

22lul 0 0 0 0 0
0 oluvl 0 0 0 0
0 0 22| 0 0 0
= 4
7(u,v) o(u)2¥  o(v)2lH 0 2lul 0 0 @)
0 ow)2l’l )20 2ll 0
o(w)? 20(uo() o@)? 20(u) 20(v) 1

It is straightforward to see thaf(uy, vy )y(ug, v2) = v(uiuz, v1v2), and by choos-
ingz; = (0,0,0,0,0,1)7, andy, = (-1,1,-1,0,0,1)" we getz?y(u,v)y, =
1—(o(u) —o(v))?. Hencex! v(u,v)y, < 1 always, ande! v(u,v)y, = 1if and
only if u = v.

1A solution to PCP isninimalif it is not a concatenation of two solutions.



We defined; = ~(u;,v;) for eachi € {1,...,k}. ClearlyZ has a solution
if and only if 27 A;, Aj, ... Aj,y, = 1 for somejijs... 5, € {1,...,k}T, and
xl Aj A, ... Ajy; < 1 anyway. As before, we denoté, A;, ... 4;, = A,
wherew = j1js...jn, and A, is defined to be the identity matrix. Thdshas a
solution if and only ifz? Ay, > 0 for somew € {1,...,k}* (xfy, = 1).

Remark 1. Notice that(xq,{A1,...,Ax},y;) is aZFA with 6 states, over an
alphabet oft symbols. Hence the problem “ig;(w) > 0 for some nonempty
wordw”? is undecidable for integer-weighted automata.

Step 2. (Reducing the number of matrices) We can assumeZhata Claus in-
stance. Since all solutions; . ..u;, = v;, ...v;, of Claus instances have = 1,

in = k, andiy...i,_ € {2,...,k — 1} we can definer; = (z¥4;)" and
Yy = Ary,, B = Ag, ..., Bx_o = Ai_1 to get anotheZFA Z = (x9, {B,

..., Brx—2}, y5). Notice thatZ has6 states and is over an alphabettof 2 sym-
bols. Moreover,fz(w) = i B,y, = 1 A1 B, Ary,, S0 fz(w) > 0 for some
nonempty wordw if and only isZ has a solution.

Step 3. (Reducing the number of matrices ®) Let us denote the transition
function of theZFA Z introduced in Step 2 by(g;,c,q;) = (B.)j; for each

i,7 €{1,...,6}andc € {1,...,k—2}. To find two matrice€’; andC5 that will
encode the essential propertiesRyf, ..., Bx_», we encode thé — 2 input sym-
bols of automator¥ into binary strings and add some extra states adjacent ko eac
state ofZ that will decode the binary strings back to symbols in{det .., k£ —2}.
However, the statgs needs no decoder, since according to (4) we have, foreach
d(gs,¢,q;) = 1, if i = 6 and0 otherwise.

We will use an injective morphismp : {1,...,k — 2}* — {1,2}* defined as
Y(i) = 17712 fori < k — 2, andy(k — 2) = 1¥73. Now if {q1,...,qs} is the
state set of automatod, we define a new automata#’ with statesg; j, where
ie{l,...,5}andj € {1,...,k — 3}, plus stateys 1, SO we havéy(k — 3) + 1 =
5k — 14 states altogether for’.

The transition functiond’ of the automator¥’ will be defined as (fo(i, ) #

(6,6))

6(q’i’k7q7“)) if J =k— 3, ands = 1,
5/(q’i,j717Q7‘,S): 15 |f’L:T<5and]+1:5<k—2,
0 otherwise

/ 6(gis gy qr) ifs=1,
(85,2, rs) = { 0 otherwise
8'(g6,1,¢,q6,1) = 1for c € {1,2}, andd’(gs 5, ¢, ¢r,s) = 0 for the cases not defined
before. See Figure 3 for a graphical representation of catimm’.

Finally we enumerate abk — 14 statesg; ; in some way, and define vector
x3 € Z°%~14 such that all its coordinates are zero, except each comesmp to
stateg; ; (i € {1,...,6}), whose value is chosen to kes);. Vectory, € Z°+~14
is defined analogously. We denote the transition matricési®hew automaton by
C andCsy. The dimension of the matricesig — 14.
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Figure 1: Automator?’. The weights of the arrows are not shown in the picture.

With these definitionsg} Cyy(,\ry3 = x5 B,,rys for eachw € {1,... k —
2}*, andzlCry; = 0, if w € X is not in the image of). HenceZ has a
solution if and only if there is @ € ¥* such thate C,,y; = 1. Notice again that
x1 Cy,y; < 1for eachw € ¥*, so7 has a solution if and only i1 B,,y; > 0 for
somew € X,

Step 4. (Changing the initial and final vectors into probability tdisutions) For
i€ {1,2} let

0 0 0

D; = Ciys Ci 0

wgCiy;; wgCi 0

)

and notice that

0 0 0 0 0 0
DuDv = Cuy?, Cu 0 vaB Cv 0
xlCuy; z¥C, 0 zlCyys xIC, 0
0 0 0
— CuvyB Cuv 0 :Duv'
zlCuys 10y 0

Hence withz, = (0,...,0, )7, y, = (1,0,...,0)”, we have clearly] Dy, =
xl Cpys if w # ¢, andzly, = 0. Now eachD; is a(5k — 12) x (5k — 12)-matrix
andx4 andy, are probability distributions. Furthermorg,has a solution if and
only if 7' D,,y, > 0 for somew € ¥*.

Step 5.(Embedding the matrices in stochastic ones, Part 1) Thishenfibllowing
part of the construction is due to P. Turakainen [14]. Defirie— 10) x (5k — 10)-
matricesF; and E» by

S; ’l"T 0
wheret;, r;, ands; are chosen such that the row and the column sunis; afre

zero. Notice that the sum of coordinatestpfand r; are equal (both equal to
— >, > .(Di)rs), hences; is definable.



It is easy to verify that

0O 0 O 0O 0 O 0 0 O
EuEv = t, Du 0 t, Dv 0 = tuw Duv 0 = Euva
Su 1“5 0 Sy ’I“Z 0 Suw rgv 0

and that also the row and column sumsHyf, are zero.

Letxs = (0,21,0)" andy; = (0,y1,0)7. Then:c5TEwy5 =zl D,y, and
hencex! E,y; > 0 for some wordw € ¥* if and only if Z has a solution.

Step 6. (Embedding the matrices in stochastic ones, Part 2)iLUs¢ ann x n-
matrix with all entriesl. Clearly1? = n1, which implies thatl’ = n*~'1 for
i > 1. In the continuationp will be chosen as = 5k — 10. Since the row and
columns sums of each,, (w # ¢€) are zero, we hav&,,1 = 1F,, = 0, whenever
w # €.

DefineFy andF; by F; = E; + ¢1, wherec € N is chosen so large that each
entry of F; and F5 is positive. Then the sum of the entriesBfin each column
(and row) is equal te(5k — 10), and consequently matrices

1
Gi=————
" ¢(5k — 10)
are (doubly) stochastic. Sindg1 = 1F; = 0, we have

F,=FE,+ (01)\w\ =B, + c‘w|(5k _ 10)|w|—11

F;

wheneverv # 1, which implies that
1 1
Gy = E 1.
Y (e(5k — 10))lwl T

Now letting xzs = x5, ys = y; We get (to computer! 1y, recall thates andyg
have exactly one coordinate equalltand all other coordinatey.

1
(c(5k — 10))lwl 5k — 10
HenceZ has a solution if and only if there i8 € ¥* such that

ngwyG = 1"ng3/5 +

1
x§ Gy > 510

and(xg, {G1, G2}, yg) is a Gk — 10 -state) PFAP such that theL>5k1 _ (P)#0
if and only if Z has a solution.

Remark 2. According to Theorem 2, we conclude that the problémy (P) is
undecidable for & - 7 — 10 = 25-state PFA over a binary alphabet.

Modification: Step 3.5. We can define matrices

!/ Cio
(5 1)

andzx} = (2, D)7, 4 = (yI,—1)T to notice thate C! y = 2 Cpy; — 1.
Hencex C! y% > 0if and only if Z has a solution € 3. Then the construction
above gives an automatd? with 5k — 9 states such thdt> (P’) # 0 if and only
if Z has a solution.



4  Quantum Automata

1/(3 —4 1/ 3 4 B T
Lemma 1. LetU1_5<4 3>,U2—5(4Z, 3 >,andy_(1,0) L f

Uy oo Upy=Uyg, - ... - Ugy, (5)
wherec; ... ¢, dy ... ds € {1,2}*, thenr = s and¢; = d; for eachi.

Proof. We say that a product
Ty -...-Tp, (6)

where eacll; € {Uy,U; *, Uy, Uy '} isteducedif T; € {U, U '} = Tiy1 €
(U, Uy 'y andT; € {U, Uy 'y = Tiy1 € {Uy,U; '} Following the idea of
[12] we will show by induction onr that each reduced product (6), where 0, is

of form
1 o X
5 ( Z * > ’ )

wherea,, b, € Z[i] anda, is not divisible by5. To start with, the case = 1 is
trivial andr = 2 can be treated by straightforward computation.

Now we assume that the claim holds for reduced productseshitranr and
divide the induction step for reduced proddcof lengthr + 1 into several cases:

1. T = U?U{' T, whereey, e € {—1,1},
2. T =U;'Us*T', whereey, eo € {—1,1},
3. T =UfU{T’, wheree € {—1,1},
4. T =USUST', wheree € {—1,1}.

Multiplying (7) from left by U;* andUs;? give recurrences

ary1 ) _ 3a, — €14b, and ary1 | _ 3a, + ex4ib,
bri1 €14a, + 3b, bri1 esdia, + 3b, ’
respectively, and hence we can find out that in dase

ar41 = 3a, — €14b, = 3a, — e14(egdia,—1 + 3b,_1)
= 3a, —€16216ta,_1 — 12¢1b,_1
= 3a, — €16925%a,_1 + €1€99%a,_1 — 12¢1b,_1
= 3a, — €16225ia,_1 + €1€231(3a,_1 + 4ieab,_1)

= (34 €1€23i)a, — €1€925ia, 1.

In the rest of the cases we hawg,1 = (3 — €1€230)a, + €1€225ia,_1, ar41 =
6a, — 25a,_1, anda, 1 = 6a, — 25a,_1, respectively. In all the cases we can use
the induction assumptioht a, to get5 { a,41.
Denotingu = ¢1...¢., v = di...ds € 3* We can write equation (5) in a
more compact way as
Uwy = Uy, (8)
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where|u| = r and|v| = s. If (8) holds for some: # v, we can assume without
loss of generality thal/,, = U, U, andU,, = UU,. Thus we get

U, U Uh Uy =y, )
whereU,,'Uy ' U, U, is a reduced product of lengih+ s > 1, and we can write
(9) as

Qrys B 57‘+s
s )\ 0 )

This contradicts the previously observed fact thdta, ;. Notice that the same
contradiction can be obtained also if one of the wards v is empty. O

Corollary 1. U,y # —U,y for all words« andv.

Proof. If U,y = —U,y, then clearlyu # v, for otherwise we would havg = —y.
Butif U,y = —U,y for v # v, we would have, as in the previous proof, a non-
trivial reduced product with left upper corner divisibletivb, again a contradic-
tion. O

Corollary 2. The semigroup generated by unitary matriégsand Us is free.

Proof. If U, = U,, then alsoU,y = U,y, and the previous lemma implies that
u = 0. O

Foru,v € ¥* we define

1/ U,+U, Uu—Uv)

7Ww:§<m—u,m+m (10)

If is a straightforward task to verify that(u,v) is a unitary matrix, and that
v(u1, v1)y(uz, v2) = y(ujug, viv2). Moreover,

ymwu@mmT:%<$gf%g>. (11)

By Lemma 1,u = v if and only if the two last coordinates of (11) are zero. Hence
if we denotey, = (1,0,0,0)” and

P =

o O O O
o O O O
o= O O
— o O O

then P, is the projection onto the last two coordinates and we have

[Py (u,v)yy||* =0
if and only if u = v.

Step 1. (Embedding an instance of PCP in unitary matrices) Let adain-
{(u1,v1),..., (ug,vx)} be an instance of PCR; andv; over a binary alphabet

9



¥ = {1,2}. We defined; = ~(u;,v;) for eachi € {1,...,k}. HenceZ has a
solution if and only if there exist® € {1,...,k}* such that

[P Awyy]]* = 0.

Step 2.(Getting rid of P,y; = 0 and reducing the number of matrices) We assume
thatZ = {(uy,v1),...,(ur,vx)} is a Claus instance, i.e., an instance of PCP
such that all solutions;, ...w;, = v, ...v;, are of formi; = 1, i, = k, and
Q.. ip_1 €{2,...,k—1}7T.

We defineB; = As, ..., Br._o = A;_1. A new initial vector is defined as
Yy, = Axy;, and a new final projection is defined &s = A;lPlAl. SinceA;
and A, are unitary, it is easy to see thiay,|| = 1, and thatP, is a projection.
Since alsad; ! is unitary, we have

n

_ 2
|PBuy,||? = ||AT  PLA By Agyy || = ||PL A1 B Arys |

S0 ||PyByy,||* = 0 if and only if Z has a solution. Moreovet|Pyy,||* =
||P1 A1 Akyl| # 0, since by the assumption; uy # vqvy.

Step 3.(Reducing the number of matrices to 2) Define

B0 0 001 o
0 B,

= ) . andCy = : :
' i ' ' 0 00 I
00 - Bro I 00 0

Cy andC;, are clearly unitaryl(k — 2) x 4(k — 2)-matrices. Let also

P, 0 -+ 0
0 P --- 0
P; = . .
0 0 --- P

andy, = (y3,07,...,00)T.

It is easy to verify that’chlcz‘1 = diag(Bas, ..., Bk_2, B1), which implies
that C4C,Cy " = diag(Bit1, ..., Br_2,Bi,...,B;). NowC; ' = €53, so the
inverse can be always replaced with a positive power, andehér any word
w e {l,...,k—2}*thereis awordy’ € ¥* such that®,, = diag(B,, .. .).

On the other hand, both; andCs are block matrices with exactly one nonzero
block in each row and column. The said property always ith¢oi the products
formed ofC; andCs, and hence”,, for anyw € ¥* is a block matrix that has at
most one nonzero block in each row and column, but any nordenk in C,, is
of form B,,, wherew’ € {1,... k — 2}*.

HenceZ has a solution if and only if P3C,ys||> = 0 for somew € %*.
Notice carefully that| Pyy,||* # 0 implies that alsd| Pyy,||* # 0. This is a very
important feature in this step, since if we would haM@y,||* = 0 (as would be
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the case without Step 2), the new automaton would alwaysvailords of form

2
or(k=2). sinceHPg(J’g(k_Q)ygu = || P3ys]|? for eachr € Z.

Step 4. (Setting the threshold) Notice that sinfe- P; is a projection orthogonal
to P3;, we have

1Cwysl[* = 1PsCuysl|* + (1 = P3)Cuys]*,
and sincd|Cy,y5|| = 1 always (eaclC,, is unitary), we have
1(1 = P3)Cuysl* < 1
with equality if and only ifZ has a solution. Therefore,
I(I = P3)Cuysl* > 1

for somew € ¥* if and only if Z has a solution.
Let0 < X\ < 1 and define, for eache %,

c; 0
p-(G0).

Letalsoy, = (VAyl,v1—X)T € R*7, and
(I-P 0
P (1550,
Now D; and Dy are(4k — 7) x (4k — 7)-matrices, and
2
IPDuyl” = ||[VAU = Po)Cua| | = AL = 1PsCuys| ).

Thus||P,D.y,||* > X for some wordw € ©* if and only if Z has a solution.

If an automata with defining constants@j:| is required, one can choose=
for example.

From the construction it follows tha) = (Py, {D1, D2}, y,) is MO-QFA
such thatL>,(Q) # 0 if and only if Z has a solution.

2
25"

Remark 3. Letting & = 7 we see that the problem studied is undecidable for a
21-state MO-QFA over a binary alphabet. Skipping Step 3 wedaslwell obtain
the undecidability result for &-state MO-QFA over &-symbol alphabet.
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