Tero Harju | Chang Li | lon Petre | Grzegorz Rozenberg

Complexity Measures for
Gene Assembly

Turku CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 781, September 2006

1

Complexity Measures for
Gene Assembly

Tero Harju
Department of Mathematics, University of Turku
FIN-20014 Turku, Finland
harju@utu. fi
Chang Li
Turku Center for Computer Science
Department of Information Technologief&bo Akademi University
FIN-20520 Turku, Finland
| chang@bo. fi

lon Petre
Academy of Finland and

Turku Center for computer Science
Department of Information Technologie&bo Akademi University
FIN-20520 Turku, Finland
i petre@bo. fi
Grzegorz Rozenberg
Leiden Institute for Advanced Computer Science
Neils Bohrweg 1, 2333 CA Leiden, the Netherlands
rozenber @i acs. nl

TUCS Technical Report
No 781, September 2006

Abstract

The process of gene assembly in ciliates is a fascinatingipbeaof programmed
DNA manipulations in living cells. Macronuclear genes apéitanto coding
blocks (called MDSs), shuffled and separated by non-cod@gences to form
micronuclear genes. Assembling the coding blocks from omiaclear genes to
form functional macronuclear genes is facilitated by anrgspive in-vivo imple-
mentation of the linked list data structure of computersoge Complexity mea-
sures for genes may be defined in many ways, including the aunfMDSs,
the number of loci, etc. We take a different approach in tlaiggs and propose
four complexity measures for genes in ciliates, based oreff@t’ required to
assemble the gene. We consider: (a) the types of operats@alsinthe assembly,
(b) the number of operations used in the assembly, (c) tlgtheof the molecular
folds involved, and (d) the length of the shortest possilaalel assembly for
that gene.

“One of the oldest forms of life on Earth has been
revealed as a natural born computer programmer.”
BBC, September 10, 2001.

Keywords: Gene assembly, complexity measures, weights of operations

TUCS Laboratory
Computational Biomodelling Laboratory

1 Introduction

Ciliates are very old eukaryotic unicellular organismstthhrough evolution,
have developed an unusual way of organizing their genomeh Eell has two
types of functionally different nuclei - theacronucleuss the somatic nucleus,
while themicronucleuds the germline nucleus. Depending on the species each
type of nuclei may be present in many copies in each cell.

The macronuclear genes are very short molecules, e.gingaimgthe S.nova
organisms between 200bp and 3700bp, with an average of 2200 length,
see [22], [19], [3], [4]. As a matter of fact, these are theridsi DNA molecules
known in Nature, see [20]! On the other hand, micronuclearogee is orga-
nized on very long chromosomes (about 120 chromosomes vétithbout10?
bp in S.nova, see [19]), with coding sequences occupyingtiesds 2 - 5% of
the genome, see, e.g., [3]. During the process of sexualdeption, ciliates de-
stroy the old macronuclei and transform a micronucleusantew macronucleus.
Ciliates thus have to identify precisely the genetic matexrnd splice it out from
the chromosomes. The complexity of the process is profgumdignified by the
fundamentally different organization of the micronuclead the macronuclear
genomes. This process of converting micronuclear gendseto rnacronuclear
form, calledgene assemblys especially involved in a family of ciliates called
Stichotrichs- we concentrate in this paper on this family.

The macronuclear gene is a contiguous DNA sequence, whiptaced on
its own chromosome, that (with few exceptions only) is nared with other
genes. The same gene in the micronucleus is broken intogptatkedMDSs
(macronuclear destined sequenctst are separated by noncoding blocks called
IESs (internally eliminated sequencedYloreover, the order of MDSs may be
permuted (with respect to their order in the macronucleaejeand some of the
MDSs may be inverted. Here is where the challenge of genedgées: ciliates
have to identify correctly more than 100 000 MDSs in their@ae, see [20],
assemble them together in the macronuclear (orthodox),caded eliminate all
IESs. We refer to [12], [19], [23] for more details on ciliatend gene assembly.

A hint on how ciliates achieve gene assembly is given by thectire of
MDSs. It turns out that ciliates organize their genomic degtbnked listsin the
style used in computer science, see [19]. A short sequente a&nd of each
MDS is repeated at the beginning of the MDS that should folkow the ortho-
dox order, thus (in the terminology of computer scienceyiagras a pointer in
a linked list. It is currently believed that ciliates splityether the consecutive
MDSs on the common pointers to assemble the gene. The madeerie as-
sembly in Stichotrichs, such as, e.qg., [16], [17] and [8]][2gree on this generic
mechanism.

We consider in this paper thitramolecularmodel of [8], [21]. The model is
based on three molecular operatiolas:hi, anddlad. In each of these operations,
the molecule folds on itself so that two or more pointers djghad and through

1

recombination two or more MDSs get combined into a bigger musite MDS.
The process continues until all MDSs have been assembled.

First operation: Id. In the operationloop, direct repeat)-excisiqror Id for
short, a pair of pointers flanking an IES guides the excisfahis IES as a circular
molecule, as illustrated in Fig. 1. The DNA molecule foldstself so that the two
pointers can get aligned, after which the IES is exciseduiindgecombination. As
a result, two MDSs get joined and form a bigger composite MIDS.crucial to
note that the excised molecule is an IES (closed into a @rd¢arm) and so it does
not contain any coding blocks — therefore it is not requigepdrticipate anymore
in the gene assembly process.

(c) (d)

Figure 1: lllustration of théd-rule.

Second operation: hi. The operationhairpin, inverted repeat)-excision/rein-
sertion or hi for short, is applicable to a molecule containing a pair ahpers
where one pointer is the inversion of the other. This is itted in Fig. 2. The
molecule folds on itself forming a hairpin so that the two iegpof the pointer can
get aligned with the same polarity, thus facilitating theambination. Through
recombination, the sequence between the two occurrencie gfointer is in-
verted. One may also note that as a result of applyingwo MDSs are joined
together into a bigger composite MDS, while two IESs aregditogether into a
bigger noncoding block (a bigger composite IES).

O U

(2) (b)

(¢)
(d)

Figure 2: lllustration of théi-rule.

Third operation: dlad. The operatior(double loop,alternating direct repeat)-
excision/reinsertionor dlad for short applies to a DNA molecule containing two
pairs of pointers where the segments delimited by the p&ipomters overlap
with each other. This is illustrated in Fig. 3. The molecuw&l$ into two loops
so that the two copies of the first pointer align with each otheone loop, and
the two copies of the second pointer align with each othdrerother loop. Thus,
the molecule is in position for two recombinations. As a lestithis double
recombination, two sequences are translocated; sever&d\vite joined together
into bigger composite MDSs(see [6] for details).

[

() ®)
(©) (@)

Figure 3: lllustration of thellad-rule.

2 Definitions

We give in this section some basic notions concerning petiaus, strings, and
graphs.

For a finite alphabet = {a4,...,a,}, we denote byr* the free monoid
generated by and call any element of* astring. LetY = {a,, ..., a,}, where
YNY = (. Forp,q € ¥ UYX, we say thap, ¢ have the samsignatureif either
p,q € ¥, 0rp,q € X and we say that they hawkfferent signaturestherwise.
Forp € 3, we say thap is anunsigned lettgrwhile for p € 3, we say thap is a
signed letter

Let ¥ = (S UX)*. Foranyu € ¥, u =2, ... 24, withz; € LU X, for all
1 <i < k,weset|ul]| = ||z1]|...|zx|, where|la|| = ||a]| = a, foralla € .
Also,u =7 ...7,, Wherea = a, foralla € X.

We say that: € ¥*¥ is asigned double occurrence stritiigfor any p € ¥, u
has either 0, or 2 occurrences from the §etp}. In caseu has two occurrences
from the set{p, p}, we say thap is apositive letterin v if the two occurrences
have different signatures, and we say thas a negative letteiin « if the two
occurrences have the same signature. We say that lgtéerdq, p # ¢, overlap
inw if u = wpusquspusqus, for someu; € ¥, 1 < i < 5.

For two signed double occurrence strings, we say thiata substringof w,
denotedy < u, u = ujvusg, for some strings;, us. We say that the signed double

3

(O—) (—)
[[IN
(@) (b)

Figure 4: (a) The squar@,; (b) the diamond);,.

occurrence string is elementaryf « has no substring with v a signed double
occurrence string.

A permutationr over alphabek is a bijectionr : ¥ — X. Fixing the order
relation(a,, as, . . . , a,,) overy, we often denote as the stringr(a,) . .. 7(a,,) €
¥*. A signed permutationver: is a stringyy € X%, where||+|| is a permutation
overy..

A signed graphis a tripleG = (V, E, ¢), whereV is a finite set ofvertices
E CV x Vs the set of (undirectedddgeswith the property thatz, y) € F if
and only if(y,z) € E, and¢ : V — {4+, —} is thesignature function We say
that vertexp € V' is positive if p(p) = + and it isnegativeotherwise. For all
p € V, we denote byV;(p) the neighborhood gf in G, i.e., Ng(p) = {g € V|
(p,q) € E}. ForV’ C V, the subgraph off inducedby V" is Gy = (V', E', ¢'),
whereE' = {(p,q) € E | p,qg € V'}and¢’ : V' — {+,—}, ¢'(p) = ¢(p), for all
peV.

For allp € V we denote by — p the graph induced by the set of vertices
V'\ {p}. We also denote bipc,(G) thelocal complemendf G atp: loc,(G) =
(V,E',¢'), where(z,y) € E'ifand only if (z,y) ¢ E, forall z,y € Ns(p), and
(x,y) € E"ifand only if (z,y) € E otherwise. Alsog'(z) = + if and only if
o(z) = —, forallz € Ng(p), andg'(x) = ¢(z), otherwise.

We denote by, and D, the graphs shown in Fig. 4.

With any signed double occurrence stringver alphabek, we associate a
signed graplG, = (V,,, E.,, ¢.,) as follows:V,, = {p € ¥ | p orp occurs inu},
E, ={(p,q) | pandgqoverlap inu}, andg,(p) = + if and only if p is a positive
letter inu. The graph’,, is called theoverlap graphof w.

For k > 2 we will use throughout the paper the alphabgts= {1,..., k}
andA, ={2,...,k}.

3 Three models for gene assembly

The intramolecular model for gene assembly, [8], [21], hesrbformalized on
several levels of abstraction. The structures of geneseasdresented as: signed
permutations, MDS descriptors, signed double occurreinicgs, or signed over-
lap graphs. Consequently, the process of gene assembly ¢amimlized through
processing of strings, or through processing of graphs.t Agns out, all these

4

levels of abstraction are equivalent as far as the modefiggree assembly is con-
cerned, see [6] for a detailed discussion on model formireyextheless, different
levels of abstraction prove more suitable (more elegargdhrtically simpler) for
different research topics.

In this paper we consider issues dealing with formalizabbthe gene as-
sembly on the level of string permutation, signed doubleugemnce strings, and
signed graphs. We present briefly these three abstractiels leeferring to [6] for
more detalils.

For any gene havingk MDSs, k£ > 1, we may associate a signed permutation
in the following way: associate to the MD®; letteri, 1 < i < k, and to its
inversionM; the signed lettef. Thus the signed permutation associated to the
MDS sequencé/; M ; M, is simply the signed permutatici?2.

We may also associate a signed double occurrence stringmngtgene (more
generally, to any sequence of MDSs), simply by writing itgusence of pointers.
Thus, given a sequence hfMDSs, we associate with each MDSG,;, 2 < i <
k—1, the string consisting of its incoming and outgoing poistéfi+1). With M,
we associate string + 1)i. The first and the last MDS are special because they
contain only one pointer each, and moreover we mark the hegjrof the first
MDS by the beginning marker, and the end of the last MDS by titerearker.

In our coding of these MDSs, we ignore the beginning and tlterearkers —
thus, with)/, we associate stringand with M string2. Similarly, with M, we
associate string and with M, string k, Consequently, with the MDS sequence
MM, M, we associate string223. Also, with the MDS sequenckl, M, M, Ms
we associate string4234.

On a higher level of abstraction, we may associate a graghasequence of
MDS in the following way. Ifu. is the string associated with genethené,, is
the signed overlap graph af,, as defined in Section 2. Thus, the graph associ-
ated with the MDS sequendd; M, M, consists of positive verteX, adjacent to
negative vertex.

The molecular operatiold, hi, dlad are modeled by string rewriting rules as
follows (we will use the notationd, hi, dlad also for the string rules, but this
should not lead to confusion).

Let v be a signed double occurrence string over alphahet

1. Forallp € A, UA,, Id, is defined as follows:
ld,,(uppv) = uv,
whereu,v € A%,
2. Forallp € A, UAy, hi, is defined as follows:
hi, (upvpw) = uvw,

whereu,v € A%

3. Forallp € A, UA,, dlad, , is defined as follows:

dlad, 4 (u1pusquspuaqus) = uiusugtsus,
whereu; € A, forall1 <i <5.

We say that a compositiamof Id, hi, anddlad operations is @duction strat-
egyfor stringu if ¢p(u) = A.
Example 1. Letu = 35265473672488, thenldg is applicable tou: Idg(u) =

and dladg,g (u) = 6765465488.

The corresponding operations for signed graphs are defsyé&dlews (again,
also for the graph rules we will use the same notaliiphi, anddlad). LetG =
(V, E)) be a signed graph.

1. Forallp € V, Id, is applicable ta if and only if p is an isolated negative
vertex inG. When applicableld,(G) = G — p.

2. Forallp € V, hi, 4 is applicable tax if and only if p is an positive vertex
in G. When applicablehi,(G) = loc,(G) — p.

3. Forallp,q € V,dlad, , is applicable ta~ if and only if p andq are adjacent
negative vertices ;. When applicabledlad, ,(G) = (V \ {p, ¢}, E'),
whereFE’ is obtained fromE by complementing the edges that join vertices
in Ng(p) with vertices inNg(¢). This means that:, y) € (E'\E)U(E\E’)
if and only if

z € Ng(p) \ Na(q) andy € Ne(q), or

r € Ng(q) U Ne(q) andy € (Nea(p) \ Na(q)) U (Na(q) \ Na(p)), or
x € Ng(q) \ Na(p) andy € Ne(p).

We say that a composition of Id, hi, anddlad operations is &duction strat-
egyfor graphG if ¢(G) = 0.

Example 2. The signed overlap graph associated to stringn Example 1 is
depicted in Fig. 5

Without risk of confusion, for both the string rules and foetgraph rules we
setLd = {Id, | p > 2}, Hi = {hi, | p > 2}, andDlad = {dlad, , | p,q¢ > 2,p #
q}

Note that the process of gene assembly, and all its formalirm as sorting
permutations, reducing strings, or reducing graphs, aredaberministic. We
illustrate this in the following example.

6

& ©
(¢)
Figure 5: (a) The grapty,, in Example 2; (bhis(G.,); (c) dlads 3(G.,)

Example 3. Consider a double occurrence string = 562324573467. There
are at least two reduction strategies far ¢, = Id;old,odlad;¢odlady 3 and
¢2 = |d5 o) |d6 o) d|ad273 o dlad4,7. |nde6d,

¢1(u) = (Id7 o ld o dlads ¢) (56457467) = (Id; o Id,)(7447) = 1d7(77) = A,

do(u) = (Ids o ldg o dlads 3)(56232635) = (Id5 o Idg) (5665) = Ids(55) = A.

Note that the two strategies have the same numblerayerations, albeit applied
to different pointers.

The following result, adapted from [6] provides an invati&or all sorting
strategies of a given string.

Theorem 1([6]). Letwu be a signed double occurrence string apd ¢, two re-
duction strategies fot.. Theng; and in¢, contain the same number lkaf opera-
tions.

4 First complexity measure: the minimal subset of
operations sufficient for gene assembly

We introduce in this section our first measure of gene conigleéxterms of the
smallest set of (types of) operations that are capable trase a given gene. Our
formalism in this section will be that of signed double oceunce strings. Note
that a similar presentation may also be done in terms of dignephs, see [5].

The concept of (gene) complexity here is the following. Fgneen stringz,
consider reduction strategigsfor x, and take the set, C {Ld,Hi,Dlad} of
those types of operations that are useg.i'We say thatS,, is areduction sefor
Z.

Example 4. Note that a string may have several reduction sets. For msta
if u = 232434, theny,(u) = dlads 4 o hiy is a reduction strategy fou: ¢, =
dlads 4(3434) = A. Thus,{Hi, Dlad} is a reduction set for.. However,{Hi} is
also a reduction set far. Indeed,p, = hi, o hiy o hiz is a reduction strategy fou:
©o(u) = (higohiy)(2424) = hiy(22) = A.

7

We say that a set C {Ld, Hi, Dlad} is aminimal reduction sefor X, if for
anyT C S, whereT is a reduction set for X, we havé = S.

As we will observe at the end of this section, a strixignas a unique minimal
reduction set. Anticipating this result, the following mawt of complexity is well
defined.

Definition 1. The complexity; (X) of a signed double occurrence stridgis a
minimal reduction set ok .

To prove the result announced above, we need to considevéoy & C
{Ld, Hi, Dlad}, what are the strings with S as a reduction set. The first cetapl
characterization was given in [5] in the case of realistimgs. The results were
then extended to signed double occurrence strings in [¥];ctlaracterizations
in [1] are based in part on a notion of break point graphs. Foplcity, we only
consider here the case of elementary strings and the appiro§s].

Theorem 2([5]). Letu be an elementary string.

(i) {Ld} is a reduction set fow if and only if u contains neither overlap, nor
signed letters.

(i) {Ld, Hi} is a reduction set for. if and only if|ju| < 2 or « contains at least
one positive pointer.

(ii) {Ld, Dlad} is a reduction set for if and only ifu contains no signed letters.
(iv) {Ld, Hi, Dlad} is a reduction set for any signed double occurrence string.

We omit in this paper the characterizations of the strings Wi}, {Dlad},
or {Hi, Dlad} as reduction sets. Such characterization have been gi\gh in

Example 5. The R, gene of S.nova is described by the MDS sequence
My My M3 My Ms Mg and its associated string 233445566.

(a) {Ld} as a minimal reduction set for the whole string.
(b) {Dlad} is a minimal reduction set for string323.
(c) {Hi} is a minimal reduction set for stringg23.

(d) String2323 has two reduction strategiegls o hi, andld, o hiz. Thus,{Ld, Hi}
is a minimal reduction set for it.

(e) Thea-TP gene of S.nova is described by the MDS sequéhdd; M M,
My Moy My Mg Mg Mg Mio My Miy. Its associated Str|ng345691011122345
678910111213131414 has{Ld, Dlad} as a minimal reduction set.

8

(f) The actin | gene of S.nova is described by the MDS sequihdé, Ms M
M7 Mg Mo M, M. Its associated string445675678932289 has{Ld, Hi, Dlad}
as a minimal reduction set.

We can now prove the following result.

Theorem 3. Letu # A be an elementary string anl, .S, two minimal reduction
sets foru. ThenS; = S;.

Proof. Assume that there is an elementary stringg A with two different min-
imal reduction sets;, S,. Clearly,S; € S, andS; ¢ S;. We then have the
following cases:

(i) Sy = {Ld}, S, = {Hi}; (vi) Sy = {Ld, Hi}, S, = {Hi, Dlad};
(i) Sy = {Ld}, S, = {Dlad}; (vii) S; = {Ld, Dlad}, S, = {Hi};

(i) Sy = {Ld}, S, = {Hi,Dlad}; (viii) S; = {Ld, Dlad}, S, = {Hi.Dlad};
(iv) S, = {LdHi}, S, = {Dlad}; (ix) Sy = {Hi}, S5 = {Dlad}.

(v) S; = {Ld, Hi}, S, = {Ld, Dlad};

In all cases except (ii) and (vi) we have that one of the redodtets contains
Hi, while the other does not. Consequently, according to odecten set,u
should have at least one signed letter, while accordingether reduction set,
u should have none. Thus,= A, a contradiction.

In Cases (ii) and (vi) has two reduction strategies: one containing at least one
Ld- operation, another containing none. This is a contraahdty Theorem 1. [

Corollary 4. The complexity measufg is well defined.

5 Second complexity measure: weights associated
with the assembly operations

The concept of our second measure of complexity is straoghtfrd: a gene is
more “complex” than another if it requires more “effort” t@ lassembled. The
simplest way to measure the “effort” required to assemblgenggene is through
counting the number of operations required in the reduction

Definition 2. Letu be a signed double occurrence string apd reduction strat-
egy foru. We denote bgzg”(@ the number ofd, hi, anddlad operations iny.
Then the complexit@!” (u) is defined as:

e (u) = min{e€{" () | ¢ is a reduction strategy for u

Example 6. Consideru = 232434 and reduction strategies;, ¢, for v as given
in Example 4. Thee!" (¢;) = 2, while € () = 3. Itis easy to see that
eM(u) = 2.

Clearly, to find the complexity,’gl)(u) for a given stringu, one needs to find
the length of a reduction strategyfor u using maximum number aflad opera-
tions. Indeed, note th&t andhi operations reduce the length of the string by two,
while dlad operations reduce the length of the string by four.

Finding the complexitﬁgl)(u) is easy ifC;(u) # {Hi,Dlad}. Indeed, based
on Theorem 1, it is easy to see that in this case, for any twactexh strategies
andy for u, we haveC" (o) = € (1). Itis currently unknown how to compute
e (u) if € (u) = {Hi, Dlad}.

Considering the molecular model of td&ad operations, with a double fold
and two simultaneous recombination, it may sometimes besirable to maxi-
mize the number oflad operations as done when comput'(hb) (u). A different
idea is to associateeightswith each ofld, hi anddlad and consequently to any re-
duction strategy. Associating weights to the operationglneedone in at least two
ways: either by introducing a (fixed) weight for each type pé@tion, or through
variable weights depending on the type of operation andttivegsto which the
operation applies. We illustrate both ideas in the follayvin

Definition 3. For any operationf € LdUHiUDlad, we define’;’gz)(f) as follows:
COf) =y, if f € Ld; €P(f) = e, if f € Hi; and €Y (f) = ¢, if f € Dlad,
wherec;, ¢3, c3 > 0. Then for a compositiop = fyo---o f1, f; € LdAUHiuUDIad,
we let€,” () = 31, €57 (/).

For a signed double occurrence stringthe complexit)@f) (u) is defined as

e (1) = min{C{? () | ¢ is a reduction strategy foru

Note that if we defin€? (f) = 1, foranyf € LdUHiUDIad, thenc{? = e{":
we only count the number of operations in each strategy.

Example 7. Letu = 232434 and lety,, ¢, be reduction strategies far as in
Examples 4 and 6. Let assign the weights as follo@g'(f) = 0 for f € Ld,
P (f) = 1for f € Hi, &P(f) = 3for f € Dlad. Then€{”(¢;) = 4 and
e (py) =3

2 (p2) :

A more refined measure of complexity may be introduced depgnuh the
length of the strings “manipulated” by each operation: tegth of the string
inverted byhi,, and the length of the strings translocateddid, ,. In the case
of Id,, the excised string is always the samgand so, for simplicity, we may set
the complexity ofld equal to zero. Formally this is defined as follows.

Definition 4. Letu be a signed double occurrence string.
(i) For any operationid, applicable tou, we Iet€(23)(ldp, u) = 0.

(i) For any operationhi, applicable tou, we Iet(ig?’)(hip, u) = |us|, whereu =
upugpus, for some stringsiy, us, us.

10

(ili)For any operationdlad,,, applicable tou, we letC$” (dlad,, ,, u) = |us|+ w4,
whereu = upusquzpusqus, for some stringsi; , uq, us, g, Us.

For a reduction strategy, = f, o ---o f; for u, f; € Ld U Hi U Dlad, we
let &5 (o, u) = S (i, (fiii o -+ f1)(u)). Then we define the complexity
¥ (u) b

2 (u) by

P (1) = min{€{¥ (p,u) | ¢ is a reduction strategy forlu

Example 8. Letu = 3445675678932289 be the string associated with the gene
actin 1 in S.nova. Thep; = Idg odlad; 5 old, o hi; o hig o hig o his is a reduction
strategy foru:

(
Uy = hig(uy) = 822445675678,
us = hig(us) = 7657654422,
ws = his(ug) = 76576544,
us = Idy(uyg) = 765765,

U = dlad775(u5) = 66,
ur = ldg(ug) = A.

HenceC (o1, u) = €5 (his, u) + C5F (hig, ur) + €Y (hig, us) + €5 (hia, us) +
CY(1dy, ua) + €S (dlady 5, us) + €S (Idg, ug) = 10412+ 1040404240 = 34.

Note thatp, = his o hiy o dladg g o Id7 o dlad; o Id, is also a reduction strategy
for u:

1 = Idy(u) = 3567567893229,
vy = dlads (v1) = 3778932289,
Vs = Idy (vs) = 38932289,

vy = dladgo(v3) = 3322,

vs = hiy(vy) = 33,

v = hiz(vs) = A.

ThusC (¢, 1) = € (Idy, u) + € (dlads 6, v1) + €57 (Id7, 1) + CF (dlads g,
U3) + 653)(“2, U4) + 8(23)(hl3, U5) = 0.

A natural question here is: what are the strings with the mmeg?’) (u) com-
plexity? We discuss this issue in the next section, whereamsider the simple
operations for gene assembly.

11

6 Third complexity measure: simple operations

As discussed above, one way to introduce a complexity medsugene assem-
bly is by considering the length of the molecular folds imed in every step of
the assembly. We consider in this section simple versiois bf, anddlad where
the operations can only be applied on the shortest possils. flt is known that
LdUHiUDIad is a complete model, in the sense that any gene (alternatsighed
permutation, string, or graph) may be assembled in this mede [7]. It turns
out that the simple operations are not complete: there ataiceatterns that
cannot be assembled through simple operations. Remariadhgh, all known
micronuclear gene sequences, see [2], can indeed be assethimugh simple
operations.

The molecular model for simple, hi, anddlad was introduced in [11]. Due
to lack of space, we only give here a short intuitive predestiafollowed by its
formalization as rewriting rules for signed permutatiofgt formalizations on the
level of MDS descriptors and signed double occurrencegsnme refer to [11].

As observed in Section 3 must always be simple — the excised sequences
may never contain coding blocks for the assembly to succeesimplehi, one
only inverts sequences containiagmost one MDSSimilarly, in simpledlad, the
two sequences that are translocated may contain altogetheyst one MDSNe
refer to [11] for details.

As noted in Section 3, when working with signed permutatiovesignore the
|d operation and model gene assembly as a process of sortigigedpermutation
rather than as a process of pointer elimination. Sinhpl@nddlad are modeled
through the following operations for signed permutations.

1. Foreaclp > 1, sh, is defined as follows:

J=ap...p+)p+i+1)...(p+k)y,
J=ap...p+)p+i+1)...(p+k)y,

pti)...p)=x(p+k)...(pTi+)P +i)...py,
shy(z(p+k)...(p+i+1)p...(p+10)y) =xz(p+k)...(p+i+1)(p+1)...Dy,

wherek > i > 0 andz, y, z are signed strings ovét,,. LetSh = {sh; |
1 <i<n}.

2. Foreaclp, 2 <p <n —1,sd, is defined as follows:

sdp(zp...(p+))ylp—1)(p+i+1)z) =aylp—p...(p+i)p+i+ 1)z,
sdy(z(p—1)(p+i+Dyp...(p+i)z) =z(p—1)p...(p+9)(p+i+ 1)yz,

12

where:; > 0 andzx, y, z are signed strings ovet,,. We also defingd; as
follows:

sdy(z(p+i+ D —Dylp+i)...p2)=x(p+i+ D(p+i)...B(p - Dyz,
sdy(z(p+i)...py(p+i+ Dp—1Dz)=ay(p+i+ D(p+i)...pp— 1)z

wherei > 0 andz, y, z are signed strings ovet,,. LetSd = {sd;,sd; | 1 <
i <n}.

We say that a signed permutatiorover a set of integer§i, i+ 1,...,i+1}is
sortableif there are operations, . .., ¢, € ShUSd such that ¢y o ... o ¢1)(n)
is a sorted permutation. We say thais blockedif neither ansh operation, nor an
sd operation is applicable to andr is not sorted.

Letp = ¢po...00¢1, ¢; € ShUS, forall 1 < i < k. We say thaty is
a strategyfor = if ¢(n) is either sorted or blocked. In the former case we say
that¢ is asorting strategywhile in the latter case we say thats aunsuccessful
strategyfor .

Example 9. Let 7 = 2431 be a signed permutation. Thdsh; osds)(7) =

sh;(2341) = 4321, a sorted permutation.

One may introduce “elementary” versionssbfandsd, where only one letter
IS rewritten in every step, rather than strings ashirandsd. We introduce them
in the following.

3. For eaclp > 1, eh, is defined as follows:

ehp(zplp+1)y) =aplp+1)y, eh(z(p+T)py) =z +1)Dy,

ehy(zp(p+1y)=aplp+1)y, eh(zlp+1)py)=2(p+1)py,
wherez, y are signed strings ovét,,. LetEh = {sh, | 1 < p < n}.

4. Foreachp > 1,2 <p <n —1, ed, is defined as follows:

edp(zpy(p—1)(p+1)2)=zy(p—1)pp+1)=
edy(r(p—1)(p+1ypz)=a(p-1)plp+1)y=,
edy(z(p+1)(p—1ypz) =2+ 1)plp—1)yz,
ed,(zpy(p+1)(p—1)2)=2y(p+1pp—1)2

wherez, y, z are signed strings ovét,. LetEd = {sd, | 1 < p < n}.

Example 10. (a) Letm = 345612. Then(eh, o ehgoehyoehs)(r) = 345612
is a sorted permutation.

(b) Letn’ = 345612. Thenn' is not Eh UEd-sortable. Indeed, neh or ed
operation is applicable ta’.

13

Lemma 5. For any signed permutation, if eh,(ed,, resp.) is applicable tor,
for somep, thensh,(sd,, resp.) is also applicable ta andeh,(w) = sh, ()
(ed,(m) = sd, (), resp.)

Note that Lemma 5 does not hold in the reverse direction:={ 142 3, then
sdo(m) = 1234, while ed, is not applicable tor.

As illustrated by the next example, it turns out that EheJ Ed-model isnon-
deterministic

Example 11.Letm = 13524. Note thatr has both sorting and non-sorting
strategies in the elementary model. Indegdl; oed,)(w) = 12345, a sorted
permutation. On the other hand;, = eds;(7) = 15234 is not sorted and neh
or ed operation is applicable ta’.

Due to nondeterminism, deciding whether a given permutas&h-, Ed-, or
Eh U Ed-sortable is difficult. A complete answer may be found in [18¥§sed on
an involved notion of dependency graph.

The simple model however is different. A permutation mayered have sev-
eral different strategies, but they are either all sortmgall non-sorting. More-
over, [13] also defines a notion sfructure of a permutatioand notes that the
results obtained after applying these strategies, thouftgreht, have the same
structure In this way, deciding whether or not a given permutatiois Sh-, Sd-,
or Shu Sd-sortable is easy: simply apply operations from the dessegtdn an
arbitrary order; if the final blocked permutation is sortéebn the answer is ‘yes’,
otherwise the answer is ‘no’: there are no sorting strasigier.

Example 12. (a) The permutationr; = 4671235 has several sorting strategies.
Here are some of them:

(1)

7 = sds oshg oshy(m) = 4567123,
7% = sd; o shg o shy () = 4567123,
¥ = sdy o shg o shy () = 6712345,
7T§4) = shg oshy osdy(m) = 6712345.

(b) The permutationr, = 13685724 has several unsuccessful strategies. Here
are some of them:

(1)

Ty = sdy osd7(my) = 12367854,
7 = sdy 0 sdg(m2) = 12385674,
7Y = sdy 0 sd7(ms) = 18567234,
7Y = sdj o sdg(ms) = 18567234.

14

7 Fourth complexity measure: parallelism

The previous three measures of complexity all deal w&huentiacompositions
of operations leading to the assembly of a given gene. Wedatre in this section
a fourth measure of complexity dealing with more genpeabllel assembliesf
genes.

A systematic study of parallelism for gene assembly has etated in [15].
We only consider in this paper a graph-based presentatiparaflelism, although
a string-based study is also possible, see [15].

Intuitively, a set of operations can be applied in paralkebtgene pattern if
only if each operation’s applicability is independent of tither’s. In other words,
a number of operations can be applied in parallel to a gererpat they can be
(sequentially) applied in any order to that gene patterrieftaat this is consistent
with how parallelism and concurrency are defined in compatance.

E.g., theC; gene of S.nova described by the MDS sequehGé/, M3 M,
requires threéd operations. The threleds can be applied independently of each
other and so, they can be applied in parallel. Also, the migctear geneR;
of S.nova described by the MDS sequedeM, Ms M, Ms Mg, requires fiveLd
operations, and all of them can be applied at once. Cons#yugsa parallel
complexity is one, the same as geftie

Parallelism can be defined in terms of signed graphs as fsllow

Definition 5 ([15]). LetS C LdUHiuDIlad be asetof rulesandletG = (V, E, o)
be a signed graph. We say that the rulesinan be applied in parallel té- if for
any orderingpy, wo, . . ., x Of S, the compositiorpy o - - - 0 ¢ IS applicable taG.

The following result provides a simple criterium for twoeslto be applicable
in parallel.

Lemma 6 ([15]). LetG = (V, E, o) be a signed graph and let,¢) € Ld UHi U
Dlad be two rules applicable t6f with dom(y) N dom(¢) = 0.

() If ¢ € Ld, thenyp and can be applied in parallel te-.

(i) If ¢ = hi, withp € V, theny and can be applied in parallel t@+ if and
only if Ng(p) Ndom(y)) = 0.

(i) If ¢, € Dlad, theny and can applied in parallel to G if and only if the
subgraph of G induced ljom(y¢) U dom(v)) is not isomorphic to eithef,
or Dy.

According to the definition, if a set of rules is applicablgarallel to a signed
graph, then any composition of these rules is applicabladabdraph. This defi-
nition does not require that the result of applying différemmpositions of rules
must be the same. However, it can be proved that this is inttieechse.

15

& &) &)
(@) (b)

Figure 6: (a) A graph with parallel complexity two; (b) A gtapvith parallel
complexity three.

Lemma 7 ([15]). If »,¢ € LdUHiUDlad are applicable in parallel to the signed
graphG, thenp((G)) = 1 (p(G)).
The general case follows now easily from Lemma 7.

Theorem 8([15]). LetG be a signed graph and l&t C Ld U Hi U Dlad be a set
of rules applicable in parallel t@7. Then for any two compositions ¢’ of the
rulesins, p(G) = ¢'(G).

Based on Theorem 8 we can now define the notion of parallel =y

Definition 6. Let G be a signed graph. 1§ C Ld U Hi U Dlad is a set of rules
applicable in parallel taz, then we say that is applicable toz and we denote by
S(G) the graph obtained as a result of applying to G any setipleszomposition
of the rules inS.

If S1,52,...,Sr € Ld U HiU Dlad are disjoint sets of rules$; N S; = 0,
for i # j, we say thatS, o ... o S; is applicable toG if S; is applicable to
(Sis10...08))(G), forall1 <i < k. If (Spo...05)(G) = 0, then we say
that S, o ... o S; is a parallel reduction strategy fofz. We say that the parallel
complexity ofS = Sy o0...0.57isCy(S) = k.

We define the parallel complexi@y(G) of G as follows:

C4(G) = min{Cy4(S) | S is a parallel reduction strategy fo}.

Example 13. (a) Any discrete graph can be reduced in one parallel step.
(b) The smallest graph with parallel complexity two is showRig. 6(a).

(c) The smallest graph with parallel complexity three iswhon Fig. 6(b).

Example 14.Let G be the signed overlap graph associated with actin | gene in S.
nova, illustrated in Fig. 7. There are only 6 different maalmarallel strategies

to reduceG:
Sl = {|d7, hlg} o {hig, |d4, dlad576, dladg,g};

Sy = {ldg, his, hig} o {hiy, his, Id4, dlad; 7 };
Sg = {Id6a hlg} e} {hig, |d4, dlad577, dlad&g};
54 = {|d7, hig, hlg} o {hig, hig, |d4, dlad576};
55 = {|d5, hlg} o {hig, |d4, d|ad677, dladg,g};
Sﬁ = {|d5, hig, hlg} 9] {hig, hig, |d4, d|ad677}.

16

Note that there are 3060 sequential strategies to reduceghaph (and as-
semble the gene), see [6] — the reason for this differendeaisrhany sequential
strategies coincide modulo commutation of some rules. & haes may be ap-
plied in parallel.

® G
© ©)

Figure 7: The signed overlap graph associated with string
3445675678932289, both representing the structure of the micronu-
clear genectin | in S.nova.

The following problem seems to be difficult: check whethenot a given set
of rules can be applied in parallel to a given signed grapkhémext theorem we
give a simple criterium in the case when at most tikal rules are to be applied.
Giving a general answer, for an arbitrary numbetiati rules, remains an open
problem.

Theorem 9([15]). LetG be a signed graph anfl C Ld UHiU Dlad a set of rules
containing at most twdlad’s. Let P be the union of domains of rules Kwith
Pt ={pe P |olp) =+},andP~ = P\ P'. Then the rules ir5 can be
applied in parallel toG if and only if the following conditions are satisfied:

(i) The subgraph induced b+ is discrete. Moreover, there is no edge between
vertices inP* and vertices inP~.

(i) The subgraph induced b¥~— does not contain induced squar€s or dia-
mondsD;,.

Figure 8: A negative graph with parallel complexity three.

17

Two conjectures were given in [15] regarding the parallehptexity of graphs.
We proposed that any negative graph may be reduced in at wmgtirallel steps
and that any graph may be reduced in at most four parallet segvisiting these
conjectures and based on a newly available gene assemhlijasim see [18],
we give in the following counterexamples to both these adnjes. It is currently
unknown if the parallel complexity of arbitrary graphs isinded. Several classes
of graphs are shown to have bounded parallel complexity]in [9

Figure 9: A graph with parallel complexity five.

Example 15. (a) The negative grapli-; depicted in Fig. 8 has parallel com-
plexity three. (As a matter of fact, an automated search shbat this is
a smallest such graph in terms of number of vertices.) Indeerd three-
step parallel strategy fo€; is {Ids} o {dlads -} o {dlad; 5, dlad34}. Some
straightforward analysis shows that no two-step or ong-gi@rallel strat-
egy forGG; exists.

(b) The graph7; depicted in Fig. 9 has parallel complexity One 5-step paral-
lel reduction forGs is {ldg, Id1s } o{ldg, Id1, hiz, hiig }o{his, hig}o{his, his } o
{hiy, hiz}.

Acknowledgments The authors gratefully acknowledge support by Academy
of Finland (TH — project 39802, CL — project 203667, IP — pebje08421) and
NSF (GR — grant 0121422).

18

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Brijder, R., Hoogeboom, H.J., Rozenberg, G., Reduitibdf gene patterns
in cliates using the breakpoint graph, to appeaiireoret. Comput. Sci
(2006)

Cavalcanti, A., Clarke, T.H., Landweber, L., MOES DB: a database of
macronuclear and micronuclear genes in spirotrichoustesgiNucleic Acids
Researclt83 (2005) 396—-398.

Chang, W.J., Bryson, P.D., Liang, H., Shin, M.K., Landwe L., The evo-
lutionary origin of a complex scrambled geriroceedings of the National
Academy of Sciences of the U&X42) (2005) 15149-15154

Chang, W.J., Kuo, S., Landweber, L., A new scrambled gartee ciliate
Uroleptus Gene(2006), to appear

Ehrenfeucht, A., Harju, T., Petre, I., and Rozenberg(Z802) Characteriz-
ing the micronuclear gene patterns in ciliatEseory of Comput. Sys35 pp
501-519

Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D. MndaRozenberg, G.
(2004) Computation in Living Cells: Gene Assembly in Ciéigt Springer

Ehrenfeucht, A., Petre, I., Prescott, D. M., and Rozegp&., Universal
and simple operations for gene assembly in ciliates. In: trdvia and

C. Martin-Vide (eds.Words, Sequences, Languages: Where Computer Sci-
ence, Biology and Linguistics Medluwer Academic, Dortrecht, (2001)
pp. 329-342

Ehrenfeucht, A., Prescott, D. M., and Rozenberg, G., fatational aspects
of gene (un)scrambling in ciliates. In: L. F. Landweber, BEnifée (eds.)
Evolution as ComputatigrSpringer, Berlin, Heidelberg, New York (2001)
pp. 216-256

Harju, T., Li, C., and Petre, I., Results on parallel retlons of signed over-
lap graphs, manuscript (2006)

Harju, T., Petre, I., Rogojin, V., and Rozenberg, Gmflie operations for
gene assembly. In: A. Carbone, N. A. Pierce (e@NA Computing: 11th
International Workshop on DNA Computirigecture Notes in Comput. Sci.
3892(2006), 96 — 111.

Harju, T., Petre, |., and Rozenberg, G., Modelling diemgperations for gene
assembly. In: J.Chen, N.Jonoska, G.Rozenberg (B@sptechnology: Sci-
ence and Computatiof2006) 361-376

19

[12] Jahn, C. L., and Klobutcher, L. A., Genome remodeilngiliated protozoa.
Ann. Rev. Microbiol56 (2000), 489-520.

[13] Langille, M., Petre, I. (2006) Simple gene assemblyatedministicFunda-
menta Informatica¢OS Press

[14] Harju, T., Petre, I., Rogojin, V., and Rozenberg, G Q&) Simple operations
for gene assembly, In: Proceedings of the 11th Interndtibleseting on
DNA-based computers DNAllecture Notes in Computer Scien@906)
Springer

[15] Harju, T., Li, C., Petre, I., and Rozenberg, G., Patalie in gene assemby,
In: Proceedings of the 10th International Meeting on DNAdthcomputers
DNA 10, Milan, Italy, Lecture Notes in Computer Scier@@84(2005) 140—
150

[16] Landweber, L. F., and Kari, L., The evolution of celluleomputing: Na-
ture’s solution to a computational problem. IRroceedings of the 4th DI-
MACS Meeting on DNA-Based Computéthiladelphia, PA (1998) pp. 3—-15

[17] Landweber, L. F., and Kari, L., Universal molecular qmmation in cili-
ates. In: L. F. Landweber and E. Winfree (edsvplution as Computatign
Springer, Berlin Heidelberg New York (2002)

[18] Petre, 1., Skogman, S. (2006) Gene assembly simuldtot p://
conbi 0. abo. fi/sinul ator/si nmul at or. php

[19] Prescott, D. M., The DNA of ciliated protozadslicrobiol. Rev.58(2) (1994)
233-267

[20] Prescott, D. M., DNA manipulations in ciliates. In: Wagier, H.Ehrig,
J.Jarhumaki, A.Salomaa (edsgrmal and Natural Computing: essays ded-
icated to Grzegorz Rozenbetg\NCS 2300, Springer (2002) 394417

[21] Prescott, D. M., Ehrenfeucht, A., and Rozenberg, G.lddalar opera-
tions for DNA processing in hypotrichous ciliateSurop. J. Protistology
37(2001) 241-260

[22] Swanton, M.T., Heumann, J.M., Prescott, D.M., Gerze@diDNA molecules
of the macronuclei in three species of hypotrichs: sizaitistion and ab-
sence of nicks. Chromoson7& (1980) 217-227

[23] Yao, M.C., Fuller, P., Xi, X., Programmed DNA DeletionsAan RNA-
Guided System of Genome DefenSejence300 (2003) 1581-1584

20

TURKU

CENTRE for

COMPUTER

SCIENCE

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

\\ ?A ,/ University of Turku
& é e Department of Information Technology
- — 4
[N e Department of Mathematics
AU S
O

Abo Akademi University
e Department of Computer Science
e Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
e Institute of Information Systems Sciences

ISBN 952-12-1775-8
ISSN 1239-1891

