
Tur ku Cent re Computer Sciencefor

������� ���	��

�������������
�������
���! " # #$&%('")+*-,#."."/

0-12�+
	���435�	� 6
0-12�+
	���7�98:� 6�0-12�+
	���7��

�;�	�
0-12�+
	���=<&��1�� 6�0>12�+
	���?<@�BAC�

DFE!GIH J K E>L H H M L N DOM P G H Q J RSE

T>1�UC�V�WA�X@� YZ�[�]\ 6_^����
�	� ���;��1
U`�B�ba#c��	� 6
de�f�	�ga dh�
�iU`�i�C�ja 6k�l���b��dm�
�C�2n��	�
�

oqp rCs t u=v w ryx{z�x}|~t:�9x�p � p z
� p � �=xF���gw � |�� x�� � p � w u��7� rgx�� w �
� w�� w u�p � s w ��� p z � xF����rSx�� ���	w �
� p s s � � x}|~t ��x�� � � � ���gw s � t � �
� p s s � � x}|~t ��x}p � � r@p �	p |-p u��

���������Z�O���¡ �¢£��¤¦¥¡§¨�¦©;ª¨«]¬
­�ª�®¦®b®¡¯±°�²¡ I��³b´¦´¦µ

¶�·_¸º¹ »�¼S½~¾¿¸�À]ÁZÀ[Â2»�ÃÄÀ[·_Å ·�ÁÇÆÈ·_Å�É`À[É@ÃÊ¾¿Å�Â�Ë ÀÌÅ
Í ·ÏÎ7¾¿¼ÑÐÓÒ ¸ÊÀjÔl¾�Å ÒÕ¾
ÔÏ¾¿¼Ö·_×7¹ ¾�Å�Ã ·�Á Ò À[É@Ãh¸ÊÀÙØkÚ9ÃÊ¾�Î
ÆÛ·_¹ ¹ Ú_Å�À[Â2»�Ã"ÀÙÅ�Ü Ý�ËkÉ@ÃÊ¾¿¹ É »�Å�Î
ÆÛ·_¹ ¹ Ú_Å�À[Â2»�Ã"À[·_Å Þß¸¨·9ÃÊ·ÏÂ�·�¼ÖÉ

àÏá�â@ã�ähåçæ#ä èOé�êìë
í@éïîñð&äóòCã}ôWá�â@êöõ�÷Zø�ð&ä
ùúêjð&äe÷Õù+äñêjâ�ê]ð@êì÷

ûÊü�ý@þ�ÿ��������	��
��
�����
���������������
���
�������
����ý��� !��� ý��"���#�!� ý��%$&��')(���ý+* ý�,+�-���. ���/�	�0�Iÿ�1
�-�2�
�Iÿ��#�436587Vþ9�;:
<+=
:�<>$?3��[ÿ�3
��@� !A
B äñã�êñù+î>C%CEDñð&îñðA±ýIÿ��F�HGI���2���
��'�(JK�
���L���M�KJ¦ý+�N��3��4�O��,ñþP��')(�� �L��'Q�43��R��� . �Vü ý����#� ý��S���T
UWVXU&Y ý�Z[7\<�]+�?<�<�<�7K=_^`�
*a���O�Iÿ��b�9@) 4A

cedgf�hIi�jXk�h

Currently UML2 is widely used for modelling software-intensive systems. Model
driven development of complex software typically starts from abstract, high-level
UML2 models which specify the system from several different viewpoints. Abstract
models are further refined into more detailed design models in successive development
stages. While specifying various aspects and abstraction levels of such systems, we
create a set of different models, which should be inter- and intra-consistent. In this paper
we propose an approach to ensuring consistency in Lyra – a rigorous, service-oriented
and model-based method for developing industrial telecommunication systems and
communication protocols. We derive informal requirements to ensuring intra- and inter-
consistency and then formalize them in the B Method. The formalization in B allows us
to structure complex informal requirements and formally ensure intra- and inter-
consistency of models created at various stages of the Lyra development.

Keywords: consistency of UML2 models, intra-consistency, inter-consistency, the B
Method, refinement

 l9mon�peq�r`s+t�u4r+vwt`uLx

yPzF{}|4~LzO����|L��������{}|L����{>y���{)z-�+�

�

��� �����I�����	�����+�����

Recently various model-driven approaches have emerged to support design-centric
software development. They promote system development by gradual transformation of
system models expressed in Unified Modelling Language (UML) [1]. Modelling
typically starts from abstract, high-level models which are iteratively transformed into
more detailed design models. However, even at an abstract level a system can be
described from different viewpoints. A created set of models becomes even larger at
further development stages. To ensure correctness of the developed system, we need
techniques for managing model consistency. On the one hand, we need to ensure intra-
consistency of the models, i.e., consistency among artefacts specifying different aspects
of the system on the same development stage. On the other hand, we should guarantee
inter-consistency of models, i.e., consistency among modelling artefacts from the
different development stages.
 In this paper we propose an approach to formal verification of model consistency in
Lyra [2, 3]. Lyra is a model-driven and component-based design method for the
development of communicating systems and communication protocols. It consists of
four consecutive development stages that support systematic refinement of the design
models. The constructed models define externally observable behaviour of system-level
services. Lyra has been developed at Nokia Research Center and applied in large-scale
UML2-based industrial software development projects.
 In this paper, we derive general patterns of UML2 models created at different stages
of Lyra development and express intra- and inter-consistency rules for them. Then we
define the rules as formal specifications in the B Method [4]. Hence the B Method
serves as a common semantics for UML2 models. Our approach to ensuring consistency
of UML2 models is similar to the approach based on defining a common semantics of
UML presented in [5]. Formal verification of obtained B models ensures intra- and
inter-consistency of the corresponding UML2 models, thus establishing the basis for
automatic verification of the Lyra design flow.
 The paper is structured as follows: in Section 2 we introduce the Lyra design method,
describe the UML2 models used in the design, and define dependencies between them.
Section 3 gives a short introduction to our modelling framework – the B Method. In
Section 4 we describe our approach to ensuring intra- and inter-consistency in Lyra by
formal specification and refinement in B. Section 5 summarizes the proposed approach
and outlines future work.
 � � �6�E�%�)�%����� �g ¢¡`£¤��¥§¦_��¨©��ª	�¬«­�®��¯����

Lyra [2, 3] is a service-oriented and model-based design method for the development of
distributed communicating systems. It has been developed in Nokia Research Center by
integrating the best practices and design patterns established in the domain. The method
has been successfully applied in several large-scale industrial system development
projects.
 Lyra has four main stages: Service Specification, Service Decomposition, Service
Distribution and Service Implementation. The Service Specification (SS) stage focuses

°

on defining the services provided by the system and the different types of users of these
services. In this stage we define the externally observable behaviour of the system
services on the corresponding user interfaces. In the Service Decomposition (SDe) stage
the abstract model produced at the previous stage is decomposed into a set of service
components and logical interfaces between them. This stage yields the logical ar-
chitecture of the system services. In Service Distribution (SDi) stage the logical
architecture of services is distributed over a given platform architecture. Finally, in
Service Implementation stage the structural elements are integrated into the target
environment. This results in a model which can be used, e.g., as a source for automatic
code generation. A detailed description of the Lyra Method can be found in [2, 3].
 Lyra uses UML2 [6] as a modelling language. At each Lyra stage we define a set of
UML2 models. The models specify the system under construction from the various
viewpoints. Moreover, the system is developed in a top-down fashion, hence the models
at each subsequent stage represent the system at lower level of abstraction. While
developing a system we should ensure model consistency, i.e., guarantee that each
properly defined model is not contradictory with already created models. We call a
model properly defined if it satisfies the model presentation rules, i.e., structural
requirements imposed on the modelling elements. On the one hand, a model has to be
consistent with the models at the same development stage. On the other hand, it should
be consistent with models at the previous development stages. The consistency between
the concepts specifying different aspects of the system structure and behaviour on the
same development stage is known as intra-consistency; whereas the inter-consistency is
defined as the consistency among modelling concepts from different development
stages.
 To illustrate Lyra development flow and present consistency rules, next we give an
example – an excerpt from the development of the 3GPP1 positioning system. The
system provides the positioning service for calculating the physical location of a given
user equipment in a mobile network. A complete set of informal specifications of the
service can be found elsewhere (e.g., [7]).
 Models at Service Specification stage. The system development starts with creating
the Domain Model. The Domain Model is a UML2 use case model describing the
system services and their users. Its general form is given in Fig. 3a. The Domain Model
for the 3GPP positioning system is shown in Fig. 1.

Fig. 1. Domain Model of
the Positioning System at

the SS stage

Fig. 2. Communication Context
of the Positioning System at the SS stage

1 Third Generation Partnership Project

 Positioning

 User

<<usecase>>
PositionCalculation

Positioning_PSAP

Positioning

 ±³² ´Fµ ²O¶

Position ·¹¸Wº »b¼³º ¸0½ ¾ ¿WÀ
 ±W² ´Fµ ²O¶ ±³²

Positioning_USAP

User

 ´Fµ ²O¶

Á

To be properly defined, the Domain Model should satisfy certain structural require-
ments, e.g., an association can associate only an already created actor and a use case. In
our example they are User and PositionCalculation correspondingly.
 From the Domain Model we derive formal system structure – a UML2 class diagram
– called the Communication Context. The general form of this model is shown in Fig.
3b. The Communication Context of the Positioning System is depicted in Fig. 2. To be
consistent with the previously created Domain Model, the Communication Context
should satisfy a number of intra-consistency rules. For example,
- the Communication Context has an active class for each use case in the Domain

Model and the system itself. These are the active classes Positioning and
PositionCalculation in the Communication Context in Fig. 2.

- the Communication Context defines an external class for each actor of the Domain
Model (the class User in Fig. 2).

- for each active class in the Communication Context we define Provided Service
Access Points (PSAPs). Each association connecting an actor and a use case in the
Domain Model corresponds to a PSAP. PSAPs are UML2 ports (see
Positioning_PSAP and PositionCalculation_PSAP in Fig. 2).

- for each external class in the Communication Context we define Used Service
Access Points (USAPs). Each association connecting an actor and a use case in the
Domain Model corresponds to a USAP. USAPs are UML2 ports as well (see
Positioning_USAP in Fig 2).

Fig. 3. The design flow of the SS stage

 The next model at the SS stage – the Signalling Scenario (Fig. 3c) – is a UML2
sequence diagram, which gives an informal description of the communication between
the system service and its user(s). The communication is defined in terms of
interactions. Each interaction is a set of Signalling Scenarios defined for a particular
system service.
 Formally, the communication between the system service and its users is expressed
in the PSAP Communication model (Fig. 3d), which is a UML2 state machine. Its states
are obtained from the interaction defined in the Signalling Scenario. Transitions
between the states specify the communications described in the Signalling Scenarios for
a particular use case.

Use Case

Actor

Association

To

External Class

USAP
From

System

PSAP
Active Class

 To From

PSAP
Active Class

 To From

Actor Subject

request

response

Success?

Yes No

a) c)

b) d) e)

 Interaction

State1

State2

Â

 The states in the PSAP Communication model are composite. The dynamic
behaviour of the service on the level of sub-states composing a state in the PSAP
Communication model is defined in the Substate Machines (Fig. 3e). At the SS stage,
the Substate Machines non-deterministically model success or failure of service execu-
tion.
 Models at Service Decomposition stage. To implement its own services, the system
usually uses services provided by the external service providers. Their explicit
representation is introduced into the system model at the SDe stage. Namely, they are
represented as new actors associated with system services in the Domain Model (Fig.
5a). In our example, to provide a position calculation service, at first the Radio Network
Database (DB) should be requested to send the information on an approximate location
of the user equipment (UE). This information is then used to contact UE. Then, another
external service provider – Reference Local Measurement Unit (RefLMU) – is
requested to provide the reference measurements to calculate the exact location of UE.
This information is handled by the Algorithm to produce the final estimation on the UE
location. These external service providers – DB, UE, RefLMU and Algorithm – are
introduced in the Domain Model created at the SS stage as the corresponding actors
associated with the PositionCalculation use case, as shown in Fig.4. To ensure that the
Domain Model at the SDe stage does not contradict with the Domain Model at the SS
stage, we should also guarantee that the other elements of the model remain unchanged.
This is an example of an inter-consistency rule.

Fig. 4. Domain Model of the Positioning System
at the SDe stage

 At the SDe stage the intra-consistency rules remain the same as for the SS stage. For
instance, while creating the Communication Context (Fig. 5c), we should define
external UML2 classes for the actors introduced in the Domain Model at the current
stage. Each external class obtains its own PSAP port describing the communication with
the system service. Moreover, each association between a system service and an
external service provider is modelled as a USAP attached to the already existing active
classes.
 The decomposition of the system service into sub-services is depicted in the
Decomposition Diagram (Fig. 5b). This is an additional model appearing at the SDe
stage. The Decomposition Diagram is actually a use-case model showing the sub-use
cases that should be executed to provide the system service.
 We augment the Signalling Scenario created at SS stage by adding interaction
references (ref) representing a set of Signalling Scenarios (Fig. 5e) for each sub-use
case. These scenarios describe the communication between the system sub-service and

 Positioning

 User

<<usecase>>
PositionCalculation

ÃÅÄ
ÆÅÇ
ÈÊÉ ËbÌ0Í Î Ï ÐbÑ
Ò0ÓFÔ ÕaÖ×Æ

Ø

the external service provider. The sub-service execution order is defined by the order in
which the references appear in the augmented Signalling Scenario (Fig. 5d).

Fig. 5. The design flow of the SDe stage

 At the SDe stage the PSAP Communication model is refined to explicitly model the
dynamic behaviour on the level of sub-services. The state modelling the actual service
execution in the PSAP Communication model is decomposed into a set of sub-states,
which are depicted in the Execution Control (Fig. 5f) state machine. The sub-states of
the Execution Control state machine correspond to the sub-services. The transitions
between the sub-states preserve the order of the interaction references in the Signalling
Scenario.
 For each sub-state from the Execution Control a Substate Machine (Fig. 5g) should
be defined. It models the internal computation and communication between the sub-
services.
 Models at Service Distribution stage. The SDi stage focuses on distributing
decomposed system services over a given platform architecture. The elements of the
Domain Model from the previous stage remain unchanged. However, they are now
associated to the underlying platform and referred to as network elements. The network
element which communicates with the user is called the Main Network Element (MNE),
while the other network elements are called Secondary Network Elements (SNE). The
Domain Model at SDi stage should be defined for each of the network elements from its
own viewpoint. For instance, when defining the Domain Model for the MNE (Fig. 7a),
the rest of the network elements are represented as actors. Similarly, when defining the
Domain Model for SNE (Fig. 7b), the MNE and the other existing SNEs are represented
as actors. The distribution of the 3GPP positioning system is depicted in Fig. 6. The

From

External Class

PSAP Port
To

System

Use Case

Actor

Association

a)

c)

g)

PSAP
Active Class

 To From

USAP
From To From

External Class

PSAP Port
 To

Actor

Actor

Active Class

Sub-use
Case

Sub-use
Case

Use Case

b)

Subject Actor

request

response

e)

d)

Actor Subject
request

response

ref

ref

f)

Sub-state

Sub-state

request

response response

wait _for
service

Ù

platform architecture consists of two network elements: Positioning_RNC2 which is the
MNE and Positioning_SAS3 which is the SNE. The PositionCalculation service
distributed over these network elements is represented by the domain models for both of
them, i.e., Domain Model for Positioning_RNC and Domain Model for
Positioning_SAS as shown in Fig. 6a and 6b respectively. Observe that the
Positioning_SAS becomes an actor when presenting the service distribution over the
Positioning_RNC network element. Similarly this holds for the actor Positioning_RNC
in Fig. 6b. Moreover, the external service providers are also distributed over network
elements Positioning_RNC and Positioning_SAS.

Fig. 6. Domain Model of the Positioning System at the SDi stage

 The Communication Context (Fig. 7c) follows the service distribution represented in
the domain models by defining active classes for all the distributed services and
network elements upon which they are distributed. The external classes defined at the
previous Lyra stage remain unchanged. The associations from the Domain Model define
interfaces in the Communication Context. They are attached to the USAP and PSAP
ports of the classes corresponding to the network elements. The communication
between distributed services is defined via the PEER interfaces attached to the PEER
ports on the active classes for corresponding network elements.
 Distribution of the decomposed functionality of the system is defined by the
Decomposition Diagrams. Since the system services and sub-services may be
distributed on different network elements, the Decomposition Diagram has to show the
system decomposition from the viewpoint of both of them, i.e., we should create the
Decomposition Diagram for the MNE (Fig. 7d) and the Decomposition Diagram for the
SNE (Fig. 7e).
 The Signalling Scenarios (Fig. 7f) for the distributed services introduce interaction
references for distributed sub-use cases. They describe the PEER communication
between the parts of the distributed service.
 The Execution Control state machine defined in the previous Lyra stage remains the
same. However, the Substate Machine attached to one of its composite distributed states
is replaced with a new Execution Control machine (Fig. 7g) defining the distributed
functionality in a remote location. It is defined from the viewpoint of the MNE.
Additionally, new PSAP Communication state machine (Fig. 7h) needs to be defined
for the distributed service from the viewpoint of the SNE.

2 Radio Network Controller
3 Stand-alone Assisted Global Positioning System Serving Mobile Location Center

 Positioning_SAS

 Positioning _RNC

Distributed
PositionCalculation

ÚÊÛ ÜbÝ0Þ ß à ábâ
ã0äFå æaç×è

 Positioning_RNC

 User

Distributed
PositionCalculation

éÊê
èÊë

 Positioning _SAS

a) b)

ì

 Composite states in the Execution Control machine are further specified by
corresponding Substate Machines (Fig. 7i).

Fig. 7. The design flow of the SDi stage

Fourth Lyra stage – Service Implementation – focuses on implementing low level
details on the top of the already existing architecture and does not introduce new
consistency constraints. Therefore, we omit its detailed description which can be found
elsewhere (e.g., [3]).
 To summarize, the overall Lyra design flow is guided by the requirements imposed
on its modelling elements: 1) each model is created according to certain structural
requirements; 2) models within one stage are created according to the defined intra-
consistency rules; 3) models at each subsequent development stage preserve the inter-
consistency rules. We argue that by formalizing these requirements and the models in
Lyra the design process can be automatically verified and required consistency
achieved. Next we introduce our framework for formalizing consistency rules – the B
Method.
 í�î

 ïNð�ñóò ô­ñ�õIðXö�÷

The B Method [4, 8] is an approach for the industrial development of highly dependable
software that has been successfully used in the development of several complex real-life
applications [9]. The tool support available for B provides us with the assistance for the
entire development process with a high degree of automation in verifying correctness.
For instance, Atelier B [10], one of the tools supporting the B Method, has facilities for
automatic verification and code generation. The high degree of automation in verifying
correctness improves scalability of B and speeds up the development.

Actor

a)

c)

g)

System

Distributed
Use Case

Association Actor

Actor

Sub-use
Case

Distribute
Sub-use Case

Distributed
Use Case

b) d)

f)

request

response response

wait _for
service

MNE

SNE

System

Distributed
Use Case

Association

SNE

MNE Distribute
Sub-use Case

Distributed
Use Case

e)
PSAP

Active Class

 To From

USAP
From To

Active Class
PEER

To

From

Active Class Active Class
PEER

To

From

Active Class Active Class
PEER

To

From
PSAP

Active Class

 To From

USAP
From To

Active Class
PEER

To

From

h)

i)

Sub-state

Idle

Sub-state

Actor Subject
request

response

ref

ø

 In B, a specification is represented by a module or a set of modules, called Abstract
Machines. The common pseudo-programming notation – Abstract Machine Notation –
is used to construct and formally verify them. An abstract machine encapsulates a state
and operations of the specification and has the following general form:

MACHINE Name
SETS Set
VARIABLES v
INITIALISATION Init
INVARIANT I
OPERATIONS Op

 Each machine is uniquely identified by its Name. The state variables of the machine
are declared in the VARIABLES clause and initialized in the INITIALISATION
clause. The variables in B are strongly typed by constraining predicates of the
INVARIANT clause. The constraining predicates are conjoint by conjunction (denoted
as ∧). All types in B are represented by non-empty sets and hence set membership
(denoted as ∈) expresses typing constraint for a variable, e.g., x∈TYPE. Local types can
be introduced by enumerating the elements of the type, e.g., TYPE = {element1,
element2,…} in the SETS clause. The operations of the machine are atomic and they are
defined in OPERATIONS clause. B statements that we are using to describe the
computation in operations have the following syntax:

S == x := e | x, y := e1, e2 | S1 ; S2 |
 S1 || S2 | x :∈ T | ANY z WHERE cond THEN S END | ...

The first three constructs – assignments and sequential composition – have the standard
meaning. The remaining constructs allow us to model parallel and nondeterministic
behaviour in a specification. The detailed description of the B statements can be found
elsewhere (e.g., [8]).
 In this paper we adopt the event-based approach to system modelling [11]. The
events are specified as the guarded operations of the form:

Event = SELECT cond THEN body END

Here cond is a state predicate, and body is a B statement describing how the state
variables are affected by the operation. If cond is satisfied, the behaviour of the guarded
operation corresponds to the execution of its body. If cond is false at the current state
then the operation is disabled, i.e., cannot be executed.
 B also provides structuring mechanisms which enable machines to be expressed as
combinations of other machines. Here we use EXTENDS clause. When machine M1
extends machine M2, written as EXTENDS M2 in the definition of M1, it means that
M1 includes M2 and promotes all of the operations of M2, i.e., it provides all of the
facilities provided by M2, with some further operations of its own.

ù

 To ensure correctness of a B machine, we should verify that the initialization and
each operation preserve the invariant and that the invariant is valid, which means that
there are some possible machine states which satisfy it.

The formal development in B is based on stepwise refinement [12]. While
developing a system by refinement, we start from an abstract formal specification and
transform it into an implementable program by a number of correctness preserving
steps. The result of a refinement step in B is a machine called REFINEMENT. Its
structure coincides with the structure of the abstract machine. In addition, it explicitly
states which machine it refines.

In this paper we extensively use data refinement – a general form of refinement,
which allows us to change the state space of a machine. To replace abstract data
structures with the refined ones, we define the refinement relation (linking invariant)
that explicitly states the connection between the newly introduced variables and the
variables that they replace. The refinement relation constitutes a part of the invariant of
the refining machine.
 To ensure correctness of a refinement, we should verify that initialization and each
operation of the refining machine refine the initialization and the corresponding
operations of more abstract machine. Since the refinement relation is a part of the
invariant of the refining machine, it suffices to ensure that the initialization and each
operation of the refining machine satisfy this invariant. The verification can be
completely automatic or user-assisted. In the former case, the tool generates the required
proof obligations and discharges them without user’s help. In the latter case, the user
proves certain proof obligations using the interactive prover provided by the tool.
 In the next section we demonstrate how to use specification and refinement in B to
verify the consistency in Lyra models.
 ú	û

 üPý�þ�ÿ�� ����� þ��
	��
��������ý�� ý�	��>ý���������� � �����

We start formal verification of consistency of Lyra models by deriving the list of
informal requirements. For each Lyra stage we derive the list of requirements
corresponding to a particular Lyra model. For each model we group requirements
around concrete model elements. Once the complete list of requirements is obtained, we
can distinguish between model-presentation, intra-, and inter-consistency rules for
particular Lyra models.
 The informal requirements form the basis for formalizing Lyra models and
consistency rules in B. In general, the approach is as follows: each Lyra model is
represented as a B machine of a certain form. Each machine is created in the order
defined by Lyra development flow, as described in Section 2. Hence, the set of models
defined at each stage is represented by the corresponding set of B machines. The intra-
consistency rules are defined as the invariant of a top machine – a machine which
includes this set of B machines. The models at each subsequent stage are represented in
the same way. Moreover, inter-consistency is ensured by refinement between the
corresponding top machines. The refinement relation, defined as a part of the invariant
of the top machine, contains inter-consistency rules. Next we present our approach in
detail.

� �

 Ensuring intra-consistency of Lyra models in B. Ensuring intra-consistency in
Lyra requires verifying that the models:

- satisfy model presentation rules, i.e., constraints expressing how to properly
define its elements, and

- are not contradictory with each other.
 To achieve verification of these properties, we first represent each Lyra model as a B
machine of a general form given in Fig. 8. The name of the machine corresponds to the
name of the Lyra model and is followed by the acronymic name of the stage, i.e., SS,
SDe or SDi. The variables of this machine correspond to model elements and their
presentation rules are expressed as its invariant.

MACHINE Model_Stage
EXTENDS < Previously created model >
VARIABLES
 < Names of model elements >, Model_Stage_Status
INVARIANT
 < Model presentation rules >
INITIALISATION
 < Initialise the variables for model elements > || Model_Stage_Status:=Empty
OPERATIONS

Start_Model_Stage =
 BEGIN
 Model_Stage_Status:=Creating
 END;
Stop_Model_Stage =
 SELECT < Model creation rules satisfied >
 THEN
 Model_Stage_Status:=Finished
 END;
Create_ModelElementA =
 SELECT Model_Stage_Status=Creating
 THEN
 < Create a model element A while ensuring model presentation and intra-consistency rules >
 END;
Create_ModelElementB =
 SELECT Model_Stage_Status=Creating
 THEN
 < Create a model element B while ensuring model presentation and intra-consistency rules >
 END;

END

Fig. 8. General form of the B machine for Lyra model

 The operations simulate creating of model elements. Namely, for each model
element there is one corresponding Create_ModelElement operation which allows the
creation of the element by enforcing the model presentation and the intra-consistency
rules. To ensure that the models are created in a certain order we introduce the variable
Model_Stage_Status. When the creation of the corresponding Lyra model starts, the
operation Start_Model_Stage assigns the value Creating to the Model_Stage_Status
and this, in turn, enables the creation of elements of the model. Observe that
Model_Stage_Status=Creating is the guard of the Create_ModelElementA and
Create_ModelElementB operations in Fig. 8. When a particular model is created,
Model_Stage_Status variable is assigned value Finished. The creation of models at each

!"!

particular stage is orchestrated by the corresponding top machine. Its general form is
shown in Fig. 9. After one model is created, the top machine corresponding to that stage
defines which model is to be created next. Namely, if the Model1 should be created
after the Model0 then the guard of the Create_Model1_Stage operation of this machine
has the following form:

Model0_Stage_Status=Finished ∧ Model1_Stage_Status=Empty

where the value Empty assigned to the variable Model1_Stage_Status denotes that the
creation of the Model1 has not started yet. The creation of the Model1 is then triggered
by the operation Start_Model1_Stage called from the body of the operation
Create_Model1_Stage. Since we assume that the Lyra models are checked for
consistency only after they are created, the invariant of the machine corresponding to a
certain Lyra stage guarantees that the intra-consistency rules for a particular model are
satisfied only when Model_Stage_Status=Finished.

MACHINE Stage
EXTENDS Model1_Stage
INVARIANT
/* intra-consistency rules */

/* Model0 */
(Model0_Stage_Status=Finished # ...)

/* Model1 */
(Model1_Stage_Status=Finished # ...)
...

OPERATIONS
Create_Model0_Stage =
 SELECT
 Model0_Stage_Status=Empty
 THEN
 Start_Model0_Stage
 END;
Create_Model1_Stage =
 SELECT
 Model0_Stage_Status=Finished ∧
 Model1_Stage_Status=Empty
 THEN
 Start_Model1_Stage
 END
...
END

REFINEMENT Stage’
REFINES Stage
EXTENDS Model0_Stage’
INVARIANT
/* intra-consistency rules */
 ...
/* inter-consistency rules */
 /* Model0 */
 (Model0_Stage’_Status=Finished # ...)

 /* Model1 */

(Model1_Stage’_Status=Finished # ...)
...

OPERATIONS

Create_Model0_Stage =...
Create_Model1_Stage =...
Create_Model0_Stage’ =...
Create_Model1_Stage’ =...
...

END

Fig. 9. General form of the B machine
for the specific Lyra stage

Fig. 10. General form of the B refinement
for the subsequent Lyra stage

To verify the intra-consistency rules, we should prove correctness of the defined top

machines and abstract machines representing Lyra models. To achieve this, we use an
automatic tool support available for the B Method – AtelierB [10]. AtelierB generates
the required proof obligations and attempts to discharge them automatically. In some
cases it requires user’s assistance for doing this. Upon discharging all proof obligations
the verification process completes.

$&%

 Ensuring inter-consistency of Lyra models in B. To verify inter-consistency, we
should ensure that the models at different development stages are not contradictory with
each other. In this paper we propose refinement [12] as a technique for establishing
model inter-consistency. A graphical representation of the proposed approach is given
in Fig. 11.

Domain Model
Decomposition Diagram
Communication Context

Signalling Scenario
Execution Control
Substate Machine

Domain Model

Communication Context

Signalling Scenario

PSAP Communication
Substate Machine

SS SDe

Domain Model MNE
Domain Model SNE

Decomposition Diagram MNE
Decomposition Diagram SNE

Communication Context
Signalling Scenario

SDi

Execution Control
PSAP Communication

Substate Machine

Notation:

extends
is refined by

Fig. 11. Overall Lyra development in B

The models from each Lyra stage correspond to the B machines specified according
to the pattern given in Fig. 8. The rules of intra-consistency remain unchanged through
stages. However, the models starting from the second Lyra stage are obtained based on
the models from the previous stage. A B machine corresponding to the top machine of
subsequent Lyra stage is a refinement of the top machine for the previous Lyra stage
and its general form is shown in Fig. 10.
 The top machine Stage’ uses a specific form of data refinement called superposition
refinement [12]. Superposition refinement introduces new variables while leaving the
existing data structure unaffected. Observe that the general ideas of superposition
refinement and model transformation during the Lyra development process coincide.
Each development stage introduces a new set of models, while the models created at the
previous stage remain unchanged. The way that elements of the models from one stage
relate to the elements from the models in another stage defines the inter-consistency
rules between these two stages. These rules are enforced while creating the elements of
Lyra models in the subsequent Lyra stages. Although the refinement Stage’ has a
similar form as the machine Stage (see Fig. 9), the invariant of the refinement Stage’
additionally expresses not only the intra- but also inter-consistency rules. The inter-
consistency rules are expressed as the linking invariant of the refinement Stage’ .

To verify the inter-consistency rules, we should prove correctness of defined abstract
machines corresponding to the models of the subsequent stage and the refinement of
this stage.
 We illustrate the process of translating Lyra models into the B machines and their
verification, i.e., ensuring model consistency, by an example.

'&(

)+*-,/.10-2�3�4657298;:<3�=?>�@�0-2BADC�EGFH574I:<3KJMLN2�3OF�PG2�ARQ�5SF

We start our B development by creating the B machines for the models of the SS stage.
The first machine to be created is the Domain Model (Fig. 3a). Domain Model is
considered as an initial Lyra model and hence has no intra-consistency rules. Therefore,
while constructing the B machine for the Domain Model (DomainModel_SS in Fig. 12),
we define only the model presentation rules for its elements: Actor, UseCase,
Association and System.

MACHINE DomainModel_SS
VARIABLES
 Actor , Actor_Name ,
 UseCase , UseCase_Name ,
 System , System_Contains , System_Name ,
 Association , Association_Ends ,
 ...
 DomainModel_SS_Status
INVARIANT
Actor ⊆ UNIQUE_ID ∧
Actor_Name ∈ Actor NAMES ∧
UseCase ⊆ UNIQUE_ID ∧
UseCase_Name ∈ UseCase NAMES ∧
Association ⊆ UNIQUE_ID ∧
Association_Ends∈Association (Actor×UseCase)
∧...
INITIALISATION
 Actor, Actor_Name := ∅, ∅ || ... ||
 DomainModel_SS_Status := Empty
OPERATIONS

Start_DomainModel_SS =...
Stop_DomainModel_SS =...
Create_System =...
Create_Actor =...
Create_UseCase =...
Create_Association =...

END

MACHINE CommunicationContext_SS
EXTENDS DomainModel_SS
VARIABLES
 ActiveClass , ActiveClass_Name ,
 ExternalClass , ExternalClass_Name ,
 PSAP_Port , USAP_Port ,
 Interface_IN , Interface_OUT,
 ...
 CommunicationContext_SS_Status
INVARIANT
 ActiveClass ⊆ UNIQUE_ID ∧
 ActiveClass_Name ∈ ActiveClass (System∪UseCase)
 ∧ ...
INITIALISATION
 ActiveClass, ActiveClass_Name := ∅, ∅ || ... ||
 CommunicationContext_SS_Status := Empty
OPERATIONS

Start_CommunicationContext_SS =...
Stop_CommunicationContext_SS =
 SELECT
 ran(ActiveClass_Name)=(UseCase∪System) ∧...
 THEN
 CommunicationContext_SS_Status:=Finished
 END;
Create_ActiveClass_For_UseCase =
 SELECT
 CommunicationContext_SS_Status=Creating
 THEN
 ANY id1, idx WHERE id1 ∈ UNIQUE_ID ∧
 id1 ∈ UseCase ∧
 id1 ∉ ran (ActiveClass_Name) ∧
 idx ∈ UNIQUE_ID ∧
 ID_Not_In_Use
 THEN
 ActiveClass := ActiveClass ∪ { idx } ||
 ActiveClass_Name:=ActiveClass_Name∪{idx T id1} ||
 ...
 END
 END;
Create_ActiveClass_For_System =...
Create_ExternalClass =...
Create_USAP_Port =...
Create_PSAP_Port =...

END

Fig. 12. Excerpt from the
DomainModel_SS machine

Fig. 13. Excerpt from the
CommunicationContext_SS machine

U-V

These rules postulate that each model element is strictly identified by its unique
identifier (UNIQUE_ID). Additionally, the model presentation rules are specified from
the requirements for the Domain Model in the SS stage. For instance, a model
presentation rule for the element Actor in the Domain Model at the SS stage expresses
that an actor has to have the name. It is specified as a newly introduced variable
Actor_Name in Fig. 12. The operations of Domain_Model_SS follow the general form
given in Fig. 8.
 The next step in Lyra development is creating a Communication Context (Fig. 3b)
model from the already created Domain Model. Hence, the machine
CommunicationContext_SS (Fig. 13) refer to DomainModel_SS in its EXTENDS
clause. The elements of the Communication Context model are variables in the
CommunicationContext_SS machine. They are defined using the variables of
DomainModel_SS machine. These dependencies are formulated as the intra-consistency
rules. They implement the requirements obtained for the Communication Context model
at SS stage. For instance, an intra-consistency rule for the element Active Class in the
Communication Context at the SDe stage postulates that an active class should be
defined for each use case in the Domain Model with the same name as the
corresponding use case. This rule is specified while creating the element ActiveClass in
the CommunicationContext_SS machine. The Create_ActiveClass_For_UseCase
operation creates an active class with the same name as the use case with the unique ID
– id1 for which the active class has not yet been created. The guard of the operation
Stop_CommunicationContext_SS ensures that this model is properly created only
when there exists an active class in the Communication Context for each use case in the
Domain Model.
 The B machines for the Signalling Scenario, PSAP Communication and Substate
Machine in the SS stage also follow the general form given in Fig. 8. Moreover, the
machine for the SS stage is obtained according to the pattern shown in Fig. 9.
 The inter-consistency rules define how the Domain Model (Fig. 5a) in the SDe stage
should be created according to the already created Domain Model in the SS stage. The
SDe stage allows new actors to be added in the Domain Model. They can be associated
with already existing use cases. Hence, the machine DomainModel_SDe (Fig. 14), has
similar structure as DomainModel_SS (Fig. 12). The new variables: Actor1,
Actor_Name1, Association1 and Association_End1, are introduced to allow modelling
of the newly introduced elements. Observe that the operation Create_Association1 en-
forces the inter-consistency rule: it allows associations between the variable UseCase
from the DomainModel_SS and the introduced variable Actor1 in DomainModel_SDe.

Further B development in the SDe stage proceeds according to the outline given in
Fig. 11 and finishes with defining the refinement SDe (Fig. 15), which is obtained using
the pattern given in Fig. 10. The invariant of the refinement SDe expresses not only the
intra-consistency rules addressed at the SDe stage but also the inter-consistency rules
between models on SS and SDe stages. For instance, the Domain Model in SDe stage is
consistent with the Domain Model in SS stage if it associates newly added Actor1 with
the UseCase from the same model in the SS stage, i.e., if
ran(Association_Ends1)⊆(Actor1×UseCase)) holds. By establishing refinement, we
verify inter-consistency of Lyra models from the SS and SDe stages.

WYX

MACHINE DomainModel_SDe
EXTENDS SubstateMachine_SS
VARIABLES
 Actor1 , Actor_Name1 , Association1 ,
 Association_Ends1, DomainModel_SDe_Status
INVARIANT
 Actor1 ⊆ UNIQUE_ID ∧
 Actor_Name1 ∈ Actor1 NAMES ∧
 Association1 ⊆ UNIQUE_ID ∧
 Association_Ends1 ∈ Association1 (Actor1×UseCase)
 ∧ ...
INITIALISATION
 Actor1, Actor_Name1 := ∅, ∅ || ... ||
 DomainModel_SDe_Status := Empty
OPERATIONS

Start_DomainModel_SDe =...
Stop_DomainModel_SDe =...
Create_Actor1 =...
Create_Association1 =
 SELECT DomainModel_SDe_Status=Creating
 THEN
 ANY id1,id2,idx
 WHERE id1∈UNIQUE_ID ∧ id1∈Actor1 ∧
 id2∈UNIQUE_ID ∧ id2∈UseCase ∧
 (id1,id2)∉ran(Association_Ends1) ∧
 idx ∈ UNIQUE_ID ∧ ID_Not_In_Use
 THEN
 Association1:=Association1∪{idx} ||
 Association_Ends1:=Association_Ends1∪{idx Z (id1,id2)}
 ...
 END
 END

END

REFINEMENT SDe
REFINES SS
EXTENDS SubstateMachine_SDe
INVARIANT
/* intra-consistency rules */
 ...
/* inter-consistency rules */
 /* Domain Model */
(DomainModel_SDe_Status=Finished [
ran(Association_Ends1)⊆(Actor1×UseCase)) ∧ ...

 /* Decomposition Diagram */
(DecompositionDiagram_SDe_Status=Finished [
(Association_Source2[dom(Association_Target2)]=UseCase))
∧ ...
OPERATIONS

Create_DomainModel_SS =...
Create_CommunicationContext_SS =...
Create_SignallingScenario_SS =...
Create_PSAPComm_SS =...
Create_SubstateMachine_SS =...
Create_Domain_Model_SDe =
 SELECT
 DomainModel_SDe_Status=Empty ∧
 PSAPCommunication_SS_Status=Finished
 THEN
 Start_DomainModel_SDe
 END;
Create_DecompositionDiagram_SDe = ...
Create_CommunicationContext_SDe =...
Create_SignallingScenario_SDe = ...
Create_ExecutionControl_SDe = ...
Create_SubstateMachine_SDe =...

END

Fig. 14. Excerpt from
the DomainModel_SDe machine

Fig. 15. Excerpt form the from
the SDe refinement

 The SDi stage is handled in the similar way. Due to a lack of space we omit a de-
tailed representation of the formal specifications obtained by the refinement process for
this stage. However, we give a graphical representation (Fig. 11) which summarizes the
overall process of Lyra formalization, allowing us to establish consistency among
models in the Lyra development flow. The specification of the full development can be
found at: http://www.abo.fi/~dilic/LYRA_spec.

\]

^+_ `+a�b�cHdfe�g�h�a�b�g

 In our paper we proposed a formal approach to establishing consistency between
UML2 models in the Lyra development method. We showed how to formalize Lyra
models in B and express the intra-consistency rules guaranteeing consistency of models
in each particular Lyra stage. Lyra models are translated into the corresponding B
machines according to the proposed patterns. The intra-consistency rules are enforced in
the operations specifying creating of model elements. The rules are collected in the form
of the invariant of the top machine. Moreover, we demonstrated how to formally
express and verify inter-consistency of the Lyra models created in different stages of B
development. Inter-consistency is defined as the linking invariant in the refinement
machines corresponding to the subsequent stages. Formal verification of the obtained
specifications and refinements is done using an automatic tool support for the B Method
– Atelier B.
 There are several approaches to ensuring consistency of UML models using formal
specifications. Engels et al. describe in [13] how to formalize the consistency of models
in UML-RT – a dialect of UML for modelling concurrent systems. They focus on
translating UML-RT statechart diagrams into CSP and ensuring their consistency during
the model evolution. Similarly, our approach ensures consistency between models on
different development stages via refinement in B. However, we consider a wider set of
UML models.
 Ensuring both intra- and inter-consistency of UML models in B, makes our approach
complementary to the work done in [14], which shows how consistency constraints of
UML model elements can be formalized using Object-Z. Nevertheless, they focus only
on modelling intra-consistency.
 The approach presented in our paper establishes a basis for automating the Lyra
design flow. Moreover, derived B models can be seen as a formal specification of a tool
for checking consistency of Lyra models.
 As future work we are planning to further strengthen the proposed approach to
automate the Lyra-based development of communicating systems correct by
construction.
 i
cHj�b�a�kld<m�nporq�msbut

This work is supported by EU funded research project IST 511599 RODIN (Rigorous
Open Development Environment for Complex Systems).

v w

xry�z{yp|{yp}�~9y��

[1] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Reference

Manual. Addison Wesley, 1999.
[2] S. Leppänen, M. Turunen, and I. Oliver. Application Driven Methodology for Devel-

opment of Communicating Systems. FDL’04, Forum on Specification and Design
Languages, Lille, France, September 2004.

[3] S. Leppänen. The Lyra Method. Technical report, Tampere University of
Technology, Finland, 2005.

[4] J.-R. Abrial. The B Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

[5] J. Derrick, D. Akehurst, and E. Boiten. A framework for UML consistency.
<<UML>> 2002 Workshop on Consistency Problems in UML-based Software
Development, pages 30-45, Dresden, Germany, October 2002.

[6] UML 2.0 Infrastructure Specification: http://www.omg.org/docs/ptc/03-09-15.pdf
[7] 3GPP. Technical specification 25.305: Stage 2 functional specification of UE

positioning in UTRAN. See http://www.3gpp.org/ftp/Specs/html-info/25305.htm
[8] S. Schneider. The B Method. An introduction. Palgrave, 2001.
[9] MATISSE Handbook for Correct Systems Construction. EU-project MATISSE:

Methodologie and Technologies for Industrial Strength Systems Engineering, IST-
199-11345, 2003. http://www.esil.univ-mrs.fr/~spc/matisse/Handbook

[10] ClearSy, Aix-en-Provence, France. Atelier B - User Manual, Version 3.6, 2003.
[11] J.-R. Abrial. Event Driven Sequential Program Construction. 2001.

http://www.atelierb.societe.com/ressources/articles/seq.pdf
[12] R. J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.

Springer-Verlag, 1998.
[13] G. Engels, J. M. Kuster, R. Heckel, and L. Groenewegen. Towards Consistency–

Preserving Model Evolution. In Proceedings of the International Workshop on
Principles of Software Evolution, Orlando, Florida, pages 129–132, 2002.

[14] S.-K. Kim and D. Carrington. A Formal Object-Oriented Approach to defining
Consistency Constraints for UML Models. In Proceedings of the 2004 Australian
Software Engineering Conference (ASWEC’04), pages 87–94, 2004.

���"�����"�
�����
���&�����"���Y�
� ��� ��� ������� � ��¡£¢¥¤
��¢�¡&�¦�§����¨ ¡&�6©&�-ª¬«���¡&­ ¡¯®-°� ��� ��� ������� � ��¡£¢�±²����«�� �³����¨ ªµ´

¶¸· �u¹º�¯»�¼{�"½¾�;���"�����"�
�����
�
� ��� ��� ������� � ��¡£¢"¿{¡&���¯À¬�Á� ��ÂYª¬¨ � ��ªÃ�� ¤
�£´Ä��¨ �<À¬�Á�§¢7¡&�;Å¥Æ-ÇÈ� ��ªÃ�-Æ�±É�&�£�-®¯� �³� � ��Â&°-´Ä�Á� �³´�Ê �-´Ã�-� �7ª¬«

���"���;�uË{Ì�Í����¥Î �Y�¸Ï¯Ì£�¥���¥½Ð�ÑÌ��³»"�Y¼pÒ������Ó�&�Y�£��¹�¼�½¾�Ó�"�Ñ���µ�
»&�µ�Ô���
� ¤
�£´Ä��¨ �<À¬�Á��¡-¢¥¤
��¢�¡&�¦�§����¨ ¡Y�³Â °È´Ä�Á� �³´�ÂYª¬¨ � ��ªÃ�-´

ÕÃÖ�×ºØ Ù ÚÜÛ Ý Þ{Û Ý Þ"ß¥à²Ù Ý ÙÕÃÖ¸ÖáØâÞ"ÛÉã�Ù²Ý¯Þ;äÜÙ�Þ

