
Viorel Preoteasa

Mechanical Verification of Mutually Recur-
sive Procedures for Parsing Expressions us-
ing Separation Logic

TUCS Technical Report

No 771, May 2006

Mechanical Verification of Mutually Recur-
sive Procedures for Parsing Expressions us-
ing Separation Logic

Viorel Preoteasa
Åbo Akademi University, Department of Computer Science
Turku Centre for Computer Science
Joukahaisenkatu 3-5, 20520 Turku, Finland

TUCS Technical Report

No 771, May 2006

Abstract

This paper adds support for mutually recursive procedures on top of a pred-
icate transformer semantics of imperative programs with pointers imple-
mented in PVS theorem prover. We define and prove correct a collection
of mutually recursive procedures which constructs the parsing tree of an ex-
pression generated by a context free grammar. We use separation logic to
specify and verify these procedures; the parsing tree is represented in memory
using pointers and the specification predicates are defined using separation
logic.

TUCS Laboratory
Software Construction

1 Introduction

Pointers are an important programming concept and they provide an effective
and efficient solution to many programming tasks. Moreover, object oriented
languages rely explicitly (C++, Pascal), or implicitly (Java, C#, Python,
Eiffel) on pointers. Burstall [3] has introduced a logic for reasoning about
programs with pointers. Based on Burstall’s ideas Reynolds [14] describes
the separation logic, a more general and abstract logic for reasoning about
correctness of pointer programs. This logic combines ideas from [10, 17, 6].
Most approaches of reasoning about pointer programs treat the heap globally,
even if programs modify only a small and well defined part of it. O’Hearn
[17] has introduced a frame rule in separation logic which has enabled local
reasoning about program with pointers.

Mutually recursive procedures are also a very important programming
concept which is used for example in programs written in an object oriented
language. Reasoning about procedures has been also treated extensively
in literature. Nipkow [8] has introduced a Hoare total correctness rule for
parameter less mutually recursive procedures.

To be effective, verification of programs with pointers and procedures
should have theorem prover support. Weber [16] has introduced a mech-
anization of separation logic in the theorem prover Isabelle/HOL [9]. He
proved soundness and completeness for some Hoare logics extended with heap
operations, but his programming language does not contain procedures.

We continue on our earlier work on program variable model and recursive
procedures [1] and on a mechanization of separation logic [12]. The contribu-
tions of the paper are an abstract Hoare total correctness rule for mutually
recursive procedures and the verification of a collection of mutually recursive
procedures which build the abstract syntax tree for an arithmetic expres-
sion generated by a context free grammar. Our rule for mutually recursive
procedures is a generalization of rules from [8, 1, 12] and can be specialized
in a rule combining the frame rule [17] and the rule for mutually recursive
procedures [8], but allowing procedures with value and result parameters and
local variables. We work with a predicate transformer semantics as used in
refinement calculus [2] and based on this we define total correctness Hoare
triples. We have implemented this theory in the theorem prover PVS [11].

The overview of the paper is as follows. In Section 2 we present the pred-
icate transformer semantics of our language. Section 3 outlines the heap op-
erations and the separation logic which were introduced in [12]. The abstract
recursion refinement and total correctness rules are introduced in Section 4.
In Section 5 we introduce procedures and we prove a new Hoare total cor-
rectness frame rule for mutually recursive procedures with parameters (value
and value-result), local variables, and access to global variables. Section 6
introduces mutually recursive procedures to build the abstract syntax tree

1

of an arithmetic expression and outlines their correctness proof. Concluding
remarks and future work are presented in Section 7.

2 Preliminaries

We use higher-order logic [4] as the underlying logic. In this section we recall
some facts about refinement calculus [2] and about fixed points in complete
lattices. We assume that basic facts about complete lattices [5], well founded
sets, and well founded induction [7] are known.

2.1 Predicate transformers and refinement

Let Σ be the state space. Predicates, denoted Pred, are the functions from
Σ → bool. We denote by ⊆, ∪, and ∩ the predicate inclusion, union, and
intersection respectively. The type Pred together with inclusion forms a com-
plete boolean algebra.

MTran is the type of all monotonic predicate transformers, i.e. monotonic
functions from Pred to Pred. Programs are modeled as elements of MTran. If
S ∈ MTran and p ∈ Pred, then S.p ∈ Pred are all states from which the exe-
cution of S terminates in a state satisfying the postcondition p. The program
sequential composition denoted S ; T is modeled by the functional compo-
sition of monotonic predicate transformers, i.e. (S ; T).p = S.(T.p). We
denote by ⊑, ⊔, and ⊓ the pointwise extension of ⊆, ∪, and ∩, respectively.
The type MTran, together with the pointwise extension of the operations on
predicates, forms a complete lattice. The partial order ⊑ on MTran is the
refinement relation [2].

If α and β are predicates and S is a program, then a Hoare total correct-
ness triple, denoted α {|S |} β is true if and only if α ⊆ S.β.

2.2 Program variables, addresses, constants, and ex-
pressions

Let value be a nonempty type and let variable, address, constant ⊆ value be
the types of program variables, program addresses and constants respectively.
We assume that variable, address, constant are pairwise disjoint and non-
empty. We take location = variable ∪ address and nil ∈ constant an arbitrary
element. The element nil represents the null address. Basic programming
types like integer numbers, int, are subtypes of constant.

For all x ∈ location, we introduce the type of x, denoted T.x, as a subtype
of value. T.x represents all values that can be assigned to x. For a type
X ⊆ value we define the subtypes Vars.X ⊆ variable, Addrs.X ⊆ address, and

2

AddrsNil.X ⊆ address ∪ {nil} by

Vars.X =̂ {x ∈ variable | T.x = X}

Addrs.X =̂ {x ∈ address | T.x = X}

AddrsNil.X =̂ Addrs.X ∪ {nil}

For example the program variables of type addresses to integer numbers are
defined by Vars.(AddrsNil.int).

We access and update program locations using two functions [2, 1].

val.x : Σ → T.x and set.x : T.x → Σ → Σ

For x ∈ location, σ ∈ Σ, and a ∈ T.x, val.x.σ is the value of x in state σ, and
set.x.a.σ is the state obtained from σ by setting the value of location x to a.

Local variables and procedure parameters are modeled using four state-
ments that intuitively corresponds to stack operations:

• Add.x – adds the value of x to the stack

• Add.x.e – adds the value of x to the stack, and sets x to the value of e.

• Del.x – deletes the top value from the stack and assigns it to x.

• Del.x.y – saves the current value of x to y and then deletes the top
value from the stack and assigns it to x.

The formal definitions of these program constructs and detailed explanations
of their usage in modeling local variables and procedure value and value-result
parameters are given in [1].

Program expressions of type A, denoted E.A, are functions from Σ to A.
We lift all operations on basic types to operations on program expressions.
For example if ⊕ : A × B → C is an arbitrary binary operation, then ⊕ :
E.A×E.B → E.C is defined by e⊕e′ =̂ (λσ•e.σ⊕e′.σ). To avoid confusion, we
denote by (e

.
= e′) the expression (λσ • e.σ = e′.σ). If e ∈ E.A, x ∈ variable,

and e′ ∈ E.(T.x), then we define e[x := e′] = (λσ • e.(set.x.(e′.σ).σ)), the
substitution of e′ for x in e. For a parametric boolean expression (predicate)
α : A → Σ → bool, we define the boolean expressions

∃∃ .α =̂ λσ • ∃a : A • α.a.σ ∀∀.α =̂ λσ • ∀a : A • e.a.σ

and we denote by ∃∃ a•α.a and ∀∀a•α.a the expressions ∃∃ .α and ∀∀.α respec-
tively.

3

3 Heap operations and separation logic

So far we have introduced the mechanism of accessing and updating ad-
dresses, but we need also a mechanism for allocating and deallocating them.
We introduce the type allocaddr =̂ P(address), the powerset of address;
and a special program variable alloc ∈ variable of type allocaddr (T.alloc =
allocaddr). The set val.alloc.σ contains only those addresses allocated in state
σ. The heap in a state σ is made of the allocated addresses in σ and their
values.

For A, B ∈ allocaddr we denote by A − B the set difference of A and B.
We introduce two more functions: to add addresses to a state and to delete
addresses from a state.

addaddr.A.σ =̂ set.alloc.(val.alloc.σ ∪ A).σ

dispose.A.σ =̂ set.alloc.(val.alloc.σ − A).σ

Based on these elements we build all heap operations and separation logic
operators.

Definition 1 If e, f : Pred, r : Σ → AddrsNil.X, and g : Σ → X, then we
define

emp.σ : bool =̂ (val.alloc.σ = ∅)

(e ∗ f).σ : bool =̂ ∃A ⊆ val.alloc.σ • e.(set.alloc.A.σ) ∧ f.(dispose.A.σ)

(r 7→ g).σ : bool =̂ val.(r.σ).σ = g.σ ∧ val.alloc.σ = {r.σ}

In [12] we proved some properties of this separation logic operators. We
recall here two properties that we need in proving the rule for mutually
recursive procedures.

Lemma 2 The following relations hold

1. α ∗ emp = α

2. (
⋃

i∈I pi) ∗ q =
⋃

i∈I(pi ∗ q)

In [13] a subset of program expressions called pure are defined. These
are expressions which does not depend on the heap and are the usual pro-
gram expressions built from program variables, constants and normal (non
separation logic) operators. In our framework we use two different concepts
corresponding to pure expressions. If an expression is set.alloc–independent
then its value does not depend on what are the allocated addresses. An ex-
pression e is called set address independent if e does not depend on the value
of any (allocated or not) address, formally

(∀u : address, a : T.u • e is set.u.a–independent).

4

The pure expressions from [13] correspond to set.alloc–independent and set
address independent expressions in our framework.

We need also another subclass of program expressions. An expression e

is called non-alloc independent if e does not depend on the values of non
allocated addresses:

∀σ • ∀u 6∈ val.alloc.σ • ∀a ∈ T.u • e.(set.u.a.σ) = e.σ.

These expressions include all expressions obtained from program variables
and constants using all operators (including separation logic operators).

We introduce here only the statement for allocating a new address. All
other pointer operations are defined in [12].

Definition 3 If X ⊆ value, x ∈ Vars.(AddrsNil.X), e : Σ → X, r : Σ →
AddrsNil.X, y ∈ Vars.X, and f : X → T.y then we define New.X.(x, e) ∈
MTran by

New.X.(x, e) =̂ [λσ • λσ′ • ∃a : Addrs.X • ¬alloc.σ.a ∧

σ′ = set.a.(e.σ).(set.x.a.(addaddr.a.σ))]

The statement New.X.(x, e) allocates a new address a of type X, sets the
value of x to a, and sets the value of a to e. This statement assumes that
there is always an address of type X available for allocation.

Next lemma introduces the Hoare correctness and frame rule for New.

Lemma 4 If X ⊆ value, x ∈ Vars.(AddrsNil.X), e ∈ E.X is set.alloc–
independent, set.x–independent and non–alloc independent, and α ∈ Pred
is set.x–independent and non–alloc independent, then

α {|New.X.(x, e) |} α ∗ val.x 7→ e

3.1 Specifying binary trees with separation logic

In the C++ programming language, and in most imperative programming
languages, a binary tree structure will be defined by something like:

struct btree{
int label;
btree ∗left;
btree ∗right}

(1)

In our formalism, binary trees, labeled with elements from an arbitrary type
A, are modeled by a type ptree.A. Elements of ptree.A are records with three
components: a ∈ A, and p, q ∈ AddrsNil.ptree.A. Formally the record struc-
ture on ptree.A is given by a bijective function ptree : A×AddrsNil.(ptree.A)×

5

AddrsNil.(ptree.A) → ptree.A. If a ∈ A, and p, q ∈ AddrsNil.ptree, then
ptree.(a, p, q) is the record containing the elements a, p, q. The inverse of ptree
has three components (label, left, right), label : ptree.A → A and lef, right :
ptree.A → AddrsNil.(ptree.A). The type ptree.int corresponds to btree from
definition (1) and the type AddrsNil.(ptree.int) corresponds to (btree ∗) from
(1).

Let atreecons be the type of nonempty abstract binary trees with labels
from a type A. We assume that nil denotes the empty tree and we take
atree = atreecons ∪ {nil}. The abstract tree structure on atree is given by an
injective function

atree : A → atree → atree → atreecons

which satisfies the following induction axiom:

∀P : atree → bool • P.nil ∧ (∀a, s, t • P.s ∧ P.t ⇒ P.(atree.a.s.t)) ⇒ ∀t • P.t

Using this axiom we can prove that the function atree is also surjective
and we denote by label : atreecons → A and left, right : atreecons → atree the
components of atree inverse.

For every t ∈ atree and p ∈ AddrsNil.ptree let tree.t.p be the predicate
which is true in those states σ in which address p stores the abstract tree t.
The predicate tree.t.p is defined by structural induction on t.

tree.nil.p =̂ p
.
= nil ∧ emp

tree.(atree(a, t, s)).p =̂ (∃∃ q, r • p 7→ ptree(a, q, r) ∗ tree.t.q ∗ tree.s.r)

4 Abstract recursion

In this section 〈L, ≤〉 denotes a complete lattice. If f : L → L is monotonic,
then by Knaster–Tarski Theorem [15] f has a least fixpoint denoted µ f

Theorem 5 If f : L → L is monotonic and (xw, w ∈ W) is a family of
elements from L indexed by the well-founded set (W, <) then

(∀w ∈ W • xw ≤ f(x<w)) ⇒ x ≤ µf

where x<w =
∨

v<w xv and x =
∨

w xw.

Proof. By well founded induction on W .

Lemma 6 If f : L → L is monotonic, L′ ⊆ L is a sublattice, and f.L′ ⊆ L′,
then µL f = µL′ f .

6

Proof. By using Theorem 19.3, page 321 from [2]
If Ai is a family of non–empty sets indexed by i ∈ I then we denote

by
∏

i∈I Ai or just
∏

i Ai when I is fixed, the Cartesian product of Ai’s. If
a ∈

∏

i Ai then ai ∈ Ai denotes the i–th component of a. Conversely if for
every i ∈ I, bi ∈ Ai, then (bi)i∈I ∈

∏

i Ai denotes the tuple containing the
elements bi. If f ∈

∏

(Ai → Bi) and x ∈
∏

Ai, then we define f.x ∈
∏

i Bi by
(f.x)i =̂ fi.xi.

If L is a complete lattice and A a non–empty set, then A → L together
with the pointwise extensions of all operations on L to A → L is a complete
lattice. Similarly, if for each i ∈ I, Li is a complete lattice, then

∏

i Li

together with the component wise extensions of all operations from Li to
∏

i Li is a complete lattice.

Theorem 7 If f :
∏

i Li →
∏

i Li is monotonic and f̂ :
∏

i(Ai → Li) →
∏

i(Ai → Li) is given by f̂i.x.ai = fi.(
∨

b∈A x.b), then f̂ is monotonic and

(∀a ∈ A • (µ f̂).a = µ f), where A =
∏

i Ai.

Proof. The fact that f̂ is monotonic follows directly from the definition.
We show that (µ f̂).a = µ f by showing that (µ f̂).a is a fixpoint of f and

(λai •µ fi)i∈I is a fixpoint of f̂ . First we prove (∀a, c ∈ A• (µ f̂).a = (µ f̂).c):

(µ f̂).a = f̂ .(µ f̂).a = f.(
∨

b∈A

(µ f̂).b) = f̂ .(µ f̂).c = (µ f̂).c

We have
f.((µ f̂).a) = f.(

∨

b∈A

(µ f̂).b) = f̂ .(µ f̂).a = (µ f̂).a

and

f̂ .((λai • µ fi)i∈I).a = f.(
∨

b∈A

(λai • µ fi)i∈I .b) = f.(
∨

b∈A

µ f) = f.(µ f) = µ f

It follows that (µ f̂).a = µ f .

4.1 The complete lattice of programs

Definition 8 We call the structure 〈L, ≤, ∨, ∧, ⊙, skip〉 a program lattice
if

• 〈L, ≤, ∨, ∧〉 is a complete lattice

• 〈L, ⊙, skip〉 is a monoid

• (
∨

i Si)⊙T =
∨

i(Si ⊙ T)

Theorem 9 The complete lattice of monotonic predicate transformers
〈MTran, ⊑, ⊔, ⊓, ; , skip〉 is a lattice of programs.

7

Definition 10 A structure 〈K,≤,∨,∧, ⊙〉 is a predicate lattice for L if K

is a complete lattice and ⊙ : L → K → K is such that

• (S ⊙T)⊙p = S⊙(T⊙p)

• (
∨

i Si)⊙p =
∨

i(Si⊙p)

• p ≤ q ⇒ S⊙p ≤ S⊙q

• skip⊙p = p

We call the elements of K predicates for L or simply predicates.

Definition 11 If L is a program lattice and K is a predicate lattice for L,
then an abstract Hoare total correctness triple, denoted p {|S |} q, p, q ∈ K,
S ∈ L, is true if and only if p ≤ S⊙q

Definition 12 A structure 〈K,≤,∨,∧, ⊙, (| |), [| |]〉 is an assertion lattice for
L if 〈K,≤,∨,∧, ⊙〉 is a predicate lattice for L and (| |), [| |] : K → L are such
that

• (|
∨

i pi|) =
∨

i(|pi|)

• (|p|)⊙q = (|q|)⊙p

• (|S⊙p|)⊙[|p|] ≤ S and

• skip ≤ (|[|p|]⊙p|).

The statements (|p|) and [|p|] are called abstract assert statement and abstract
postcondition statement, respectively.

Theorem 13 The complete lattice of predicates

〈Pred,⊆, ∪, ∩, . , { }, {[]}〉

is an assertion lattice for MTran, where

• {p}.q = p ∧ q and

• {[p]}.q = (if p ⊆ q then true else false fi)

Next, unless otherwise specified, we assume that L is a program lattice
and K is an assertion lattice for L.

Lemma 14 1. (|p|)⊙(
∨

i qi) =
∨

i(|p|)⊙qi

2. p ≤ q ⇒ (|p|) ≤ (|q|)

8

We are able to state and prove now the most general recursion refinement
rule.

Theorem 15 (Recursion Refinement) If pw ∈ K is a family of elements
indexed by the well-founded set 〈W, <〉, S ∈ L, and F : L → L is monotonic
then

(∀w ∈ W • (|pw|)⊙S ≤ F.((|p<w|)⊙S)) ⇒ (|p|)⊙S ≤ µ F

where p<w =
∨

v<w pv and p =
∨

w pw.

Proof. Using Theorem 5 with xw = (|pw|)⊙S.

Theorem 16 If S ∈ L and p ∈ K then

1. p {|S |} q ⇔ (|p|)⊙[|q|] ⊆ S.

Proof. We prove this relation by proving separately the two implications.
Assume p {|S |} q, then

(|p|)⊙[|q|]

≤ {Lemma 14}

(|S.q|)⊙[|q|]

≤ {definition}

S

For the second implication we assume (|p|)⊙[|q|] ⊆ S and we have:

p

= {definition}

skip⊙p

≤ {definition}

(|[|q|]⊙q|)⊙p

= {definition}

(|p|)⊙([|q|]⊙q)

= {definition}

((|p|)⊙[|q|])⊙q

≤ {assumption}

S⊙q

9

4.2 Lifting the program lattice structure to Cartesian

product and function type

If L is a program lattice and A is a nonempty set then A → L with the
pointwise extension of all operations from L to A → L is a program lattice.
If K is a predicate (assertion) lattice for L then A → K is a predicate
(assertion) lattice for A → L. Similarly if for every i ∈ I, Li is a program
lattice, then

∏

i Li, with the component–wise extension of operations from
(Li)i∈I to

∏

i Li, is a program lattice. If for every i ∈ I, Ki is a predicate
(assertion) lattice for Li then

∏

i Ki is a predicate (assertion) lattice for
∏

i Li.
Next we introduce a version of the Theorem 15 (Recursion Refinement)

which is more suitable to refine mutually recursive programs as we will see
when we introduce procedures. We assume that for every i ∈ I, Li is a
program lattice and Ki is an assertion lattice for Li. We denote L =

∏

i Li

and K =
∏

i Ki. Moreover we assume for every w ∈ W , pw ∈ K and
〈W × I, <〉 is well–founded. We denote pw,i = (pw)i and for every s ∈ W × I

we define p, p<s, qs, q<s, q ∈ K by

p =̂
∨

w∈W

pw (p<s)j =̂
∨

(v,j)<s

pv,j

(qs)j =̂
∨

(v,j)≤s

pv,j q<s =̂
∨

t≤s

qt

q =̂
∨

s∈W×I

qs

(2)

Lemma 17 If s, t ∈ W × I, then

1. p = q

2. q<s = p<s

3. s ≤ t ⇒ p<s ≤ p<t

Theorem 18 (Mutual Recursion Refinement) Under the above as-
sumptions if F : L → L is monotonic then

(

∀w ∈ W • ∀i ∈ I • (|pw,i|)⊙Si ≤ Fi.((|p<(w,i)|)⊙S)
)

⇒ (|p|)⊙S ≤ µ F

Proof.

(|p|)⊙S ≤ µ F

= {Lemma 17 (p = q)}

(|q|)⊙S ≤ µ F

10

⇐ {Theorem 15 with W × I and qs instead of W and pw}

(∀w ∈ W • ∀i ∈ I • (|qw,i|)⊙S ≤ F.(q<(w,i) ⊙S))

= {Definition of ≤,⊙, (| |) on tuples and Lemma 17}

(∀w ∈ W • ∀i, j ∈ I • (|(qw,i)j|)⊙Sj ≤ Fj.(p<(w,i) ⊙S))

= {Definition of (qw,i)j and complete lattice properties}

(∀w, v ∈ W • ∀i, j ∈ I • (v, j) ≤ (w, i) ⇒ (|pv,j |)⊙Sj ≤ Fj .(p<(w,i) ⊙S))

⇐ {Lemma 17 and F monotonic}

(∀v ∈ W • ∀j ∈ I • (|pv,j |)⊙Sj ≤ Fj .(p<(v,j) ⊙S))

Theorem 19 (Hoare mutual recursion) Under the above assumptions
if r ∈ K and F : L → L is monotonic then
(

∀w ∈ W, ∀i ∈ I, ∀S ∈ L • p<(w,i) {|S |} r ⇒ pw,i {|Fi.S |} ri

)

⇒ p {|µ F |} r

Proof.

p {|µ F |} r

= {Theorem 16}

(|p|)⊙[|r|] ⊆ µ F

⇐ {Theorem 18}

∀w ∈ W • ∀i ∈ I • (|pw,i|)⊙[|ri|] ≤ Fi.((|p<(w,i)|)⊙[|r|])

= {complete lattice properties}

∀w ∈ W • ∀i ∈ I • ∀S ∈ L • (|p<(w,i)|)⊙[|r|] ≤ S ⇒ (|pw,i|)⊙[|ri|] ≤ Fi.S

= {Theorem 16}

∀w ∈ W • ∀i ∈ I • ∀S ∈ L • p<(w,i) {|S |} r ⇒ pw,i {|Fi.S |} ri

When working with Hoare statements α {|S |} β very often we need spec-
ification variables, variables which occur only in α and β but not in S. For
detailed discussions of these specification variables see [1]. However here we
mention that we add support for specification variables by considering S ∈ L,
α, β : A → K, where K is an assertion lattice for L and A is a non–empty
set of specification parameters. Intuitively, the Hoare triple α {|S |} β is true
if

(∀a ∈ A • α.a ≤ S.(β.a)) (3)

Formally if L is a program lattice, K is an assertion lattice for L, and A is a
non–empty set, then A → K is a predicate lattice for L where the operations

11

on K are pointwise extended to A → K, and ⊙ : L → K → K is extended
to ⊙ : L → (A → K) → (A → K) by

(S⊙α).a =̂ S⊙(α.a)

It is easy to see that if α, β : A → K and S ∈ L, then α {|S |} β is equivalent
to definition (3). We cannot however construct an assertion lattice structure
on A → K for L.

Next we extend the Theorem 19 to the case when predicates may refer
some specification variables. We assume that for each i ∈ I, Li is a pro-
gram lattice, Ki is an assertion lattice for Li, and Ai is a non-empty set
of specification values. We denote L =

∏

i Li, A =
∏

i Ai, K ′
i = Ai → Ki,

L′
i = Ai → Li, K ′ =

∏

i K
′
i, and L′ =

∏

i L
′
i. If W is a non-empty set,

〈W × I, <〉 is well–founded, and pw ∈ K ′, then for every s ∈ W × I we define
p, p<s, qs, q<s, q ∈ K ′ as in (2).

Theorem 20 (Hoare mutual recursion and specification variables)
Under the above assumptions if r ∈ K ′ and F : L → L is monotonic then

(

∀w ∈ W, ∀i ∈ I, ∀S ∈ L • p<(w,i) {|S |} r ⇒ pw,i {|Fi.S |} ri

)

⇒ p {|µ F |} r

Proof. We assume

(

∀w ∈ W, ∀i ∈ I, ∀S ∈ L • p<(w,i) {|S |} r ⇒ pw,i {|Fi.S |} ri

)

(4)

and we prove p {|µ F |} r. We recall the definition of F̂ : L′ → L′ from
Theorem 7, for each α ∈ K ′, a ∈ A, F̂ .α.a = F.(

∨

b∈A α.b). From Theorem 7
it follows that p {|µ F |} r ⇔ p {|µ F̂ |} r.

By applying Theorem 19 for pw, r, and F̂ we obtain p {|µ F̂ |} r if

(

∀w ∈ W, ∀i ∈ I, ∀S ∈ L′ • p<(w,i) {|S |} r ⇒ pw,i {| F̂i.S |} ri

)

(5)

All we need to prove now is that (4) implies (5). For w ∈ W , i ∈ I, and
S ∈ L′ we have the derivation:

pw,i {| F̂i.S |} ri

⇔ {Definitions}

∀a ∈ A • pw,i.a {| F̂i.S.a |} ri.a

⇔ {Definition}

∀a ∈ A • pw,i.a {|Fi.(
∨

b∈A S.b) |} ri.a

⇔ {Definition}

pw,i {|Fi.(
∨

b∈A S.b) |} ri

12

⇐ {Assumption (4)}

p<(w,i) {|
∨

b∈A S.b |} r

⇐ {Definitions and complete lattice properties}

p<(w,i) {|S |} r

The difference between Theorem 19 and Theorem 20 is the fact that in the
former we have an assertion lattice for L, but in the later we only have a
special case of predicate lattice for L.

5 Mutually recursive procedures and frame

rule

In this section we introduce mutually recursive procedures with parameters
and local variables and we apply the general results from the previous sec-
tion to obtain a powerful Hoare total correctness rule for mutually recursive
procedures. This rule combines an extension to procedures with parameters
of the Hoare rule from [8] with the frame rule for pointer programs [17].

A procedure with parameters from A or simply a procedure over A, is
an element from Proc.A = A → MTran. The type A is the range of the
procedure’s actual parameters. A call to a procedure P ∈ Proc.A with the
actual parameter a ∈ A is the programs P.a.

If I is a nonempty index set, and Ai, i ∈ I, is a collection of procedure
parameter types, then every monotonic function F :

∏

i Proc.Ai →
∏

i Proc.Ai

defines a tuple P = µ F ∈
∏

i Proc.Ai of mutually recursive procedures.
In [12] we have introduced a recursive procedure for disposing a bi-

nary tree from memory DisposeTree ∈ Proc.(Vars.(AddrsNil.ptree)). The call
DisposeTree.u disposes the tree stored in program variable u and sets u to nil.
We denote by A = Vars.(AddrsNil.ptree) the type of DisposeTree parameters.

The specification of the procedure DisposeTree is:

(∀a • tree.u.a {|DisposeTree.u |} emp ∧ u = nil) (6)

This Hoare total correctness triple asserts that if the heap contains only a
tree with the root in u, after calling DisposeTree.u the heap is empty and the
value of u is nil. However, we cannot use this property in contexts where the
heap contains other addresses in addition to the ones specified by tree.u.a.
For example, in the recursive definition of DisposeTree, the right subtree is
still in the heap while we dispose the left subtree. We would like to derive a
property like:

(∀a • α ∗ tree.u.a {|DisposeTree.u |} α ∧ u = nil) (7)

13

for all predicates α which does not contain u free. This can be achieved using
the frame rule.

Let A be a non-empty type of procedure parameters and X ⊆ A → Pred
a nonempty type such that X is closed under arbitrary unions, separation
conjuction, and emp ∈ X. The type X denotes those formulas we could
add to a Hoare triple when using the frame rule, and they are in general
formulas which does not contain free variables modified by the procedure. For
procedure DisposeTree the set X is {α : Vars.(AddrsNil.ptree) → Pred | (∀u •
α.u is set.u–independent)}. We denote by

ProcX .A = {P ∈ Proc.A | ∀α ∈ X, ∀q ∈ ParamPred.A • α ∗ P.q ⊆ P.(α ∗ q)}

If we are able to prove that procedure DisposeTree belongs to ProcX .A and
satisfies (6) then we can use (7) when proving correctness of programs calling
DisposeTree. The definition of ProcX .A is a generalization of the concept
“local predicate transformers which modifies a set V” of program variables
from [17].

Lemma 21 ProcX .A is a program sublattice of Proc.A.

Proof. We need to prove that ProcX .A is closed under arbitrary meets, joins,
sequential composition and skip ∈ ProcX .A. Let Pi ∈ ProcX .A for all i ∈ I,
then

(
⊔

i Pi) ∈ ProcX .A

= {Definition}

(∀α ∈ X • ∀q • α ∗ (
⊔

i Pi).q ⊆ (
⊔

i Pi).(α ∗ q))

= {Lemma 2}

(∀α ∈ X • ∀q •
⋃

i(α ∗ Pi.q) ⊆
⋃

i Pi.(α ∗ q))

⇐ {Complete lattice properties}

(∀i ∈ I • ∀α ∈ X • ∀q • α ∗ Pi.q ⊆ Pi.(α ∗ q))

= {Definition}

(∀i ∈ I • Pi ∈ ProcX .A.)

For arbitrary intersections we have a similar proof. The facts that skip ∈
ProcX .A and ProcX .A is closed under sequential composition follows directly
form the definition of ProcX .A.

Before introducing the correctness rule for mutually recursive procedures
we need to define some new concepts and prove some facts about them. We
define the separation assertion statement, denoted (||p||) ∈ ProcX .A by

(||p||).q = p ∗ q

14

and the separation postcondition statement, denoted [||p||] ∈ ProcX .A, by:

[||p||].q =
⋃

{α ∈ X | p ∗ α ⊆ q}

Theorem 22 The structure 〈A → Pred, ⊆, ∧, ∨, . , (|| ||), [|| ||]〉 is an as-
sertion lattice for ProcX .A.

Proof. The facts (|| ||) is an abstract assert statement, and (||p||) ∈ ProcX .A

follows from Lemma 2.
We prove that [||p||] is an element of ProcX .A, i.e. for all α ∈ X and

q : A → Pred, α ∗ [||p||].q ⊆ [||p||].(α ∗ q). If Xp,q ⊆ X given by:

Xp,q = {α ∈ X | p ∗ α ⊆ q}

then
α ∈ X ∧ β ∈ Xp,q ⇒ α ∗ β ∈ Xp,α∗q (8)

α ∗ [||p||].q ⊆ [||p||].(α ∗ q)

= {definition}

α ∗
⋃

Xp,q ⊆
⋃

Xp,α∗q

= {Lemma 2}
⋃

β∈Xp,q
α ∗ β ⊆

⋃

Xp,α∗q

⇐ {complete lattice properties}

∀β ∈ Xp,q • α ∗ β ⊆
⋃

Xp,α∗q

⇐ {complete lattice properties}

∀β ∈ Xp,q • α ∗ β ∈ Xp,α∗q

= {relation (8)}

true

The proof of (||S.p||) ; [||p||] ⊑ S is given by:

((||S.p||) ; [||p||]).q

= {definition}

(S.p) ∗
⋃

Xp,q

= {Lemma 2}
⋃

β∈Xp,q
(S.p) ∗ β

= {definition of ProcX .A}
⋃

β∈Xp,q
S.(p ∗ β)

15

⊆ {definition of Xp,q}
⋃

β∈Xp,q
S.q

= {complete lattice properties}

S.q

Finally skip ⊑ (||[||p||].p||) is proved by:

(||[||p||].p||).q

= {definition}

(
⋃

Xp,p) ∗ q

≥ {emp ∈ Xp,p}

emp ∗ q

= {Lemma 2}

q

We can give now the Hoare total correctness rule for mutually recursive
procedures. Let W , I sets such that 〈W × I, <〉 is well founded. For each
i ∈ I, Ai is a type of procedure parameters and Bi is a type of specification
parameters. For every i ∈ I, Xi ⊆ (Ai → Pred) such that Xi is closed under
arbitrary unions, separation conjuction, and emp ∈ Xi.

Theorem 23 If for all w ∈ W and i ∈ I, pw,i : Bi → Ai → Pred, qi :
Bi → Ai → Pred and body :

∏

i Proc.Ai →
∏

i Proc.Ai is monotonic, then the
following Hoare rule is true

∀w ∈ W, ∀i ∈ I, ∀P ∈
∏

i ProcXi
.Ai • p<(w,i) {|P |} q ⇒ pw,i {| bodyi.P |} qi

∧ (∀P ∈
∏

i ProcXi
.Ai • body.P ∈

∏

i ProcXi
.Ai)

⇒
p {|µ body |} q ∧ µ body ∈

∏

i ProcXi
.Ai.

Proof. This theorem follows from Theorem 20, Lemma 21, Theorem 22, and
Lemma 6

6 Parsing an arithmetical expression

In this section we will prove correctness of a collection of recursive procedures
which compute the parsing tree of an expression generated by a context free
grammar:

We assume that we have a type string ⊆ constant of strings with characters
from an alphabet alph ⊆ string. If X ⊆ alph then X∗ ⊆ string denotes the

16

strings with elements from X. We assume that nil ∈ string is the empty string
and we denote by · the string concatenation, car.a the first character of the
string a, cdr.a the string obtained from a by removing the first character,
and by a ≤ b the fact that the string a is a prefix of string b.

The alphabet contains terminal symbols: letters (letter ⊆ alph), special
symbols (“+”, “∗”, “(”, “)” ∈ alph) and non terminal symbols (〈E〉, 〈T 〉,
〈F 〉, 〈L〉 ∈ alph). We denote by terminal and non-term the types of terminal
and non-terminal symbols of the alphabet.

The grammar that generates arithmetic expressions is given by:

〈E〉 ::= 〈T 〉 | 〈T 〉 · “+” · 〈E〉

〈T 〉 ::= 〈F 〉 | 〈F 〉 · “∗” · 〈T 〉

〈F 〉 ::= 〈L〉 | “(” · 〈E〉 · “)”

〈L〉 ::= “a” | “b” | “c” | . . . “a”, “b”, “c”, . . . ∈ letter

with 〈E〉 the start symbol. We denote by prod ⊆ Rel.string the set of these
grammar productions.

To define the language generated by this grammar we introduce the one
step derivation relation =⇒ ⊆ string × string and the derivation relation
∗

=⇒ ⊆ string × string given by

a =⇒ b =̂ (∃(X, c) : prod • ∃d, e : string • a = d · X · e ∧ b = d · c · e)

a
∗

=⇒ b =̂ the reflexive and transitive closure of =⇒

For a nonterminal symbol of the grammar N ∈ non-term we define the lan-
guage generated by N , LangN ⊆ terminal∗ by

LangN =̂ {a ∈ terminal∗ | N
∗

=⇒ a}

Lemma 24 LangF ⊆ LangT ⊆ LangE.

We define a predicate on strings paransize : string → int which counts the
difference between the number of open parenthesis and the number of close
ones.

paransize.nil = 0
paransize.(“(” · a) = paransize.a + 1
paransize.(“)” · a) = paransize.a − 1
paransize.(x · a) = paransize.a if x ∈ letter

Lemma 25 If a ∈ LangE then paransize.a = 0 and (∀b ≤ a•paransize.b ≥ 0).

Next we introduce the pointer representation of the abstract syntax tree
associated to a string generated by the grammar. For all non-terminal sym-
bols N ∈ {〈E〉, 〈T 〉, 〈F 〉} and all t ∈ AddrsNil.ptree, a : terminal∗ we in-
troduce the predicate treeN(t, a) : Pred which is true on those states where

17

e ∈ LangN and t is the address of a pointer representation of the abstract syn-
tax tree corresponding to the string a. The definitions are by total induction
on the length of the string a.

treeE(t, nil) =̂ t
.
= nil ∧ emp

treeE(t, a) =̂ treeT (t, a) ∨ (∃∃ b, c, t1, t2 • a
.
= b · “+” · c ∧ treeT (t1, b)

∗ treeE(t2, c) ∗ (t 7→ ptree.(“+”, t1, t2)))

treeT (t, nil) =̂ t = nil ∧ emp

treeT (t, a) =̂ treeF (t, a) ∨ (∃∃ b, c, t1, t2 • a
.
= b · “∗” · c ∧ treeF (t1, b)

∗ treeT (t2, c) ∗ (t 7→ ptree.(“∗”, t1, t2)))

treeF (t, nil) =̂ t = nil ∧ emp

treeF (t, a) =̂ letter.a ∧ t 7→ ptree.(a, nil, nil)
∨ (∃∃ b • (a

.
= “(” · b · “)”) ∧ treeE(t, b))

Lemma 26 For all N ∈ {〈E〉, 〈T 〉, 〈F 〉}, t ∈ Addrs.ptree, a ∈ terminal∗, if
treeN(t, a) then LangN .a

Lemma 27 For all t ∈ AddrsNil.ptree, and e ∈ string, if treeE(t, e) then
there exists f ∈ atree[alph] such that tree.t.f .

For every nonterminal N ∈ non-term we introduce a procedure parseN ∈
Proc.A where A = Vars.string × Vars.(AddrsNil.ptree). The procedure call
parseN .(x, p) builds in p the abstract syntax tree of some maximal string a

such that a ≤ x and N
∗

=⇒ a. The procedures parseE , parseT , and parseF are
given by the least fixpoint of body−parse : (Proc.A)3 → (Proc.A)3.

body−parse.(E, T, F) = (body−parseE.T.E, body−parseT .F.T, body−parseF .E)

where

body−parseE .T.E.(x, p)
=

Add.(s, t).(val.x, val.p) ; Add.(t1, t2) ;
T.(s, t1) ;
if val.t1 6

.
= nil ∧ val.s 6

.
= nil ∧ car.(val.s)

.
= “+” then

s := cdr.(val.s) ; E.(s, t2) ;
if val.t2 6

.
= nil then

New(t, ptree(“+”, t1, t2))
else

t := val.t1 ; s := “+” · val.s
else

t := val.t1
Del.(t1, t2) ; Del.(s, t).(x, p)

18

body−parseT .F.T.(x, p)
=

Add.(s, t).(val.x, val.p) ; Add.(t1, t2) ;
F.(s, t1) ;
if val.t1 6

.
= nil ∧ val.s 6

.
= nil ∧ car.(val.s)

.
= “∗” then

s := cdr.(val.s) ; T.(s, t2) ;
if val.t2 6

.
= nil then

New(t, ptree(“∗”, t1, t2))
else

t := val.t1 ; s := “∗” · val.s
else

t := val.t1
Del.(t1, t2) ; Del.(s, t).(x, p)

body−parseF .E.(x, p)
=

Add.(s, t).(val.x, val.p) ; Add.r ;
if val.s

.
= nil then

t := nil
else

if car.(val.s) = “(” then
r := cdr.(val.s) ; E.(r, t) ;
if(val.t 6

.
= nil ∧ val.r 6

.
= nil ∧ car.(val.r)

.
= “)”) then

s := cdr.(val.r)
else

DisposeTree(t)
else

if letter(car.(val.s)) then
New(t, tree(car.(val.s), nil, nil)) ;
s := cdr.(val.s)

else
t := nil

Del.r ; Del.(s, t).(x, p)

For N ∈ {〈E〉, 〈T 〉, 〈F 〉}, a, b ∈ string, and t ∈ AddrsNil.ptree we define the
post condition postN(a, b, t) ∈ Pred for the procedure parseN by

postN (a, b, t) = ∃∃ d • a
.
= d · b ∧ treeN(t, d) ∧

(∀∀x • x ≤ b ∧ x 6
.
= nil ⇒ ¬LangN .(d · x))

The predicate postN(a, b, t) states that the initial string a can be split in c · b
where c is maximal such that treeN(t, c).

19

If x is a list of program variables then we denote by SepPred.x the
predicates which are set.x–independent and non–alloc independent. We as-
sume that a ∈ string, u ∈ Vars.string, v ∈ Vars.(AddrsNil.ptree), and α ∈
SepPred.(u, v). Then the correctness of the parse procedure N ∈ non-term is
given by the following Hoare triple.

∀a, v, u, α • val.u
.
= a ∧ α {| parseN .(u, v) |} α ∗ postN (a, val.u, val.v) (9)

Let ≤ be a binary relation on W = string given by a ≤ b ⇔ the length of a is
smaller than the length of b. If I = {〈E〉, 〈T 〉, 〈F 〉} and 〈E〉 > 〈T 〉 > 〈F 〉,
then we define the well founded order < on W × I by

(a, N) < (b, N ′) ⇔ a < b ∨ (a = b ∧ N < N ′).

For every N ∈ I let

pw,N = (λa • λu, v • val.u
.
= a ∧ val.u

.
= w)

qN = (λa • λu, v • postN(a, val.u, val.v))

XN = {α : A → Pred | ∀u, v • α.(u, v) ∈ SepPred.(u, v)}

Using theorem 23 the correctness triples (9) for the parse procedures are true
if

(∀a, u, v, α • α ∧ val.u
.
= a ∧ val.u

.
= w

{|T.(u, v) |} α ∗ postT (a, val.u, val.v))

∧

(∀a, u, v, α • α ∧ val.u
.
= a ∧ val.u < w

{|E.(u, v) |} α ∗ postE(a, val.u, val.v))

⇒

(∀a, u, v • emp ∧ val.u
.
= a ∧ val.u

.
= w

{| body−parseE.T.E.(u, v) |} postE(a, val.u, val.v))

(10)

and
(∀a, u, v, α • α ∧ val.u

.
= a ∧ val.u

.
= w

{| F.(u, v) |} α ∗ postF (a, val.u, val.v))

∧

(∀a, u, v, α • α ∧ val.u
.
= a ∧ val.u < w

{|T.(u, v) |} α ∗ postT (a, val.u, val.v))

⇒

(∀a, u, v • emp ∧ val.u
.
= a ∧ val.u

.
= w

{| body−parseT .F.T.(u, v) |} postT (a, val.u, val.v))

20

and
(∀a, u, v, α • α ∧ val.u

.
= a ∧ val.u < w

{|E.(u, v) |} α ∗ postE(a, val.u, val.v))

⇒

(∀a, u, v • emp ∧ val.u
.
= a ∧ val.u

.
= w

{| body−parseF .E.(u, v) |} postF (a, val.u, val.v))

If we would use in this case a straightforward generalization of the rule for
single recursive procedures (something derived directly from Theorem 15),
then in (10) the first hypothesis would been

(∀a, u, v, α • α ∧ val.u
.
= a < w {|T.(u, v) |} α ∗ postT (a, val.u, val.v))

which is too week to prove the conclusion of (10). This is so because when
calling recursively parseT in parseE the term (val.u) which ensures the ter-
mination was not decreased yet. Moreover, no variable changes its value
in parseE before calling parseT , so we cannot define a termination function
which would be decreased before calling parseT .

We will only show the proof for the procedure parseF . The correctness
proofs for procedures parseE and parseT can be done similarly. We introduce
some results that will be need in the correctness proof of parseF .

Lemma 28 Let a, b, x ∈ string then

(i) a ∈ LangF ∧ x 6= nil ⇒ a · x 6∈ LangF

(ii) a ∈ LangE ⇒ ∀x ≤ a • “(” · x 6∈ LangF

(iii) a ∈ LangE ∧ (∀x ≤ b • x 6= nil ⇒ a · x 6∈ LangE) ∧ car.b 6= “)”
⇒ (∀x ≤ b • “(” · a · x 6∈ LangF)

Corollary 29 The following propositions are true

(i) postE(a, “)” · b, t) ∧ t 6
.
= nil ≤ postF (“(” · a, b, t)

(ii) postE(a, b, t)∧(t
.
= nil∨car.b 6

.
= “)”) ≤ (∃∃u•postF (“(” ·a, “(” ·a, nil)∗

tree(u, t))

(iii) letter.a ∧ (t 7→ ptree(a, nil, nil)) ⇒ postF (a · x, x, t)

We assume

∀a, u, v, α • α ∧ val.u
.
= a ∧ val.u < w {|E.(u, v) |} α ∗ postE(a, val.u, val.v))

and we prove

emp ∧ val.u
.
= a ∧ val.u

.
= w {| body−parseF .E.(u, v) |} postF (a, val.u, val.v)

(11)

21

Be expanding the definition of body−parseF we have to prove:

emp ∧ val.u
.
= a ∧ val.u

.
= w

{|
Add.(s, t).(val.u, val.v) ; Add.r ;
if val.s

.
= nil then

t := nil
else

if car.(val.s)
.
= “(” then

r := cdr.(val.s) ;
E.(r, t) ;
if val.t 6

.
= nil ∧ val.r 6

.
= nil ∧ car.(val.r)

.
= “)” then

s := cdr.(val.r)
else

DisposeTree.t
fi

else
if letter.(car.(val.s)) then

New(t, ptree(car.(val.s), nil, nil)) ;
s := cdr.(val.s)

else
t := nil

fi
fi ;

fi ;
Del.r ; Del.(s, t).(u, v)

|}

postF (a, val.u, val.v)

(12)

The proof is give by
1. {emp ∧ val.u

.
= a ∧ val.u

.
= w}

2. Add.(s, t).(val.u, val.v) ;

3. {emp ∧ val.s
.
= a ∧ val.s

.
= w}

4. Add.r ;

5. {emp ∧ val.s
.
= a ∧ val.s

.
= w}

6. if val.s
.
= nil then

7. {emp ∧ val.s
.
= nil}

8. t := nil

9. {postF (a, val.s, val.t)}

10. else

22

11. {emp ∧ val.s
.
= a ∧ val.s

.
= w}

12. if car.(val.s)
.
= “(” then

13. {emp ∧ val.s
.
= a ∧ val.s 6

.
= nil

∧ val.s
.
= w ∧ car.(val.s)

.
= “(”}

14. r := cdr.(val.s) ;

15. {emp ∧ val.s
.
= a ∧ car.(val.s)

.
= “(”

∧ val.r
.
= cdr.a ∧ val.r < w}

16. E.(r, t) ;

17. {val.s
.
= a ∧ car.(val.s)

.
= “(”

∧ postE(cdr.a, val.r, val.t)}

18. if val.t 6
.
= nil ∧ val.r 6

.
= nil ∧ car.(val.r)

.
= “)” then

19. {val.s
.
= a ∧ car.(val.s)

.
= “(”

∧ postE(cdr.a, val.r, val.t) ∧ t 6
.
= nil ∧ car.(val.r)

.
= “)”}

20. {postF (a, cdr.(val.r), val.t)}

21. s := cdr.(val.r)

22. {postF (a, val.s, val.t)}

23. else

24. {val.s
.
= a ∧ car.(val.s)

.
= “(”

∧ postE(cdr.a, val.r, val.t) ∧ (t
.
= nil ∨ car.(val.r) 6

.
= “)”)}

25. {∃∃u • postF (a, val.s, nil) ∗ tree.(val.t).u}

26. {postF (a, val.s, nil) ∗ tree.(val.t).u}

27. DisposeTree.t

28. {postF (a, val.s, nil) ∧ val.t
.
= nil}

29. {postF (a, val.s, val.t)}

30. fi

31. {postF (a, val.s, val.t)}

32. else

33. {emp ∧ val.s
.
= a ∧ val.s

.
= w ∧ car.(val.s) 6

.
= “(”}

34. if letter.(car.(val.s)) then

35. {emp ∧ val.s
.
= a ∧ val.s

.
= w

∧ car.(val.s) 6
.
= “(” ∧ letter.(car.(val.s))}

36. {emp ∧ val.s
.
= a ∧ letter.(car.(val.s))

23

37. New(t, ptree(car.(val.s), nil, nil)) ;

38. {val.s
.
= a ∧ letter.(car.(val.s))

∧ (val.t 7→ ptree(car.(val.s), nil, nil))

39. {postF (a, cdr.(val.s), val.t)}

40. s := cdr.(val.s)

41. {postF (a, val.s, val.t)}

42. else

43. {emp ∧ val.s
.
= a ∧ val.s

.
= w

∧ car.(val.s) 6
.
= “(” ∧ ¬letter.(car.(val.s))}

44. t := nil

45. {postF (a, val.s, val.t)}

46. fi

47. {postF (a, val.s, val.t)}

48. fi ;

49. {postF (a, val.s, val.t)}

50. fi ;

51. {postF (a, val.s, val.t)}

52. Del.r ;

53. {postF (a, val.s, val.t)}

54. Del.(s, t).(u, v)

55. {postF (a, val.u, val.v)}

7 Conclusions, future work

We have introduced abstract recursion refinement and Hoare total correct-
ness rules. Using the abstract recursion Hoare rule we have proved a Hoare
total correctness frame rule for mutually recursive procedures manipulating
pointers. Our procedures can have value and value-result parameters, local
variables and access to global variables.

We have also proved correctness of a nontrivial example of mutually re-
cursive procedures which build the abstract syntax tree of an expression
generated by a context free grammar.

Our theory was implemented in the PVS theorem prover.

The program variables we use can have types of any cardinal up to an
arbitrary fixed cardinal γ. The cardinal of all programs is strictly greater

24

than γ which prevents us from having higher order procedures. In future
work we intent to show how we can overcome this problem.

References

[1] R.J. Back and V. Preoteasa. An algebraic treatment of procedure refine-
ment to support mechanical verification. Formal Aspects of Computing,
17:69 – 90, May 2005.

[2] R.J. Back and J. von Wright. Refinement Calculus. A systematic Intro-
duction. Springer, 1998.

[3] R. M. Burstall. Some techniques for proving correctness of programs
which alter data structures. Machine Intelligence, 7:23–50, 1972.

[4] A. Church. A formulation of the simple theory of types. J. Symbolic
logic, 5:56–68, 1940.

[5] B.A. Davey and H.A. Priestley. Introduction to lattices and order. Cam-
bridge University Press, New York, second edition, 2002.

[6] S.S. Ishtiaq and P.W. O’Hearn. Bi as an assertion language for mutable
data structures. In Proceedings of the 28th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 14–26. ACM
Press, 2001.

[7] P.T. Johnstone. Notes on logic and set theory. Cambridge University
Press, New York, NY, USA, 1987.

[8] T. Nipkow. Hoare logics for recursive procedures and unbounded nonde-
terminism. In J. Bradfield, editor, Computer Science Logic (CSL 2002),
volume 2471 of LNCS, pages 103–119. Springer, 2002.

[9] T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[10] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs
that alter data structures. In Computer science logic (Paris, 2001),
volume 2142 of Lecture Notes in Comput. Sci., pages 1–19. Springer,
Berlin, 2001.

[11] S. Owre, N. Shankar, J.M. Rushby, and D.W.J. Stringer-Clavert. PVS
language reference. Technical report, Computer Science Laboratory, SRI
International, dec 2001.

25

[12] V. Preoteasa. Mechanical verification of recursive procedures manipu-
lating pointers using separation logic. In Formal Methods ’06. Springer-
Verlag, August 2006.

[13] J. Reynolds. Intuitionistic reasoning about shared mutable data struc-
ture. In Millenial Perspectives in Computer Science, 2000.

[14] J. Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In 17th Annual IEEE Symposium on Logic in Computer Science.
IEEE, July 2002.

[15] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific J. Math., 5:285–309, 1955.

[16] T. Weber. Towards mechanized program verification with separation
logic. In Jerzy Marcinkowski and Andrzej Tarlecki, editors, Computer
Science Logic – 18th International Workshop, CSL 2004, 13th Annual
Conference of the EACSL, Karpacz, Poland, September 2004, Proceed-
ings, volume 3210 of Lecture Notes in Computer Science, pages 250–264.
Springer, September 2004.

[17] H. Yang and P.W. O’Hearn. A semantic basis for local reasoning. In
FoSSaCS ’02: Proceedings of the 5th International Conference on Foun-
dations of Software Science and Computation Structures, volume 2303 of
Lecture Notes In Computer Science, pages 402–416, London, UK, 2002.
Springer-Verlag.

26

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematics

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN 952-12-1697-2
ISSN 1239-1891

