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Abstract

The process of gene assembly in ciliates is a fascinating example of programmed
DNA manipulations in living cells. Macronuclear genes are split into coding
blocks (called MDSs), shuffled and separated by non-coding sequences to form
micronuclear genes. Assembling the coding blocks from micronuclear genes to
form functional macronuclear genes is facilitated by an impressive in-vivo imple-
mentation of the linked list data structure of computer science. Complexity mea-
sures for genes may be defined in many ways, including the number of MDSs,
the number of loci, etc. We take a different approach in this paper and propose
four complexity measures for genes in ciliates, based on the‘effort’ required to
assemble the gene. We consider: (a) the types of operations used in the assembly,
(b) the number of operations used in the assembly, (c) the length of the molecular
folds involved, and (d) the length of the shortest possible parallel assembly for
that gene.

“One of the oldest forms of life on Earth has been
revealed as a natural born computer programmer.”

BBC, September 10, 2001.

Keywords: Gene assembly, complexity measures, weights of operations
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1 Introduction

Ciliates are very old eukaryotic unicellular organisms that, through evolution,
have developed an unusual way of organizing their genome. Each cell has two
types of functionally different nuclei - themacronucleusis the somatic nucleus,
while themicronucleusis the germline nucleus. Depending on the species each
type of nuclei may be present in many copies in each cell.

The macronuclear genes are very short molecules, e.g., ranging in the S.nova
organisms between 200bp and 3700bp, with an average of 2200 bp in length,
see [22], [19], [3], [4]. As a matter of fact, these are the shortest DNA molecules
known in Nature, see [20]! On the other hand, micronuclear genome is orga-
nized on very long chromosomes (about 120 chromosomes, eachwith about107

bp in S.nova, see [19]), with coding sequences occupying as little as 2 - 5% of
the genome, see, e.g., [3]. During the process of sexual reproduction, ciliates de-
stroy the old macronuclei and transform a micronucleus intoa new macronucleus.
Ciliates thus have to identify precisely the genetic material and splice it out from
the chromosomes. The complexity of the process is profoundly magnified by the
fundamentally different organization of the micronuclearand the macronuclear
genomes. This process of converting micronuclear genes to their macronuclear
form, calledgene assembly, is especially involved in a family of ciliates called
Stichotrichs– we concentrate in this paper on this family.

The macronuclear gene is a contiguous DNA sequence, which isplaced on
its own chromosome, that (with few exceptions only) is not shared with other
genes. The same gene in the micronucleus is broken into pieces calledMDSs
(macronuclear destined sequences)that are separated by noncoding blocks called
IESs (internally eliminated sequences). Moreover, the order of MDSs may be
permuted (with respect to their order in the macronuclear gene), and some of the
MDSs may be inverted. Here is where the challenge of gene assembly lies: ciliates
have to identify correctly more than 100 000 MDSs in their genome, see [20],
assemble them together in the macronuclear (orthodox) order, and eliminate all
IESs. We refer to [12], [19], [23] for more details on ciliates and gene assembly.

A hint on how ciliates achieve gene assembly is given by the structure of
MDSs. It turns out that ciliates organize their genomic dataas linked listsin the
style used in computer science, see [19]. A short sequence atthe end of each
MDS is repeated at the beginning of the MDS that should followit in the ortho-
dox order, thus (in the terminology of computer science) serving as a pointer in
a linked list. It is currently believed that ciliates splicetogether the consecutive
MDSs on the common pointers to assemble the gene. The models for gene as-
sembly in Stichotrichs, such as, e.g., [16], [17] and [8], [21], agree on this generic
mechanism.

We consider in this paper theintramolecularmodel of [8], [21]. The model is
based on three molecular operations:ld, hi, anddlad. In each of these operations,
the molecule folds on itself so that two or more pointers get aligned and through
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recombination two or more MDSs get combined into a bigger composite MDS.
The process continues until all MDSs have been assembled.

First operation: ld. In the operation(loop, direct repeat)-excision, or ld for
short, a pair of pointers flanking an IES guides the excision of this IES as a circular
molecule, as illustrated in Fig. 1. The DNA molecule folds onitself so that the two
pointers can get aligned, after which the IES is excised through recombination. As
a result, two MDSs get joined and form a bigger composite MDS.It is crucial to
note that the excised molecule is an IES (closed into a circular form) and so it does
not contain any coding blocks – therefore it is not required to participate anymore
in the gene assembly process.

(a) (b)
(c) (d)

Figure 1: Illustration of theld-rule.

Second operation: hi. The operation(hairpin, inverted repeat)-excision/rein-
sertion, or hi for short, is applicable to a molecule containing a pair of pointers
where one pointer is the inversion of the other. This is illustrated in Fig. 2. The
molecule folds on itself forming a hairpin so that the two copies of the pointer can
get aligned with the same polarity, thus facilitating the recombination. Through
recombination, the sequence between the two occurrences ofthe pointer is in-
verted. One may also note that as a result of applyinghi, two MDSs are joined
together into a bigger composite MDS, while two IESs are joined together into a
bigger noncoding block (a bigger composite IES).

(a) (b)
(c) (d)

Figure 2: Illustration of thehi-rule.
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Third operation: dlad. The operation(double loop,alternating direct repeat)-
excision/reinsertion, or dlad for short applies to a DNA molecule containing two
pairs of pointers where the segments delimited by the pairs of pointers overlap
with each other. This is illustrated in Fig. 3. The molecule folds into two loops
so that the two copies of the first pointer align with each other in one loop, and
the two copies of the second pointer align with each other in the other loop. Thus,
the molecule is in position for two recombinations. As a result of this double
recombination, two sequences are translocated; several MDSs are joined together
into bigger composite MDSs(see [6] for details).

(a) (b)
(c) (d)

Figure 3: Illustration of thedlad-rule.

2 Definitions

We give in this section some basic notions concerning permutations, strings, and
graphs.

For a finite alphabetΣ = {a1, . . . , an}, we denote byΣ∗ the free monoid
generated byΣ and call any element ofΣ∗ astring. Let Σ = {a1, . . . , an}, where
Σ ∩ Σ = ∅. Forp, q ∈ Σ ∪ Σ, we say thatp, q have the samesignatureif either
p, q ∈ Σ, or p, q ∈ Σ and we say that they havedifferent signaturesotherwise.
Forp ∈ Σ, we say thatp is anunsigned letter, while for p ∈ Σ, we say thatp is a
signed letter.

Let Σz = (Σ ∪ Σ)∗. For anyu ∈ Σz, u = x1 . . . xk, with xi ∈ Σ ∪ Σ, for all
1 ≤ i ≤ k, we set‖u‖ = ‖x1‖ . . . ‖xk‖, where‖a‖ = ‖a‖ = a, for all a ∈ Σ.
Also,u = xk . . . x1, wherea = a, for all a ∈ Σ.

We say thatu ∈ Σz is asigned double occurrence stringif for any p ∈ Σ, u
has either 0, or 2 occurrences from the set{p, p}. In caseu has two occurrences
from the set{p, p}, we say thatp is a positive letterin u if the two occurrences
have different signatures, and we say thatp is a negative letterin u if the two
occurrences have the same signature. We say that lettersp andq, p 6= q, overlap
in u if u = u1pu2qu3pu4qu5, for someui ∈ Σz, 1 ≤ i ≤ 5.

For two signed double occurrence strings, we say thatv is a substringof u,
denotedv ≤ u, u = u1vu2, for some stringsu1, u2. We say that the signed double
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(a) (b)

Figure 4: (a) The squareC4; (b) the diamondD4.

occurrence stringu is elementaryif u has no substringv with v a signed double
occurrence string.

A permutationπ over alphabetΣ is a bijectionπ : Σ → Σ. Fixing the order
relation(a1, a2, . . . , am) overΣ, we often denoteπ as the stringπ(a1) . . . π(am) ∈
Σ∗. A signed permutationoverΣ is a stringψ ∈ Σz, where‖ψ‖ is a permutation
overΣ.

A signed graphis a tripleG = (V,E, φ), whereV is a finite set ofvertices,
E ⊆ V × V is the set of (undirected)edges, with the property that(x, y) ∈ E if
and only if (y, x) ∈ E, andφ : V → {+,−} is thesignature function. We say
that vertexp ∈ V is positive ifφ(p) = + and it isnegativeotherwise. For all
p ∈ V , we denote byNG(p) the neighborhood ofp in G, i.e.,NG(p) = {q ∈ V |
(p, q) ∈ E}. ForV ′ ⊆ V , the subgraph ofG inducedby V ′ isGV = (V ′, E ′, φ′),
whereE ′ = {(p, q) ∈ E | p, q ∈ V ′} andφ′ : V ′ → {+,−}, φ′(p) = φ(p), for all
p ∈ V ′.

For all p ∈ V we denote byG − p the graph induced by the set of vertices
V \ {p}. We also denote bylocp(G) the local complementof G at p: locp(G) =
(V,E ′, φ′), where(x, y) ∈ E ′ if and only if (x, y) 6∈ E, for all x, y ∈ NG(p), and
(x, y) ∈ E ′ if and only if (x, y) ∈ E otherwise. Also,φ′(x) = + if and only if
φ(x) = −, for all x ∈ NG(p), andφ′(x) = φ(x), otherwise.

We denote byC4 andD4 the graphs shown in Fig. 4.
With any signed double occurrence stringu over alphabetΣ, we associate a

signed graphGu = (Vu, Eu, φu) as follows:Vu = {p ∈ Σ | p or p occurs inu},
Eu = {(p, q) | p andq overlap inu}, andφu(p) = + if and only if p is a positive
letter inu. The graphGu is called theoverlap graphof u.

For k ≥ 2 we will use throughout the paper the alphabetsΣk = {1, . . . , k}
and∆k = {2, . . . , k}.

3 Three models for gene assembly

The intramolecular model for gene assembly, [8], [21], has been formalized on
several levels of abstraction. The structures of genes can be represented as: signed
permutations, MDS descriptors, signed double occurrence strings, or signed over-
lap graphs. Consequently, the process of gene assembly can be formalized through
processing of strings, or through processing of graphs. As it turns out, all these
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levels of abstraction are equivalent as far as the modeling of gene assembly is con-
cerned, see [6] for a detailed discussion on model forming. Nevertheless, different
levels of abstraction prove more suitable (more elegant or technically simpler) for
different research topics.

In this paper we consider issues dealing with formalizationof the gene as-
sembly on the level of string permutation, signed double occurrence strings, and
signed graphs. We present briefly these three abstraction levels referring to [6] for
more details.

For any geneγ havingk MDSs,k ≥ 1, we may associate a signed permutation
in the following way: associate to the MDSMi letter i, 1 ≤ i ≤ k, and to its
inversionM i the signed letter̄i. Thus the signed permutation associated to the
MDS sequenceM3M 1M2 is simply the signed permutation31̄2.

We may also associate a signed double occurrence string withany gene (more
generally, to any sequence of MDSs), simply by writing its sequence of pointers.
Thus, given a sequence ofk MDSs, we associate with each MDSMi, 2 ≤ i ≤
k−1, the string consisting of its incoming and outgoing pointers: i(i+1). WithM i

we associate string(i+ 1)i. The first and the last MDS are special because they
contain only one pointer each, and moreover we mark the beginning of the first
MDS by the beginning marker, and the end of the last MDS by the end marker.
In our coding of these MDSs, we ignore the beginning and the end markers –
thus, withM1 we associate string2 and withM1 string 2̄. Similarly, withMk we
associate stringk and withMk string k̄, Consequently, with the MDS sequence
M3M1M2 we associate string32̄23. Also, with the MDS sequenceM2M̄4M1M3

we associate string234̄234.
On a higher level of abstraction, we may associate a graph with a sequence of

MDS in the following way. Ifuγ is the string associated with geneγ, thenGγ is
the signed overlap graph ofuγ, as defined in Section 2. Thus, the graph associ-
ated with the MDS sequenceM3M 1M2 consists of positive vertex2, adjacent to
negative vertex3.

The molecular operationld, hi, dlad are modeled by string rewriting rules as
follows (we will use the notationld, hi, dlad also for the string rules, but this
should not lead to confusion).

Let u be a signed double occurrence string over alphabet∆k.

1. For allp ∈ ∆k ∪ ∆k, ldp is defined as follows:

ldp(uppv) = uv,

whereu, v ∈ ∆z

k .

2. For allp ∈ ∆k ∪ ∆k, hip is defined as follows:

hip(upvp̄w) = uv̄w,

whereu, v ∈ ∆z

k .
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3. For allp ∈ ∆k ∪ ∆k, dladp,q is defined as follows:

dladp,q(u1pu2qu3pu4qu5) = u1u4u3u2u5,

whereui ∈ ∆z

k , for all 1 ≤ i ≤ 5.

We say that a compositionφ of ld, hi, anddlad operations is areduction strat-
egyfor stringu if φ(u) = Λ.

Example 1. Let u = 35̄2654736724̄88, then ld8 is applicable tou: ld8(u) =
35̄2654736724̄. Also,hi4 anddlad5,6 are applicable tou: hi4(u) = 35̄2652̄7̄6̄3̄7̄88,
anddlad3,2(u) = 6765465̄4̄88.

The corresponding operations for signed graphs are defined as follows (again,
also for the graph rules we will use the same notationld, hi, anddlad). LetG =
(V,E) be a signed graph.

1. For allp ∈ V , ldp is applicable toG if and only if p is an isolated negative
vertex inG. When applicable,ldp(G) = G− p.

2. For allp ∈ V , hip 4 is applicable toG if and only if p is an positive vertex
in G. When applicable,hip(G) = locp(G) − p.

3. For allp, q ∈ V , dladp,q is applicable toG if and only if p andq are adjacent
negative vertices inG. When applicable,dladp,q(G) = (V \ {p, q}, E ′),
whereE ′ is obtained fromE by complementing the edges that join vertices
inNG(p) with vertices inNG(q). This means that(x, y) ∈ (E ′\E)∪(E\E ′)
if and only if

x ∈ NG(p) \NG(q) andy ∈ NG(q), or

x ∈ NG(q) ∪NG(q) andy ∈ (NG(p) \NG(q)) ∪ (NG(q) \NG(p)), or

x ∈ NG(q) \NG(p) andy ∈ NG(p).

We say that a compositionψ of ld, hi, anddlad operations is areduction strat-
egyfor graphG if ψ(G) = ∅.

Example 2. The signed overlap graph associated to stringu in Example 1 is
depicted in Fig. 5

Without risk of confusion, for both the string rules and for the graph rules we
setLd = {ldp | p ≥ 2}, Hi = {hip | p ≥ 2}, andDlad = {dladp,q | p, q ≥ 2, p 6=
q}.

Note that the process of gene assembly, and all its formalizations, as sorting
permutations, reducing strings, or reducing graphs, are non-deterministic. We
illustrate this in the following example.
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(a) (b) (c)

Figure 5: (a) The graphGu in Example 2; (b)hi4(Gu); (c) dlad2,3(Gu)

Example 3. Consider a double occurrence stringu = 562324573467. There
are at least two reduction strategies foru: φ1 = ld7 ◦ ld4 ◦ dlad5,6 ◦ dlad2,3 and
φ2 = ld5 ◦ ld6 ◦ dlad2,3 ◦ dlad4,7. Indeed,

φ1(u) = (ld7 ◦ ld4 ◦ dlad5,6)(56457467) = (ld7 ◦ ld4)(7447) = ld7(77) = Λ,

φ2(u) = (ld5 ◦ ld6 ◦ dlad2,3)(56232635) = (ld5 ◦ ld6)(5665) = ld5(55) = Λ.

Note that the two strategies have the same number ofld operations, albeit applied
to different pointers.

The following result, adapted from [6] provides an invariant for all sorting
strategies of a given string.

Theorem 1 ([6]). Let u be a signed double occurrence string andφ1, φ2 two re-
duction strategies foru. Thenφ1 and inφ2 contain the same number ofld opera-
tions.

4 First complexity measure: the minimal subset of
operations sufficient for gene assembly

We introduce in this section our first measure of gene complexity in terms of the
smallest set of (types of) operations that are capable to assemble a given gene. Our
formalism in this section will be that of signed double occurrence strings. Note
that a similar presentation may also be done in terms of signed graphs, see [5].

The concept of (gene) complexity here is the following. For agiven stringx,
consider reduction strategiesϕ for x, and take the setSϕ ⊆ {Ld,Hi,Dlad} of
those types of operations that are used inϕ. We say thatSϕ is a reduction setfor
x.

Example 4. Note that a string may have several reduction sets. For instance,
if u = 23̄2̄434, thenϕ1(u) = dlad3,4 ◦ hi2 is a reduction strategy foru: ϕ1 =
dlad3,4(3434) = Λ. Thus,{Hi,Dlad} is a reduction set foru. However,{Hi} is
also a reduction set foru. Indeed,ϕ2 = hi2 ◦ hi4 ◦ hi3 is a reduction strategy foru:
ϕ2(u) = (hi2 ◦ hi4)(24̄24) = hi2(22̄) = Λ.
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We say that a setS ⊆ {Ld,Hi,Dlad} is aminimal reduction setfor X, if for
anyT ⊆ S, whereT is a reduction set for X, we haveT = S.

As we will observe at the end of this section, a stringX has a unique minimal
reduction set. Anticipating this result, the following notion of complexity is well
defined.

Definition 1. The complexityC1(X) of a signed double occurrence stringX is a
minimal reduction set ofX.

To prove the result announced above, we need to consider for every S ⊆
{Ld,Hi,Dlad}, what are the strings with S as a reduction set. The first complete
characterization was given in [5] in the case of realistic strings. The results were
then extended to signed double occurrence strings in [1]; the characterizations
in [1] are based in part on a notion of break point graphs. For simplicity, we only
consider here the case of elementary strings and the approach in [5].

Theorem 2([5]). Letu be an elementary string.

(i) {Ld} is a reduction set foru if and only if u contains neither overlap, nor
signed letters.

(ii) {Ld,Hi} is a reduction set foru if and only if |u| ≤ 2 or u contains at least
one positive pointer.

(iii) {Ld,Dlad} is a reduction set foru if and only ifu contains no signed letters.

(iv) {Ld,Hi,Dlad} is a reduction set for any signed double occurrence string.

We omit in this paper the characterizations of the strings with {Hi}, {Dlad},
or {Hi,Dlad} as reduction sets. Such characterization have been given in[5].

Example 5. TheR1 gene of S.nova is described by the MDS sequence
M1M2M3M4M5M6 and its associated string is2233445566.

(a) {Ld} as a minimal reduction set for the whole string.

(b) {Dlad} is a minimal reduction set for string2323.

(c) {Hi} is a minimal reduction set for string232̄3.

(d) String23̄2̄3 has two reduction strategies:ld3 ◦ hi2 andld2 ◦ hi3. Thus,{Ld,Hi}
is a minimal reduction set for it.

(e) Theα-TP gene of S.nova is described by the MDS sequenceM1M3M5M9

M11M2M4M6M8M10M12M13M14. Its associated string2345691011122345
678910111213131414 has{Ld,Dlad} as a minimal reduction set.
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(f) The actin I gene of S.nova is described by the MDS sequenceM3M4M6M5

M7M9M 2M1M8. Its associated string344567567893̄2̄289 has{Ld,Hi,Dlad}
as a minimal reduction set.

We can now prove the following result.

Theorem 3. Letu 6= Λ be an elementary string andS1, S2 two minimal reduction
sets foru. ThenS1 = S2.

Proof. Assume that there is an elementary stringu 6= Λ with two different min-
imal reduction setsS1, S2. Clearly,S1 6⊆ S2 andS2 6⊆ S1. We then have the
following cases:

(i) S1 = {Ld}, S2 = {Hi}; (vi) S1 = {Ld,Hi}, S2 = {Hi,Dlad};
(ii) S1 = {Ld}, S2 = {Dlad}; (vii) S1 = {Ld,Dlad}, S2 = {Hi};
(iii) S1 = {Ld}, S2 = {Hi,Dlad}; (viii) S1 = {Ld,Dlad}, S2 = {Hi.Dlad};
(iv) S1 = {LdHi}, S2 = {Dlad}; (ix) S1 = {Hi}, S2 = {Dlad}.
(v) S1 = {Ld,Hi}, S2 = {Ld,Dlad};

In all cases except (ii) and (vi) we have that one of the reduction sets contains
Hi, while the other does not. Consequently, according to one reduction set,u
should have at least one signed letter, while according to the other reduction set,
u should have none. Thus,u = Λ, a contradiction.

In Cases (ii) and (vi)u has two reduction strategies: one containing at least one
Ld- operation, another containing none. This is a contradiction by Theorem 1.

Corollary 4. The complexity measureC1 is well defined.

5 Second complexity measure: weights associated
with the assembly operations

The concept of our second measure of complexity is straightforward: a gene is
more “complex” than another if it requires more “effort” to be assembled. The
simplest way to measure the “effort” required to assemble a given gene is through
counting the number of operations required in the reduction.

Definition 2. Letu be a signed double occurrence string andϕ a reduction strat-
egy foru. We denote byC(1)

2 (ϕ) the number ofld, hi, anddlad operations inϕ.
Then the complexityC(1)

2 (u) is defined as:

C
(1)
2 (u) = min{C

(1)
2 (ϕ) | ϕ is a reduction strategy for u}.

Example 6. Consideru = 23̄2̄434 and reduction strategiesϕ1, ϕ2 for u as given
in Example 4. ThenC(1)

2 (ϕ1) = 2, while C
(1)
2 (ϕ2) = 3. It is easy to see that

C
(1)
2 (u) = 2.
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Clearly, to find the complexityC(1)
2 (u) for a given stringu, one needs to find

the length of a reduction strategyϕ for u using maximum number ofdlad opera-
tions. Indeed, note thatld andhi operations reduce the length of the string by two,
while dlad operations reduce the length of the string by four.

Finding the complexityC(1)
2 (u) is easy ifC1(u) 6= {Hi,Dlad}. Indeed, based

on Theorem 1, it is easy to see that in this case, for any two reduction strategiesϕ
andψ for u, we haveC(1)

2 (ϕ) = C
(1)
2 (ψ). It is currently unknown how to compute

C
(1)
2 (u) if C1(u) = {Hi,Dlad}.

Considering the molecular model of thedlad operations, with a double fold
and two simultaneous recombination, it may sometimes be undesirable to maxi-
mize the number ofdlad operations as done when computingC

(1)
2 (u). A different

idea is to associateweightswith each ofld, hi anddlad and consequently to any re-
duction strategy. Associating weights to the operations may be done in at least two
ways: either by introducing a (fixed) weight for each type of operation, or through
variable weights depending on the type of operation and the string to which the
operation applies. We illustrate both ideas in the following.

Definition 3. For any operationf ∈ Ld∪Hi∪Dlad, we defineC(2)
2 (f) as follows:

C
(2)
2 (f) = c1, if f ∈ Ld; C

(2)
2 (f) = c2, if f ∈ Hi; and C

(2)
2 (f) = c3, if f ∈ Dlad,

wherec1, c2, c3 ≥ 0. Then for a compositionϕ = fk ◦ · · · ◦f1, fi ∈ Ld∪Hi∪Dlad,
we letC(2)

2 (ϕ) =
∑k

i=1 C
(2)
2 (fi).

For a signed double occurrence stringu, the complexityC(2)
2 (u) is defined as

C
(2)
2 (u) = min{C

(2)
2 (ϕ) | ϕ is a reduction strategy for u}.

Note that if we defineC(2)
2 (f) = 1, for anyf ∈ Ld∪Hi∪Dlad, thenC

(2)
2 = C

(1)
2 :

we only count the number of operations in each strategy.

Example 7. Let u = 23̄2̄434 and letϕ1, ϕ2 be reduction strategies foru as in
Examples 4 and 6. Let assign the weights as follows:C

(2)
2 (f) = 0 for f ∈ Ld,

C
(2)
2 (f) = 1 for f ∈ Hi, C

(2)
2 (f) = 3 for f ∈ Dlad. ThenC

(2)
2 (ϕ1) = 4 and

C
(2)
2 (ϕ2) = 3.

A more refined measure of complexity may be introduced depending on the
length of the strings “manipulated” by each operation: the length of the string
inverted byhip, and the length of the strings translocated bydladp,q. In the case
of ldp, the excised string is always the same,pp and so, for simplicity, we may set
the complexity ofld equal to zero. Formally this is defined as follows.

Definition 4. Letu be a signed double occurrence string.

(i) For any operationldp applicable tou, we letC(3)
2 (ldp, u) = 0.

(ii) For any operationhip applicable tou, we letC(3)
2 (hip, u) = |u2|, whereu =

u1pu2pu3, for some stringsu1, u2, u3.
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(iii)For any operationdladp,q applicable tou, we letC(3)
2 (dladp,q, u) = |u2|+|u4|,

whereu = u1pu2qu3pu4qu5, for some stringsu1, u2, u3, u4, u5.

For a reduction strategyϕ = fk ◦ · · · ◦ f1 for u, fi ∈ Ld ∪ Hi ∪ Dlad, we
let C

(3)
2 (ϕ, u) =

∑k

i=1 C
(3)
2 (fi, (fi−1 ◦ · · · f1)(u)). Then we define the complexity

C
(3)
2 (u) by

C
(3)
2 (u) = min{C

(3)
2 (ϕ, u) | ϕ is a reduction strategy for u}.

Example 8. Let u = 344567567893̄2̄289 be the string associated with the gene
actin I in S.nova. Thenϕ1 = ld6 ◦ dlad7,5 ◦ ld4 ◦ hi2 ◦ hi8 ◦ hi9 ◦ hi3 is a reduction
strategy foru:

u1 = hi3(u) = 9̄8̄7̄6̄5̄7̄6̄5̄4̄4̄2̄289,

u2 = hi9(u1) = 8̄2̄2445675678,

u3 = hi8(u2) = 7̄6̄5̄7̄6̄5̄4̄4̄2̄2,

u4 = hi2(u3) = 7̄6̄5̄7̄6̄5̄4̄4̄,

u5 = ld4(u4) = 7̄6̄5̄7̄6̄5̄,

u6 = dlad7,5(u5) = 6̄6̄,

u7 = ld6(u6) = Λ.

HenceC(3)
2 (ϕ1, u) = C

(3)
2 (hi3, u)+C

(3)
2 (hi9, u1)+C

(3)
2 (hi8, u2)+C

(3)
2 (hi2, u3)+

C
(3)
2 (ld4, u4)+C

(3)
2 (dlad7,5, u5)+C

(3)
2 (ld6, u6) = 10+12+10+0+0+2+0 = 34.

Note thatϕ2 = hi3 ◦ hi2 ◦ dlad8,9 ◦ ld7 ◦ dlad5,6 ◦ ld4 is also a reduction strategy
for u:

v1 = ld4(u) = 3567567893̄2̄289,

v2 = dlad5,6(v1) = 377893̄2̄289,

v3 = ld7(v2) = 3893̄2̄289,

v4 = dlad8,9(v3) = 33̄2̄2,

v5 = hi2(v4) = 33̄,

v6 = hi3(v5) = Λ.

ThusC(3)
2 (ϕ2, u) = C

(3)
2 (ld4, u)+C

(3)
2 (dlad5,6, v1)+C

(3)
2 (ld7, v2)+C

(3)
2 (dlad8,9,

v3) + C
(3)
2 (hi2, v4) + C

(3)
2 (hi3, v5) = 0.

A natural question here is: what are the strings with the minimalC(3)
2 (u) com-

plexity? We discuss this issue in the next section, where we consider the simple
operations for gene assembly.
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6 Third complexity measure: simple operations

As discussed above, one way to introduce a complexity measure for gene assem-
bly is by considering the length of the molecular folds involved in every step of
the assembly. We consider in this section simple versions ofld, hi, anddlad where
the operations can only be applied on the shortest possible folds. It is known that
Ld∪Hi∪Dlad is a complete model, in the sense that any gene (alternatively: signed
permutation, string, or graph) may be assembled in this model, see [7]. It turns
out that the simple operations are not complete: there are certain patterns that
cannot be assembled through simple operations. Remarkablythough, all known
micronuclear gene sequences, see [2], can indeed be assembled through simple
operations.

The molecular model for simpleld, hi, anddlad was introduced in [11]. Due
to lack of space, we only give here a short intuitive presentation, followed by its
formalization as rewriting rules for signed permutations.For formalizations on the
level of MDS descriptors and signed double occurrence strings we refer to [11].

As observed in Section 3,ld must always be simple – the excised sequences
may never contain coding blocks for the assembly to succeed.In simplehi, one
only inverts sequences containingat most one MDS. Similarly, in simpledlad, the
two sequences that are translocated may contain altogetherat most one MDS. We
refer to [11] for details.

As noted in Section 3, when working with signed permutations, we ignore the
ld operation and model gene assembly as a process of sorting a signed permutation
rather than as a process of pointer elimination. Simplehi anddlad are modeled
through the following operations for signed permutations.

1. For eachp ≥ 1, shp is defined as follows:

shp(xp . . . (p + i)(p + k) . . . (p + i + 1)y) = xp . . . (p + i)(p + i + 1) . . . (p + k)y,

shp(x(p + i) . . . p(p + i + 1) . . . (p + k)y) = xp . . . (p + i)(p + i + 1) . . . (p + k)y,

shp(x(p + i + 1) . . . (p + k)(p + i) . . . p) = x(p + k) . . . (p + i + 1)(p + i) . . . py,

shp(x(p + k) . . . (p + i + 1)p . . . (p + i)y) = x(p + k) . . . (p + i + 1)(p + i) . . . py,

wherek > i ≥ 0 andx, y, z are signed strings overΣn. Let Sh = {shi |
1 ≤ i ≤ n}.

2. For eachp, 2 ≤ p ≤ n− 1, sdp is defined as follows:

sdp(x p . . . (p + i) y (p − 1) (p + i + 1) z) = xy(p − 1)p . . . (p + i)(p + i + 1)z,

sdp(x (p − 1)(p + i + 1)yp . . . (p + i)z) = x(p − 1)p . . . (p + i)(p + i + 1)yz,

12



wherei ≥ 0 andx, y, z are signed strings overΣn. We also definesdp as
follows:

sdp(x(p + i + 1)(p − 1)y(p + i) . . . pz) = x (p + i + 1)(p + i) . . . p(p − 1)yz,

sdp(x(p + i) . . . py(p + i + 1)(p − 1)z) = xy(p + i + 1)(p + i) . . . p(p − 1)z,

wherei ≥ 0 andx, y, z are signed strings overΣn. LetSd = {sdi, sdi | 1 ≤
i ≤ n}.

We say that a signed permutationπ over a set of integers{i, i+1, . . . , i+ l} is
sortableif there are operationsφ1, . . . , φk ∈ Sh∪ Sd such that(φk ◦ . . . ◦ φ1)(π)
is a sorted permutation. We say thatπ is blockedif neither ansh operation, nor an
sd operation is applicable toπ andπ is not sorted.

Let φ = φk ◦ . . . ◦ φ1, φi ∈ Sh∪ Sd, for all 1 ≤ i ≤ k. We say thatφ is
a strategyfor π if φ(π) is either sorted or blocked. In the former case we say
thatφ is asorting strategy, while in the latter case we say thatφ is aunsuccessful
strategyfor π.

Example 9. Let π = 2 4 3 1 be a signed permutation. Then(sh1 ◦ sd3)(π) =
sh1(2 3 4 1) = 4 3 2 1, a sorted permutation.

One may introduce “elementary” versions ofsh andsd, where only one letter
is rewritten in every step, rather than strings as insh andsd. We introduce them
in the following.

3. For eachp ≥ 1, ehp is defined as follows:

ehp(x p(p+ 1) y) = x p (p+ 1) y, ehp(x (p+ 1) p y) = x (p+ 1) p y,
ehp(x p (p+ 1) y) = x p (p+ 1) y, ehp(x (p+ 1) p y) = x (p+ 1) p y,

wherex, y are signed strings overΣn. LetEh = {shp | 1 ≤ p ≤ n}.

4. For eachp ≥ 1, 2 ≤ p ≤ n− 1, edp is defined as follows:

edp(x p y (p− 1) (p+ 1) z) = x y (p− 1) p (p+ 1) z,

edp(x (p− 1) (p+ 1) y p z) = x (p− 1) p (p+ 1) y z,

edp(x (p+ 1) (p− 1) y p z) = x (p+ 1) p (p− 1) y z,

edp(x p y (p+ 1) (p− 1) z) = x y (p+ 1) p (p− 1) z,

wherex, y, z are signed strings overΣn. Let Ed = {sdp | 1 ≤ p ≤ n}.

Example 10. (a) Letπ = 3 4 5 6 1 2. Then(eh1 ◦ eh6 ◦ eh4 ◦ eh3)(π) = 3 4 5 6 1 2
is a sorted permutation.
(b) Let π′ = 3 4 5 6 12. Thenπ′ is not Eh∪Ed-sortable. Indeed, noeh or ed

operation is applicable toπ′.

13



Lemma 5. For any signed permutationπ, if ehp(edp, resp.) is applicable toπ,
for somep, then shp(sdp, resp.) is also applicable toπ and ehp(π) = shp(π)
(edp(π) = sdp(π), resp.)

Note that Lemma 5 does not hold in the reverse direction: ifπ = 1 4 2 3, then
sd2(π) = 1 2 3 4, while ed2 is not applicable toπ.

As illustrated by the next example, it turns out that theEh∪Ed-model isnon-
deterministic.

Example 11. Let π = 1 3 5 2 4. Note thatπ has both sorting and non-sorting
strategies in the elementary model. Indeed,(ed2 ◦ ed4)(π) = 1 2 3 4 5, a sorted
permutation. On the other hand,π′ = ed3(π) = 1 5 2 3 4 is not sorted and noeh
or ed operation is applicable toπ′.

Due to nondeterminism, deciding whether a given permutation is Eh-, Ed-, or
Eh∪Ed-sortable is difficult. A complete answer may be found in [10], based on
an involved notion of dependency graph.

The simple model however is different. A permutation may indeed have sev-
eral different strategies, but they are either all sorting,or all non-sorting. More-
over, [13] also defines a notion ofstructure of a permutationand notes that the
results obtained after applying these strategies, though different, have the same
structure. In this way, deciding whether or not a given permutationπ is Sh-, Sd-,
or Sh∪ Sd-sortable is easy: simply apply operations from the desiredset in an
arbitrary order; if the final blocked permutation is sorted,then the answer is ‘yes’,
otherwise the answer is ‘no’: there are no sorting strategies forπ.

Example 12. (a) The permutationπ1 = 4671235 has several sorting strategies.
Here are some of them:

π
(1)
1 = sd5 ◦ sh6 ◦ sh1(π1) = 4567123,

π
(2)
1 = sd5 ◦ sh6 ◦ sh2(π1) = 4567123,

π
(3)
1 = sd4 ◦ sh6 ◦ sh2(π1) = 6712345,

π
(4)
1 = sh6 ◦ sh1 ◦ sd4(π1) = 6712345.

(b) The permutationπ2 = 13685724 has several unsuccessful strategies. Here
are some of them:

π
(1)
2 = sd2 ◦ sd7(π2) = 12367854,

π
(2)
2 = sd2 ◦ sd6(π2) = 12385674,

π
(3)
2 = sd3 ◦ sd7(π2) = 18567234,

π
(4)
2 = sd3 ◦ sd6(π2) = 18567234.
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7 Fourth complexity measure: parallelism

The previous three measures of complexity all deal withsequentialcompositions
of operations leading to the assembly of a given gene. We introduce in this section
a fourth measure of complexity dealing with more generalparallel assembliesof
genes.

A systematic study of parallelism for gene assembly has beeninitiated in [15].
We only consider in this paper a graph-based presentation ofparallelism, although
a string-based study is also possible, see [15].

Intuitively, a set of operations can be applied in parallel to a gene pattern if
only if each operation’s applicability is independent of the other’s. In other words,
a number of operations can be applied in parallel to a gene pattern if they can be
(sequentially) applied in any order to that gene pattern. Note that this is consistent
with how parallelism and concurrency are defined in computerscience.

E.g., theC2 gene of S.nova described by the MDS sequenceM1M2M3M4

requires threeLd operations. The threeLds can be applied independently of each
other and so, they can be applied in parallel. Also, the micronuclear geneR1

of S.nova described by the MDS sequenceM1M2M3M4M5M6, requires fiveLd

operations, and all of them can be applied at once. Consequently, its parallel
complexity is one, the same as geneC2.

Parallelism can be defined in terms of signed graphs as follows.

Definition 5 ([15]). LetS ⊆ Ld∪Hi∪Dlad be a set ofk rules and letG = (V,E, σ)
be a signed graph. We say that the rules inS can be applied in parallel toG if for
any orderingϕ1, ϕ2, . . . , ϕk ofS, the compositionϕk ◦ · · · ◦ϕ1 is applicable toG.

The following result provides a simple criterium for two rules to be applicable
in parallel.

Lemma 6 ([15]). LetG = (V,E, σ) be a signed graph and letϕ, ψ ∈ Ld ∪ Hi ∪
Dlad be two rules applicable toG with dom(ϕ) ∩ dom(ψ) = ∅.

(i) If ϕ ∈ Ld, thenϕ andψ can be applied in parallel toG.

(ii) If ϕ = hip with p ∈ V , thenϕ andψ can be applied in parallel toG if and
only ifNG(p) ∩ dom(ψ) = ∅.

(iii) If ϕ, ψ ∈ Dlad, thenϕ andψ can applied in parallel to G if and only if the
subgraph of G induced bydom(ϕ)∪ dom(ψ) is not isomorphic to eitherC4

or D4.

According to the definition, if a set of rules is applicable inparallel to a signed
graph, then any composition of these rules is applicable to that graph. This defi-
nition does not require that the result of applying different compositions of rules
must be the same. However, it can be proved that this is indeedthe case.

15



(a) (b)

Figure 6: (a) A graph with parallel complexity two; (b) A graph with parallel
complexity three.

Lemma 7 ([15]). If ϕ, ψ ∈ Ld∪Hi∪Dlad are applicable in parallel to the signed
graphG, thenϕ(ψ(G)) = ψ(ϕ(G)).

The general case follows now easily from Lemma 7.

Theorem 8([15]). LetG be a signed graph and letS ⊆ Ld ∪ Hi ∪ Dlad be a set
of rules applicable in parallel toG. Then for any two compositionsϕ, ϕ′ of the
rules inS, ϕ(G) = ϕ′(G).

Based on Theorem 8 we can now define the notion of parallel complexity.

Definition 6. LetG be a signed graph. IfS ⊆ Ld ∪ Hi ∪ Dlad is a set of rules
applicable in parallel toG, then we say thatS is applicable toG and we denote by
S(G) the graph obtained as a result of applying to G any sequential composition
of the rules inS.

If S1, S2, . . . , Sk ⊆ Ld ∪ Hi ∪ Dlad are disjoint sets of rules,Si ∩ Sj = ∅,
for i 6= j, we say thatSk ◦ . . . ◦ S1 is applicable toG if Si is applicable to
(Si−1 ◦ . . . ◦ S1)(G), for all 1 ≤ i ≤ k. If (Sk ◦ . . . ◦ S1)(G) = ∅, then we say
thatSk ◦ . . . ◦ S1 is a parallel reduction strategy forG. We say that the parallel
complexity ofS = Sk ◦ . . . ◦ S1 is C4(S) = k.

We define the parallel complexityC4(G) ofG as follows:

C4(G) = min{C4(S) | S is a parallel reduction strategy forG}.

Example 13. (a) Any discrete graph can be reduced in one parallel step.

(b) The smallest graph with parallel complexity two is shownin Fig. 6(a).

(c) The smallest graph with parallel complexity three is shown in Fig. 6(b).

Example 14.LetG be the signed overlap graph associated with actin I gene in S.
nova, illustrated in Fig. 7. There are only 6 different maximal parallel strategies
to reduceG:

S1 = {ld7, hi3} ◦ {hi2, ld4, dlad5,6, dlad8,9};
S2 = {ld6, hi8, hi9} ◦ {hi2, hi3, ld4, dlad5,7};
S3 = {ld6, hi3} ◦ {hi2, ld4, dlad5,7, dlad8,9};
S4 = {ld7, hi8, hi9} ◦ {hi2, hi3, ld4, dlad5,6};
S5 = {ld5, hi3} ◦ {hi2, ld4, dlad6,7, dlad8,9};
S6 = {ld5, hi8, hi9} ◦ {hi2, hi3, ld4, dlad6,7}.
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Note that there are 3060 sequential strategies to reduce this graph (and as-
semble the gene), see [6] – the reason for this difference is that many sequential
strategies coincide modulo commutation of some rules. Those rules may be ap-
plied in parallel.

Figure 7: The signed overlap graph associated with string
3 4 4 5 6 7 5 6 7 8 9 32 2 8 9, both representing the structure of the micronu-
clear geneactin I in S.nova.

The following problem seems to be difficult: check whether ornot a given set
of rules can be applied in parallel to a given signed graph. Inthe next theorem we
give a simple criterium in the case when at most twodlad rules are to be applied.
Giving a general answer, for an arbitrary number ofdlad rules, remains an open
problem.

Theorem 9([15]). LetG be a signed graph andS ⊆ Ld∪Hi∪Dlad a set of rules
containing at most twodlad’s. LetP be the union of domains of rules inS with
P+ = {p ∈ P | σ(p) = +}, andP− = P \ P+. Then the rules inS can be
applied in parallel toG if and only if the following conditions are satisfied:

(i) The subgraph induced byP+ is discrete. Moreover, there is no edge between
vertices inP+ and vertices inP−.

(ii) The subgraph induced byP− does not contain induced squaresC4 or dia-
mondsD4.

Figure 8: A negative graph with parallel complexity three.
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Two conjectures were given in [15] regarding the parallel complexity of graphs.
We proposed that any negative graph may be reduced in at most two parallel steps
and that any graph may be reduced in at most four parallel steps. Revisiting these
conjectures and based on a newly available gene assembly simulator, see [18],
we give in the following counterexamples to both these conjectures. It is currently
unknown if the parallel complexity of arbitrary graphs is bounded. Several classes
of graphs are shown to have bounded parallel complexity in [9].

Figure 9: A graph with parallel complexity five.

Example 15. (a) The negative graphG3 depicted in Fig. 8 has parallel com-
plexity three. (As a matter of fact, an automated search shows that this is
a smallest such graph in terms of number of vertices.) Indeed, one three-
step parallel strategy forG3 is {ld6} ◦ {dlad5,7} ◦ {dlad1,2, dlad3,4}. Some
straightforward analysis shows that no two-step or one-step parallel strat-
egy forG3 exists.

(b) The graphG5 depicted in Fig. 9 has parallel complexity5. One 5-step paral-
lel reduction forG5 is{ld8, ld12}◦{ld6, ld10, hi7, hi11}◦{hi5, hi9}◦{hi2, hi4}◦
{hi1, hi3}.
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