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Abstract

We consider relational periods, where the relation is a compatibility relation on
words induced by a relation on letters. We prove a variant of the theorem of Fine
and Wilf for a (pure) period and a relational period.
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1 Introduction

In 1999 J. Berstel and L. Boasson introduced the notion of a partial word. In
their paper [1] they studied periodicity properties of partial words and presented
a variant of the theorem of Fine and Wilf for partial words with one hole. Further
results with more holes and on periodicity properties of partial words in general
can be found in [2, 3, 5–7, 12, 13]. The motivation for this research comes partly
from the study of biological sequences such as DNA, RNA and proteins [4, 11].

In the article [9] we introduced word relations as compatibility relations of
words induced by a relation on letters. We showed that partial words can be seen
as words with a special word relation. The study of relational codes and rela-
tionally free monoids continued in [10]. In this article we will consider relational
periods of words. We shall prove a variant of the theorem of Fine and Wilf as an
example of an interaction property between a (pure) period and a relational period.

2 Word relations

For a relation R ⊆ X × X we often write x R y instead of (x, y) ∈ R. A relation
R is a compatibility relations on letters if it is both reflexive and symmetric, i.e.,
(i) ∀x ∈ X : x R x, and (ii) ∀x, y ∈ X : x R y =⇒ y R x. The identity relation
on a set X is defined by ιX = {(x, x) | x ∈ X} and the universal relation on X is
defined by ΩX = {(x, y) | x, y ∈ X}. Subscripts are often omitted when they are
clear from the context. Clearly, both ιX and ΩX are compatibility relations on X .

A compatibility relation R ⊆ A+ ×A+ on the set of all nonempty words over
an alphabet A will be called a word relation if it is induced by its restriction on
the letters, i.e.,

a1 · · ·am R b1 · · · bn ⇐⇒ m = n and ai R bi for all i = 1, 2, . . . , m

whenever a1, . . . , am, b1, . . . , bn ∈ A. Let R be a relation on A. By 〈R〉 we denote
the compatibility relation generated by R, i.e., 〈R〉 is the reflexive and symmetric
closure of the relation R. Words u and v satisfying u R v are said to be compatible
or, more precisely, R-compatible. If the words are not compatible, they are said
to be incompatible.

Example 1. In the binary alphabet A = {a, b} the compatibility relation

R = 〈{(a, b)}〉 = {(a, a), (b, b), (a, b), (b, a)}

makes all words with equal length compatible with each other. In the ternary
alphabet {a, b, c}, where

S = 〈{(a, b)}〉 = {(a, a), (b, b), (a, b), (b, a), (c, c)},

we have abba S baab but, for instance, words abc and cac are not S-compatible.
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Partial words can be interpreted as words with a word relation. The next ex-
ample will express this in more detail.

Example 2. A partial word of length n over an alphabet A is a partial function

w : {1, 2, . . . , n} → A.

The domain D(w) of w is the set of positions p ∈ {1, 2, . . . , n} such that w(p)
is defined. The set H(w) = {1, 2, . . . , n} \ D(w) is the set of holes of w. To
each partial word we may associate a total word w♦ over the extended alphabet
A♦ = A ∪ {♦}. This companion of w is defined by

w♦(p) =

{

w(p) if p ∈ D(w),
♦ if p ∈ H(w).

Thus, the holes are marked with the “do not know” symbol ♦. Clearly, partial
words are in one-to-one correspondence with words over A♦.

The compatibility relation of partial words is defined as follows. Let x and y

be two partial words of equal length. The word y is said to contain the word x if
D(x) ⊆ D(y) and x(k) = y(k) for all k in D(x). Two partial words x and y are
said to be compatible if there exists a partial word z such that z contains both x

and y. Then we write x ↑ y.
From another viewpoint partial words with compatibility relation ↑ can be

seen as words over the alphabet A♦ with the relation

R↑ = 〈{(♦, a) | a ∈ A}〉.

Namely, consider two compatible partial words x and y. Let z be a partial word
which contains both x and y. Suppose that their companions are x♦ = a1 · · ·an,
y♦ = b1 · · · bn and z♦ = c1 · · · cn. According to the definition of compatible
partial words, we have four possibilities for each position i ∈ {1, 2, . . . , n}:

(i) ci = ♦, ai = bi = ♦
(ii) ci 6= ♦, ai = ♦, bi = ci

(iii) ci 6= ♦, bi = ♦, ai = ci

(iv) ci 6= ♦, ai = bi = ci.

We see that in each case ai R↑ bi, and thus x♦ R↑ y♦. On the other hand, for
R↑ -compatible words x♦ = a1 · · ·an and y♦ = b1 · · · bn we may find a word
z♦ = c1 · · · cn such that the corresponding partial word z contains the partial
words x and y and therefore x ↑ y. We simply choose the letter ci in such a
way that it corresponds to one of the cases (i) − (iv) above. Thus, partial words
are equivalent to words on alphabet A♦ with a specific relation R↑ and all results
concerning word relations can be applied also for the compatibility relation of
partial words.
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3 Relational period

Let x = x1 · · ·xn be a word over the alphabet A. An integer p ≥ 1 is a (pure)
period of x if for all i, j ∈ {1, 2, . . . , n} we have

i ≡ j (mod p) =⇒ xi = xj.

In this case, the word x is called (purely) p-periodic. The smallest integer which
is a period of x is called the (minimal) period of x. Here we denote it by π(x), or
shortly, π if the word x is clear from the context.

For words with compatibility relation R on letters, we will now define rela-
tional periods.

Definition 1. Let R be a compatibility relation on an alphabet A. For a word
x = x1 · · ·xn ∈ A+, an integer p ≥ 1 is a (relational) R-period of x if, for all
i, j ∈ {1, 2, . . . , n}, we have

i ≡ j (mod p) =⇒ xi R xj.

For a word x the minimal (relational) R-period is denoted by πR(x), or shortly,
πR if the word x is clear from the context. Note that a (pure) period is a relational
R-period with R = ι. Note also that for the universal relation Ω, we clearly have
πΩ(x) = 1 for any word x.

Example 3. Define the following compatibility relations on the alphabet
A = {a, b, c}:

R = 〈{(b, c)}〉

S = 〈{(a, b)}〉

T = 〈{(a, c)}〉

Consider the word x = abcba. We clearly have

π = πR = 4 > πS = 3 > πT = 2 > πΩ = 1.

Note that in this example the universal relation on A is the only relation such that
the minimal relational period of x is one.

The following theorem is an easy consequence of the definition of a relational
period.

Theorem 1. Let R and S be compatibility relations on A such that R ⊆ S. Then
every R-period of a word x is an S-period of x. Moreover, πR ≥ πS.

Since ι ⊆ R by the reflexivity of a compatibility relations R, we have the
following corollary.
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Corollary 1. Every pure period of a word x is a relational R-period for any
compatibility relation R. Thus, for a word x and for a compatibility relation R,
we always have π ≥ πR.

As an example of the use of relational periods we will consider periods of
partial words.

Example 4. In [1] a partial word w is said to have a (partial) period p if, for all
i, j ∈ D(w),

i ≡ j (mod p) =⇒ w(i) = w(j).

Consider now the companion of a partial word over the alphabet A♦. Recall that

R↑ = 〈{(♦, a) | a ∈ A}〉.

The number i belongs to D(w) if and only if w♦(i) 6= ♦. Thus

i, j ∈ D(w) ⇐⇒ w♦(i), w♦(j) ∈ A♦ \ {♦} = A.

If a partial word w has a period p, then for all i, j ∈ D(w), we have

i ≡ j (mod p) =⇒ w♦(i) R↑ w♦(j),

since R↑ ∩ (A × A) = ι. If i and j do not both belong to D(w), then w♦(i) or
w♦(j) is ♦ and w(i) R↑ w(j) is clear by the definition of the relation R↑. Thus, p

is a relational R↑-period of w♦. On the other hand, if p is a relational R↑-period
of w♦, then it is a partial period of w, since we have to consider only positions
without holes and R↑ ∩ (A × A) = ι. In other words, we have showed that these
two definitions of periods are equivalent.

Note that there exists also a weaker period of partial words. A partial word w

is said to have a local period p if

i, i + p ∈ D(w) =⇒ w(i) = w(i + p).

This can be expressed using compatibility relation R↑ similarly to the example
above.

4 Fine and Wilf’s theorem

The theorem of Fine and Wilf [8] is well-know in combinatorics on words:

Theorem 2. If a word x has periods p and q, and the length of x is at least
p + q − gcd(p, q), then also gcd(p, q) is a period of x.

J. Berstel and L. Boasson gave the following variant of this theorem for partial
words with one hole in [1].
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Theorem 3. Let w be a partial word of length n with local periods p and q. If
H(w) is a singleton and if n ≥ p + q, then gcd(p, q) is a (partial) period of w.

Furthermore, they showed that the bound p + q on the length is sharp. For
partial words with more holes, the theorem of Fine and Wilf was considered, for
example, in [7] and [3]. There it is shown that local periods p and q make a suffi-
ciently long word to have also the period gcd(p, q) when certain unavoidable cases
(special words) are excluded. The bound on the length depends on the number of
holes in the word. Another result of periods’ interaction property of partial words
was given in [12,13]. A.M. Shur and Yu.V. Gamzova found bounds for the length
of a word with k holes such that partial periods p and q imply the partial period
gcd(p, q). These latter results of partial words with several holes show that finding
good formulations for periods’ interaction in the case of arbitrary relational peri-
ods is not possible in general. Namely, any non-transitive compatibility relation R
must have letter relations (x1, x2), (x2, x3) ∈ R, but (x1, x3) 6∈ R for some letters
x1, x2, x3. Then the role of the letter x2 in R is exactly the same as the role of ♦ in
R↑ and all counter examples of Fine and Wilf’s theorem for binary partial words
apply for words with compatibility relation R over the alphabet {x1, x2, x3}.

Example 5. Let R = 〈{(a, b)(b, c)}〉. There exists an infinite (not necessarily
ultimately periodic) word

w = w1w2w3 · · · = acb6i1−2acb6i2−2 · · · ,

where the numbers ij ≥ 1 are chosen freely. Now w has R-periods 2 and 3.
Namely,

w1w3w5 · · · ∈ {a, b}∗, w2w4w6 · · · ∈ {b, c}∗,

and

w1w4w7 · · · ∈ {a, b}∗ w2w5w8 · · · ∈ {b, c}∗, w3w6w9 · · · ∈ {b}∗.

However, 1 is not a relational R-period of the word w. For example, (w1, w2) =
(a, c) 6∈ R. Furthermore, all numbers 2, 3, 4, . . . are R-periods of the ultimately
periodic word w′ = acbbb · · · , but 1 is not an R-period of w′.

Nonetheless, some periods’ interaction results can be obtained. If the relation
R is an equivalence relation, we have the following theorem.

Theorem 4. Let R be an equivalence relation. If a word x has R-periods p and
q and the length of the word is at least p + q − gcd(p, q), then gcd(p, q) is an
R-period of x. The bound on the length is strict.

Proof. Let R be an equivalence relation on the alphabet A and let x be a word
over the alphabet with R-periods p and q and of length n ≥ p + q − gcd(p, q).
Suppose that A has m equivalence classes and let their set of representatives be
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{a1, . . . , am}. Let B = {b1, . . . , bm} be another alphabet. Consider now a letter-
to-letter morphism ϕ : A∗ → B∗, where for every i ∈ {1, 2, . . . , m}, each let-
ter belonging to an equivalence class of ai is mapped to bi. This mapping is
clearly well defined. Then w = ϕ(x) = w1 · · ·wn is a word over B∗. Let
i, j ∈ {1, 2, . . . , n} satisfy i ≡ j (mod p). Since xi R xj by the assumption, we
have wi = ϕ(xi) = ϕ(xj) = wj by the definition of the morphism ϕ. Thus, also
w has the period p. Similarly, the word w is q-periodic. By the theorem of Fine
and Wilf (Theorem 2), we therefore conclude that w is also gcd(p, q)-periodic.
Let now i, j ∈ {1, 2, . . . , n} satisfy i ≡ j (mod gcd(p, q)). Then wi = wj. By
the definition of ϕ this means that xi = ϕ−1(wi) and xj = ϕ−1(wj) belong to the
same equivalence class. Hence, xi R xj . This means that gcd(p, q) is a relational
R-period of the word x. Of course, the bound p + q − gcd(p, q) is the best pos-
sible, since there are counter examples of the original theorem of Fine and Wilf
with length p + q − gcd(p, q)− 1 and our statement coincides with Theorem 2 by
choosing R = ι.

As was mentioned above, the theorem of Fine and Wilf cannot be generalized
for relational periods (neither to local periods) of a non-transitive compatibility
relation unless some restrictions on the number of relations (holes) and exclusions
of some special cases are given. On the other hand, it might be possible to get
new variations of the theorem by assuming some restrictions on compatibility
relations. For example, by assuming that one of the periods is pure and only the
other one is relational by the relation R 6= ι we get a theorem similar to that of
Fine and Wilf. The sufficient and necessary lower bounds on the length of the
word w considered in the theorem are given in Table 1.

B(p, q) p < q p > q

p, q odd
p + 1

2
q q +

q − 1

2
p

p odd, q even
p + 1

2
q

p + 1

2
q

p even, q odd q +
q − 1

2
p q +

q − 1

2
p

Table 1: Table of lower bounds B(p, q)

We now state our main theorem.

Theorem 5. Let P and Q be positive integers with gcd(P, Q) = d. Denote
P = pd and Q = qd. Suppose that a word w has a (pure) period Q and a re-
lational R-period P . Let B = B(p, q) be defined by Table 1. If |w| ≥ Bd, then
also gcd(P, Q) = d is an R-period of the word w. This bound on the length is
sharp.
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In order to make the proof of this theorem more readable, we first prove two
propositions concerning the case d = 1. The first one says that our lower bounds
B(p, q) are sufficient.

Proposition 1. Let p and q be positive integers and let gcd(p, q) = 1. Suppose
that a word w has a (pure) period q and a relational R-period p. Let B = B(p, q)
be defined as in Table 1. If |w| = B, then 1 is a relational R-period of w.

Proof. The word w is a rational power of a word of length q. Thus in w there are at
most q different letters. We show that a letter in arbitrary position s ∈ {1, 2, . . . , q}
is R-compatible with all the other letters of the word w.

We make the following definitions. Let b be an integer in {1, 2, . . . , q} such
that b ≡ B (mod q) and define

s′ =

{

B − b + s if s ∈ {1, 2, . . . , b},
B − q − b + s if s ∈ {b + 1, b + 2, . . . , q}.

By the definition, s′ is the last position in w such that s′ ≡ s (mod q). Note that
since B ≥ q ≥ b, we have

0 < s ≤ B − b + s ≤ B,

if s ∈ {1, 2, . . . , b} and

0 < s − b ≤ B − q − b + s ≤ B − b < B,

if s ∈ {b + 1, b + 2, . . . , q}. Let us now define two sets

S1 = {s + ip | i = 1, 2, . . . ,

⌊

B − s

p

⌋

},

S2 = {s′ − jp | j = 0, 1, . . . , q −

⌊

B − s

p

⌋

− 1}.

Note that 0 < B − s < pq, which implies that

1 ≤

⌊

B − s

p

⌋

≤ q − 1 and q > q −

⌊

B − s

p

⌋

− 1 ≥ q − (q − 1) − 1 = 0.

Now we prove that all elements of S1 and S2 belong to the set {1, 2, . . . , B}. For
the set S1 this is clear, since

max(S1) = s +

(⌊

B − s

p

⌋)

p ≤ s +
B − s

p
p = s + B − s = B.

In order to prove that the minimal element of S2 is always positive, we have to
consider two different cases.
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Case 1. Let us first assume that B = p+1
2

q. Then b = q and s′ = B − q + s

for all s ∈ {1, 2, . . . , q}. We have

min(S2) = s′ −

(

q −

⌊

B − s

p

⌋

− 1

)

p > s′ −

(

q − 1 −

(

B − s

p
− 1

))

p

= B − q + s − qp + B − s = 2B − (p + 1)q

= (p + 1)q − (p + 1)q = 0.

Case 2. Let us then assume that B = q + q−1
2

p = p+2
2

q − p

2
. Now

⌊

B − s

p

⌋

=
q − 1

2
+

⌊

q − s

p

⌋

≥
q − 1

2
,

since q is odd and q ≥ s. If s ∈ {1, 2, . . . , b}, then

min(S2) = s′ −

(

q −

⌊

B − s

p

⌋

− 1

)

p ≥ s′ −

(

q −
q − 1

2
− 1

)

p

= q +
q − 1

2
p − b + s − qp +

q − 1

2
p + p

= q − b + s ≥ s > 0.

If s ∈ {b + 1, b + 2, . . . , q}, then

min(S2) ≥ s′ −

(

q −
q − 1

2
− 1

)

p

= q +
q − 1

2
p − q − b + s − qp +

q − 1

2
p + p

= s − b > 0.

Next we show that the set S1 ∪ S2 is a complete residue system modulo q for
every chosen s ∈ {1, 2, . . . , q}. The elements of S1 are pairwise incongruent mod-

ulo q, since gcd(p, q) = 1 and
⌊

B−s
p

⌋

≤ q. The same holds for S2. Assume now

that for some i ∈ {1, 2, . . . ,
⌊

B−s
p

⌋

} and for some j ∈ {0, 1, . . . , q −
⌊

B−s
p

⌋

− 1}

we have
s + ip ≡ s′ − jp (mod q). (1)

This is true if and only if (i + j)p + s − s′ ≡ 0 (mod q). Since B ≡ b (mod q),
we have s′ ≡ s (mod q) by the definition of s′. In other words, (i + j)p +
s − s′ ≡ (i + j)p (mod q). Since gcd(p, q) = 1, Eq. (1) is true if and only if
(i + j) ≡ 0 (mod q). But this is not possible, since

0 < (i + j) ≤

⌊

B − s

p

⌋

+ q −

⌊

B − s

p

⌋

− 1 = q − 1 < q.

Hence, in S1 ∪ S2 we have

|S1 ∪ S2| =

⌊

B − s

p

⌋

+ q −

⌊

B − s

p

⌋

= q.
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pairwise incongruent elements modulo q. Let b be a letter in position t and let a be
the letter in position s (and s′). Now either an element in S1 or in S2 is congruent
to t modulo q. Hence a R b.

Next we will prove that our lower bounds are necessary.

Proposition 2. Let p and q be positive integers such that gcd(p, q) = 1. Let
B = B(p, q) be defined as in Table 1. There exists a word w and a compatibility
relation R such that |w| = B − 1, w has a (pure) period q and an R-period p but
1 is not an R-period of w.

Proof. Like in the proof of Proposition 1, let b ∈ {1, 2, . . . , q} satisfy
b ≡ B (mod q). In addition, we define so called critical positions a(p, q) ac-
cording to Table 2. We show that it is possible to construct a word w of length
|w| = B − 1 with a pure period q and an R-period p such that the letter in the
critical position is not related to the letter in the position b. Note that all these
critical positions are positive integers less than or equal to q. In the sequel we
denote critical positions shortly by a.

a(p, q) p < q p > q

p, q odd
q − p

2
q

p odd, q even
q

2

q

2

p even, q odd q q

Table 2: Table of critical positions a(p, q)

Consider now the minimal solution (i, j) for the equation

a + iq ≡ b + jq (mod p), (2)

such that i and j are nonnegative integers. By the minimal solution we mean a
solution where max(a + iq, b + jq) is as small as possible. Note that if i > j for
some solution, then a + (i − j) ≡ b (mod p) is a smaller solution. Similarly, if
j > i, then a ≡ b + (j − i)q (mod p) is a smaller solution. Thus the minimal
solution is of the form where either i = 0 or j = 0.

Since gcd(p, q) = 1, we know that {a + iq | i = 0, 1, . . . , p − 1} and
{b + jq | j = 0, 1, . . . , p − 1} are complete residue systems modulo p. Hence
there exists exactly one j ∈ {0, 1, . . . , p − 1} satisfying a ≡ b + jq (mod p)
and exactly one i ∈ {0, 1, . . . , p − 1} satisfying a + iq ≡ b (mod p). Further-
more, for j ∈ {1, 2, . . . , p − 1}, we have

a ≡ b + jq (mod p) =⇒ a + (p − j)q = a + pq − jq ≡ b (mod p),
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and p − j ∈ {1, 2, . . . p − 1}. Hence, the minimal solution of (2) is either of the
form (0, j) or (p − j, 0).

Now we prove that in all the cases of Table 1 and Table 2 the minimal solution
is

i = 0 and j =
B − b

q
.

Note that, since B < pq, we have B−b
q

∈ {1, 2, . . . , p − 1} in all cases.

Consider first those cases where B = p+1
2

q and consequently b = q. Let
j = B−b

q
.

Case 1. Let p and q be both odd and p < q. By Table 2, we have a = q−p

2
.

Now b + jq = B and, since q is odd, it follows that

(b + jq) − a =
p + 1

2
q −

q − p

2
=

q + 1

2
p ≡ 0 (mod p).

Hence, (0, B−b
q

) is a solution. Furthermore,

jq = B − b =
p + 1

2
q − q =

p − 1

2
q

and

a + (p − j)q = a + pq −
p − 1

2
q = a +

p + 1

2
q = a + B > B.

Hence, in the solution (p − B−b
q

, 0), we have max(a + iq, b + jq) > B whereas

in the solution (0, B−b
q

), we have max(a + iq, b + jq) = B. Thus, (0, B−b
q

) is the
minimal solution.

Case 2. Suppose that p is odd and q is even. By the parity of q, a = q

2
is an

integer and

(b + jq) − a =
p + 1

2
q −

q

2
=

q

2
p ≡ 0 (mod p).

Hence, (0, B−b
q

) is a solution. Like in Case 1, we have

a + (p − j)q = a + B > B,

and therefore (0, B−b
q

) is the minimal solution also in this case.

Consider next those cases where B = q + q−1
2

p. According to Table 1 and
Table 2 we have a = q and q is odd. Clearly, (i, j) = (0, B−b

2
) is a solution, since

(b + jq) − a = q +
q − 1

2
p − q =

q − 1

2
p ≡ 0 (mod p).

Like above a + (p − j)q = a + pq − B + b. By substituting a and B we get

a+(p−j)q = q+

(

q − 1

2
p +

q − 1

2
p + p

)

−

(

q +
q − 1

2
p

)

+b = B+(p−q)+b.
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Case 3. Assume that p > q. Then p − q is positive and a + (p − j)q > B.
Thus the smallest solution is not (p − j, 0).

Case 4. Assume that p is even, q is odd and p < q. Then b = q− p

2
. Moreover,

a + (p − j)q = B + (p − q) + q −
p

2
= B +

p

2
> B,

and we conclude that (0, B−b
q

) is the smallest solution also in this final case.
Define now a word w in three letter alphabet {α, β, γ} by the rule

w =

{

(γa−1αγq−a−1β)
p+1

2 if B = p+1
2

q,

(γb−1βγq−b−1α)
B−b

q γb−1β if B = q + q−1
2

p,
(3)

where a = a(p, q) is given by Table 2. Define further that w′ = wβ−1. If w has
a relational R-period p, then by Proposition 1, it has also a relational R-period 1.
However, by the considerations above, the word w′ does not have an R-period 1 if
α and β are unrelated by the compatibility relation R. Namely, the first occasion
where the distance between letter α and letter β in w is a multiple of p is the case
where α is in the position a and β is in the position B.

Now we are ready to prove our main theorem.

Proof of Theorem 5. Suppose that a word w has a pure period Q and a relational
R-period P such that gcd(P, Q) = d. Let P = pd, Q = qd and B = B(p, q).
It suffices to prove the theorem for |w| = Bd. Namely, if |w| > Bd, then the
theorem holds for any factor of w, and therefore also for w itself. Let us consider
words

w(i) = wiwi+d · · ·wi+(B−1)d,

where i = 1, 2, . . . , d. Now gcd(q, p) = 1 and each of the words w(i) has a pure
period q and a relational R-period p. Since |w(i)| = B for every i = 1, 2, . . . , d,
Proposition 1 implies that 1 is a relational R-period for all the words w(i). Conse-
quently, d is a relational R-period of w.

In order to prove that the bound Bd on the length of w is necessary, we give
an example of a word w′ of length Bd − 1 such that it has a period Q and an R-
period P but no R-period d. Suppose that w(d) is given by Eq. (3) and w(i) = γB

for i = 1, 2, . . . , d − 1. Let w be a perfect shuffle of these d sequences, i.e.,

w = w
(1)
1 w

(2)
1 · · ·w

(d)
1 w

(1)
2 w

(2)
2 · · ·w

(d)
2 · · ·w

(1)
B w

(2)
B · · ·w

(d)
B .

Define further that
w′ = wβ−1.

Now w′ clearly satisfies our conditions, but by the proof of Proposition 2,
gcd(P, Q) = d is not an R-period of w′, if α and β are unrelated by the com-
patibility relation R.
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