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Abstract

We consider words together with a compatibility relation induced by a relation
on letters. Unique factorization with respect to two arbitrary word relations R

and S defines the (R, S)-freeness of the semigroup considered. We generalize
the stability theorem of Schützenberger and Tilson’s closure result for (R, S)-
free semigroups. The inner and the outer (R, S)-unique factorization hull and the
(R, S)-free hull of a set of words are introduced and we show how they can be
computed. We prove that the (R, S)-unique factorization hulls possess a defect ef-
fect, which implies a variant of a cumulative defect theorem of word semigroups.
In addition, a defect theorem of partial words is proved as a corollary.
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1 Introduction

Let A be an alphabet. If a set of n words in a free semigroup A+ generated by
the letters of A satisfies a nontrivial relation then these words can be written as
products of at most n − 1 words. This basic result is called the defect theorem of
words and it is used in many different connections [3, 13, 17, 18]. Actually, there
exist several defect theorems depending on the restrictions that are put to the n−1
words [15]. A typical formulation of the defect effect is to say that the rank of the
smallest free semigroup containing a set of words X is strictly smaller than the
cardinality of X if and only if X is not a code. By rank we mean the cardinality of
the base of the semigroup. The smallest free semigroup containing X is the free
hull of X .

In this paper the above mentioned concepts are generalized with respect to
word relations. These are reflexive and symmetric relations, which are induced
by letter relations. They were introduced in [14] to generalize the notion of a
partial word as presented by J. Berstel and L. Boasson in 1999 [1]. Since then
combinatorics on partial words has been widely studied; see [4–12, 16]. Motiva-
tion for this research comes partly from the study of biological sequences such as
DNA, RNA and proteins [6].

In [14] we defined codes with respect to two arbitrary word relations R and S.
Such (R, S)-codes model the situation where some of the letters in a message are
changed to related letters, but the message can still be decoded in a proper manner.
Here we consider the free subsemigroups of A+ generated by (R, S)-codes. Our
aim is to examine defect effects of such semigroups. Basic definitions and results
are shortly revisited in Section 2. The starting point of this work is the (R, S)-
unique factorization of elements in a subsemigroup of A+. Unique factorization
and freeness with respect to word relations are defined in Section 3. Section 4 is
devoted to characterizing these properties with stability conditions. A modified
Schützenberger’s criterium is proved. In Section 5 we show that under some re-
strictions there exists the smallest semigroup in A+ where a set X ⊆ A+ can be
factorized (R, S)-uniquely. The inner and the outer (R, S)-unique factorization
hulls are defined. The existence of these hulls is a consequence of a generalized
Tilson’s result. In addition, the result implies the existence of the (R, S)-free hull
of X . Section 6 describes procedures for finding the hulls. Finally, we prove
a defect effect concerning (R, S)-unique factorizations hulls in the last section.
Moreover, a cumulative defect theorem of (R, S)-free hulls is proved as a corol-
lary. Consequently, a defect theorem of partial words follows.

We end this section with some notation. The empty word is denoted by ε. The
sets of all finite words and finite nonempty words over A are denoted by A∗ and
A+, respectively. With the operation of catenation A∗ is a free monoid and A+ is
a free semigroup generated by the letters of A. The length of a word w, denoted
by |w|, is the total number of (occurrences of) letters in w. A word u is called a
prefix (resp. a suffix ) of a word v if there exists a word w such that v = uw (resp.
v = wu). A prefix (resp. a suffix) of v of length n is denoted by prefn(v) (resp.
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sufn(v)). For subsets L, K ⊆ A∗, we let

LK = {uv | u ∈ L, v ∈ K},

Li+1 = LiL,

L+ =
⋃

i≥1

Li, L∗ = L+ ∪ {ε}.

2 Word relations and relational codes

Let R ⊆ X × X be a relation on a set X . We often write x R y instead of
(x, y) ∈ R. Then R is a compatibility relation if it is both reflexive and symmetric,
i.e., (i) ∀x ∈ X : x R x, and (ii) ∀x, y ∈ X : x R y =⇒ y R x. The identity
relation on a set X is defined by

ιX = {(x, x) | x ∈ X}

and the universal relation on X is defined by

ΩX = {(x, y) | x, y ∈ X}.

Subscripts are often omitted when they are clear from the context. Clearly, both
ιX and ΩX are compatibility relations on X .

A compatibility relation R ⊆ A+×A+ on the set of all words over an alphabet
A will be called a word relation if it is induced by its restriction on the letters, i.e.,

a1 · · ·am R b1 · · · bn ⇐⇒ m = n and ai R bi for all i = 1, 2, . . . , m

whenever a1, . . . , am, b1, . . . , bn ∈ A. Let S be a relation on A. By 〈S〉 we
denote the compatibility relation generated by S, i.e., 〈S〉 is the reflexive and
symmetric closure of the relation S. Sometimes we need to consider the restric-
tion of a relation R on a subset X of A+. We denote RX = R ∩ (X × X).
Words u and v satisfying u R v are said to be compatible or, more precisely,
R-compatible. For example, in the binary alphabet A = {a, b} the compatibil-
ity relation R = 〈{(a, b)}〉 = {(a, a), (b, b), (a, b), (b, a)} makes all words with
equal length compatible with each other. In the ternary alphabet {a, b, c} we have
abba R baab but, for instance, words abc and cac are not compatible.

Clearly a word relation R satisfies the following two conditions:

multiplicativity: u R v, u′ R v′ =⇒ uu′ R vv′,
simplifiability: uu′ R vv′, |u| = |v| =⇒ u R v, u′Rv′.

However, a word relation R does not need to be transitive. From now on the rela-
tions on words considered in this presentation are supposed to be word relations
induced by some compatibility relation on letters.
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Let 2X denote the power set of X , that is, the family of all subsets of X

including the empty set ∅ and X itself. For a word relation R on A+, let the
corresponding function R : 2A+

→ 2A+

be defined by

R(X) = {u ∈ A+ | ∃ x ∈ X : x R u}.

If X contains only one word w ∈ A+, we denote R(X) shortly by R(w). The
function R is multiplicative in the following sense.

Lemma 1 ([14]). Let R be a word relation on A+. Then R(X)R(Y ) = R(XY )
for all X, Y ⊆ A+. Especially, R(X)+ = R(X+) for all X ⊆ A+.

In [14] we considered relational codes. Let R and S be two word relations on
the semigroup A+. A subset X ⊆ A+ is an (R, S)-code if for all n, m ≥ 1 and
for all x1, . . . , xm, y1, . . . , yn ∈ X we have

x1 · · ·xm R y1 · · · yn ⇒ n = m and xi S yi for i = 1, 2, . . . , m.

If S is the identity relation ι, then an (R, S)-code is called a strong R-code, or
shortly just an R-code. A strong R-code is always a pairwise non compatible
set, but the converse does not hold in general. An (R, R)-code is called a weak
R-code. An (ι, ι)-code is simply called a code. The definition coincides with the
original definition of a variable length code.

We note the following results proved in [14]. Suppose that R1, R2 and S

are relations on A+ satisfying R1 ⊂ R2. If X is an (R2, S)-code, then X is an
(R1, S)-code. Similarly, consider the relations R, S1 and S2 satisfying S1 ⊂ S2.
If X is an (R, S1)-code, then X is an (R, S2)-code. Note that (R, S)-codes are
always (ι, ι)-codes, i.e., codes in the usual meaning.

Theorem 1 ([14]). Every (R, S)-code X is a code.

Moreover, we have the following characterization of (R, S)-codes.

Theorem 2 ([14]). Let X be a subset of A+. Then X is an (R, S)-code if and only
if X is an (R, R)-code and RX ⊆ SX .

3 Unique factorization and freeness

All elements in the semigroup X+ generated by an (R, S)-code X have a "rela-
tionally unique" X-factorization. In the sequel we consider these unique factor-
izations more closely. Let S be an arbitrary subsemigroup of A+. A subset B of a
semigroup S such that S = B+ is called a generating set of S. A generating set
is called minimal if no proper subset of B is a generating set of S. Every S ⊆ A+

has a unique minimal generating set. Namely, it is the set of indecomposable ele-
ments of S, i.e., S\S2. We call this set the base of S. The cardinality of the base
is called the rank of S: rank(S) = |S \S2|. Note that, for each subset X ⊆ A+,
the base of the semigroup X+ is X \ X2.
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Let T be a semigroup containing a semigroup S. Denote the base of T by B.
Since S ⊆ T = B+, each x ∈ S has at least one B-factorization: x = x1 · · ·xm

with xi ∈ B for i = 1, 2, . . . , m. The element x is said to posses an (R, S)-unique
B-factorization in S if, for every compatible factorization y = y1 · · · yn ∈ S with
yj ∈ B for all j = 1, 2, . . . , n, the following condition holds:

x = x1 · · ·xm R y1 · · · yn ⇒ n = m and xi S yi for i = 1, 2, . . . , m. (∗)

Note that if R = S = ι this definition coincides with the original definition of
unique B-factorization. Moreover, we say that x ∈ S possesses an (R, S)-unique
B-factorization in T if the condition (∗) holds also for every y ∈ T.

Next we define two extensions of the semigroup S with respect to (R, S)-
unique factorization. The semigroup T containing S is called an inner (R, S)-
unique factorization extension of S if every element of S has an (R, S)-unique
T \ T2-factorization in S. In addition, the semigroup T is called an outer (R, S)-
unique factorization extension of S if every element of S has an (R, S)-unique
T \ T2-factorization in T. Hence, every outer (R, S)-unique factorization exten-
sion of S is also inner (R, S)-unique factorization extension. In the sequel, if
the type of the (R, S)-unique factorization extension is not specified, the state-
ment is valid for both inner or outer extensions. For these extensions we use the
abbreviation (R, S)-ufe.

In the above, the (R, S)-unique factorization extension T is called a strong
R-unique factorization extension, a weak R-unique factorization extension or a
unique factorization extension if S = ι, R = S or R = S = ι, respectively. The
following three results describing the role of these special cases can be compared
with Theorem 1 and Theorem 2.

Theorem 3. Let S be a subsemigroup of A+. Every inner (resp. outer) (R, S)-ufe
of S is an inner (resp. outer) (ι, ι)-ufe of S.

Proof. Let T be an inner (R, S)-unique factorization extension of S and let B

be the base of T. Suppose that x ∈ S has two B-factorizations: x1 · · ·xm =
x = y1 · · · yn, where xi, yj ∈ B for all i and j. Since always ι ⊆ R, we have
x1 · · ·xm R y1 · · · yn. By the assumption, it follows that m = n and xi S yi. Espe-
cially, this means that |xi| = |yi|. Therefore, considering the two B-factorizations
of x, we must have xi = yi. Thus T is an inner (ι, ι)-unique factorization exten-
sion of S. The proof for the outer (R, S)-ufe is similar.

For inner and outer (R, S)-unique factorization extensions we have character-
izations in terms of weak R-unique factorization extensions with some additional
conditions concerning the order of the word relations R and S.

Theorem 4. Let S be a subsemigroup of A+ and let T be a semigroup containing
S. The semigroup T is an inner (R, S)-ufe of S if and only if T is an inner
(R, R)-ufe and RS ⊆ SS.
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Proof. Let T be an inner (R, S)-unique factorization extension of S. Let B be
the base of T. Let x1 · · ·xm ∈ S and y1 · · ·yn ∈ S satisfy x1 · · ·xm R y1 · · · yn,
where xi, yj ∈ B for all i and j. By the assumption, it follows that m = n and
xi S yi. Especially, this means that |xi| = |yi|. By the simplifiability of word
relations, x1 · · ·xm R y1 · · · ym implies xi R yi for all i = 1, 2, . . . , m. Hence, T is
an inner (R, R)-ufe of S. Clearly, RS ⊆ SS for all (R, S)-unique factorization
extensions of S.

Conversely, suppose that T is an inner (R, R)-ufe of S, RS ⊆ SS and B is
the base of T. Let x1 · · ·xm ∈ S and y1 · · ·yn ∈ S satisfy x1 · · ·xm R y1 · · · yn,
where xi, yj ∈ B for all i and j. Since T is an inner (R, R)-ufe, it follows that
m = n and xi R yi. Especially this means that |xi| = |yi|. Since RS ⊆ SS,
we have also x1 · · ·xm S y1 · · · ym. By the simplifiability of word relations, it
follows that xi S yi for all i = 1, 2, . . . , m. Hence, T is an inner (R, S)-unique
factorization extension of S.

For an outer (R, S)-ufe of S, the characterization takes the following form.

Theorem 5. Let S be a subsemigroup of A+ and let T be a semigroup containing
S. The semigroup T is an outer (R, S)-ufe of S if and only if T is an outer
(R, R)-ufe and, for all x ∈ S, we have R(x) ∩ T ⊆ S(x) ∩ T.

Proof. If T is an outer (R, S)-unique factorization extension of S, then using the
same kind of reasoning as in the previous proof, we see that T is also an outer
(R, R)-ufe and the condition R(x) ∩ T ⊆ S(x) ∩ T is satisfied for all x ∈ S.

Conversely, suppose that T is an outer (R, R)-ufe of S and
R(x) ∩ T ⊆ S(x) ∩ T for all x ∈ S. Let B be the base of T. Assume that
x = x1 · · ·xm ∈ S and y = y1 · · · yn ∈ T satisfy x1 · · ·xmRy1 · · · yn, where
xi, yj ∈ B for all i and j. Since T is an outer (R, R)-ufe, it follows that m = n

and xi R yi. Especially this means that |xi| = |yi|. Since y ∈ R(x) ∩ T, we also
have y ∈ S(x)∩T by the assumption. In other words, x S y. By the simplifiability
of word relations, it follows from |xi| = |yi| that xi S yi for all i = 1, 2, . . . , m.
Hence, T is an outer (R, S)-unique factorization extension of S.

We define further that a semigroup which is its own (R, S)-unique factoriza-
tion extension is called (R, S)-free. Note that the definitions of outer and inner
extensions coincide in this case. Strong R-freeness, weak R-freeness and freeness
of an (R, S)-free semigroup are defined similarly as above, i.e., S = ι, R = S or
R = S = ι, respectively. By using (R, S)-codes we have the following character-
ization of (R, S)-free semigroups.

Theorem 6. Let X ⊆ A+. Then the following conditions are equivalent.

(i) X is an (R, S)-code.

(ii) X+ is (R, S)-free and X is its base.
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Proof. Suppose first that X is an (R, S)-code. By Theorem 1, X is a code and
thus X = X\X2. Therefore X is the base of X+. Consider now an element of X+

with an X-factorization x1 · · ·xm. Since X is an (R, S)-code, the condition (∗)
holds for all y1, . . . , yn ∈ X . Thus X+ is its own (R, S)-unique factorization
extension and therefore it is (R, S)-free.

Conversely, suppose that X+ is (R, S)-free and X is its base. Since X+ is
its own (R, S)-unique factorization extension with base X , then the condition (∗)
holds for all x1, . . . , xm, y1, . . . , yn ∈ X . Thus, X is an (R, S)-code.

By the above theorem, it is clear the (ι, ι)-free semigroups are the free semi-
groups in the original meaning of freeness. Relational freeness of a semigroup of
A+ implies the following facts about the considered word relations.

Theorem 7. Let S be an (R, S)-free semigroup of A+. The following conditions
hold.

(i) If S ⊆ R, then RS = SS.

(ii) If R ∩ S = ι, then RS = ιS

Proof. Since S is an (R, S)-free semigroup, every element of S satisfies the con-
dition (∗). Thus RS ⊆ SS. If S ⊆ R, then SS ⊆ RS ⊆ SS, i.e., RS = SS. Also
if R ∩ S = ι, then RS = RS ∩ SS = ι.

The next theorem follows from the code characterization of (R, S)-free semi-
groups.

Theorem 8. A semigroup S ⊆ A+ is (R, S)-free if and only if S is (R, R)-free
and RB ⊆ SB for the base B of S.

Proof. Let B be the base of the semigroup S. By Theorem 6, S is (R, S)-free if
and only if B is an (R, S)-code. By Theorem 2, B is an (R, S)-code if and only
if B is an (R, R)-code and RB ⊆ SB . Using again Theorem 6, this is true if and
only if S = B+ is (R, R)-free and RB ⊆ SB .

We have also the following corollary.

Corollary 1. The full semigroup A+ for an alphabet A is (R, S)-free if and only
if R ⊆ S.

Proof. By the definition of a word relation, the semigroup A+ is (R, R)-free with
base A. Thus, by the previous theorem, A+ is (R, S)-free if and only if RA ⊆ SA.

Note that, for (R, S)-free semigroups, the characterizing condition on the or-
der of the relations R and S can be easily expressed using the base of the semi-
group. This is not the case for inner and outer (R, S)-unique factorization ex-
tensions of S. The condition RS ⊆ SS for inner (R, S)-unique factorization
extensions cannot be replaced by RB ⊆ SB, where B is the base of S. Consider
the following example.
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Example 1. Let S be a semigroup with base B = {ab, a, c}. Define R =
〈{(b, c)}〉 and S = ι. Clearly the semigroup with base {a, b, c} is an inner (R, R)-
ufe of S. Now RB ⊆ SB is satisfied, since there are no R-compatible base ele-
ments in S. But there does not exist an inner (R, S)-ufe of S, since ab R ac, but
(ab, ac) 6∈ S. Since an inner (R, S)-ufe is also an outer (R, S)-ufe, the base con-
dition RB ⊆ SB is not sufficient for outer (R, S)-unique factorization extensions
either.

Moreover, let BS be the base of S and assume that S ⊆ T. The following
implications are valid in general:

(∀ x ∈ S : R(x) ∩ T ⊆ S(x) ∩ T) =⇒ RS ⊆ SS =⇒ RBS
⊆ SBS

.

Suppose now that S = T and S is (R, S)-free, in other words, it is an outer and
an inner (R, S)-unique factorizations extensions of itself. Thus, for such S, the
(R, R)-unique factorizations of its elements implies

RBS
⊆ SBS

⇔ RS ⊆ SS.

and, for all x ∈ S = T, it clearly holds R(x) ∩ T ⊆ S(x) ∩ T. Hence, the above
mentioned implications are equivalences in this special case.

4 Stability

A semigroup T ⊆ A+ is called intrinsically (R, S)-stable over a semigroup S if
S ⊆ T and for all u, v, w, u′, v′, w′ ∈ A+ satisfying conditions

(i) u R u′, w R w′ and v R v′,

(ii) uwv, u′w′v′ ∈ S and uw, v, u′, w′v′ ∈ T,

we have u, w ∈ T and u S u′. This situation is illustrated in Figure 1. Similarly, T
is called extrinsically (R, S)-stable over S if condition (ii) above is replaced by

(ii)′ uwv ∈ S or u′w′v′ ∈ S and uw, v, u′, w′v′ ∈ T.

If a semigroup is (R, S)-stable over itself, we shortly call it (R, S)-stable. Note
that in this case the definitions of intrinsic and extrinsic (R, S)-stability coincide.
As above, we talk about strong and weak R-stability depending on whether S = ι

or S = R. The definition of (R, S)-stable semigroups coincides with the original
definition of stable word semigroups in the case R = S = ι.

Next we prove, how stability and unique factorization are related to each other.

Theorem 9. Let S be a semigroup in A+. A subsemigroup of A+ is an inner (resp.
outer) (R, S)-unique factorization extension of S if and only if it is intrinsically
(resp. extrinsically) (R, S)-stable over S.
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u w v

︸ ︷︷ ︸ ︸ ︷︷ ︸

∈ T ∈ T

∈ S

u′ w′ v′

︷ ︸︸ ︷ ︷ ︸︸ ︷
∈ T ∈ T

R R R

∈ S

⇒ u, w ∈ T, u S u′

Figure 1: Illustration of (R, S)-stability of T in S

Proof. Let us prove the theorem for inner extensions and intrinsic stability. The
proof for the outer and extrinsic case is similar. Assume that S is a subsemigroup
of T. Let T be intrinsically (R, S)-stable over S and let B be the base of T. Sup-
pose now that T is not an inner (R, S)-unique factorization extension of S. Then
there exist words x1, . . . , xm, y1, . . . , yn ∈ B such that x1 · · ·xm, y1 · · · yn ∈ S,
x1 · · ·xm R y1 · · · yn and (xi, yi) ∈ S for i = 1, 2, . . . , k − 1 < min{m, n}, but
(xk, yk) 6∈ S. We may now assume that k 6= 1, k 6= m and k 6= n by replac-
ing the word x1 · · ·xm with x1 · · ·xmx1 · · ·xmx1 · · ·xm and the word y1 · · · yn

with x1 · · ·xmy1 · · · ynx1 · · ·xm. By the symmetry, we may further suppose that
|xk| ≤ |yk|.

Consider first the case |xk| = |yk|. Then xk R yk. Choose now







u = x1 · · ·xk,
w = xk+1 · · ·xm,
v = x1 · · ·xm,

and







u′ = y1 · · · yk,
w′ = yk+1 · · · yn,
v′ = y1 · · · yn.

Since these words in A+ satisfy the conditions (i) and (ii) and T is intrinsically
(R, S)-stable, we have x1 · · ·xk S y1 · · ·yk. By the simplifiability of a word rela-
tion, we have xk S yk. A contradiction.

Hence, we must have |xk| < |yk|. Thus, we may write yk = y′y′′, where
y′, y′′ ∈ A+ and |y′| = |xk|. Write also xk+1 · · ·xm = x′′x, where x′′, x ∈ A+ and
|x′′| = |y′′|. Note that the word x is not empty since x R yk+1 · · · yn. Let us now
choose







u = y1 · · · yk−1y
′,

w = y′′,
v = yk+1 · · · yn,

and







u′ = x1 · · ·xk,
w′ = x′′,
v′ = x.

Since |xi| = |yi| for i = 1, 2, . . . , k − 1, the conditions (i) and (ii) of the (R, S)-
stability of T over S are satisfied. Since T is intrinsically (R, S)-stable over S,
we have y1 · · · yk−1y

′, y′′ ∈ T and y1 · · · yk−1y
′ S x1 · · ·xk. This in turn enables us
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to use the intrinsic (R, S)-stability over S again. We choose






u = y1 · · · yk−1,
w = y′,
v = y′′yk+1 · · · yn,

and







u′ = x1 · · ·xk−1,
w′ = xk,
v′ = xk+1 · · ·xm,

and we get y′ ∈ T. Now yk = y′y′′ ∈ T2. This is impossible since y1 is an element
of the base T \ T2. Hence, T must be an (R, S)-unique factorization extension
of S.

Conversely, let T be an inner (R, S)-unique factorization extension of S and
let B be the base of T. Furthermore, assume that words u, v, w, u′, v′, w′ ∈ A+

satisfy the conditions (i) and (ii). Thus we may write uw, v, u′, w′v′ as products
of elements of the base B:

uw = x1 · · ·xk

v = v1 · · ·vl

u′ = u1 · · ·um

w′v′ = y1 · · · yn

Since u R u′, w R w′ and v R v′, we have by the multiplicativity of word relations
that

x1 · · ·xkv1 · · · vl R u1 · · ·umy1 · · ·yn.

Since T is an inner (R, S)-unique factorization extension of S and
x1 · · ·xkv1 · · · vl, u1 · · ·umy1 · · · yn ∈ S, we conclude that k + l = m + n and
corresponding elements of the both sides are S-compatible and furthermore of the
same length. Since |u′| = |u| < |uw|, we have

u′ = u1 · · ·um S x1 · · ·xm = u and w = xm+1 · · ·xk ∈ B+.

In other words, u, w ∈ T and u S u′. Hence, T is intrinsically (R, S)-stable
over S.

This result gives as an easy consequence the following theorem concerning
(R, S)-stable and (R, S)-free semigroups. It is called here the generalized
Schützenberger’s criterium, for comparison see [2].

Corollary 2. (generalized Schützenberger’s criterium) A subsemigroup of A+

is (R, S)-free if and only if it is (R, S)-stable.

Proof. By the definition of (R, S)-freeness, (R, S)-free subsemigroup T of A+ is
an (R, S)-unique factorization extension of itself. This is possible if and only if T

is (R, S)-stable (over itself) by the previous theorem.

Note that the usual formulation of Schützenberger’s criterium for semigroups
follows easily by assigning R = S = ι.

Corollary 3. A subsemigroup of A+ is free if and only if it is stable.
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5 Hulls

Using the stability results of the previous section it is easy to prove the following
closure property of (R, S)-unique factorization extensions.

Theorem 10. Let S be a semigroup of A+. Any intersection of inner (resp. outer)
(R, S)-unique factorizations extensions of S is an inner (resp. outer) (R, S)-
unique factorization extension of S.

Proof. We prove the theorem for inner extensions. The proof for outer exten-
sions is similar. Let Ti be an inner (R, S)-unique factorization extension of S

for each i ∈ I. Set T = ∩i∈ITi. Clearly T is a semigroup as an intersection of
semigroups. Moreover, it is nonempty, since the intersection contains S. Con-
sider now words u, w, v, u′, w′, v′ satisfying u R u′, w R w′ and u R u′. Assume
that uwv, u′w′v′ ∈ S and uw, v, u′, w′v′ ∈ T. By the definition of T, this means
that uw, v, u′, wv′ ∈ Ti for all i ∈ I. Since every Ti is an inner (R, S)-unique
factorization extension of S, every Ti is intrinsically (R, S)-stable over S by
Theorem 9. Hence, we have u, w ∈ Ti for all i ∈ I and u S u′. This means that
u, w ∈ T and u S u′, i.e., T is intrinsically (R, S)-stable. Using Theorem 9 again,
we conclude that T is an inner (R, S)-unique factorization extension of S.

As a corollary of the previous theorem we get the following result concern-
ing (R, S)-free semigroups. It is called here the generalized Tilson’s result, for
comparison see [19].

Corollary 4. (generalized Tilson’s result) Any nonempty intersection of (R, S)-
free subsemigroups of A+ is (R, S)-free.

Proof. Let Si be an (R, S)-free subsemigroup of A+ for each i ∈ I. Suppose
that the intersection S = ∩i∈ISi is nonempty. Clearly S is a semigroup. By the
definition of (R, S)-freeness, every Si is an (R, S)-unique factorization extension
of itself. Thus, every Si is an (R, S)-unique factorization extension of S. By
Theorem 10, S is an (R, S)-unique factorization extension of itself and therefore
(R, S)-free.

Note that the previous theorem could have been proved also using Corollary 2.
In that case the proof is similar to the proof of Theorem 10. As a special case
R = S = ι of Corollary 4 we have also proved the usual formulation of Tilson’s
result for words.

Corollary 5. Any nonempty intersection of free subsemigroups of A+ is free.

Let X be an arbitrary subset of A+. Consider now the following sets of (R, S)-
unique factorization extensions of X+:

E i
R,S(X) = {S | S is an inner (R, S)-ufe of X+},

Eo
R,S(X) = {S | S is an outer (R, S)-ufe of X+}.

10



First we note that if X is a generating set of a semigroup S, then E i
R,S(S) =

E i
R,S(X) and Eo

R,S(S) = Eo
R,S(X). Secondly, note that these sets may be empty.

This was already seen in Example 1. On the other hand, it follows from Theorem
10 that the set E i

R,S(X) (resp. Eo
R,S(X)) is closed under intersection. Thus, if

E i
R,S(X) is nonempty, there exists a semigroup

Ei
R,S(X) =

⋂

S∈Ei
R,S

(X)

S,

which is the smallest inner (R, S)-unique factorization extension of X+. It is
called the inner (R, S)-unique factorization hull of X or, shortly, the inner (R, S)-
hull of X . The similar result holds also for outer (R, S)-unique factorization ex-
tensions. We denote the outer (R, S)-unique factorization hull of X by Eo

R,S(X)
and call it shortly the outer (R, S)-hull of X . As noted above, the existence of
these hulls depends on the relations R and S and the set X itself. By Corollary
1, the sets E i

R,S(X) and Eo
R,S(X) are nonempty at least if R ⊆ S. Namely, in

this case A+ is an (R, S)-unique factorization extension of any of its subsemi-
groups. Thus we always have E i

R,R(X) 6= ∅ and Eo
R,R(X) 6= ∅. For simplicity,

we denote Ei
R,R(X) = Ei

R(X) and Eo
R,R(X) = Eo

R(X) in the sequel. These hulls
are shortly called weak inner and outer R-hulls of X , respectively. Weak hulls
play an important role among relational hulls as will be stated in the following
theorem.

Theorem 11. Let X be a subset of A+. The inner (R, S)-hull of X exists if and
only if RX+ ⊆ SX+ , in which case Ei

R,S(X) = Ei
R(X).

Proof. Since the inner (R, R)-hull of an arbitrary set X ⊆ A+ always exists, the
condition RX+ ⊆ SX+ is necessary and sufficient for the existence of the (R, S)-
hull by Theorem 4.

Suppose now that an inner (R, S)-hull of a set X exists. By Theorem 4, every
inner (R, S)-ufe of X is a weak R-ufe of X . Thus, the smallest weak R-ufe of X

is contained in the intersection of all inner (R, S)-unique factorization extensions
of X . In other words, Ei

R(X) ⊆ Ei
R,S(X). Suppose that Ei

R(X) 6= Ei
R,S(X). Now

the (R, R)-unique factorization extension Ei
R(X) is not an (R, S)-unique factor-

ization extension of X+. Hence, there exist x, y ∈ X+ such that (x, y) ∈ R \ S.
This contradicts the above mentioned condition on the inclusion of the relations.
Thus, we must have Ei

R(X) = Ei
R,S(X)

Using similar consideration we may also prove the corresponding result for
outer (R, S)-hulls.

Theorem 12. Let X be a subset of A+. The outer (R, S)-hull of X exists if and
only if, for all x ∈ X+, we have R(x) ∩ Eo

R(X) ⊆ S(x) ∩ Eo
R(X), in which case

Eo
R,S(X) = Eo

R(X).
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We also have similar results for (R, S)-free semigroups. If the set

FR,S(X) = {S | X+ ⊆ S ⊆ A+, S is an (R, S)-free semigroup}.

is not empty, we define that the (R, S)-free hull of X ⊆ A+ is

FR,S(X) =
⋂

S∈FR,S(X)

S.

The existence of this smallest (R, S)-free semigroup containing X is based on the
generalized Tilson’s resuls (Corollary 4). Like above we use a shorter notation for
weak R-free hulls, i.e. FR,R(X) = FR(X). For all sets X ⊆ A+, the weak R-free
hull of X exists, since A+ is always (R, R)-free. For (R, S)-free hulls we have a
similar characterization as above.

Theorem 13. Let X be a subset of A+. Let B be the base of the semigroup
FR(X). The (R, S)-free hull of X exists if and only if RB ⊆ SB , in which case
FR,S(X) = FR(X).

The proof of this theorem is based on the characterization of (R, S)-free semi-
groups in Theorem 8 and on similar considerations as in the proof of Theorem
11.

Let X be an arbitrary subset of A+. Clearly the outer (R, S)-hull of X is an
inner (R, S)-ufe of X+. Moreover, the (R, S)-free hull of X is an outer (R, S)-
ufe of X+. By the minimality of hulls, we therefore have

Ei
R,S(X) ⊆ Eo

R,S(X) ⊆ FR,S(X). (1)

Suppose further that Y is a set containing X . By the minimality of hulls, it is also
clear that

Ei
R,S(X) ⊆ Ei

R,S(Y ), (2)

Eo
R,S(X) ⊆ Eo

R,S(Y ), (3)

FR,S(X) ⊆ FR,S(Y ). (4)

In the next section we will consider inclusion properties of hulls more precisely.

6 Procedures

Next we consider a method to find the hulls in practise. By the characterizations of
the previous section, we can restrict our considerations to finding weak R-hulls. If
the weak hulls are (R, S)-hulls, this can be verified algorithmically by considering
the inclusion of the relations R and S; see Theorems 11-13.

Let X be a finite subset of A+. In order to construct an inner (R, R)-unique
factorization hull Y + of X , we must prevent "nontrivial" relations in X+. For this

12



purpose, we define that a pair of words (u, v) ∈ Y × Y is an inner R-match for Y

over X if u and v begin a relation at the same position, i.e.,

∃ x′, x′′, y′, y′′ ∈ Y ∗ : x′ux′′, y′vy′′ ∈ X+, x′ux′′ R y′vy′′, and |x′| = |y′|. (5)

In the definition of an outer R-match for Y over X condition (5) is replaced by
the weaker condition

∃ x′, x′′, y′, y′′ ∈ Y ∗ : x′ux′′ ∈ X+, x′ux′′ R y′vy′′, and |x′| = |y′|, (6)

where only one of the words x′ux′′ and y′vy′′ must belong to X+. An inner
or an outer R-match is called nontrivial if (u, v) 6∈ R. Otherwise, the pair is
called trivial. Let us denote the set of nontrivial inner (resp. outer) R-matches
for Y over X by C i

R,X(Y ) (resp. Co
R,X(Y )). Using these sets we can characterize

(R, R)-unique factorization extensions of X+ in the following way.

Lemma 2. Y + is an inner (resp. outer) (R, R)-ufe of X+ if and only if
Ci

R,X(Y ) = ∅ (resp. Co
R,X(Y ) = ∅).

Proof. We give a proof for the inner (R, R)-hulls. The proof for the outer (R, R)-
hulls is similar. If Y + is an inner (R, R)-ufe of X , it is clear that C i

R,X(Y ) must
be empty. Conversely, suppose that C i

R,X(Y ) = ∅. Consider words x1, . . . , xm,
y1, . . . , yn ∈ Y such that x1 · · ·xm R y1 · · · yn and x1 · · ·xm, y1 · · · yn ∈ X+.
Since C i

R,X(Y ) = ∅, we must have x1 R y1. This implies that |x1| = |y1|. Thus
also x2 R y2, for otherwise, C i

R,X(Y ) 6= ∅. Now |x1x2| = |y1y2|. Continuing
similarly, we see that xi R yi for all i = 1, 2, . . . , min{m, n}. By R-compatibility,
|x1 · · ·xm| = |y1 · · · yn|, which implies that n = m. Hence, Y + is an inner
(R, R)-ufe of X+.

For the next procedure we need one more definition. For a word u ∈ Y we
define a set Di

R,X(u, Y ): A word v belongs to Di
R,X(u, Y ) if and only if v = u or

for some positive integer n there exist words u = u0, u1, . . . , un−1, un = v ∈ Y

such that for j = 0, 1, . . . , n − 1 the pair (ui, ui+1) is a trivial inner R-match
for Y over X . If we require that (ui, ui+1) is only a trivial outer R-match, the
corresponding set is denoted by Do

R,X(u, Y ). Let us now define the following
iterative procedure similar to the procedures introduced in [15].

Procedure 1 (Inner hull Pi(X, R)). Let the input be a finite set X ⊆ A+ and a
word relation R on A+. Set X0 = X , and iterate for j ≥ 0:

1. Choose an inner match (u, v) ∈ C i
R,X(Xj) such that u = u′u′′, where |u′| =

|v| and u′′ ∈ A+. If no such pair exists, then stop and return Pi(X, R) = Xj .

2. Set R′(u) = {pref|u′|(w) | w ∈ Di
R,X(u, Xj)} and set R′′(u) =

{suf|u′′|(w) | w ∈ Di
R,X(u, Xj)}.

3. Set Xj+1 =
(
Xj \ Di

R,X(u, Xj)
)
∪ R′(u) ∪ R′′(u).
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When a word u = u′u′′ ∈ Xj is replaced by two new words u′ and u′′ in
Xj+1, this is called a split of u into u′ and u′′. Note that in each iteration step at
least one of the words in Xj is split into two proper factors, since ε 6∈ Xj for any
j ≥ 0. For a finite set of words there are only finitely many factors, and therefore
the procedure must terminate. Next we prove that Procedure 1 computes the inner
(R, R)-hull of X .

Theorem 14. Let X be a finite subset of X+. Then Procedure 1 with input X

returns the base of the inner (R, R)-hull of X , i.e.,

Ei
R(X) \ Ei

R(X)2 = Pi(X, R).

Proof. As mentioned above the procedure Pi always terminates with finite input
X ⊆ A+. Suppose now that the procedure terminates after k iterations. Let us
first show by induction that

X+
j ⊆ Ei

R(X)

for all j = 0, 1, . . . , k. The case j = 0 is clear by the definition of Ei
R(X).

Suppose now that X+
j ⊆ Ei

R(X) and (u, v) ∈ C i
R,X(Xj). We claim that

R′(u) ∪ R′′(u) ⊆ Ei
R(X).

Consider a word w ∈ Di
R,X(u, Xj). Assume first that w = u. We prove that

u′ and u′′ belong to Ei
R(X). Since u and v satisfy condition (5) and we have

x′u, x′′, y′v, y′′ ∈ X+
j ⊆ Ei

R(X) by our induction hypothesis, the intrinsic (R, R)-
stability of Ei

R(X) implies

x′u′, u′′ ∈ Ei
R(X).

Similarly, x′u′, u′′x′′, y′, vy′′ ∈ Ei
R(X) imply

x′, u′ ∈ Ei
R(X).

Suppose then that w ∈ Di
R,X(u, Xj) \ {u} and for some positive integer n there

exist words u = u0, u1, . . . , un−1, un = w ∈ Xj such that ui and ui+1 satisfy
condition (5) and ui R ui+1 for all i = 0, 1, . . . , n − 1. Furthermore, assume that
for i = 0, 1, . . . , n − 1 the words u′

i = pref|u′|(ui) and u′′
i = suf|u′′|(ui) belong

to Ei
R(X). We use the intrinsic (R, R)-stability of Ei

R(X) like above. Since un−1

and un satisfy condition (5) and y′un, y′′, x′u′
n−1 and u′′

n−1x
′′ belong to Ei

R(X),
we have y′u′

n, u′′
n ∈ Ei

R(X), where u′
n = pref|u′|(un) and u′′

n = suf|u′′|(un).
Note that we used the fact that |un−1| = |un|. Moreover, since now the words
y′u′

n, u′′
ny

′′, x′, un−1x
′′ ∈ Ei

R(X), we have u′
n ∈ Ei

R(X) again because of the in-
trinsic (R, R)-stability. Hence, we have proved that R′(u) ∪ R′′(u) ⊆ Ei

R(X).
Thus, we have modified Xj in such a way that we have added only elements
which must belong to the inner (R, R)-hull of X and we have not deleted any es-
sential elements. Namely, X ⊆ X+

j ⊆ X+
j+1, since Di

R,X(u, Xj) ⊆ R′(u)R′′(u).
Therefore, X+

j+1 ⊆ Ei
R(X).
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Since C i
R,X(Xk) = ∅, the semigroup X+

k is an inner (R, R)-ufe of X+ by
Lemma 2. Hence X ⊆ X+

k ⊆ Ei
R(X) and the minimality of the inner (R, R)-

hull of X implies that X+
k = Ei

R(X). Note that Xk consists only of the in-
decomposable elements in X+

k . Namely, consider words x, x′, x′′ ∈ Xk such
that x = x′x′′. Since every x ∈ Xk is a factor of some word in X+, we have
(x, x′) ∈ Ci

R,X(Xk). This is impossible. Thus Xk is the (R, R)-base of Ei
R(X).

In other words, Ei
R(X) \ Ei

R(X)2 = Xk = Pi(X, R).

The procedure for finding the base of the outer (R, R)-hull of X is very
similar to Procedure 1. It is obtained by replacing C i

R,X(Xj) by Co
R,X(Xj) and

Di
R,X(u, Xj) by Do

R,X(u, Xj). We denote this procedure for outer hulls
by Po(X, R). Modifying slightly the previous proof, it is easy to see that Po(X, R)
works.

We may use Procedure 1 also to obtain the (R, R)-free hull of X . Let us define
that (Ei

R)0(X) = X and

(Ei
R)j(X) = Ei

R((Ei
R)j−1(X))

for all integers j > 0. The notation (Eo
R)j(X) is defined similarly. Now we have

the following result.

Theorem 15. Let X be a subset of A+. Then for all j ≥ 0 we have

(Ei
R)j(X) ⊆ (Eo

R)j(X) ⊆ FR(X).

Moreover, for finite X , there exists k ≥ 0 such that (Ei
R)k(X) = (Ei

R)k+1(X), in
which case

(Ei
R)k(X) = (Ei

R)k(X) = FR(X).

Proof. For j = 0, the claim (Ei
R)0(X) = (Eo

R)0(X) = X ⊆ FR(X) is clear.
Suppose then that (Ei

R)j(X) ⊆ (Eo
R)j(X) ⊆ FR(X) for some integer j. Using

properties (1) − (3) of the previous section, we now have

(Ei
R)j+1(X) ⊆ Ei

R((Eo
R)j(X)) ⊆ (Eo

R)j+1(X) ⊆ Eo
R(FR(X)) ⊆ FR(FR(X)).

Since FR(X) is an (R, R)-unique factorization extension over itself, we have
FR(FR(X)) = FR(X). Thus, the first claim is proved.

The second claim is based on the fact that the base of Ei
R((Ei

R)j(X)) contains
only factors of (Ei

R)j(X). For a finite set X , there exist only finitely many factors,
and therefore we must have (Ei

R)k+1(X) = (Ei
R)k(X) for some k. But this means

that (Ei
R)k(X) is an inner (R, R)-ufe of itself. Thus, it is (R, R)-free. Since

(Ei
R)k(X) ⊆ (Eo

R)k(X) ⊆ FR(X), we must have (Ei
R)k(X) = (Eo

R)k(X) =
FR(X) by the minimality of the (R, R)-free hull FR(X).

The previous theorem implies that we can use the following iterative procedure
for finding the base of the weak R-free hull of X .
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Procedure 2 (Free Hull Pf(X, R)). Let the input be a finite set X ⊆ A+ and a
word relation R on A+. Set X0 = X , and iterate for j ≥ 0:

1. Set Xj+1 = Pi(Xj, R).

2. If Xj = Xj+1, then stop and return Pf(X, R) = Xj.

Thus this procedure is based on iterative calculation of inner (R, R)-hulls.
Note that by Theorem 15 we could as well use an algorithm which counts the
outer (R, R)-hulls iteratively. Next we will give some examples of these hulls.
In the first example the inner (R, R)-hull Ei

R(X) is a proper subset of the outer
(R, R)-hull of X . More precisely,

Ei
R(X)  Eo

R(X) = FR(X).

Example 2. Let us consider a set X = {a, ac, dd, ddb} ⊆ {a, b, c, d}+ and a word
relation R = 〈{(a, b), (b, c), (c, d)}〉. It is easy to see that

Ci
R,X(X) = Co

R,X(X) = {(dd, ddb)},

because of the relation dd·a R ddb. Other pairs of words in X do not satisfy condi-
tion (5). By Procedure 1, we therefore have X1 = {a, ac, b, dd} and furthermore
Ci

R,X(X1) = ∅. Thus, X1 = Ei
R(X) \ Ei

R(X)2. On the other hand,

Co
R,X(X1) = {(a, ac), (b, ac)},

since a · b R ac R b · b. Note that ac ∈ X+, but ab and bb belong to X+
1 \ X+.

By extrinsic (R, R)-stability, we define X2 = {a, b, c, dd}. Then Co
R,X(X2) =

{(c, dd)} because of c · c R dd and dd ∈ X+. Finally we get X3 = {a, b, c, d},
which is the base of the weak outer R-hull of X . Moreover, X+

3 is the weak
R-free hull of X .

Next we show that also the outer (R, R)-hull Eo
R(X) can be a proper subset of

the (R, R)-free hull of X , i.e., Ei
R(X) = Eo

R(X)  FR(X).

Example 3. Consider a set X = {eee, fffi, ggi, hh, i} ⊆ {e, f, g, h, i}+ with a
word relation R = 〈{(e, f), (f, g), (g, h)}〉. Using similar computations as in the
previous example, we get sets Xj indicated in Table 1. The relation which effects
a split of words in one step of the procedure is called a split relation. Words of Xj

in relations of the last column are separated by dots. We make some comments
about the calculations. First note that the third column is C i

R,Xj
(Xj) instead of

Ci
R,X(Xj). If we consider the first two lines of Table 1, both R-compatible words

of the split relation belong to X+. This is not the case in fff.gg R gg.fff . Ac-
tually, we cannot build a split relation such that at least one of the R-compatible
words in it belongs to X+. Thus C i

R,X(X2) = Co
R,X(X2) = ∅ and therefore

Ei
R(X) \ Ei

R(X)2 = Eo
R(X) \ Eo

R(X)2 = X2.
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j Xj Ci
R,Xj

(Xj) split relation

0 {eee, fffi, ggi, hh, i} {(eee, fffi), (ggi, hh)} eee.i R fffi

1 {eee, fff, ggi, hh, i} {(ggi, hh)} ggi Rhh.i

2 {eee, fff, gg, hh, i} {(fff, gg)} fff.gg R gg.fff

3 {e, ee, f, ff, gg, hh, i} {(e, ee), (f, ff), (f, gg)} e.ee R ee.e

4 {e, f, gg, hh, i} {(f, gg)} gg.f.f.f R f.f.f.gg

5 {e, f, g, h, i} ∅

Table 1: Calculations for the (R, R)-free hull of Example 3

On the other hand, for j = 2, 3, 4 the split relation is over X+
2 . This means that

X+
5 = Ei

R(X2) = Eo
R(X2), since C i

R,X2
(X5) is clearly empty. Since X5 is an inner

(R, R)-ufe of itself, it is (R, R)-free. Moreover, (Ei
R)2(X) = X+

5 = (Ei
R)3(X).

Thus, by Theorem 15, we have

(Ei
R)2(X) = (Eo

R)2(X) = FR(X).

We may now combine the previous two examples to verify that it is possible
to have

Ei
R(X)  Eo

R(X)  FR(X).

Example 4. Consider a set X = {a, ac, dd, ddb, eee, fffi, ggi, hh, i} in a nine
letter alphabet and define R = 〈{(a, b), (b, c), (c, d), (e, f), (f, g), (g, h)}〉. Since
the alphabets and the relations in Examples 2 and 3 are independent, we may
deduce from the previous calculations that

Ei
R(X) \ Ei

R(X)2 = {a, ac, b, dd, eee, fff, gg, hh, i},

Eo
R(X) \ Eo

R(X)2 = {a, b, c, d, eee, fff, gg, hh, i},

FR(X) \ FR(X)2 = {a, b, c, d, e, f, g, h, i}.

Observe that iterating Procedure 1 with input X and R sufficiently many times
we do not necessarily get the outer (R, R)-hull of X . More precisely, arbitrary
iterations of inner and outer hulls may not be included in each other. Namely, in
our example we have

(Ei
R)2(Xj) \ Eo

R(X) 6= ∅ and Eo
R(X) \ (Ei

R)2(Xj) 6= ∅,

since the base of (Ei
R)2(Xj) is {a, ac, b, dd, e, f, g, h, i}. This is due to the fact

that C i
R,X1

(X2) = ∅ in Example 2.

Finally we note that the presented procedures can be implemented by using
generalized Spehner’s graphs and automata theory; for Spehner’s graphs, see [18].
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7 Defect effect

The well know defect theorem of words says that if a set of n words satisfies a
nontrivial relation, then these words can be expressed simultaneously as products
of at most n − 1 words. This is the so called defect effect. It can be formulated
also in the following way.

Theorem 16. Let X ⊆ A+ be a finite set and let B be the base of the free hull of
X . Then |B| ≤ |X|, and the equality holds if and only if X is a code.

For a short proof of the theorem and more on defect theorems of words, see [15].
We formulate now a defect effect with respect to a word relation R. Note that

the original defect theorem does not hold in general and we need a new nontriv-
ial formulation for the defect in the relational case. Let X be a finite subset of
A+. Let us consider a graph GR(X) = (V, E) defined as follows. The vertices
are the words in X , and (u, v) ∈ E if and only if u R v. We consider the con-
nected components of G. Denote the transitive closure of R by R+ as above. We
note that the set of vertices in the connected component containing x is exactly
(RX)+(x). Denote the number of connected components of GR(X) by c(X, R).
The cardinalities of the original defect theorem are now replaced by the number
of connected components and a defect theorem of inner (R, R)-hulls is given in
the following way.

Theorem 17. Let X be a finite subset of A+ and let B be the base of the inner
(R, R)-hull of X . Then c(B, R) ≤ c(X, R), and the equality holds if and only if
X is an (R, R)-code.

Proof. If X is an (R, R)-code, then X+ is an inner (R, R)-ufe of itself and B = X

by Theorem 6. Thus the equality holds trivially. Suppose now that X is not
an (R, R)-code. Hence there exist words x1, . . . , xm, y1, . . . , yn ∈ X such that
x1 · · ·xm R y1 · · · yn and, for some t ∈ {1, 2, . . . , min{n, m}}, we have xs R ys

for s = 1, 2, . . . , t − 1, but (xt, yt) 6∈ R. Thus, (xt, yt) is a nontrivial inner R-
match and C i

R,X(X) 6= ∅. Hence, X+ 6= Ei
R(X). By Theorem 14, Procedure

1 computes the base of the inner (R, R)-hull of X correctly. Let k > 0 be an
integer such that Xk is the output of the procedure, i.e., B = Xk. We show that
c(Xk, R) < c(X, R). For simplicity, in this proof we denote cj = c(Xj, R). The
vertex set of GR(Xj) is denoted by Vj and the set of edges is denoted by Ej .

First we prove that after each iteration step of the Procedure 1 the number
of connected components of GR(Xj) cannot be greater than the number of the
original connected components of GR(X). In other words,

cj ≤ c0 (7)

for any j satisfying 0 ≤ j < k. For this purpose, we divide the set of edges Ej

into two parts. An edge (u, v) is called a light edge if (u, v) ∈ Ej is a trivial inner
R-match for Xj over X . Otherwise, the edge is called heavy. Let us denote the
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set of vertices in the connected component of Xj containing a vertex u by Cj(u).
If there exists a path from u to v using only light edges, we denote u →Lj

v. We
define also a partition of the vertices of GR(Xj) into light components

Lj(u) = {v ∈ Cj(u) | u →Lj
v}.

Clearly, this is a refinement of the partition of vertices into connected components.
We note that Lj(u) coincides with the set Di

R,X(u, Xj) by the definition. Figure 2
illustrates the edges and components of the graph GR(Xj).

u

v

w

light edge
heavy edge

Lj(u)
Lj(v)

Cj(u) = Cj(v)

Cj(w) = Lj(w)

Figure 2: Components of the graph GR(Xj)

We define further that in Procedure 1 a split of u into parts u′ and u′′ is a good
split if and only if Lj(u) = Cj(u). Otherwise, the split is called bad. Denote
the set of connected components of GR(Xj) by Cj . For a connected component
C ∈ Cj , let l(C) be the number of light components in C, and set

lj =
∑

C∈Cj

(l(C) − 1).

Instead of inequality (7) we will now prove by induction a stronger result

cj + lj ≤ c0, (8)

where 0 ≤ j < k. Note that inequality (7) follows, since lj must always be
nonnegative by the definition.

Consider first the case j = 0. We clearly have l0 = 0. Namely all the R-
compatible words u and v of the vertex set V0 belong to X0 = X and they form a
trivial inner R-match for X0 over X . Thus, there are no heavy edges in the graph
GR(X) and therefore l(C) = 1 for all C ∈ C0. Hence, for j = 0, inequality (8)
holds.

Suppose now that cj + lj ≤ c0. We will prove that cj+1 + lj+1 ≤ c0. By
Procedure 1, we do not delete any edges of a light component except if the whole
component is deleted. Hence, light components cannot split into smaller light
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components. Thus the only way to form connected components with l(C) > 1 is
to connect disconnected light components to each other using only heavy edges.
These heavy edges must appear after some splits. Next we consider all the differ-
ent cases how this may happen.

Let us first consider good splits. Assume that (u, v) ∈ Ci(Xj, R) and let
u = u′u′′, where |u′| = |v| and u′′ ∈ A+ as in Procedure 1. When the word
u splits, according to Procedure 1, the whole connected component Cj(u) =
Lj(u) = Di

R,X(u, Xj) disappears and new vertices R′(u) and R′′(u) are born. By
the construction, we know that R′(u) ⊆ Cj+1(u

′) and R′′(u) ⊆ Cj+1(u
′′). In ad-

dition, we have u′ R v and therefore Cj+1(u
′) = Cj+1(v) ⊇ Cj(v) ∪ R′(u). Thus,

the new vertices R′(u) are connected to an old component containing the vertex
v. In sum, the components Cj(u) and Cj(v) are changed to components Cj+1(u

′′)
and Cj(v). Therefore, the number of connected components cannot increase in a
good split, i.e., cj+1 ≤ cj.

If lj+1 = lj , our claim clearly holds. Assume now that lj+1 > lj . This means
that in the jth iteration step a good split of u induces heavy edges in GR(Xj+1)
in such a way that the number lj increases. These edges are of the form (x, w),
where either x ∈ R′(u) or x ∈ R′′(u). Note that in order to increase the number lj ,
the connected light components must be distinct, i.e., w 6∈ Lj+1(x). We consider
three cases:

(i) x ∈ R′(u), w ∈ Cj(v), (ii) x ∈ R′(u), w 6∈ Cj(v), (iii) x ∈ R′′(u).

In the first case, we have x ∈ R′(u). By Procedure 1, x →Lj+1
u′ and

u′ ∈ Lj+1(v). Thus x →Lj+1
v and Lj+1(x) = Lj+1(v). Hence, if w ∈ Lj(v),

then w ∈ Lj+1(x), which contradicts with our assumptions. On the other hand,
if Lj(w) 6= Lj(v) and w ∈ Cj(v), this means that Lj(w) is already a light com-
ponent of Cj(v) and the new heavy edge does not increase the number of light
components in the connected component of v. This is impossible, since we as-
sumed that the heavy edge (x, w) induces an increase in lj.

In the second case, two distinct old components Cj(v) and Cj(w) are con-
nected. Namely, Cj+1(x) = Cj+1(u

′) ⊇ Cj(v) and Cj+1(x) ⊇ Cj(w). Since
Cj(v) 6= Cj(w), we know that the number of connected components cj is de-
creased by one whereas the number lj is increased by one.

In the third case, we may assume that x 6∈ R′(u). Otherwise, we are in case
(i) or in case (ii). Thus the new heavy edge connects some old component Cj(w)
to the new component Cj+1(u

′′) ⊇ Lj+1(x). Hence, we can make the same con-
clusion as in the previous case.

Note that in both possible cases (ii) and (iii) there may be more decrease in
the number of connected components than it is described above, since also new
light edges may appear. However, the number cj decreases at least as much as the
number lj increases. Therefore, cj+1 + lj+1 ≤ cj + lj ≤ c0 in a good split. Figure
3 illustrates a good split of u in GR(Xj).

For bad splits, the situation is more complicated. Suppose that the split of
u ∈ Xj is a bad split. In other words, suppose that Cj(u) is partitioned into n + 1
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u′

v

w2

w3

w1

Lj(v)

Cj(w3)

Cj(u)

R′(u) R′′(u)

Cj(v)

Cj(w1)

Cj(w2)

Figure 3: Good split of u in GR(Xj)

light components
Lj(u0), Lj(u1), . . . , Lj(un),

where u0 = u. Now the whole component Cj(u) does not disappear in the jth iter-
ation step, since only the elements of Lj(u) split. Depending on the heavy edges
between the light components Lj(u1), Lj(u2), . . . , Lj(un), we get m new con-
nected components, where 0 < m ≤ n. We may assume that these components
are Cj+1(u1), Cj+1(u2), . . . , Cj+1(um). This means that Lj(u) is connected via
m heavy edges to light components Lj(u1), Lj(u2), . . . , Lj(um) and these light
components Lj(ui) are pairwise disconnected. We have

l(Cj(u)) − 1 = n =
m∑

i=1

l(Cj+1(ui)).

This implies that
m∑

i=1

(l(Cj+1(ui) − 1) = n − m.

and we obtain a decrease of size m in lj . An example of a deletion of a light
component Lj(u) is given in Figure 4, where n = 8 and m = 4

Consider then the number of connected components. Because of the new edge
(v, u′) the components Cj(v) and Cj(u) are replaced by components Cj+1(u1),
Cj+1(u2), . . . , Cj+1(um), Cj+1(v) = Cj+1(u

′) and Cj+1(u
′′). In addition to the

edge (v, u′) there may be some other new edges reducing the number of connected
components. If the split induces heavy edges which connect two disconnected old
components, we have exactly the same cases (i) − (iii) as in a good split. This is
based on the fact that if (x, w) is a new heavy edge, then w 6∈ ∪m

i Cj+1(ui). The
length of words in these components Cj+1(ui) is namely greater than the length
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u2

u1

u3

u4Cj+1(u1)

Cj+1(u4)

Cj(u)
Cj+1(u2)

Cj+1(u3)

Lj(u)

deleted heavy edge

Figure 4: Deletion of Lj(u).

of words in R′(u) and R′′(u). Thus increase of size l in lj induced by these new
heavy edges makes a decrease of size l in the number of connected components
cj like in a good split. In other words,

cj+1 + lj+1 ≤ (cj + m − l) + (lj − m + l) = cj + lj ≤ c0

and inequality (8) is proved. A bad split is illustrated in Figure 5.

u′

v
w3

Lj(v)

Cj(w)

Cj+1(u3)

R′(u) R′′(u)

Cj(v)

Cj+1(u1)

Cj+1(u2)
Cj(u)

Lj(u)

Figure 5: Bad split of u in GR(Xj).

Now it remains to show that in the last iteration round of the procedure the
number of the components strictly decreases and we get ck < c0. Assume now that
in Procedure 1 we choose (u, v) ∈ C i

R,X(Xk−1), where u = u′u′′, |u′| = |v| and
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u′′ ∈ A+. More precisely, suppose that there exist x′, x′′, y′, y′′ ∈ X∗
k−1 such that

x′ux′′, y′vy′′ ∈ X+, x′ux′′ R y′vy′′ and |x′| = |y′|. Denote y′′ = y1 · · · yn, where
yi ∈ Xk−1 for all i = 1, 2, . . . , n. Suppose also that in addition to components
Ck(u

′) and Ck(u
′′) there are m new connected components in GR(Xk). These new

components are light components of Ck−1(u). Note that m ≤ lk−1. We consider
two cases.

Assume first that u′′ R y1. This means that Ck(u
′′) = Ck(y1). Since the new

component Ck(u
′′) is now connected to the old component Ck−1(y1), this causes

a decrease by one to the number of connected components. Hence, by inequal-
ity (8), we have

ck ≤ ck−1 + m − 1 ≤ ck−1 + lk−1 − 1 ≤ c0 − 1 < c0 (9)

and we get the desired defect effect.
Suppose next that (u′′, y1) 6∈ R. If y1 6∈ Lk−1(u), then y1 is not split in the final

iteration step and y1 ∈ Xk. Hence, the pair (u′′, y1) is a nontrivial inner R-match
for Xk over X by the relation

x′u′u′′x′′ R y′vy1 · · · yn,

where |x′u| = |y′v|. Therefore C i
R,X(Xk) 6= ∅ and Xj+1 is not the final outcome

of the Procedure Pi(X, R); a contradiction.
Thus, we must have y1 ∈ Lk−1(u). We may denote y1 = y′

1y
′′
1 , where |y′

1| =
|u′|, |y′′

1 | = |u′′| and y′
1 ∈ Lk(u

′). If (u′′, y′
1) 6∈ R, then it is a nontrivial inner

R-match for Xk over X by the relation

x′u′u′′x′′ R y′vy′
1y

′′
1y2 · · · yn,

where |x′u′| = |y′v|. This is again impossible, since C i
R,X(Xk) must be empty.

Thus u′′ R y′
1 and (u′′, y′

1) is a trivial R-match. Hence,

u′′ →Lk
y′

1 →Lk
u′ →Lk

v.

Hence besides the new component Ck(u
′) the component Ck(u

′′) is connected
to the old component Ck−1(v), i.e., Ck(u

′) = Ck(u
′′) = Ck(v), which causes a

reduction in the number of connected components. We conclude that the equation
(9) holds. This proves the defect effect for inner (R, R)-hulls.

As a corollary, we get the defect effect also for the inner (R, S)-hulls.

Corollary 6. Suppose that Ei
R,S(X) exists and let B be the base of the inner

(R, S)-hull of X . Then c(B, R) ≤ c(X, R), and the equality holds if and only if
X is an (R, S)-code.

Proof. This follows from the previous theorem and Theorem 11. Namely, if B

is the base of the (R, S)-free hull of X , then it is the base of the (R, R)-free hull
and c(B, R) ≤ c(X, R). Like above the equality holds if and only if X is an
(R, S)-code.
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For the outer (R, S)-hull of X we have the same defect effect. This can be
proved by modifying the two previous proofs by replacing inner objects, e.g.,
Ei

R(X), C i
R,X(X) and Di

R,X(u, X) by outer objects, e.g., Eo
R(X), Co

R,X(X) and
Do

R,X(u, X).

Theorem 18. Suppose that Eo
R,S(X) exists and let B be the base of the outer

(R, S)-hull of X . Then c(B, R) ≤ c(X, R), and the equality holds if and only if
X is an (R, S)-code.

Using Procedure 2 it is easy to see that the defect effect of inner (R, S)-hulls
produces a cumulative defect effect for (R, S)-free hulls.

Corollary 7. Suppose that FR,S(X) exists and let B be its base. Let k be the
smallest index such that (Ei

R)k+1(X) = (Ei
R)k(X). Then

c(B, R) ≤ c(X, R) − k.

Moreover, c(B, R) = c(X, R) if and only if X is an (R, S)-code.

Proof. Suppose first that X is an (R, S)-code. Then by Theorem 6, X+ is (R, S)-
free and X is its base. Hence, FR,S(X) = X+ and the claim c(B, R) = c(X, R)
follows trivially. Since X+ is (R, S)-free, (Ei

R)(X) = X = (Ei
R)0(X). Hence,

k = 0 in this case.
Suppose then that X is not an (R, S)-code. Hence, by Theorem 6 and Theo-

rem 13, X+ 6= FR,S(X) = FR,R(X). Thus the smallest k such that (Ei
R)k+1(X) =

(Ei
R)k(X) must be positive by Theorem 15. Since FR,S(X) = FR,R(X), we must

have B = FR,R(X)\FR,R(X)2. By our assumption, Procedure 2 stops after k +1
iterations. In other words, Pf(X, R) = (Ei

R,X)k(X). In each of the first k iteration
rounds, we have a defect effect by Theorem 17. Therefore c(B, R) ≤ c(X, R)−k

and c(B, R) 6= c(X, R), since k > 0.

Finally, we consider an application of these defect theorems. Partial words can
be seen as a special case of words with word relations. In [14] we proved that the
compatibility relation ↑ of partial words is a word relation over the alphabet A♦

such that
R↑ = 〈{(♦, a) | a ∈ A}〉.

Thus the previous defect theorems imply a defect theorem on partial words; see
[12]. Codes on partial words, i.e., pcodes were defined in [6]. Naturally, we say
that a semigroup on partial words is pfree if and only if it is generated by a pcode.
The pfree hull of a semigroup X of partial words is the smallest pfree semigroup
containing X . Using our notation pcodes are (R↑, ι)-codes over A♦ and pfree
semigroups are (R↑, ι)-free. The pfree hull of X is the (R↑, ι)-free hull of X .
Now we state:

Corollary 8. Let X be a finite set of partial words, i.e., a set of words over the
alphabet A♦. Suppose that the pfree hull of X exists and let B be its base. Then
|B| ≤ |X|, and the equality holds if and only if X is a pcode.
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Proof. As mentioned above the pfree hull is the (R↑, ι)-free hull of X . Thus, by
Corollary 7, we have c(B, R↑) ≤ c(X, R↑) and the equality holds if and only
if X is an (R↑, ι)-code. Since S = B+ is an (R↑, ι)-free semigroup, we have
(R↑)S ⊆ ιS. This means that all the connected components of GR(B) and GR(X)
must consist of single elements. Thus c(B, R↑) = |B| and c(X, R↑) = |X|. This
implies our statement.

Of course, all the defect theorems on words with word relations could also
be formulated for partial words. For example, we could get a cumulative defect
effect by using inner (R↑, ι)-hulls and the procedure Pf(X, R↑).
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