
Pontus Boström | Lionel Morel

Mode-Automata in Simulink/Stateflow

TUCS Technical Report
No 772, September 2006

Mode-Automata in Simulink/Stateflow
Pontus Boström

Åbo Akademi University, Department of Information Technologies
Turku Centre for Computer Science (TUCS)
Lemminkäisenkatu 14 A, 20520 Turku, Finland
pontus.bostrom@abo.fi

Lionel Morel
IRISA - Campus universitaire de Beaulieu
35042 Rennes Cedex, France
lionel.morel@gmail.com

TUCS Technical Report

No 772, September 2006

Abstract

This paper presents an application of the mode-automata based design method to State-
flow/Simulink. The observation we make is two fold. First, we realized that mode-
automata, being one of the most convincing proposition made recently to separate con-
trol from signal processing, is only starting to be applied to industrial tools. Second,
although the separation of control and signal processing is somehow effective in State-
flow/Simulink, the lack of formal definition does not lead to a valuable interpretation.

The goal of the work presented in this paper is to make these two approaches con-
verge. We introduce a formalisation of Stateflow/Simulink where the language has
been reduced so that to fit the mode-automata approach and thus restrict the expressive
power of Stateflow in a way still suitable to real-life application. We then illustrate the
approach with a small application in digital hydraulics controller development.

Keywords: Control Systems, Formalisation, System Architecture, Model-Based De-
sign

TUCS Laboratory
Distributed Systems Design Laboratory

1 Introduction

The design of computerized embedded control systems has become an important activ-
ity in the last decades. As complexity has increased, the need for clearer methodologies
and paradigms has become greater. Correctness of control systems can be improved
first by means of formal techniques introduced in the design flow, but also by proposing
modelling/programming methodologies that will make the design flow clearer in itself.
All these have as a strong common goal to take care of the growing complexity of the
applications.

One way to tackle complexity in embedded control systems design is to separate
the expression of control and computations. During the last 15 years or so, we have
seen an emergence of different paradigms allowing to separate these aspects. The idea
underlying all these paradigms is to express control using hierarchical state-machines
and computation with block diagrams, connecting different subsystem of a systems in
a dataflow manner.

1.1 Related Works

On the academic ground, several works have emerged that try to find the best compro-
mise between expressiveness and complexity.

One of the most significant is the mode-automata of Maraninchi and Rémond [13,
14] as implemented in the Matou tool [15]. Activity of the system is separated in
different running modesthat are described as states of a possibly hierarchical state
machine. The behaviour of the system in each of these modes is described by a set
of dataflow equations (e.g. using the syntax of the Lustre language [2]). This notion
of mode is actually significant in that it corresponds exactly to what end-users have in
mind when asking for a clear separation of control and signal processing. However this
approach has lacked for a long time a successful transfer to industrial tools.

Another approach comparable to mode-automata is Modecharts [9, 17]. The biggest
advantage of mode-automata compared to Modecharts was that it allowed the expres-
sion of both control and signal-processing in the same language. Our approach can be
found to have the same inconvenience as Modecharts, since the state-structure of the
mode-automata is described in Stateflow and the signal processing part in Simulink.
But this decoupling is now a de facto method in industry and should not be seen as
such a drawback. Moreover, the graphical syntax we adopted makes the approach very
similar to mode-automata.

Among the industrial tools dedicated to the design of control systems, there are
two successful examples of separation of control and signal processing. The first one
is the introduction of hierarchical state-machines to the SCADE environment1. In
this paper, we join recent work [3] on the introduction of state-machine structures in
SCADE (which is very similar to Simulink). We are also very close to [10] in the
methodology we propose. However, this latter does not concentrate on a formal se-
mantics as we do. The second one is the coupling of Stateflow and Simulink2, present
in the Matlab toolset. However, the semantics behind the language is somewhat un-
clear, based graphical assumption (like the famous 12 o’clock rule of Stateflow). Sev-
eral works [4, 5, 22] have recently proposed formal semantics for a subset of State-
flow/Simulink. The semantics we give here is very close to those, but we try to keep in
mind the mode-automata architecture, which leads to some restrictions on the part of
Stateflow/Simulink we need and thus simplifies the semantics.

1http://www.esterel-technologies.com/products/scade-suite/overview.html
2Trademarks of theMathWorkscompany,http://www.mathworks.com

1

1.2 Propositions

The work presented in this paper goes more into the "methodology" direction. We
aim at 1) the definition of a sound subset of Stateflow/Simulink sufficient for allowing
the construction of mode-automata-like structures; 2) an actual proposition of mode-
automata in Stateflow/Simulink.

The semantics of Stateflow/Simulink that we give is based on different other works
(notably [19]) and mainly brings technical restrictions that lead to an unambiguous
semantics for mode-automata in Stateflow/Simulink. The implementation of mode-
automata that we propose is trying to adapt the approach proposed in [14], the most
naturally possible to Stateflow/Simulink. We do not claim that this is the only way
to do this, but that following these propositions, developers will follow the formal
semantics proposed.

1.3 Structure of the Paper

Section 2 gives basic notation references that will be used in the rest of the paper. Sec-
tion 3 presents our formal definition of mode-automata in Stateflow/Simulink, while
section 4 gives the behavioural semantics of systems built using our methodology. The
formal definition of mode-automata can be used for static analysis. The behavioural
semantics can then be used for runtime analysis and simulation. We try to concentrate
on restrictions we put on Stateflow/Simulink in order to enforce an easy-to-understand
yet expressive language for describing mode-automata. Section 5 gives some practical
hints on how to build controllers in Stateflow/Simulink using that mode-automata ap-
proach. In section 6, we show the application of our methodology to the design of a
simple controller case study in digital hydraulics. Section 7 first briefly sketches a pos-
sible verification methodology. Then section 8 also presents other research directions
that we wish to address in the future and summarizes the contributions of that paper.

2 Notations

The formalisation is based on the use of functions and relations to describe the structure
of the models. The notation we use is influenced by the formalisation of Statecharts in
[21]. We use the notationf : A → B to denote a functionf from A to B. Function
application is given byf(a) andf(a) = b if and only if (a, b) ∈ f . The Cartesian
product of two sets is denoted byA × B. A relation between elements of two setsA
andB is given asr ∈ A × B. The domain ofr is denoted bydom(r) and the range
by ran(r). We can define the imager[A1] of r for A1 ⊆ A. The image is defined
as r[A1] = {b|b ∈ B ∧ (∃a.a ∈ A1 ∧ (a, b) ∈ r)}. Furthermore, we denote the
transitive closure of the relationr with r+ and the reflexive transitive closure withr∗.
The cardinality of a setA is denoted by|A|.

3 Mode-Automata in Stateflow/Simulink

Control systems are often hybrid systems consisting of both discrete and continuous
parts.Matlab andSimulinkdeveloped by Mathworks Inc., have become popular tools
for modelling, analysing and designing such systems. Simulink is a graphical lan-
guage where different functional blocks are connected by signals. A large library of
functional blocks is included for modelling both continuous, discrete and hybrid sys-
tems. Models can be numerically simulated using one of several numerical differential
equation solvers included in Simulink.

2

Zero−Order
Hold

V_a V_s

Physical system

V_s V_a

Controller

Figure 1: Overview of control system modelled in Simulink

Discrete systems are often conveniently modelled usingfinite state-machines. Simu-
link containsStateflow, which is a graphical language for creating hierarchical state-
machines similar to Statecharts by Harel [6]. The main difference between Statecharts
and Stateflow is that Stateflow is completely sequential and deterministic. In order to
implement the designed systems, both Simulink and Stateflow allow direct code gen-
eration from the models.

A Simulink model of a control system consists of two parts. A controller imple-
mented on a computer and a model of the physical system, as shown in Figure 1. The
controller and physical system communicate via sensors and actuators. A Simulink
modelM can then be given as a tupleM = (C,P, Vs, Va) where:

• C is the part of the Simulink model that implements the controller, which is here
constructed as a mode-automata.

• P is the part of the Simulink model that models the physical system

• Vs is the set of sensors

• Va is the set of actuators

We first concentrate on describing the mode-automata architecture of the controller.
This involves a formal description of the features in the Simulink/Stateflow model, as
well as, restrictions to Simulink/Stateflow required by the mode-automata architecture.
Finally, we describe how to consider the continuous model of the physical system in
this framework.

3.1 The Controller

The controller is an implementation of mode-automata in Simulink. The Simulink/
Stateflow language is a very convenient tool for system construction due to the large
set of features. However, some of these features have complicated or counter-intuitive
semantics. We like to restrict the language to a safe kernel that is expressive enough to
be conveniently used in practice, while the models are still easy to understand and (for-
mally) analyse. Furthermore, we would like to provide an architecture that simplifies
the construction of systems consisting of both discrete control logic and signal pro-
cessing. Restricting Simulink/Stateflow to the mode-automata architecture seems to be
a good solution for satisfying these properties. Stateflow is there used to describe the
transitions between modes. Simulink block diagrams are used to define the behaviour
in each mode and the definition of guards on the transitions driving the state- machine
in the Stateflow model.

3

3.1.1 Definitions

We first define the Simulink block diagram modelling the controller with inputs and
outputs and then consider the Stateflow model. The input to the Stateflow model from
the Simulink model is a set of guard values. Which behaviour should be executed in
the Simulink model is then decided by the active modes in the Stateflow model.

Simulink Controller The controller is defined as a tupleC = (Vi, Vo, X, i, M, fx,S,
G, φ).

• Vi is the input variables (source ports) andVo is the output variables (output
ports). The set of input and output variables are disjoint,Vi ∩ Vo = ∅. The
sensorsVs in the Simulink model are a subset of the input variables,Vs ⊆ Vi,
and the actuatorsVa are a subset of the output variables,Va ⊆ Vo.

• X is the state-space of the controller.

• i : X → Σ is the initialization of the state variables, whereΣ denotes the initial
values.

• M ⊆ Vo → F (Vi, X) is a set of subsystems defining mode dependent behaviour.
Each subsystem assigns an update function to a subset of output variables. The
update functions are implemented as block diagrams in Simulink. Furthermore,
due to implementation issues explained in Section 5 behaviour in modes cannot
modify state variables.

• fx : X → F (Vi, X, Vo) is a function that assign an update function to each state
variablexi ∈ X.

• S is a Stateflow model.

• G is the set of names for the guards input to the Stateflow model.

• φ : G → Φ(Vi, X) associates every guard name with a condition.

Most of the computation is defined using Simulink and, hence we do not need to
take into account the entire Stateflow specification in our formalisation. Especially, we
try to use as little as possible of the Stateflow action language. The action language
makes it possible to write program statements on transitions and actions that are exe-
cuted upon entry, exit, as well as, inside states. The reason for using a minimal set of
features of the Stateflow action language is that we then can analyse certain properties
of the computation in Simulink and Stateflow by analysing the graph formed by the
diagrams, e.g., behavioural equality of two models. Simulink block diagrams are also
often easier to understand and easier to use correctly than many of the features in the
action language of Stateflow.

We consider hierarchical state-machines containing both or-states and and-states
in Stateflow, but we do not consider activities inside states. Transitions in Stateflow
can be labelled by events, guards, and actions and they can contain junctions. Here we
only consider transitions labelled by guards. Each guard only consists of a guard name,
since we can then use the properties of the Stateflow graphs for analysis. If boolean
operators were allowed in the guards we would need a prover to e.g. decide equality
of guards. Note, that ifΦi is a guard for a transition we also often have transitions
with the guard¬Φi. Therefore, ifΦi is associated with the nameg we we also allow
the guard name!g denoting¬Φi. This does not complicate analysis, and it is therefore
allowed for convenience.

4

The Stateflow language is deterministic. If two transition guards are enabled at the
same time the priority of the transtions decides which transition is executed. Transi-
tions with a source higher in the state hierarchy have higher priority. The priority of
two transitions with the same source state is either determined by the internal rules of
Stateflow or explicitely given. For clarity, we assume that explicit ordering of transi-
tions is used in the Stateflow models, since the internal rules relies on the graphical
layout of the diagram and are not considered safe.

Stateflow Model The Stateflow modelS is here given as a tupleS = (Q,Qand, Qor,
root, p, i, b, T, ρ) where:

• Q is the set of states (modes) in the Stateflow model

• Qand ⊆ Q is the and-states.Qor ⊆ Q is the or-states. We have thatQand ∩
Qor = ∅.

• root ∈ Qor is the root state

• p : Q → Q is a function that maps a state to its parent.

• i : (Qor ∪Qand) → Q is the initial states in the or-states and and-states.

• b : (Q − (Qand ∪ Qor)) → M is a function used to define the subsystem that
describe the behavior in each state. Only leaf states can have behaviors.

• T ∈ Q×G×Q is the set of transitions, labelled by guard namesG. The value
of the condition associated with the guard name determines when a transition is
enabled.

• ρ : T → N is a total function that orders the transitions. Transitions with lower
numbers have higher priority.

3.1.2 Properties and Constraints

We model the structure of Stateflow models using sets and relations. To illustrate this
consider figure 2. The figure to the left shows a Stateflow model as drawn in Simulink
and the figure to the right shows the formalisation of the state-hierarchy. The root
state of the diagram is an or-state with one sub-stateq1. This state is an and-state
that has two sub-states,q2 andq3, which then have two sub-states each. The function
p = {(q1, root), (q2, q1), (q3, q1), . . .} relates the states to their parent state, while the
relationi = {(root, q1), (q1, q2), (q1, q3), . . .} gives the initialisation for each compos-
ite state. The transitions are not shown in the figure describing the formalisation.

In order to form a valid Stateflow model the state hierarchy has to satisfy certain
properties. The set of valid transitions is also limited by additional constraints. To
simplify these rules we define a child-relationc =̂ p−1. The first set of restrictions con-
cern the nesting of states. These constraints are automatically ensured by the Stateflow
notation. Every sub-state of an and-state is an or-state, every composite state has more
than zero sub-states and the parent of every state is a composite state:

∀q.q ∈ Qand ⇒ c(q) ⊆ Qor ∧ c[{q}] 6= ∅
∀q.q ∈ Qor ⇒ c[{q}] 6= ∅
∀q.q ∈ Q ⇒ p(q) ∈ Qor ∪Qand

The graph formed by the parent relation is connected and acyclic, which is also ensured
by Stateflow:

5

q1

q2 1
[g1]

[g2]

q5q4

q3 2

[g3]

[g4]

q6q7

root

q3

q1

q2

q6q4 q5 q7

pi p

p p

p

pp

i i

i

i

Figure 2: An example of Stateflow model and a formal description of its state-
hierarchy.

Q = c∗[{root}]
∀q.q ∈ Q ⇒ q /∈ c+[{q}]

Only one child state can be the initial state (destination of a default transition) of an or-
state and all child states are initial states of an and-state. This requirement is stronger
than for Stateflow, since Stateflow allows also no initial state in or-states :

∀q.q ∈ Qor ⇒ i[{q}] ⊆ c[{q}] ∧ |i[{q}]| = 1
∀q.q ∈ Qand ⇒ i[{q}] = c[{q}]

Each leaf state is associated with an update functionmi ∈ M in the Simulink
block diagram. All variablesVo have to be updated regardless of the states (modes) the
system is in, otherwise the value of some output variables would be undefined in certain
modes. However, each variable should be updated by only one function at the time.
This rule is not ensured by Simulink and it needs to be verified by other means. Let
V (m) be the set of variables modified by the set of update functionsm ⊆ M . We have
thatV (m) =̂ {v|v ⊆ Vo∧∃m1.m1 ∈ m∧v ∈ dom(m1)}. For a hierarchical Stateflow
model we have that every sub-state of an and-state modifies different variables and
every sub-state of an or-state modifies the same variables:

∀q.q ∈ Qand ⇒
(∀q1, q2.q1, q2 ∈ c[{q}] ∧ q1 6= q2 ⇒
{V |V (b(c∗[{q1}]))} ∩ {V |V (b(c∗[{q2}]))} = ∅)

∀q.q ∈ Qor ⇒
(∀q1, q2.q1, q2 ∈ c[{q}] ∧ q1 6= q2 ⇒
{V |V (b(c∗[{q1}]))} = {V |V (b(c∗[{q2}]))})

We do not allow arbitrary transitions. Stateflow allows transitions that have very
complicated semantics. However, we here give a number of additional constraints to
limit the set of legal transitions in order to only use transitions with intuitive behaviour.
To simplify the rules we first define a singleton set giving the state that is the closest
common ancestor (cca) of a set of statesq. This is the state lowest in the state hierarchy
that is a parent of every state inq:

6

cca(q) =̂ {r ∈ Q|(∀s.s ∈ q ⇒ r ∈ p∗[{s}])∧
(∀s.s ∈ Q ∧ q ⊆ c∗[{s}] ⇒ s ∈ p∗[{r}])}

We do not allow transitions to self or root, since transitions to root are forbidden
in Stateflow and transition to self does nothing in our definition of mode-automata.
Transitions that cross the boundary of a composite state are not allowed either. This
restriction is introduced to enforce creation of more structured models and it is not
enforced by Stateflow. In order to find if a transition cross a composite state boundary
we check that there is no composite state on the path between the source (or destination)
and the closest common ancestor of its source and destination. Consider a transition
with sourceq1 and destinationq2:

q1 6= q2

q1 6= root ∧ q2 6= root
(Qand ∪Qor) ∩ {r ∈ Q|r ∈ (c+[cca(q1 ∪ q2)] ∩ p+[{q1}])} = ∅
(Qand ∪Qor) ∩ {r ∈ Q|r ∈ (c+[cca(q1 ∪ q2)] ∩ p+[{q2}])} = ∅

The final constraint concerns the ordering of transitions. Transitions that have the
same source state have a fixed priority. The two transitions cannot have the same
priority, which is also ensured by Stateflow:

∀(q1, g1, q2), (q1, g2, q3).(q1, g1, q2) ∈ T ∧ (q1, g2, q3) ∈ T ∧ q2 6= q3

⇒ ρ((q1, g1, q2)) 6= ρ((q1, g2, q3))

3.2 The Model of the Physical System

The physical system to be controlled is also modelled using Simulink. The physical
system or environment is usually continuous and it is assumed to be described using a
system of ordinary differential equations.

ż(t) = gc(z(t), wi(t))
wo(t) = hc(z(t), wi(t))

, z(t0) = z0

Herez is the state of the system,wi is the input of the system andwo is the output
of the system. In this paper we focus on the development of the controller. We only
need to have a description of the physical system to get a complete model of the entire
system that can be simulated. The controller only measures the values of the sensors
and sets the values of the actuators at discrete time intervals. From the point of view of
the controller the physical system can, hence, be viewed as a discrete system with the
same sampling timets as the controller.

y((k + 1)ts) = gd(y(kts), wi(kts))
wo(kts) = hd(y(kts), wi(kts))

, y(k0ts) = y0

Herey is the discrete state space andy((k +1)ts) is the value ofy afterk +1 samples.
The state spacey and functionsgd andhd are chosen in such a way that the output
wo is the same for both systems at the sampling time instanceskts for the same input
signals. The system also has to have the same initial time,t0 = k0ts. Note, that we do
not consider how to construct the discrete system from the continuous one. We only
focus on the controller and therefore this abstraction is sufficient for our purpose.

7

Physical System A discrete model of the physical system can be viewed as a tuple
P = (Wi, Wo, Y, i, gd, hd, p) where:

• Wi is the input variables (source ports),Wo is the output variables (output ports)
andY is the state space of the controller. The set of variables are disjoint,Wi ∩
Wo = ∅, Wi ∩ Y = ∅ andWo ∩ Y = ∅. The sensors in the Simulink modelVs

are a subset of the output variables,Vs ⊆ Wo, and the actuatorsVa are a subset
of the input variables,Va ⊆ Wi.

• i : Y → Σ is the initialization of the state variables.

• gd : Y → Gd(Wi, Y) is a function that maps every state variable to an update
function.

• hd : Wo → Hd(Wi, Y) is a function that maps every output variable to an update
function.

3.3 Composition of Mode-Automata

The semantics that we have given above is useful for ensuring that a given Simulink
model satisfies our definition of mode-automata. Now it is also important to be able to
ensure that this semantics is preserved "by construction". To do that, we need to define
a constructive semantics of the only two construction mechanisms that the language
offer, the parallel "AND" composition and the classical automaton "OR" composition.

We can compose two Simulink models together in two different ways. The two
models can become sub-states of an and-state (AND Composition) or an or-state (OR
Composition). Assume we have two Simulink modelsMA = (CA,PA, VsA, VaA) and
MB = (CB ,PB , VsB , VaB). Their controllers are given asCA = (ViA, VoA, XA, iA,
MA, fxA,SA, GA, φA) andCB = (ViB , VoB , XB , iB ,MB , fxB ,SB , GB , φB). We il-
lustrate the compositions with two models, but it can be generalised to an arbitrary
number of models.

3.3.1 AND Composition

The output variables of the controller need to be uniquely defined. Hence, the sensors,
actuators and all output variables of the controllers need to be disjoint,VsA ∩VsB = ∅,
VaA ∩ VaB = ∅ andVoA ∩ VoB = ∅. The assignment to the memory (state) have
to be compatible in both models. This means that∀v.v ∈ XA ∩ XB ⇒ fxA(v) =
fxB(v). The variables in the physical systemsPA andPB in both models also have to
be disjoint,WiA ∩WiB = ∅, WoA ∩WoB = ∅ andYA ∩ YB = ∅.

We denote the compositionMC = MA ‖ MB . The Simulink model becomes
MC = (CC ,PC , VsA ∪ VsB , VaA ∪ VaB). The controllerCC is then the tupleCC =
(ViA ∪ ViB , VoA ∪ VoB , XA ∪XB , iC ,MC , fxC ,SC) where:

• iC = iA ∪ iB

• MC = MA ∪MB

• fxC = fxA ∪ fxB

• SC is the stateflow model ofMC

• GC = GA ∪GB

• φC = φA ∪ φB

8

The Stateflow modelSC becomes the tupleSC = (QC , QandC , QorC , rootC , pC ,
iC , . . .), where:

• QC = QA ∪ QB ∪ {qand, rootC}. The set of states ofSC is the union of the
states ofSA andSB with an additional state for modelling parallel execution of
the two. An illustration of the formalisation of the state hierarchy is found in
Figure 2 in Section 3.

• QandC = QandA ∪QandB ∪ {qand} andQorC = QorA ∪QorB ∪ {rootC}.
• pC = (pA ∪ pB ∪ {(qand, rootC), (rootA, qand), (rootB , qand)})
• iC = (iA ∪ iB ∪ {(rootC , qand), (qand, rootA), (qand, rootB)})
• bC = bA ∪ bB

• TC = TA ∪ TB

• ρC = ρA ∪ ρB

The physical systemPC is also composed from the physical systemsPA andPB .
PC = (WiA ∪WiB ,WoA ∪WoB , YA ∪ YB , gdA ∪ gdB , hdA ∪ hdB).

3.3.2 OR Composition

The second option when composing two models is to make them sub-states of a com-
mon or-state. The output and state variables of the controller again need to be uniquely
defined. Hence, the variables need to be the same in both models,VsA = VsB ,
VaA = VaB and VoA = VoB . The behaviour updating common variables and the
physical system also need to be the same,fxA = fxB andPA = PB .

This composition requires that we add a set of transitions in the composition in
order to change from modes inMA to modes inMB . We denote the composition
MC = MA ◦U MB , whereU = {(rootA, e1, rootB), . . . , (rootB , en, rootA)} is a
set of transitions between the root states of the two composed models. The Simulink
model becomesMC = (CC ,PA, VsA, VaA). The controllerCC is then the tupleCC =
(ViA ∪ ViB , VoA, XA, iA,MC , fxA,SC , GC , φC), where

• MC = MA ∪MB

• GC = GA ∪GB

• φC = φA ∪ φB

The Stateflow modelSC becomes the tupleSC = (QC , QandC , QorC , rootC , pC ,
iC , bC , . . .), where

• QC = QA ∪ QB ∪ {rootC}. The set of states inSC is the union of the sets of
states inSA andSB with an additional or-state for composition.

• QandC = QandA ∪QandB andQorC = QorA ∪QorB ∪ {rootC}
• pC = (pA ∪ pB ∪ {(rootA, rootC), (rootB , rootC)})
• iC = iA ∪ iB ∪ {(rootC , rootA)} is the initialization of states inMC . It is

assumed thatrootA is the initial state.

• bC = bA ∪ bB

• TC = TA ∪ TB ∪ U .

• ρC = ρA ∪ ρB ∪ ρU

9

4 Behavioural Semantics

The behavioural semantics of a Simulink/Stateflow model conforming to the mode-
automata architecture is given as a set of traces over the variables. This is similar
to how semantics is defined for synchronous languages such as Lustre [2]. The se-
mantics gives a very compact description of the intended behaviour. Since we have re-
stricted Simulink/Stateflow to a subset with clear semantics, it is relatively easy to man-
ually verify that the behavioural semantics given here corresponds to the behaviour of
Simulink. We cannot prove the equivalence between this formal description of mode-
automata behaviour and the behaviour of Simulink/Stateflow, since Simulink/Stateflow
does not have a formal semantics. However, the formal semantics given here is a useful
guideline for implementing mode-automata using Simulink/Stateflow, as well as for its
implementation in other modelling languages.

The controller of the system is assumed to be executed periodically with a fixed
sampling timets. The behaviour of the continuous physical system is only observed at
discrete time instants in the controller. LetV (t) denote the values of the variablesV at
time t. A simulation of the system having variablesV is a sequence of variable values
V (t0), V (t0 + ts), . . . , V (t0 + nts). The mode-automata has a set of active states
(modes) that changes during the execution of the system. The set of active states at
time t is here given asQa(t) ⊆ Q. We have the following constraints. In Stateflow all
sub-states of an active and-state are active and only one sub-state of an active or-state
is active:

∀qi.qi ∈ Qa(t) ∩Qand ⇒ c[{qi}] ⊆ Qa(t)
∀qi.qi ∈ Qa(t) ∩Qor ⇒ |(c[{qi}] ∩Qa(t))| = 1

The initial configuration att0 for a model of a control system with controller con-
forming to the mode-automata is given below.

Initialization of a system with a mode-automata controller

Qa(t0) = i∗(root)
X(t0) = i(X)
Vo(t0) = b[Qa(t0)− (Qor ∪Qand)](X(t0), Vi(t0))
Y (t0) = i(Y)
Wo(t0) = hd(Wo)(Y (t0),Wi(t0))

The active statesQa(t0) are set to the initial states of the Stateflow model. This be-
haviour can be achieved by choosing to initialize the Stateflow diagram at the start of
the simulation. The memory variablesX andY are set to their initial values. The
output variablesVo andWo are computed from the initialised memory and the input
variables.

In order to give the semantics of the evolution of the system from timet to time
t + ts we need to find the transitions that are executed at each time instant. Transitions
can be executed when their corresponding guard evaluates totrue. We first compute
the set of these enabled transitions:

Te =̂
{(q1, g, q2)|(q1, g, q2) ∈ T
∧q1 ∈ Qa ∧ φ(g)(Vi(t + ts), X(t))}

The transitions that are executed are concurrent and have the highest priority. Transi-
tions higher in the state-hierarchy have higher priority and we therefore need to com-
pute the set of transitions that are highest in the hierarchy:

10

Thierarchy =̂
{(q1, g, q2)|(q1, g, q2) ∈ Te ∧ q1 6= q2∧
∀(q11, g1, q22).(q11, g1, q22) ∈ Te ⇒ q1 /∈ c+[{q11}]}

There can still be enabled transitions with the same source state. Which one of these
transitions is executed depends on the fixed priority of the transitions:

Tprio =̂
{(q1, g, q2)|(q1, g, q2) ∈ Thierarchy∧
∀(q1, g1, q22).(q1, g1, q22) ∈ Thierarchy ∧ q2 6= q22 ⇒
ρ((q1, g, q2)) < ρ((q1, g1, q22))}

We now have a set of transitions that can be executed at the same time.
A transition modifies the set of active states. To describe how the set of active states

is modified we define a number of sets to enhance readability similar to [21]. First we
need to define the set of states on the path between the two sets of statesq1 andq2. Sets
q1 andq2 are both sets with only one element.

path(q1, q2) =̂ {r ∈ Q|r ∈ c+[q1] ∩ p∗[q2]}
We need the active states exited when the transition is executed.

exited(q1, q2) =̂ {r ∈ Qa|r ∈ c+[cca(q1 ∪ q2)]}
The states entered when the transition is executed are also needed.

entered(q1, q2) =̂ path(cca(q1 ∪ q2), q2) ∪ i∗[q2]

The definition of the system’s evolution over time can now be given. Transitions are
executed first, while all variables are updated according to the update functions defined
in the model.

Evolution of the system fromt to time t + ts.

Tprio 6= ∅ ⇒ Qa(t + ts) =
{Qn ∈ Q|Qn = (Qa(t)− exited({q1}, {q2}))∪
entered({q1}, {q2}) ∧ ∃g.(q1, g, q2) ∈ Tprio}

Tprio = ∅ ⇒ Qa(t + ts) = Qa(t)

X(t + ts) = fx(X)(X(t), Vi(t + ts), Vo(t + ts))
Vo(t + ts) = b[Qa(t + ts)− (Qor ∪Qand)](Vo)(X(t), Vi(t + ts))
Y (t + ts) = gd(Y)(Y (t),Wi(t + ts))
Wo(t + ts) = hd(Wo)(Y (t),Wi(t + ts))

This uniquely defines the evolution of the system from timet0 to t0 + nts. The se-
mantics corresponds to the behaviour that can be observed in the controller during the
simulation of a corresponding Simulink model. First all transitions that can be executed
are executed to find the current active modes. All variables are then updated according
to the update functions given earlier.

5 Practical Implementation in Simulink

There are a number of practical considerations when implementing a controller with
mode-automata architecture in Simulink/Stateflow. These issues involve architecture,

11

1

V_o

mode

V_i

X

V_o

Modes (M)

G_i mode

Mode switching

V_o

V_i
X

Memory (f_x)

V_i

X
G_i

Conditions (Phi)

1

V_i

Figure 3: Overview of the controller

guard definition, mode switching and memory updates. The controller can be consid-
ered to consists of four disjoint parts as shown if Figure 3; 1) A state machine modelled
in Stateflow, 2) Simulink subsystems for modelling different modes of operations(M),
3) block diagrams for defining the guard conditions(Phi) enabling transitions in the
Stateflow diagram and 4) block diagrams for updating the memory of the controller
(fx). Additionally, we assume that all blocks in the controller have the same sampling
time and that the blocks are not allowed to have side effects.

5.1 Guard conditions

Each guard namegi is associated with a conditionφi(Vi, X). The condition can be
modelled by a Simulink block diagram with one output of typeboolean. The output has
the valuetrue when the condition holds andfalseotherwise. The outputs of the block
diagrams that computes the conditions are added as inputs to the Stateflow model.

5.2 Implementing Automata and Mode Switching Using Stateflow

We use a subset of Stateflow for implementing the automata we need. The current
active states can be automatically exported from the Stateflow model to the Simulink
block diagram. A port with the same name as the state is then available, which has the
valuetruewhen the state is active andfalseotherwise.

Each active state in the Stateflow model is associated with an update functionm ⊆
M in the Simulink model. We useEnabled Subsystemsto associate an active state
with the computation that should be performed in that state. The correct values of the
output variables is obtained by using aMerge-block to merge the signals from different
enabled subsystems.

5.3 Updating the Memory

The memory of the controller should be updated regardless of which mode the system is
in. To illustrate this, consider an example where the previous value of output variable
vo is stored in variablex. If memory is allowed in an enabled subsystem and the

12

1

u

z

1

Unit Delay

u

Stopped

v_rC

F_hat

u(k−1)

u

Retracting

stop

extend

retract

stopped

extending

retracting

Mode switching

Merge

Merge

[Stopped]

[Retracting]

[Extending]

[Retracting]

[Extending]

[Stopped]

pA & pB F_hat

Filtering of F

v_rC

F_hat

u(k−1)

u

Extending

v_rC

stop

extend

retract

Condtions

2

pA & pB

1

v_rC

20

20

20

20

20

20

20

20

20

20

20

[1x2]

Figure 4: Simulink implementation of the mode-automata in the case study

mode is switched,x will not store the updated value ofvo. If the mode is switched
back thenx will contain an old version ofvo, which can lead to problems in control
algorithms. This means that memory in the controller cannot be updated in mode
specific behaviour, i.e., any enabled subsystem enabled by a mode.

6 Case Study

To investigate the suitability of the formalisation we have tested it on a case study.
The case study is a digital hydraulics system [11] developed for research in digital hy-
draulics at the Tampere University of Technology. The system consists of a hydraulic
cylinder that moves a load mass either to a desired position or with a desired speed.
The speed of the load mass is controlled by the pressure on each side of the piston in
the cylinder. A digital controller controls the pressures in the cylinder using a system
of on/off valves. One of the main ideas of digital hydraulics is to use simple, cheap
mechanical components and more advanced control algorithms instead. Hence, the
controller is fairly large and contains rather sophisticated algorithms. The complexity
is increased by several different modes of operation in the controller. In the final con-
troller there will be modes for considering, direction of movement, fault tolerance and
energy saving.

The Simulink model for the mode-automata controlling the system is shown in
Figure 4. Here we only consider a simplified controller for normal operation with three
modesstopped, extendingand retracting. These modes corresponds to the modes in
subsystemM in Figure 3. The blocksUnit DelayandFiltering of F corresponds to the
subsystemfx in Figure 3. The input portvrC gives the difference between the desired
speed and the actual current speed. The portpA&pB gives the pressures on either
side of the piston in the hydraulic cylinder. From the pressures the forceF acting on
the load mass can be estimated. The output portu then gives the new positions of the

13

[extend]

1

[stop]
1

[retract]

2

[extend]

2

[stop]
1

[retract]

2

stopped extending

retracting

Figure 5: Stateflow model in the case study

valves computed by the active mode.
The guard conditions concerns the direction of movements. The guardextendis

associated with the conditionvrC > vtol, retract with vrC < −vtol andstop with
¬(vrC > vtol) ∧ ¬(vrC < −vtol). The constantvtol gives the speed for which the
system is assumed to be stopped. The mode transitions are modelled using Stateflow as
shown in Figure 5. Each mode of the controller is associated with an enabled subsystem
that defines the mode specific behaviour in the Simulink model. The system in the case
study does not use hierarchical modes at the moment, but it is possible according to
our formalisation.

The people working with the digital hydraulics system have found the mode au-
tomata architecture very suitable for their purpose. It provides an architecture where it
easy to update behaviour in modes, which is important for a model used for research.
It also enables collaboration where different people can focus on different modes.

7 Towards Model Verification

The formalisation of mode-automata should only allow a subset of Simulink/Stateflow,
but it should also allow interesting models to be created. Simulink and Stateflow do not
have a formal semantics and it is, therefore, impossible to prove equivalence between
the formalisation and Simulink. To investigate if the formalisation works as intended
we have studied its properties using the Alloy Analyzer [8]. Alloy is a tool based on
first order logic, where systems can be modelled using relations and constraints on re-
lations. It can then be used to generate models satisfying the constraints and to check
validity of assertions in models. Using this tool we have checked that we can generate
models that correspond to Simulink/Stateflow models satisfying the constraints in the
formalisation. We have also checked that the conditions in our formalisations are suffi-
cient in order to guarantee the properties we like to ensure. The Alloy Analyzer is not
a theorem prover and, hence, we can only investigate models of limited size. However,
the tool can give confidence that the formalisation works as intended.

As future work we intend to create a tool for checking that a Simulink/Stateflow
model conforms to our definition of mode-automata. This can be done by translating
the Simulink/Stateflow models to the representation given in the formalisation. This
representation is then used to verify that all constraints are satisfied.

Verification of properties of the complete controller can be extremely difficult due
to size and complexity. When the model conforms to the mode-automata definition we

14

can take advantage of this architecture to verify certain properties of the controller. It is
possible to verify that the guarded mode transitions function correctly. To enable this
type of verification, an invariant is assigned to each mode. We only need to consider
the conditions associated with the guards, the Stateflow model and the invariants. A
model checker can then be used to ensure that the invariant in each mode is maintained
by the transitions. For example thess2lustranslator [19] from Simulink/Stateflow to
Lustre [2] can be used in conjunction with the model checkers for Lustre [18].

8 Conclusions and Further Work

In this paper we have given a formal definition of mode-automata implemented using
Simulink and Stateflow. The mode-automata architecture restricts the allowed con-
structs from Simulinik/Stateflow to a safe kernel with clear semantics. The aim is to
have allow enough features for the architecture to be usable in practice, while simpli-
fying the analysis of the models. The formalisation considers state-machines with both
or-states and and-states. We also give definition of two methods for composing differ-
ent mode-automata. In order to validate the formalisation, its properties has been in-
vestigated with the Alloy Analyzer. The mode-automata model architecture provides a
structured and maintainable model architecture for mode-based systems. Furthermore,
it can also be exploited for validating certain desirable properties of the controller.

Future Work We plan to extend this work in several directions. Stepwise develop-
ment and refinement can be beneficial for developing complex systems. We plan to
introduce the notion of refinement into our formalisation. This will be done by first
expressing the semantics given in section 3 in the refinement calculus [1] in order to
benefit from it. This approach has already been explored for Statecharts alone [20],
but now we wish to extend these works to the couple Stateflow/Simulink. Ultimately,
this will give us strong formal support for stepwise refinement of Stateflow/Simulink
models.

The suitability of the formalisation will also be further investigated through case
studies. The example given in section 6 is a first simple example taken from our col-
laboration on designing correct controllers for digital hydraulics applications. As the
project is going on, we are currently refining this example and are confident that it
will finally reach a reasonable size so as to demonstrate the full applicability of mode-
automata to industrial applications. It will also help us validate the restriction we wish
to apply on Stateflow/Simulink in order to get a stable semantics.

Verification and Testing methods based on this architecture are also interesting top-
ics for further research. In this context, we plan to assemble a set of well-established
techniques and apply them to Stateflow/Simulink models. These techniques will con-
tain, among other things local specification in the form of assume-guarantee contracts
[12] and compositional verification rules [7, 16]. The overall goal of the project is
not to design brand new verification techniques, but rather to see how it is possible
to integrate existing ones in a global development and validation framework for State-
flow/Simulink.

Acknowledgement

This work is carried out in the context of the ITCEE (Improving transient control and
energy efficiency by digital hydraulics) project funded by TEKES (Finnish Funding
Agency for Technology and Innovation).

15

References

[1] R.-J. Back and J.von Wright.Refinement Calculus: A Systematic Introduction.
Graduate Texts in Computer Science. Springer-Verlag, 1998.

[2] P. Caspi, N. Halbwachs, D. Pilaud, and J. Plaice. Lustre, a declarative language
for programming synchronous systems. In14th ACM Conf. on Principles of Pro-
gramming Languages, Munich, Germany, 1987.

[3] J.-L. Colaço, B. Pagano, and M. Pouzet. A conservative extension of synchronous
data-flow with state machines. InEMSOFT ’05: Proceedings of the 5th ACM
international conference on Embedded software, pages 173–182, New York, NY,
USA, 2005. ACM Press.

[4] G. Hamon. A denotational semantics for stateflow. InEMSOFT ’05: Proceedings
of the 5th ACM international conference on Embedded software, pages 164–172,
New York, NY, USA, 2005. ACM Press.

[5] G. Hamon and J. Rushby. An operational semantics for stateflow. InFundamental
Approaches to Software Engineering, FASE 2004, volume 2984 ofLNCS, pages
229–243. Springer Verlag, 2004.

[6] D. Harel. Statecharts: A visual formalism for complex systems.Science of Com-
puter Programming, 8(3):231–274, 1987.

[7] Holenderski. Compositional verification of synchronous networks. InFTRTFTS:
Formal Techniques in Real-Time and Fault-Tolerant Systems: International Sym-
posium Organized Jointly with the Working Group Provably Correct Systems –
ProCoS. LNCS, Springer-Verlag, 2000.

[8] D. Jackson.Alloy 3.0 Reference Manual, 2004.http://alloy.mit.edu .

[9] F. Jahanian and A. K. Mok. Modechart: A specification language for real-time
systems.IEEE Transactions on Software Engineering, 20(12):933–947, Decem-
ber 1994.

[10] O. Labbani, J.-L. Dekeyser, and P. Boulet. Mode-automata based methodology
for scade. InHybrid Systems: Computation and Control: 8th international work-
shop, HSCC 2005, volume 3414 ofLNCS, pages 386–401. Springer Verlag, 2005.

[11] M. Linjama, K. T. Koskinen, and M. Vilenius. Accurate trajectory tracking con-
trol of water hydraulic cylinder with non-ideal on/off valves.International Jour-
nal of Fluid Power, 4(1):7–16, 2003.

[12] F. Maraninchi and L. Morel. Logical-time contracts for reactive embedded com-
ponents. In30th EUROMICRO Conference on Component-Based Software Engi-
neering Track, ECBSE’04, Rennes, France, August 2004.

[13] F. Maraninchi and Y. Rémond. Mode-automata: About modes and states for
reactive systems. InEuropean Symposium on Programming, volume 1381 of
LNCS. Springer Verlag, 1998.

[14] F. Maraninchi and Y. Rémond. Mode-automata: a new domain-specific construct
for the development of safe critical systems.Science of Computer Programming,
46(3):219–254, 2003.

16

[15] F. Maraninchi, Y. Rémond, and Y. Raoul. Matou : An implementation of mode-
automata into dc. InCompiler Construction, Berlin (Germany), March 2000.
Springer verlag.

[16] K. L. McMillan. A methodology for hardware verification using compositional
model checking.Science of Computer Programming, 37(1-3):279–309, 2000.

[17] C. Puchol, D. Stuart, and A. Mok. An operational semantics and compiler for
real-time specifications, 1998.

[18] P. Raymond.LUSTRE-V4 manual, 2000.
http://www-verimag.imag.fr/SYNCHRONE/tools.html .

[19] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi. Defining
and translating a "safe" subset of simulink/stateflow into lustre. Techni-
cal Report TR-2004-16, Verimag, Centre Équation, 38610 Gières, July 2004.
http://www-verimag.imag.fr/index.php?page=techrep-list .

[20] P. Scholz. A refinement calculus for statecharts. InFASE: International Con-
ference on Fundamental Approaches to Software Engineering (FASE). LNCS,
Springer-Verlag, 1998.

[21] E. Sekerinski and R. Zurob. Translating statecharts toB. In Integrated Formal
Methods (IFM 2002), volume 2335 ofLNCS. Springer Verlag, May 2002.

[22] A. Tiwari. Formal semantics and analysis methods for Simulink
Stateflow models. Technical report, SRI International, 2002.
http://www.csl.sri.com/ ∼tiwari/stateflow.html .

17

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology
• Department of Mathematics

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 952-12-1737-5
ISSN 1239-1891

