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Abstract

In this paper we investigate the question whether there exist independent systems
of three word equations over three unknowns possessing non-periodic solutions,
formulated in 1983 in [4]. In particular, we give a negative answer to this question
for a large class of systems. More specifically, the question remains open only
for a well specified class of systems. We also investigate what happens when we
consider chains of equations such that each time we add a new one, the set of
solutions of the whole system strictly decreases. Thus, unlike in the case of inde-
pendence, now the order in which we choose the equations becomes important. In
this context we give some reachable lower bounds for the size of such chains of
equations over three and four unknowns, respectively.
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1 Introduction

Word equations constitute a fundamental part of the theory of combinatorics on
words. The seminal paper on word equations is that of Makanin, [15], showing the
decidability of the satisfiability problem. Another remarkable property of word
equations was revealed in the validity of Ehrenfeucht compactness property, see
[1] and [6]. More recent interesting achievements of the area are the PSPACE
solution for the satisfiability problem, see [17], and tools to show that certain
properties are not expressible as solutions of word equations, see [10]. However,
despite of them, many simple questions on word equations are still unanswered.

In this paper we consider word equations in a very simple setting, namely as-
suming that the equations are constant-free and over only three or four unknowns.
Even in this simple case problems might be extremely hard. An example of a very
involved result of this framework is [9] showing that solutions of word equations
over three unknowns are finitely parametrizable, while the same does not hold
for equations over four unknowns, as also proved in [9], for a shorter proof see
[5]. Another deep result shown in [2] and [19] classifies all maximal sets of equa-
tions satisfied by a fixed three-tuple of words. Moreover, the question whether
there exist independent systems of three equations over three unknowns possess-
ing non-periodic solutions, formulated by Culik II and Karhumäki in 1983 in [4],
is still open.

Word equations can be used to characterize constraints satisfied by a set of
words. The Ehrenfeucht’s compactness property guarantees that finite sets of
words cannot satisfy infinitely many independent relations. But, the question how
many such independent constraints we can impose on a finite set of words is still
wide open; some non-trivial asymptotic lower bounds were given in [11] and [12].
However, if the number of unknowns is small, then not even such lower bounds
are reported for the maximal size of independent systems of equations.

In this paper we tackle another related question, i.e., how large chains of equa-
tions we can have such that every time we add a new equation the set of solutions
strictly decreases. Thus, now, unlike in the case of independent systems, the order
in which we choose the equations becomes very important. When considering
only two words, the maximal size of such a chain is three: the first (non-trivial)
constraint forces the words to be powers of a common word, the second fixes the
ratio of the lengths of the periods, and the third allows only the empty words as the
solution. We show here that when we consider equations over three unknowns,
a reachable lower bound for the size of such chains is six, while if we increase
the number of unknowns to four, then nine becomes a lower bound for the size of
such chains.

One of the fundamental results on words is the defect theorem stating that if a
set of n words satisfies a nontrivial relation, then they can be expressed simulta-
neously as products of at most n − 1 words. A natural question is what happens
if a set of words satisfies several “different” relations. For instance, whether they

1



impose some cumulative defect effect, i.e., if a set of n words satisfies t nontriv-
ial relations, can they be expressed simultaneously as products of at most n − t

words? Here, we investigate this problem for sets of three words. First, we for-
mulate “different” as meaning that the system of constraints is independent, every
pair of equations is independent, or every pair of equations is non-equivalent.
Then, we analyze whether there exists some cumulative defect effect in either of
these cases. Moreover, if no such restrictions are used, then we can find an infinite
system of “different” equations, such as {xiz = zyi | i ≥ 1}, which has a non-
periodic solution, the equations are graphically pairwise different, but the whole
system is equivalent to any single equation of the system.

In the second part of this paper we investigate systems of two and three equa-
tions over three unknowns, respectively, from the point of view of possessing also
non-periodic solutions. In Section 5 we give some necessary and sufficient con-
ditions for systems of two equations to possess at most quasi-periodic solutions,
i.e., solutions where the images of at least two unknowns are powers of a common
word. In Section 6, we concentrate on the above mentioned open question from
[4]. A nontrivial step was achieved in [8], by proving that an independent system
of at least two equations over three unknowns possessing a non-periodic solution
is composed of balanced equations only, i.e., equations where the number of oc-
currences of each unknown on the left and right hand sides is the same. In this
paper, we succeeded to give a negative answer to this question for a large class
of systems. More specifically, the question remains open only for systems of the
following type (up to the symmetry of x and z):







xiyα2(x, z)y . . . yαn(x, z) = zβ1(x, z)yβ2(x, z)y . . . yβn(x, z)
xiyγ2(x, z)y . . . yγm(x, z) = zδ1(x, z)yδ2(x, z)y . . . yδm(x, z)
xiyµ2(x, z)y . . . yµp(x, z) = zν1(x, z)yν2(x, z)y . . . yνp(x, z)

,

with i ≥ 1 and αl(x, z), βl(x, z), γj(x, z), δj(x, z), µk(x, z), νk(x, z) ∈ {x, z}∗,
for all l, j, and k.

2 Preliminaries
Let Σ be a finite alphabet. We denote by Σ∗ the set of all finite words over the
alphabet Σ, by 1 the empty word, and by Σ+ the set of all nonempty finite words
over Σ. A word u is a factor (resp. prefix, suffix) of w if there are words x, y such
that w = xuy (resp. w = uy, w = xu). We use the notation pref k(w) (resp.
suf k(w)) to denote the prefix (resp. the suffix) of length k of the word w and u∧v
to denote the longest common prefix of two words u, v ∈ Σ∗. For a word w ∈ Σ∗

we denote byAlphΣ(w) the set of distinct letters from the alphabet Σ appearing in
it, by |w| its length, i.e., the number of letters in w, and by |w|a the number of oc-
currences of letter a in w for any a ∈ AlphΣ(w). When no confusion can appear,
we write only Alph(w) instead of AlphΣ(w). If Σ = {a1, . . . , an} and w ∈ Σ∗,
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then the Parikh vector associated to w is defined as ψ(w) = (|w|a1
, . . . , |w|an

).
For more details we refer to [3].

We associate a finite set X ⊆ Σ+ with a graph GX = (VX , EX), called the
dependency graph of X , where the set of vertexes is VX = X and the set of edges
is defined by: (x, y) ∈ EX if and only if xX∗ ∩ yX∗ 6= ∅, with x, y ∈ X . We
recall now the following result from [7].

Lemma 1. For a finite set X ⊆ Σ+, let nc be the number of connected compo-
nents of the dependency graph associated to it. Then, the elements of X can be
simultaneously expressed as products of at most nc words.

The following result is an immediate consequence.

Corollary 2. Two words w1, w2 ∈ Σ∗ are powers of a common word if and only
if they satisfy a nontrivial relation.

Now, let Σ be a finite alphabet and X = {x1, . . . , xn} a set of unknowns, with
Σ ∩ X = ∅. An equation over the alphabet Σ, with X as the set of unknowns
is a pair (u, v) ∈ (Σ ∪ X)∗ × (Σ ∪ X)∗, usually written as u = v. We say that
an equation is constant-free if both u and v contain only elements from X . An
equation u = v is called reduced if pref 1(u) 6= pref 1(v) and suf 1(u) 6= suf 1(v)
and balanced if |u|x = |v|x for all unknowns x ∈ X . Throughout this paper we
consider only reduced constant-free equations.

A solution of an equation u = v is a morphism ϕ : (X ∪ Σ)∗ → Σ∗ such
that ϕ(u) = ϕ(v) and ϕ(a) = a for every a ∈ Σ. Thus, a solution is a |X|-tuple
of words over the alphabet Σ. We define the length of a solution as the sum of
lengths |ϕ(x)| for all x ∈ X . We say that a solution ϕ is periodic if there exists
a word u ∈ Σ∗ such that ϕ(x) ∈ u∗ for any x ∈ X . If X = {x, y, z}, then we
say that ϕ is quasi-periodic with respect to x and z if there exists u ∈ Σ∗ such
that ϕ(x), ϕ(z) ∈ u∗. We can naturally extend this definition for the case when
X = {x1, . . . , xn}, by saying that ϕ is quasi-periodic if there exists an index
1 ≤ i ≤ n and some word u ∈ Σ∗ such that ϕ(x) ∈ u∗ for all x ∈ X\{xi}.
We say that a solution is purely non-periodic if the images of no two unknowns
are powers of a common word. Note that for equations over three unknowns the
sets of periodic, quasi-periodic (which are not periodic), and purely non-periodic
solutions form a partition of the solution set.

A system of equations is a non-empty set of equations. A solution of a system
is a morphism ϕ : (X ∪Σ)∗ → Σ∗ satisfying all of its equations. We say that two
systems E and E ′ are equivalent if they have the same set of solutions. Moreover,
we say that a system E is independent if it is not equivalent to any of its proper
subsystems. In this paper we also use two weaker conditions: pairwise indepen-
dence and pairwise non-equivalence, meaning that any two equations of a system
are independent and non-equivalent, respectively.

The basic method of solving word equations uses the idea of eliminating the
leftmost (or rightmost) unknowns, see, e.g., [13]. This method, extensively used
here, is based on the following lemma, also known as Levi’s lemma, see [14].
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Lemma 3. If words u,w, x and y over the alphabet Σ satisfy the relation uw =
xy, then there exists the unique word t such that either u = xt and y = tw, or
x = ut and w = ty.

Thus, if we have an equation xu = yv with x, y ∈ X and u, v ∈ (Σ ∪ X)∗,
then we can write x = yt (or y = xt) for some new unknown t. Substituting it
into the initial equation, we derive tu′ = v′, where u′ and v′ are obtained from u

and v, respectively, by replacing every occurrence of x with yt. Hence, the set of
unknowns changes from X to X ∪ {t}\{x}.

Using this method, we can associate to each equation a graph illustrating a
systematic way of searching for solutions. Each vertex of this graph is an equation
xu = yv, where x and y are either unknowns or constants. From each such
vertex we draw edges to three other equations derived from xu = yv by using
the transformations x = yt, x = y, and y = xt, respectively. Now, the equation
xu = yv has a solution with |x| > |y| if and only if the equation tu′ = v′ has
a solution, and moreover x = yt. Also, if we have a solution for the equation
tu′ = v′, then we obtain a solution for the initial equation with x = yt. Thus, the
set of solutions of xu = yv is found by solving all the equations on the leaves of
the graph and applying Levi’s lemma in the reverse order. For more details about
the construction of these graphs we refer to [16].

We conclude this section by considering a constant free equation with the same
number of y’s in the left and right hand sides:

α1(x, z)yα2(x, z)y . . . yαn(x, z) = β1(x, z)yβ2(x, z)y . . . yβn(x, z), (1)

where αi(x, z), βi(x, z) ∈ {x, z}∗ for all 1 ≤ i ≤ n, pref 1(α1(x, z)) = x, and
pref 1(β1(x, z)) = z.

Depending on the form of all αi(x, z) and βi(x, z), 1 ≤ i ≤ n, we have the
following cases.

Case 1: For every 1 ≤ i ≤ n let

|αi(x, z)|x = |βi(x, z)|x and |αi(x, z)|z = |βi(x, z)|z,

i.e., the Parikh vectors of αi(x, z) and βi(x, z) coincide. Then, for any k, l ≥ 0 and
u, y ∈ Σ∗, (uk, y, ul) is a solution of (1). Thus, in this case, we say that equation
(1) admits independently quasi-periodic solutions with respect to x and z.

Case 2: There exists some 1 ≤ i ≤ n such that the Parikh vectors of αi(x, z)
and βi(x, z) differ and, moreover, for all such i’s let

|αi(x, z)|x = |βi(x, z)|x and |αi(x, z)|z 6= |βi(x, z)|z,

or the symmetric case when for all such i’s the roles of x and z are interchanged.
Then, due to Corollary 2, the only quasi-periodic solutions of (1) with respect
to x and z (which are not periodic) are of the form (uk, y, 1), or symmetrically
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(1, y, ul); other triples, when substituted into (1), do not yield the graphical iden-
tity. Throughout this paper, we call triples of the form (uk, y, 1) or (1, y, ul), 1-
limited quasi-periodic with respect to x and z. So, in this case, we say that equa-
tion (1) admits only 1-limited quasi-periodic solutions with respect to x and z.

Case 3: There exist some i 6= j such that

|αi(x, z)|x 6= |βi(x, z)|x, |αi(x, z)|z = |βi(x, z)|z, and |αj(x, z)|z 6= |βj(x, z)|z,

or the symmetric case with x and z interchanged. Then, when we substitute a
quasi-periodic solution of the form (ui, y, uk) in the initial equation we obtain
a nontrivial relation on u and y. Thus, due to Corollary 2, any quasi-periodic
solution with respect to x and z is actually periodic. So, in this case, we say that
the quasi-periodicity of equation (1) induces periodicity.

Case 4: Otherwise, for any 1 ≤ i ≤ n we have either

|αi(x, z)|x 6= |βi(x, z)|x and |αi(x, z)|z 6= |βi(x, z)|z, or

|αi(x, z)|x = |βi(x, z)|x and |αi(x, z)|z = |βi(x, z)|z.

In this case, for all 1 ≤ i ≤ n such that αi(x, z) and βi(x, z) have distinct Parikh
vectors, let |αi(x, z)|x − |βi(x, z)|x 6= 0 be the i-th exceed of x’s and |βi(x, z)|z −
|αi(x, z)|z 6= 0 be the i-th exceed of z’s. For every such 1 ≤ i ≤ n, we define the
i-th ratio of this equation, denoted by Ri, as follows:

Ri = |αi(x, z)|x − |βi(x, z)|x : |βi(x, z)|z − |αi(x, z)|z.

If there are two indices i 6= j such that Ri and Rj are defined and Ri 6= Rj ,
then any quasi-periodic solution with respect to x and z is actually periodic since,
otherwise, after substituting it in (1) we obtain a non-trivial relation on two words.
So, also in this case the quasi-periodicity of equation (1) induces periodicity.

We say that equation (1) has ratio R = p : q if, for every 1 ≤ i ≤ n for which
Ri is defined we have that Ri = R. Moreover, the quasi-periodic solutions with
respect to x and z are completely characterized by this ratio in the sense that a
triple (x = uk, y, z = ul) is solution of equation (1) if and only if kp = lq.

3 Multiple constraints on three element sets
The defect theorem is one of the fundamental results on words. It is often con-
sidered to be folklore, maybe because there are many different formulations, all
validating the same defect effect on words; probably the oldest paper where this
result is reported is [18].

Theorem 4. If a set of n words satisfies a nontrivial relation, then they can be
expressed simultaneously as products of at most n− 1 words.
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An important consequence of this theorem is the result on two words formu-
lated in Corollary 2. It is natural to ask what happens if a set of words X =
{w1, . . . , wn} satisfies two or more “different” relations and whether this imposes
a cumulative defect effect on the set X . It is well-known that, in general, the
answer to the second question is “no”; there are simple examples of independent
systems of two equations admitting non-periodic solutions, see e.g. [3].

In this section we investigate this type of questions for three elements setsX =
{x, y, z}. In Section 5 we present several examples of independent systems of two
equations over three unknowns having non-periodic solutions; so two different
relations are not enough to impose a cumulative defect effect. However, when
considering at least three equations, it is open whether there exist independent
systems admitting non-periodic solutions; the following conjecture was implicitly
stated in [4] and more explicitly, e.g., in [3].

Conjecture 5. Any independent system of three equations over a set of three un-
knowns admits only periodic solutions.

Here, we try to shed some light on this problem. We approach by considering
two different restrictions in addition to the independence of the equations, i.e., the
pairwise independence and the pairwise non-equivalence defined in Section 2.

Theorem 6. There exit purely non-periodic triples (x, y, z) ∈ (Σ+)3 satisfying
three pairwise independent equations.

Proof. Consider the following system of three equations over the set of unknowns
X = {x, y, z}:







xyxz = zxyx

xyxxz = zxxyx

xyzyz = zyzyx

.

We can check directly that for any α, β ∈ Σ∗, the words x = α, y = β, z = αβα

constitute a solution of this system. Thus, for some values of the parameters α
and β, the system admits also some purely non-periodic solutions.

Next, we prove that any subsystem of size two is independent. First, we have
that x = a, y = baab, z = aba is a solution for the first equation but not for the
second one and x = a, y = baaab, z = aba is a solution for the second equation
but not for the first one. Then, we notice that x = a, z = a, y = b is a solution for
the third equation but not for either of the others. Also, x = a, y = baab, z = aba

is a solution of the first but not the third equation and x = a, y = baaab, z = aba

is a solution of the second but not the third one.
Thus, the equations of the system are pairwise independent and, moreover,

they possess purely non-periodic solutions of the form x = α, y = β, z = αβα.
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So, three pairwise independent relations on a setX = {x, y, z} are not enough
to impose a cumulative defect effect. Next, we investigate the case when we
replace the independence condition with the non-equivalence.

Theorem 7. There exist purely non-periodic triples (x, y, z) ∈ (Σ+)3 satisfying
four pairwise non-equivalent equations.

Proof. Consider the following system of four equations:














xyxz = zxyx

xyxxz = zxxyx

xyzyz = zyzyx

zyz = xyzyx

,

for which we can check that the words x = α, y = β, z = αβα constitute a
solution for any α, β ∈ Σ∗. Thus, for some values of the parameters α and β, the
system admits also some purely non-periodic solutions. Moreover, the proof of
Theorem 6 implies that the first three equations are pairwise independent. How-
ever, by the length argument, any solution of the fourth equation is also a solution
of any of the other three. Let us now take x = a, y = baab, z = aba a solution of
the first equation, x = a, y = baaab, z = aba a solution of the second equation,
and x = a, z = a, y = b a solution for the third equation. Since none of them is a
solution of the fourth equation, we obtain that the equations of the chosen system
are pairwise non-equivalent.

A special type of non-periodic solutions are the quasi-periodic ones. A natural
question is how much this restriction influences the bounds given above.

Theorem 8. The infinite system {xyiz = zyix | i ≥ 1} is pairwise independent
and admits quasi-periodic solutions of the form x = z = α and y = β for any
words α, β ∈ Σ+.

Proof. Consider two arbitrary equations from this system:

xyiz = zyix, xyjz = zyjx

with i 6= j. Then x = (abi)na, y = b, z = (abi)ma with n 6= m is a solution
of the first but not of the second equation and x = (abj)na, y = b, z = (abj)ma

with n 6= m is a solution of the second but not of the first equation. So, any two
equations from the initial system are independent.

Thus, in this last case not even infinitely many relations on a setX = {x, y, z}
are enough to impose a cumulative defect effect.

However, Ehrenfeucht compactness property of word equations states that
each system over a finite set of unknowns is equivalent to some of its finite sub-
systems, see for example [3]. In other words, any independent system over a finite
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The equations The solution set

(1) xyzyz = zyzyx







x = (αβ)iα

y = β(αβ)j

z = (αβ)lα

(2) xyxz = zxyx x = α, y = β, z = αβα

(3) xzy = zyx periodic solutions
(4) zyz = xyzyx periodic solutions with |z| = |xyx|
(5) zyx = x2z periodic solutions with |z| = |xyx| and |x| = |y|
(6) zy = xyz x = y = z = 1

Table 1: A Chain of equations with strictly decreasing set of solutions

set of unknowns is finite. Thus, it is natural to ask how large such systems can be.
However, very little seems to be known about this problem; we refer to [11] and
[12] for some non-trivial lower bounds. More specifically, for any n ≥ 1, one can
construct independent systems of n3 (resp. n4) equations over 5n (resp. 10n) un-
knowns admitting non-periodic solutions in free semigroups (resp. free monoids).

Nevertheless, for small numbers of unknowns, no nontrivial lower bounds are
reported for the maximal size of independent systems of equations. For instance in
the case of three unknowns, it is not even known whether there exist independent
systems of three equations admitting non-periodic solutions, see Conjecture 5.
Here, we try to tackle this problem in the particular case of equations over three
unknowns. Note that an independent system is a set of equations such that in
whichever way we order them into a chain, the set of solutions is strictly de-
creased by each equation. Our approach is to consider, instead of independence, a
weaker condition, i.e., we investigate chains of equations such that each time we
add a new one the set of solutions strictly decreases. Let us call such sequences
strictly decreasing chains of equations. Even though by doing this we relax the
restrictions imposed on the set of equations, the importance of the problem itself
is not diminished.

In Table 1 we give an example of a strictly decreasing chain of word equa-
tions of size six. Moreover, since the first three equations are balanced, they
impose constraints only on the set of non-periodic solutions. Thus, after adding
the third equation to the chain, the set of solutions consists of all periodic triples
(ui, uj, uk), for any u ∈ Σ∗ and i, j, k ≥ 0. From this point on, the size of the
chain is maximal since on the set of periodic triples (ui, uj, uk) we can impose at
most three successive restrictions, each one “limiting” the values of one of the pa-
rameters i, j, and k. Hence, six is a reachable lower bound for the size of strictly
decreasing chains over three unknowns.

A natural question now is the following.

Problem 9. Is six also an upper bound for the size of strictly decreasing chains of
equations?
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A positive answer for this problem can be given for several types of systems,
sometimes obtaining even a smaller upper bound. One such case is obtained from
the following well-known result, see for example [3].

Proposition 10. If a three element set X = {x, y, z} ⊆ Σ+ satisfies the relations

{

xα = zβ

xγ = yδ
with α, β, γ, δ ∈ X∗,

then x, y, and z are powers of a common word.

Thus, two such equations can be extended to a strictly decreasing chain of size
at most five since, like in Table 1, we can add at most three more equations each
one restricting the length of one of the unknowns.

In Section 6 we prove that independent systems of three equations over three
unknowns might have non-periodic solutions only if they are of the form (up to
symmetry of x and z):







xiyα2(x, z)y . . . yαn(x, z) = zβ1(x, z)yβ2(x, z)y . . . yβn(x, z)
xiyγ2(x, z)y . . . yγm(x, z) = zδ1(x, z)yδ2(x, z)y . . . yδm(x, z)
xiyµ2(x, z)y . . . yµp(x, z) = zν1(x, z)yν2(x, z)y . . . yνp(x, z)

with i ≥ 1 and αl(x, z), βl(x, z), γj(x, z), δj(x, z), µk(x, z), νz(x, z) ∈ {x, z}∗,
for all l, j, and k. In all the other cases, independent systems of three equations
possess only periodic solutions, thus making Conjecture 5 true, and hence, like
above, we can add at most three more equations in order to obtain a strictly de-
creasing chain.

Moreover, as explained above, the restriction of considering independent sys-
tems is stronger than that of strictly decreasing chains of equations. Thus, if we
obtain an upper bound m for the size of strictly decreasing chains of equations,
then m is also an upper bound for the size of independent systems.

4 Multiple Constraints on Four Words
In this section we investigate the size of strictly decreasing chains of equations
over a set of four unknowns, Y = {x, y, z, t}. We start by recalling first a result
from [8] stating that any independent system over three unknowns with at least
two equations and having a non-periodic solution consists of balanced equations
only. However, as shown by the following example, this result does not hold
anymore when we increase the number of unknowns.

Example 1. The system
{

xyz = zty

xy2z2 = z2yty
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admits nonperiodic solutions of the form x = γ, y = δγδ, z = γδ, t = γ,
for some words γ, δ ∈ Σ∗. Moreover, it is independent, since x = ababa, y =
bab, z = ab, t = ababa is a solution for the first equation and not the second, and
x = ((ab)2b)2aba, y = b, z = ab, t = ((ab)2b)2aba is a solution for the second
equation and not the first.

Hmelevskii proved in [9] that solutions of word equations over three unknowns
are finitely parametrizable, i.e., they can be expressed using only a finite number
of formulas involving word parameters and numerical parameters. Moreover, the
same does not hold for equations over four unknowns, as also proved in [9], for a
shorter proof see [5]. Thus, an interesting question is what is the effect of consid-
ering equations over four unknowns on the size of chains of equations with strictly
decreasing set of solutions.

The equations Characterization of the set of solution
(1) xytz = ztxy xy = (αβ)kα, t = β(αβ)j, z = (αβ)iα

(2) xyztz = z2txy xy = (αβ)iα, t = β(αβ)j, z = (αβ)iα

(3) xytyz = zytxy xy = (αβ)iα, z = (αβ)iα, t = γk y = γl

(4) xtyzz = zyzxt xy = (αβ)iα, z = (αβ)iα, t = γk y = γk

(5) xtzy = ztyx periodic solutions
(6) x = zyt periodic solutions with |x| = |yzt|
(7) xyt2yx = zx periodic solutions with |x| = |yzt| and |z| = 2|yt|
(8) xyz = ztx periodic solutions with |x| = |yzt|, |z| = 2|yt|, |y| = |t|
(9) xy = ztx x = y = z = t = 1

Table 2: A chain of equations over four unknowns with strictly decreasing set of
solutions

As shown by Table 2, the size of the chain increases nontrivially when we
switch from three to four unknowns. First, we have four equations such that every
time we add a new one the set of solutions strictly decreases, but still includes
some non-periodic ones. Then, when we add the fifth equation, the set of solu-
tions includes only periodic triples. But, since up to this point all equations are
balanced, they admit as solution any periodic triple (ui, uj, uk, ul) with u ∈ Σ∗

and i, j, k, l ≥ 0. Then, similar to the case of equations over three unknowns,
from this point on we can impose at most four successive restrictions, each one
“limiting” the values of one of the parameters i, j, k, and l.

Thus, nine is a reachable lower bound for the size of strictly decreasing chains
over four unknowns.

Moreover, note that the system containing the equations (1), (2), and (4) is
independent and possesses non-periodic solutions.
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5 Systems of two equations over three unknowns
In this section, we investigate systems of two equations over a set of three un-
knowns, in particular, when they can have non-periodic solutions. Due to Propo-
sition 10, we consider only systems of equations where one side starts with x and
the other with z:

{

α(x, z)yβ(x, y, z) = α1(x, z)yβ1(x, y, z)
γ(x, z)yδ(x, y, z) = γ1(x, z)yδ1(x, y, z)

where α(x, z), α1(x, z), γ(x, z), γ1(x, z) ∈ {x, z}+, β(x, y, z), β1(x, y, z), δ(x, y, z),
δ1(x, y, z) ∈ {x, y, z}∗, are such that pref1(α(x, z)) = pref1(γ(x, z)) = x, and
pref1(α1(x, z)) = pref1(γ1(x, z)) = z. We partition the set of such systems
depending on the structure of α(x, z), α1(x, z), γ(x, z), and γ1(x, z), that is de-
pending on whether they contain both unknowns x and z or only one of them.
Then, for each class, we give some conditions guaranteeing the existence of at
most quasi-periodic solutions. Moreover, we show that these conditions are nec-
essary. The following result from [3] is a useful starting point.

Lemma 11. Let X = {x, y} ⊆ Σ∗ such that xy 6= yx. Then, for each words
u, v ∈ X∗ we have

u ∈ xX+, v ∈ yX+, |u|, |v| ≥ |xy ∧ yx|, ⇒ u ∧ v = xy ∧ yx.

As an immediate consequence, we can formulate the following result; an al-
ternative proof was given in [9].

Theorem 12. An equation of the form xizα(x, y, z) = zjxβ(x, y, z) admits only
solutions where x and z are powers of a common word, i.e. at most quasi-periodic
solutions with respect to x and z.

Thus, any system containing an equation of this type admits at most quasi-
periodic solutions with respect to x and z. So, we can restrict to systems where
at least on one side of both equations either only x’s or only z’s appear before the
first occurrence of y.

First, we consider systems where, before the first occurrence of y, both equa-
tions have on one side only x’s while on the other side they have both x’s and z’s.
The case when x and z are interchanged is symmetric.

Theorem 13. A system of the form
{

xiyα(x, y, z) = zβ1(x, z)yβ2(x, y, z)
xjyγ(x, y, z) = zδ1(x, z)yδ2(x, y, z)

with i 6= j and x ∈ Alph(β1(x, z))∩Alph(δ1(x, z)) admits at most quasi-periodic
solutions with respect to x and z.

11



Proof. Since i 6= j we can suppose without loss of generality that i > j ≥ 1. Let
(X,Y, Z) ∈ (Σ∗)3 be a solution of the system; the set of solutions is non-empty
since (1, 1, 1) is always a solution. Depending on the lengths of X and Z we have
three cases.

Case 1: If |X| = |Z|, then X = Z and so the solution is of the required
form. Moreover, by Corollary 2, the system admits non-periodic solutions of the
form (X,Y,X) if and only if after replacing x = z in the initial system we obtain
graphical identity in both equations.

Case 2: If |X| > |Z|, then we can write X = ZT for some T ∈ Σ+. Now,
if we substitute in the first equation of the initial system x by zt, for some new
unknown t, then we obtain the equation

t(zt)i−1yα(zt, y, z) = β1(zt, z)yβ2(zt, y, z)

admitting the solution (T, Y, Z). Since i ≥ 2 and z, t ∈ Alph(β1(zt, z)), Theorem
12 implies that this equation admits only solutions (T, Y, Z) with T and Z powers
of a common word. Since X = ZT , we also obtain that in the solution (X,Y, Z),
X and Z are powers of a common word.

Case 3: If |X| < |Z|, then we can write Z = XT for some word T ∈ Σ+. If
we substitute in the initial system z by xt for some new unknown t we obtain:

{

xi−1yα(x, y, xt) = tβ1(x, xt)yβ2(x, y, xt)
xj−1yγ(x, y, xt) = tδ1(x, xt)yδ2(x, y, xt)

.

But this is of the same type as the initial system only with smaller numerical
parameters and, moreover, it admits a solution (X,Y, T ) with |T | < |Z|. If j = 1,
then, by Theorem 10, this system admits only periodic solutions implying also
that all solutions of the initial system with |X| < |Z| are periodic. Otherwise,
i.e. j ≥ 2, we can repeat the reasoning for this system, every time decreasing
the length of the chosen solution. Thus, we can do this reduction only finitely
many times and, moreover, from the previous considerations, we always stop with
a system admitting solutions as required in the theorem. Since all the applied
transformations are of the form x = zt, z = xt, or x = z, we conclude that also
the chosen solution (X,Y, Z) is quasi-periodic with respect to X and Z.

So, independently of the lengths of X and Z, the chosen solution (X,Y, Z) is
as required. But, since it was chosen arbitrarily, we conclude that systems of this
type admit at most quasi-periodic solutions with respect to x and z.

The next example shows that the condition i 6= j in the above theorem is
unavoidable.

Example 2. The system
{

xyxz = zxyx

xyxxz = zxxyx

12



is of the type considered in Theorem 13 but with i = j. However, it admits purely
non-periodic solutions of the form x = α, y = β, z = αβα, for some words
α, β ∈ Σ+. Moreover, the system is independent since x = a, y = baab, z = aba

is a solution for the first equation but not for the second one and x = a, y =
baaab, z = aba is a solution for the second equation but not for the first one.

Next, we consider the case when both equations have on one side both x’s and
z’s before the first occurrence of y, while on the other side one equation has only
x’s and the the other has only z’s.

Theorem 14. A system of the form
{

xiyα(x, y, z) = zβ1(x, z)yβ2(x, y, z)
zjyγ(x, y, z) = xδ1(x, z)yδ2(x, y, z)

with x ∈ Alph(β1(x, z)) and z ∈ Alph(δ1(x, z)) admits at most quasi-periodic
solutions with respect to x and z. Moreover, if i = 1 or j = 1, then the system
admits only periodic solutions.

Proof. Let (X,Y, Z) ∈ (Σ∗)3 be a solution of this system. We have several cases
depending on the values of the parameters i and j and the lengths of X and Z.

We start by considering the case when i, j ≥ 2.
Case 1: If |X| = |Z|, then X = Z and so the solution is of the required

form. Moreover, by Corollary 2, the system admits non-periodic solutions of the
form (X,Y,X) if and only if after replacing x = z in the initial system we obtain
graphical identity in both equations.

Case 2: If |X| > |Z|, then we can writeX = ZT for some new word T ∈ Σ+.
If in the first equation of the system we substitute x = zt for some new unknown
t, then we obtain

t(zt)i−1yα(zt, y, z) = β1(zt, z)yβ2(zt, y, z).

Since i ≥ 2 and z, t ∈ Alph(β1(zt, z)), Theorem 12 implies that this equation
admits at most quasi-periodic solutions with respect to t and z. Thus, the solution
(X,Y, Z) is such that X and Z are powers of a common word.

Case 3: If |X| < |Z|, then we can write Z = XT for some new word T ∈ Σ+.
If in the second equation of the system we make the transformation z = xt, for
some new unknown t, then we obtain the equation

t(xt)j−1yγ(x, y, xt) = δ1(x, xt)yδ2(x, y, xt),

which by the same reasoning as above admits at most quasi-periodic solutions
with respect to x and t. So, the solution (X,Y, Z) is quasi-periodic with respect
to X and Z.

Since the initial solution (X,Y, Z) was chosen arbitrarily, the system admits
only solutions where x and z are powers of a common word when i, j ≥ 2.
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We continue by proving that if i = j = 1, then the system admits only periodic
solutions independent of the lengths of X and Z. If |X| = |Z|, i.e. X = Z, then
when substituting x = z in the initial system we do not obtain graphical identity,
so, by Corollary 2, it admits only periodic solutions. If |X| > |Z|, i.e. X = ZT

for some new word T ∈ Σ+, then when substituting in the initial system x = zt,
for some new unknown t, we obtain:

{

tyα(zt, y, z) = β1(zt, z)yβ2(zt, y, z)
yγ(zt, y, z) = tδ1(zt, z)yδ2(zt, y, z)

.

But then Theorem 10 implies that it admits only periodic solutions. The case when
|X| < |Z| is symmetric and again we obtain only periodic solutions.

The only remaining case is when one parameter is 1 and the other is at least
2. Without loss of generality, we take i = 1 and j ≥ 2, the other case being
symmetric.

Case 1’: If |X| = |Z|, then when substituting x = z in the first equation of
the initial system we do not obtain graphical identity. So the system admits only
periodic solutions.

Case 2’: If |X| < |Z|, then we can write Z = XT for some new word
T ∈ Σ+. If we substitute in the initial system z = xt, for some new unknown t,
then we obtain:

{

yα(x, y, xt) = tβ1(x, xt)yβ2(x, y, xt)
t(xt)j−1yγ(x, y, xt) = δ1(x, xt)yδ2(x, y, xt)

which admits only periodic solutions. So, the initial system admits only periodic
solutions.

Case 3’: If |X| > |Z|, then we can write X = ZT for some new word
T ∈ Σ+. If we substitute in the initial system x = zt for some new unknown t,
then we obtain

{

tyα(zt, y, z) = β1(zt, z)yβ2(zt, y, z)
zj−1yγ(zt, y, z) = tδ1(zt, z)yδ2(zt, y, z)

with z, t ∈ Alph(β1(zt, z)) and z ∈ Alph(δ1(zt, z)). But this is of the same
type as the initial system, only with a smaller value for the numerical parameter.
Moreover, this system admits the solution (T, Y, Z) with |T | < |X|. So, we
can repeat inductively the transformation step for this system depending on the
lengths of T and Z. Since with every transformation we decrease the length of the
solution, we have to stop after a finite number of steps and, moreover, from the
previous considerations, we stop with a system admitting only periodic solutions.
But, since all the transformations applied are of the form x = z, x = zt, or z = xt,
we obtain that the initially chosen solution (X,Y, Z) is also periodic.

Thus, since the initial solution (X,Y, Z) was arbitrarily chosen, we proved
that if at least one of the parameters i or j is 1, then the system admits only peri-
odic solutions. Otherwise, i.e. i, j ≥ 2, the system admits at most quasi-periodic
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solutions with respect to x and z.

Now, we continue our investigation by considering systems where both equa-
tions have on both hand sides only occurrences of one of the unknowns x or z
before the first y.

Theorem 15. A system of the form
{

xiyα(x, y, z) = zlyβ(x, y, z)
xjyγ(x, y, z) = zkyδ2(x, y, z)

with i 6= j and l 6= k

admits at most quasi-periodic solutions with respect to x and z. Moreover, if
i < j, k < l or symmetrically j < i, l < k, then the system admits only periodic
solutions.

Proof. We can suppose without loss of generality that i < j. Let (X,Y, Z) ∈
(Σ∗)3 be a solution of this system. The idea of this proof is to apply Levi’s Lemma
for the wordsX i andZ l when l < k, orX i andZk when k < l, instead of applying
it for X and Z as in the case of the previous proofs.

If l < k we have three cases depending on the lengths of X i and Z l. If
|X i| = |Z l|, then X i = Z l and so, by Corollary 2, the solution is of the required
form. If |X i| > |Z l|, then we can write X i = Z lT for some new word T ∈ Σ+

and when we make the transformation xi = zlt in the initial system, we obtain:
{

tyα(x, y, z) = yβ(x, y, z)
txj−iyγ(x, y, z) = zk−lyδ2(x, y, z)

,

which, by Theorem 10, possesses only periodic solutions. Thus, the chosen so-
lution (X,Y, Z) is also periodic. Otherwise, i.e. |X i| < |Z l|, we can write
Z l = X iT for some new word T ∈ Σ+ and when we apply the transformation
zl = xit we obtain the system

{

yα(x, y, z) = tyβ(x, y, z)
xj−iyγ(x, y, z) = tzk−lyδ2(x, y, z)

,

which again admits only periodic solutions. Hence, also the chosen solution
(X,Y, Z) is periodic. Since the solution (X,Y, Z) was chosen arbitrarily, we
obtain that if l < k then the system admits at most quasi-periodic solutions with
respect to x and z. Moreover, if |X i| 6= |Z l| then all three X,Y, and Z are powers
of a common word, i.e. the solution is periodic.

Using similar reasoning we prove next that if k < l then the initial system
admits only periodic solutions. Again, we have three cases depending on the
lengths of X i and Zk. The only different case is when |X i| = |Zk| since after
making the transformation xi = zl we obtain the system

{

yα(x, y, z) = zl−kyβ(x, y, z)
xj−iyγ(x, y, z) = yδ2(x, y, z)
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which, by Theorem 10, admits only periodic solutions. So, in this case the initial
solution (X,Y, Z) is periodic. The other two cases, when |X i| > |Zk| and |X i| <
|Zk|, are as above.

Thus, the only cases when such a system admits non-periodic solutions (X,Y, Z)
(but quasi-periodic with respect to x and z) is when i < j, l < k, and |X i| = |Z l|
and the symmetric one, i.e. j < i, k < l, and |X j| = |Zk|.

Again, as shown by the next two examples, the conditions i 6= j and l 6= k in
the previous theorem represent the borderline between systems admitting at most
quasi-periodic solutions and systems admitting purely non-periodic ones.

Example 3. The system
{

xyzy = zy2x

xyxzy = zy2x2

is of the type considered in Theorem 15 but with i = j and k = l. However, it
admits purely non-periodic solutions of the form x = αβ, y = β, z = α, for some
words α, β ∈ Σ+. Moreover, the system is independent since x = ab, y = b, z =
abba is a solution for the first equation but not for the second one and x = ab, y =
b, z = abbaba is a solution for the second equation but not for the first one.

Example 4. The system
{

xy2z = zyxy

xyzyz = z2yxy

is another example but with i = j and k 6= l. Also for this system we obtain
purely non-periodic solutions of the form x = α, y = β, z = αβ, for some words
α, β ∈ Σ+. Moreover, the system is independent since x = abba, y = b, z = ab

is a solution for the first equation but not for the second one and x = ababba, y =
b, z = ab is a solution for the second equation but not for the first one.

The next theorem investigates the last case of our classification. Now, one
equation has on one side only occurrences of x’s while on the other side both the
unknowns x and z appear before the first y. However, the second equation has
on both sides only occurrences of one of the unknowns x or z before the first
occurrence of y.

Theorem 16. A system of the form
{

xiyα(x, y, z) = zβ1(x, z)yβ2(x, y, z)
xjyγ(x, y, z) = zkyδ(x, y, z)

with i 6= j, k ≥ 1, and x ∈ Alph(β1(x, z)) admits at most quasi-periodic solu-
tions with respect to x and z.

Proof. Let (X,Y, Z) ∈ (Σ∗)3 be a solution of this system. We have three cases
depending on the lengths of X and Z.
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Case 1: If |X| = |Z|, then X = Z and so the solution is of the required form.
Moreover, the system admits quasi-periodic solutions of the form (X,Y,X) if and
only if after replacing x = z in the initial system we obtain graphical identity in
both equations.

Case 2: If |X| > |Z|, then we can writeX = ZT for some new word T ∈ Σ+.
When we substitute in the initial system x = zt for some new unknown t we
obtain:

{

t(zt)i−1yα(zt, y, z) = β1(zt, z)yβ2(zt, y, z)
t(zt)j−1yγ(zt, y, z) = zk−1yδ(zt, y, z)

.

If k = 1, then, by Theorem 10, this system admits only periodic solutions, and
thus also the chosen solution (X,Y, Z) is periodic. Otherwise, if i ≥ 2, then
Theorem 12 implies that the first equation admits only solutions where z and t
are powers of a common word. Since x = zt, we obtain that also the solution
(X,Y, Z) is quasi-periodic with respect to X and Z. If i = 1, then Theorem 14
implies that this system admits only periodic solutions, and thus also the triple
(X,Y, Z) is periodic.

Case 3: If |X| < |Z|, then we can write Z = XT for some new word T ∈ Σ+.
When we substitute in the initial system z = xt for some new unknown t we
obtain:

{

xi−1yα(x, y, xt) = tβ1(x, xt)yβ2(x, y, xt)
xj−1yγ(x, y, xt) = t(xt)k−1yδ(x, y, xt)

.

If i = 1 and j ≥ 2, or symmetrically j = 1 and i ≥ 2, then Theorem 10 implies
that this system admits only periodic solutions and so also (X,Y, Z) is periodic.
Otherwise, i.e. i, j ≥ 2, we have two cases depending on the value of parameter
k. If k ≥ 2, then Theorem 13 implies that this system admits only solutions
(X,Y, T ) where X and T are powers of a common word. Since Z = XT , then
also the solution (X,Y, Z) is quasi-periodic with respect to X and Z. If k = 1,
then this is a system of the same type and we can repeat the reasoning, with every
transformation reducing the length of the chosen solution. So, we can repeat
only finitely many times and moreover, from the previous considerations, we stop
with a solution as required in the theorem. Since all the transformations applied
are of the form x = z, x = zt or z = xt, the chosen solution (X,Y, Z) is of
the required form.

So, in all cases, the solution (X,Y, Z) has X and Z powers of a common
word. Moreover, since it was chosen arbitrarily, we obtain that the initial system
admits at most quasi-periodic solutions with respect to x and z.

Once again the condition i 6= j in the previous theorem proves to be unavoid-
able.

Example 5. The system
{

xyz = zxy

xy2z = zyxy
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is of the type considered in Theorem 16 but with i = j and admits purely non-
periodic solutions of the form x = α, y = β, z = αβ, for some words α, β ∈ Σ+.
Moreover, the system is independent since x = aba, y = bab, z = ab is a solution
for the first equation but not for the second one and x = abba, y = b, z = ab is a
solution for the second equation but not for the first one.

6 Systems of three word equations over three un-
knowns

In this section we tackle the question formulated by Culik II and Karhumäki in
[4] asking whether there exits an independent system of three equations over three
unknowns admitting a non-periodic solution. We start from the systems analyzed
in Section 5 and prove that, in many cases, if we add a third equation, the obtained
systems possess only periodic solutions or are not independent.

In the previous section we gave several types of systems of two equations ad-
mitting at most quasi-periodic solutions with respect to x and z, i.e., triples of
the form (ui, y, uk), for some words u, y ∈ Σ∗ and i, k ≥ 1. Moreover, due to
Corollary 2, the quasi-periodic solutions (which are not periodic) were obtained
if and only if, when substituting a triple (ui, y, uk) in the initial system, we obtain
graphical identities. But this is possible only if the equations have the same num-
ber of y’s on both sides. Also, whenever we add a new equation, it has to have
the same property; otherwise, by Corollary 2, the quasi-periodic solutions of the
initial system are restricted to periodic ones. Thus, in all our future considerations
we discuss only equations with equal number of y’s in the two sides. Although the
following result from [8] enables us to use even a stronger restriction, i.e., all the
considered equations are balanced, in the majority of cases we only need equal
number of y’s in the two sides.

Theorem 17. An independent system with at least two equations and having a
non-periodic solution consists of balanced equations only.

Consider an equation

α1(x, z)y . . . yαn(x, z) = β1(x, z)y . . . yβn(x, z) (2)

having the same number of y’s in the two sides, pref1(α1(x, z)) = x, and pref1(
β(x, z)) = z. Let (ui, uj, uk) be a periodic solution of this equation; the set
of periodic solutions is non-empty since (1, 1, 1) is solution of any constant-free
word equation. Then, when replacing it in the equation (2) we obtain a relation
on i and k: n1i+m1k = n2i+m2k, where n1, n2 and m1,m2 are the numbers of
x’s and the numbers of z’s in the two sides, respectively. Depending on the values
n1 −n2 and m1 −m2 the set of periodic solutions of the equation (2) has different
characterizations.
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If n1 = n2 and m1 = m2, then the equation (2) is balanced and thus any
periodic triple (ui, uj, uk) with i, j, k ≥ 0 is a solution.

If n1 = n2, then we have either k = 0 or m1 = m2. The first situation
means that the set of periodic solutions is {(ui, uj, 1) | i, j ≥ 0}, while the second
condition means that the equation is balanced and thus admits as solution any
periodic triple (ui, uj, uk) with i, j, k ≥ 0. The case when m1 = m2 is similar.

If n1 6= n2 and m1 6= m2, then the set of periodic solutions admitted by the
equation (2) is completely characterized by the ratio n1 − n2 : m2 −m1.

Moreover, depending on the type of the quasi-periodic solutions admitted by
(2), we also obtain some restrictions on the set of its periodic solutions. If (2)
admits independently quasi-periodic solutions, then it also admits any periodic
triple (ui, uj, uk) with i, j, k ≥ 0 as a solution. If the set of quasi-periodic solu-
tions is characterized by the ratio R = p : q, then either any periodic triple is a
solution of (2), in the case of balanced equations, or the set of periodic solutions is
characterized by the same ratio. Let now equation (2) admit only 1-limited quasi-
periodic solutions of the form (ui, y, 1); the other case is symmetric. Thus, for
any 1 ≤ l ≤ n such that αl(x, z) and βl(x, z) have different Parikh vectors, we
have

|αl(x, z)|x = |βl(x, z)|x, and |αl(x, z)|z 6= |βl(x, z)|z.

But this means that the equation has the same number of x’s in the two sides,
so it admits any periodic triple as a solution, if the equation is balanced, or only
periodic solutions of the form (ui, uj, 1) for any i, j ≥ 0, otherwise.

We start our analysis with an equation where in both sides, both x and z ap-
pear before the first occurrence of y and investigate what happens with the set of
solutions when we add two more equations.

Theorem 18. Any system of three equations such that one of them is of the form

xlzα1(x, z)y . . . yαn(x, z) = zrxβ1(x, z)y . . . yβn(x, z), (3)

with l, r ≥ 1, αi(x, z), βi(x, z) ∈ {x, z}∗ for all 1 ≤ i ≤ n, possesses only
periodic solutions or it is not independent.

Proof. Let S be a system of three equations containing equation (3). Theorem
12 implies that equation (3) admits at most quasi-periodic solutions with respect
to x and z. Depending on the classification of the set of quasi-periodic solutions,
described in Section 2, we have four cases.

Case 1: The equation (3) has ratio R1 = p : q, i.e., the set of quasi-periodic
solutions is characterized by this ratio and the set of periodic ones contains either
all periodic triples (ui, uj, uk) or only those with ip = kq. Then, let

γ1(x, z)yγ2(x, z)y . . . yγm(x, z) = δ1(x, z)yδ2(x, z)y . . . yδm(x, z), (4)

with γi(x, z), δi(x, z) ∈ {x, z}∗ for all 1 ≤ i ≤ m, pref1(γ1(x, z)) = x, and
pref1(δ1(x, z)) = z, be the second equation of the system S .
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If (4) admits independently quasi-periodic solutions with respect to x and z,
then S is not independent since any solution of (3) is also a solution of (4).

If the quasi-periodicity of (4) implies periodicity, then the system S admits
only periodic solutions.

If equation (4) admits only 1-limited quasi-periodic solutions, then when sub-
stituting in it a quasi-periodic solution of (3) (which is not periodic), we do not
obtain graphical identity. Thus, by Corollary 2, the system S possesses only peri-
odic solutions.

Otherwise, let R2 be the ratio of equation (4). If R1 6= R2, then when sub-
stituting in (4) a quasi-periodic solution (which is not periodic) characterized by
the ratio R1 we do not obtain graphical identity. So, by Corollary 2, the system
S admits only periodic solutions. If R1 = R2, then the two equations have ex-
actly the same set of quasi-periodic solutions. Moreover, if the second equation
admits all periodic triples (ui, uj, uk) as solutions, then any solution of (3) is also
a solution of (4); so the system S is not independent. The same is true if in both
equations the set of periodic solutions is characterized by the ratio R1. Otherwise,
equation (3) admits all periodic triples as solutions while (4) admits only those
characterized by the ratio R1. In this case the system containing equations (3) and
(4) admits as periodic solutions only those triples characterized by the ratio R1.
So, we have to consider also the third equation of the system S:

µ1(x, z)yµ2(x, z)y . . . yµs(x, z) = ν1(x, z)yν2(x, z)y . . . yνs(x, z) (5)

with µi(x, z), νi(x, z) ∈ {x, z}∗ for all 1 ≤ i ≤ s, pref1(µ1(x, z)) = x, and
pref1(ν1(x, z)) = z.

If equation (5) admits only 1-limited quasi-periodic solutions or if quasi-pe-
riodicity implies periodicity, then, as above, the system S possesses only periodic
solutions.

If equation (5) admits independently quasi-periodic solutions, then it also ad-
mits all periodic triples as solutions. Thus, any solution of the system containing
(3) and (4) is also a solution of (5), and so the three equations are not independent.

Otherwise, equation (5) has ratio R3. If R3 6= R1, then, as above, the system
S possesses only periodic solutions. Otherwise, we have R1 = R2 = R3 imply-
ing that the system containing the three equations is not independent since any
solution of (3) and (4) is also a solution of (5).

Thus, in this case any two equations we add we obtain a system which is not
independent or possesses only periodic solutions.

Case 2: If the quasi-periodicity of equation (3) implies periodicity, then we
see immediately that the system S possesses only periodic solutions.

Case 3: Let now equation (3) admit independently quasi-periodic solutions
with respect to x and z, i.e., for any u, y ∈ Σ∗ and any i, j, k ≥ 0 the triples
(ui, y, uk) and (ui, uj, uk) characterize completely the sets of quasi-periodic and
periodic solutions, respectively. Then, we consider again (4) as the second equa-
tion of the system S .
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If equation (4) admits independently quasi-periodic solutions with respect to
x and z, then (3) and (4) are not independent, since any solution of (3) is also a
solution of (4).

If the quasi-periodicity of equation (4) implies periodicity, then S admits only
periodic solutions.

If equation (4) has some ratio R2 = p : q, then when considering (3) and (4)
together, they admit at most quasi-periodic solutions characterized by the ratio
R2. Also, the set of periodic solutions of these two equations contains either all
periodic triples (ui, uj, uk) with i, j, k ≥ 0 and u ∈ Σ∗ or only those with ip = kq.
So, we consider again (5) as the third equation of the system S .

If equation (5) admits independently quasi-periodic solutions with respect to
x and z, then the system S is not independent since any solution of (3) and (4) is
also a solution of (5). If the quasi-periodicity of equation (5) implies periodicity,
then S admits only periodic solutions. If equation (5) admits only 1-limited quasi-
periodic solutions with respect to x and z, then when substituting in (5) a quasi-
periodic solution (which is not periodic) characterized by the ratio R2 we do not
obtain graphical identity. So, by Corollary 2, the system S admits only periodic
solutions. Otherwise, let R3 be the ratio of equation (5). If R2 = R3, then the
system S is not independent since the set of its solutions can be obtained either
from (3) and (4), or from (3) and (5). Otherwise, i.e. R2 6= R3, by Corollary 2, S
possesses only periodic solutions since when substituting in (5) a quasi-periodic
solution (which is not periodic) characterized by the ratio R2 we do not obtain
graphical identity.

If equation (4) admits only 1-limited quasi-periodic solutions with respect to
x and z, then we can suppose without loss of generality that it admits only quasi-
periodic solutions with x = 1; the other case is symmetric. So, when consider-
ing (3) and (4) together, they admit only 1-limited quasi-periodic solutions with
x = 1. Also, the set of periodic solutions of these two equations contains either
all periodic triples (ui, uj, uk) with i, j, k ≥ 0 and u ∈ Σ∗ or only those with
i = 0. We consider again the third equation (5) as above. If equation (5) admits
independently quasi-periodic solutions with respect to x and z, then the system
S is not independent since any solution of (3) and (4) is also a solution of (5). If
the quasi-periodicity of equation (5) implies periodicity, then the system S admits
only periodic solutions. If equation (5) admits only 1-limited quasi-periodic solu-
tions with respect to x and z, then S admits only periodic solutions (if in (5) we
have z = 1) or it is not independent (if in (5) we have x = 1). Otherwise, let R3

be the ratio of equation (5). Then, the system S possesses only periodic solutions
since any quasi-periodic solution of (3) and (4) (which is not periodic) has x = 1
and thus when substituting it in (5) we do not obtain graphical identity.

Thus, also in this case any two equations we add we obtain a system which is
not independent or possesses only periodic solutions.

Case 4: The last case to consider is when equation (3) admits only 1-limited
quasi-periodic solutions. We can suppose without loss of generality that x = 1;
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the case when z = 1 is symmetric. Moreover, the set of periodic solutions contains
either all periodic triples (ui, uj, uk), if the equation is balanced, or only those with
i = 0, otherwise. Then, we consider again (4) as the second equation of S .

If (4) admits independently quasi-periodic solutions with respect to x and z,
then any solution of (3) is also a solution of (4) and so S is not independent.

If the quasi-periodicity of (4) implies the periodicity, then the system S admits
only periodic solutions.

If equation (4) has ratio R2 = p : q, then when substituting a quasi-periodic
solution with x = 1 (which is not periodic) we do not obtain graphical identity.
So, by Corollary 2, the system S possesses only periodic solutions.

If equation (4) admits only 1-limited quasi-periodic solutions with z = 1 then
the system S admits only periodic solutions. Otherwise, (4) admits only 1-limited
quasi-periodic solutions with x = 1. Then, the two equations have exactly the
same set of quasi-periodic solutions. Moreover, if the second equation admits all
periodic triples (ui, uj, uk) as solutions, then any solution of (3) is also a solution
of (4); so the system S is not independent. The same is true if in both equations the
set of periodic solutions contains only triples of the form (1, uj, uk). Otherwise,
equation (3) admits all periodic triples as solutions while (4) admits only those
with x = 1. Thus, when considering (3) and (4) together, they admit as solutions
only triples of the form (1, y, uk) and (1, uj, uk), for any y, u ∈ Σ∗ and j, k ≥ 0.
In this case we have to consider again (5), the third equation of the system S .

If (5) admits independently quasi-periodic solutions with respect to x and z,
then S is not independent since any solution of (3) and (4) is also a solution
of (5). If the quasi-periodicity of (5) implies periodicity, then S possesses only
periodic solutions. If (5) has some ratio R3, then when substituting in it a quasi-
periodic solution with x = 1 (which is not periodic) we do not obtain graphical
identity. So, by Corollary 2, the system S possesses only periodic solutions. If
(5) admits only 1-limited quasi-periodic solutions with z = 1, then S admits only
periodic solutions. Otherwise, (5) admits only 1-limited quasi-periodic solutions
with x = 1, but then any solution of (3) and (4) is also a solution of (5). So, the
system S is not independent.

Thus, any system of at least three equations such that one of them is of the
form

xlzα1(x, z)y . . . yαn(x, z) = zrxβ1(x, z)y . . . yβn(x, z),

with l, r ≥ 1, admits only periodic solutions or it is not independent.

Note that, just as explained at the beginning of this section, considering only
equations with equal numbers of y’s in the two sides is not a restriction of gener-
ality; otherwise, due to Corollary 2, the equation (3) possesses only periodic solu-
tions, making then Theorem 18 trivial. Moreover, the stronger constraint of Theo-
rem 17, i.e., taking only balanced equations, was not needed anywhere in this proof.

In order to clarify future considerations we make the following observation.
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Remark 19. For a system of three equations, we illustrate graphically in Figure 1
the relations between the sets of solutions of all subsystems. First of all, we make a
clear distinction between the sets of periodic (denoted by P), quasi-periodic which
are not periodic (denoted by QP), and purely non-periodic (denoted by PNP) so-
lutions. The indexes written in the parentheses characterize the subsystem for
which we consider the set of solutions. Thus, each region contains all triples of
a certain type satisfying the equations of the corresponding subsystem and only
those. For instance PNP (1, 3) represents the set of all purely non-periodic solu-
tions of both the first and third equation which are not solutions of the second one.
These assumptions force all regions to be disjoint. Thus, an independent system
of three equations possessing non-periodic solutions imposes two restrictions on
the sets illustrated in Figure 1. Firstly, for any S  {1, 2, 3}, at least one of the
sets P (S), QP (S), or PNP (S) is non-empty; in other words the system con-
taining all three equations is not equivalent to any of its subsystems. Secondly, at
least one of the sets PNP (1, 2, 3) orQP (1, 2, 3) is non-empty; in other words the
system possesses also non-periodic solutions.

Figure 1: Representation of the set of solutions of a system of three equations

Due to Theorem 18, we can restrict now to systems of equations where at least
on one side we have only one unknown before the first occurrence of y, i.e. they
start either with xly or with zry for some l, r ≥ 1.

Theorem 20. Any system of three equations such that two of them are

xlyα2(x, z)y . . . yαn(x, z) = β1(x, z)yβ2(x, z)y . . . yβn(x, z)
zryγ2(x, z)y . . . yγm(x, z) = δ1(x, z)yδ2(x, z)y . . . yδm(x, z)
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with l, r ≥ 1, pref1(β1(x, z)) = z, pref1(δ1(x, z)) = x, and Alph(β1(x, z)) ∩
Alph(δ1(x, z)) = {x, z}, possesses only periodic solutions or it is not independent.

Proof. Consider first the system containing the two equations from the theorem.
Then, Theorem 14 implies that this system admits at most quasi-periodic solutions
with respect to x and z and, moreover, if l = 1 or r = 1 then it admits only periodic
ones. So, we can suppose that l, r ≥ 2.

Since the two sides of the first equation start with xly and β1(x, z)y respec-
tively, and Alph(β1(x, z)) = {x, z}, then it cannot admit independently quasi-
periodic solutions with respect to x and z, see Section 2. Also, if it admits only
1-limited quasi-periodic solutions, then they must have z = 1; if a quasi-periodic
triple with respect to x and z (which is not periodic) has x = 1 and z 6= 1, then we
do not obtain graphical identity when substituting it into the equation. Similarly,
the second equation cannot admit independently quasi-periodic solutions with re-
spect to x and z and if it admits only 1-limited quasi-periodic solutions then they
must have x = 1. So, if both equations admit only 1-limited quasi-periodic solu-
tions, then the system containing them possesses only periodic ones.

If at least in one equation the quasi-periodicity implies periodicity, then any
system containing the two equations from the theorem possesses only periodic
solutions.

If one equation admits only 1-limited quasi-periodic solutions and the other
has some ratioR = p : q, then, when substituting a quasi-periodic solution (which
is not periodic) of the first equation into the second one, we do not obtain graphical
identity. So, also in this case, any system containing these two equations possesses
only periodic solutions.

Otherwise, both equations have some ratios; let them be R1 = p1 : q1 and
R2 = p2 : q2, respectively, characterizing completely the sets of quasi-periodic
solutions with respect to x and z of the two equations.

If R1 6= R2, then when substituting a quasi-periodic solution (which is not
periodic) of one of the equations into the other one we do not obtain graphical
identity. So, the system containing the two equations admits only periodic so-
lutions. Otherwise, i.e. R1 = R2 = p : q, the quasi-periodic solutions of the
system are completely characterized by this ratio. Moreover, the set of periodic
solutions of each equation contains either any periodic triple (ui, uj, uk), or only
those satisfying ip = kq.

Consider now a third equation, and let S be the obtained system of three
equations. If we look at the graphical representation of the sets of solutions il-
lustrated in Figure 1, then, due to the previous considerations, we already know
that the sets QP (1), QP (2), PNP (1, 2), and PNP (1, 2, 3) are empty. We have
now four cases depending on the type of quasi-periodic solutions admitted by
the third equation.

If the third equation admits independently quasi-periodic solutions with re-
spect to x and z, then it also admits all periodic triples as solutions. Thus, the
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system S is not independent since any solution of the initial system is also a
solution of the third equation. This case corresponds to the situation when, in
Figure 1, both sets QP (1, 2) and P (1, 2) are empty. Thus, P (1, 2) = QP (1, 2) =
PNP (1, 2) = ∅, meaning that S is equivalent to its first two equations, see Re-
mark 19.

If in the third equation the quasi-periodicity implies periodicity, then the sys-
tem S admits only periodic solutions.

If the third equation admits only 1-limited quasi-periodic solutions, then when
we substitute in it a quasi-periodic solution (which is not periodic) of the initial
system we do not obtain graphical identity; so, by Corollary 2, the system S
possesses only periodic solutions.

Figure 2: A representation of the sets of solutions

Otherwise, the third equation has some ratio R3 which characterizes all its
quasi-periodic solutions with respect to x and z. If R1 = R2 6= R3, then, by
Corollary 2, the system S admits only periodic solutions since, when substituting
in the third equation a quasi-periodic solution (which is not periodic) of the initial
system we do not obtain graphical identity. Otherwise, all three equations have
the same ratio, i.e. R1 = R2 = R3 = p : q. Thus, they all accept the same set of
quasi-periodic solutions, i.e., the ones characterized by this ratio. In Figure 1, this
means that all the setsQP (3),QP (1, 2),QP (1, 3), andQP (2, 3) are empty. If the
third equation admits all periodic triples as solutions, then S is not independent
since any solution of the first two equations is also a solution of the third one. This
case corresponds to the situation when, in Figure 1, we have P (1, 2) = ∅ since any
periodic solution of the first two equations is also solution of the third one. Thus,
again P (1, 2) = QP (1, 2) = PNP (1, 2) = ∅, meaning that S is equivalent to its
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first two equations, see Remark 19. The same is true if the third equation and at
least one of the first two admit as periodic solutions only triples (ui, uj, uk) with
ip = kq. Otherwise, the first two equations of S admit as solutions any periodic
triple (ui, uj, uk), i.e., they are balanced, while the third one admits only those
with ip = kq, i.e., it is not balanced. This case corresponds to the situation when,
in Figure 1, we have that all the sets P (1), P (2), P (3), P (1, 3), and P (2, 3) are
empty; we illustrate this special subcase in Figure 2. Now, if all the sets in Figure
2 are non-empty, then, as explained in Remark 19, this would be an example of
an independent system of three equations admitting also non-periodic solutions.
However, since one equation of the system is not balanced, this case is not possible
due to Theorem 17.

Thus, any system of at least three equations containing the ones in the theorem
possesses only periodic solutions or it is not independent.

Next, we can restrict again to the case when all equations have on one side
only occurrences of x’s before the first y; the case where x and z are interchanged
is symmetric. Using similar reasoning as for the previous theorem, we prove the
following result.

Theorem 21. Consider the following system of two equations:

xlyα2(x, z)y . . . yαn(x, z) = β1(x, z)yβ2(x, z)y . . . yβn(x, z)
xl′yγ2(x, z)y . . . yγm(x, z) = δ1(x, z)yδ2(x, z)y . . . yδm(x, z)

with l 6= l′, pref1(β1(x, z)) = pref1(δ1(x, z)) = z, and if β1(x, z) = zr and
δ1(x, z) = zr′ then r 6= r′. Then, whenever we add a third equation, the obtained
system possesses only periodic solutions or it is not independent.

Proof. Let S be the system of two equations from the theorem. Then, Theorems
13, 15, and 16 imply that S admits at most quasi-periodic solutions with respect
to x and z. Note that the restrictions on the numerical parameters are necessary in
order to use the above mentioned theorems.

Notice that since the first equation starts with xly and β1(x, z)y, respectively,
and z ∈ Alph(β1(x, z)), it cannot admit independently quasi-periodic solutions,
see Section 2. Similarly, neither can the second equation.

If in either of these two equations the quasi-periodicity implies periodicity,
then S possesses only periodic solutions. Thus, in this case, independently of the
third equation we add to S , the obtained system possesses only periodic solutions.

Suppose now that one equation admits only 1-limited quasi-periodic solutions
while the other one has some ratio R. Then, when we substitute a quasi-periodic
solution (which is not periodic) of the first equation into the second one we do
not obtain graphical identity. Thus, by Corollary 2, S possesses only periodic
solutions, and so also in this case, independently of the third equation we add, the
obtained system possesses only periodic solutions.
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Thus, the only remaining possibilities are that either both equations have some
ratios or they both admit only 1-limited quasi-periodic solutions.

Suppose first that both equations have some ratios, completely characterizing
their sets of quasi-periodic solutions; let them be R1 and R2 respectively. If R1 6=
R2, then when substituting a quasi-periodic solution (which is not periodic) of
the first equation into the second one we do not obtain graphical identity, so by
Corollary 2, S possesses only periodic solutions. Thus, in this case, independently
of the equation added to S , the obtained system possesses only periodic solutions.
Otherwise, i.e. R1 = R2 = p : q, the quasi-periodic solutions of the system S
are completely characterized by this ratio. Moreover, the set of periodic solutions
of each of the two equations contains either all periodic triples (ui, uj, uk) or only
those satisfying ip = kq.

Let now S1 be a system of three equations obtained by adding a third equation
to S . If this third equation admits independently quasi-periodic solutions with
respect to x and z, then it also admits all periodic triples as solutions. But then, any
solution of S is also a solution of the new equation. Thus, S1 is not independent.
If in the third equation the quasi-periodicity implies periodicity, then the system
S1 possesses only periodic solutions. If the third equation admits only 1-limited
quasi-periodic solutions, then when substituting in it a quasi-periodic solution
(which is not periodic) of S we do not obtain graphical identity. So, by Corollary
2, the system S1 possesses only periodic solutions. Otherwise, the third equation
has some ratio R3 completely characterizing its set of quasi-periodic solutions
with respect to x and z. If R1 = R2 6= R3, then, by Corollary 2, the system S1

possesses only periodic solutions. Otherwise, all three equations have the same
ratio, i.e. R1 = R2 = R3 = p : q. Thus, the three equations possess exactly
the same set of quasi-periodic solutions. If the third equation admits all periodic
triples as solutions, then S1 is not independent since any solution of S is also a
solution of the third equation. The same is true if the third equation and at least one
of the first two admit as periodic solutions only triples (ui, uj, uk) with ip = kq.
Otherwise, the equations of S are balanced while the third one is not. But, like in
the previous theorem, in this case Theorem 17 implies that S1 is not independent
or it possesses only periodic solutions.

Next, we consider the case when both equations of the system S admit only
1-limited quasi-periodic solutions with respect to x and z. However, if at least
one of β1(x, z) or δ1(x, z) contains only z’s, then, by definition, the correspond-
ing equation cannot admit 1-limited quasi-periodic solutions with respect to x

and z, see Section 2. Thus, this case is possible only when Alph(β1(x, z)) ∩
Alph(δ1(x, z)) = {x, z}. Moreover, since the left sides of the two equations start
with xly and xl′y, respectively, then the quasi-periodic solutions must be of the
form (ui, y, 1) for some i ≥ 0 and u, y ∈ Σ∗. Also, the sets of periodic solutions
of the two equations contain either all periodic triples (ui, uj, uk) or only those
with k = 0.

Let again S1 be a system of three equations obtained by adding a third equa-
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tion to S . As above, if the third equation admits independently quasi-periodic
solutions with respect to x and z, then S1 is not independent. Also, if in the third
equation the quasi-periodicity implies periodicity, then S1 possesses only peri-
odic solutions. If the third equation has some ratio R completely characterizing
its set of quasi-periodic solutions, then we do not obtain graphical identity when
substituting in it a quasi-periodic solution (which is not periodic) of S . Thus, by
Corollary 2, the system S1 possesses only periodic solutions. Otherwise, this third
equation admits only 1-limited quasi-periodic solutions with respect to x and z. If
these solutions have x = 1, then S1 possesses only periodic solutions since, again,
when substituting in it a quasi-periodic solution (which is not periodic) of S we do
not obtain graphical identity. Otherwise, the three equations of S1 possess exactly
the same set of quasi-periodic solutions with respect to x and z, i.e. triples of the
form (ui, y, 1) for i ≥ 0 and u, y ∈ Σ∗. But then, if the third equation admits all
periodic triples as solutions, then S1 is not independent since any solution of S is
also a solution of the third equation. The same is true if the third equation and at
least one of the first two admit as periodic solutions only triples (ui, uj, 1). Oth-
erwise, the first two equations of S1 are balanced while the third one is not. Then,
due to Theorem 17, we obtain again that S1 is not independent or it possesses only
periodic solutions.

Thus, independently of the added equation, the obtained system possesses
only periodic solutions or it is not independent.

Remark 22. The proofs of the last two theorems raise the following comment. In
some cases of these proofs we needed to use the constraint imposed by Theorem
17, i.e., that a system containing unbalanced equations either possesses only peri-
odic solutions or it is not independent. However, for both theorems, if we consider
four equations instead of three, then we can prove that such a system possesses
only periodic solutions or it is not independent in the general case of arbitrary
equations, i.e., without the help of Theorem 17.

The only remaining case now, up to the symmetry of x and z, is the one when
all equations have on one side only occurrences of x’s before the first y, and more-
over the number of these occurrences is the same in all of them. The theorems in
this section reduce Conjecture 5 to this last case.

In order to continue our investigation of this last case we need to introduce
a new technique. For an arbitrary word equation over three unknowns, we de-
fine inductively a partition of the set of solutions depending on the lengths of the
unknowns x, y, and z. For any solution (X,Y, Z) ∈ (Σ∗)3, we have three possi-
bilities: |X| = |Z|, |X| < |Z|, and |X| > |Z|. Depending on these possibilities
we can apply to the initial equation three types of transformations: x = z, z = xt,
and x = zt, respectively, for a new unknown t. Thus, we first divide the set of
solutions into three sets, each one containing triples satisfying only one of the
above conditions; let them be Sx=z, Sz=xt, and Sx=zt. While the set Sx=z, corre-
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sponding to the restriction |X| = |Z|, remains unchanged, the other two will be
modified further on. Let us take now the set Sz=xt characterized by the condition
|X| < |Z|; the considerations for the set characterized by |X| > |Z| are identical.
In this case, we can apply to the initial equation the transformation z = xt, where
t is a new unknown and obtain a new equation admitting a shorter solution, i.e.,
(X,Y, T ) with |T | < |Z|. Thus we can repeat inductively the above procedure,
this time splitting the set Sz=xt into three disjunct parts. Moreover, each of these
new subsets is characterized by two constraints: the first one is |X| < |Z| while
the second one involves |X|, |Y |, and |T |. Since at each step we reduce the length
of the chosen solution (X,Y, Z), we have to stop after finitely many steps; so any
solution is included in a unique, clearly defined subset. Thus, when we consider
the set of all solutions, we obtain a (possibly infinite) partition P , each class being
characterized by a chain of constraints on the lengths of the unknowns. Naturally,
such a partition of the set of all solutions can be constructed in the same way for
arbitrary systems of equations.

Theorem 23. Let P be the above partition of the set of solutions of the following
system:







xiyα2(x, z)y . . . yαn(x, z) = zβ1(x, z)yβ2(x, z)y . . . yβn(x, z)
xiyγ2(x, z)y . . . yγm(x, z) = zδ1(x, z)yδ2(x, z)y . . . yδm(x, z)
xiyµ2(x, z)y . . . yµp(x, z) = zν1(x, z)yν2(x, z)y . . . yνp(x, z)

,

where β1(x, z), δ1(x, z), ν1(x, z) ∈ {x, z}∗. Then, on each class of P , the system
possesses only periodic solutions or is equivalent to one of its subsystems.

Proof. Since all equations start with xiy in the left side and with a word of the
form z{x, z}∗y in the right side, then they cannot admit independently quasi-
periodic solutions with respect to x and z, see Section 2.

Let (X,Y, Z) ∈ (Σ∗)3 be a solution of this system; (1, 1, 1) is solution of any
constant-free equation.

Case 1: If |X| = |Z| then X = Z and thus the chosen solution (X,Y,X) is
quasi-periodic with respect to x and z. If in any of the three equations the quasi-
periodicity implies periodicity, then this solution has to be periodic. Also, if any of
the three equations admits only 1-limited quasi-periodic solutions with respect to
x and z, then the chosen solution is actually (1, Y, 1) and thus periodic. Otherwise,
all three equations have some ratios; let them be R1, R2, and R3 respectively
which completely characterize the sets of quasi-periodic solutions with respect to
x and z of each of the equations. If R1 6= 1 : 1, R2 6= 1 : 1, or R3 6= 1 : 1, then
the chosen solution is actually periodic since, by Corollary 2, when replacing in
the initial system x = z we do not obtain graphical identity. Otherwise, the three
equations have R1 = R2 = R3 = 1 : 1, meaning that they are equivalent to each
other on the set of solutions of the form (X,Y,X) ∈ (Σ∗)3. Moreover, if i = 1,
then this is possible only when β1(x, z) = δ1(x, z) = ν1(x, z) = 1.
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Case 2: If |X| > |Z|, then we can writeX = ZT for some new word T ∈ Σ+.
If in the initial system we apply the transformation x = zt for some new unknown
t, then we obtain







t(zt)i−1yα2(zt, z)y . . . yαn(zt, z) = β1(zt, z)yβ2(zt, z)y . . . yβn(zt, z)
t(zt)i−1yγ2(zt, z)y . . . yγm(zt, z) = δ1(zt, z)yδ2(zt, z)y . . . yδm(zt, z)
t(zt)i−1yµ2(zt, z)y . . . yµp(zt, z) = ν1(zt, z)yν2(zt, z)y . . . yνp(zt, z)

.

Consider now the case when i ≥ 2. If in the initial system at least one of β1(x, z),
δ1(x, z), or ν1(x, z) contain also x, then we have at least an equation where in
both sides both z and t appear before the first y. But then Theorem 18 implies
that the obtained system admits only periodic solutions or it is not independent.
Thus either the chosen solution is periodic or the initial system is equivalent to
one of its subsystems on the set of solutions of the form (X,Y, Z) ∈ (Σ∗)3 with
|X| > |Z|.

Otherwise, we have β1(zt, z), δ1(zt, z), ν1(zt, z) ∈ z∗. If two of them are
zk and respectively zl with k 6= l, then Theorem 21 implies that this system
admits only periodic solutions or it is not independent. So, again either the chosen
solution is periodic or the initial system is equivalent to one of its subsystems on
the set of solutions of the form (X,Y, Z) ∈ (Σ∗)3 with |X| > |Z|. If β1(zt, z) =
δ1(zt, z) = ν1(zt, z) = zk, then this is a system of the same type as the initial
one for which we have a shorter solution (T, Y, Z) so we can apply inductively
the same reasoning.

Now, if i = 1, then the obtained system is of the same type as the initial one
but admitting a shorter solution (T, Y, Z), so we can repeat inductively the same
reasoning. Moreover, if β1(x, z) = δ1(x, z) = ν1(x, z) = 1, then the obtained
system is actually of the form







tyα′(t, y, z) = yi1zβ′(t, y, z)
tyγ′(t, y, z) = yi2zδ′(t, y, z)
tyµ′(t, y, z) = yi3zν ′(t, y, z)

.

If at least two of i1, i2, or i3 are distinct then Theorem 21 implies that this system
admits only periodic solutions or it is not independent. Thus, either the chosen
solution is periodic or the initial system is equivalent to one of its subsystems on
the set of solutions of the form (X,Y, Z) ∈ (Σ∗)3 with |X| > |Z|. Otherwise, i.e.
i1 = i2 = i3, this is of the same type as the initial system and admits a shorter
solution (T, Y, Z) so we can again apply inductively the same reasoning.

Case 3: If |X| < |Z|, then we can write Z = XT for some new word T ∈ Σ+.
If i ≥ 2, then when we apply the transformation z = xt for some new un-

known t, we obtain:






xi−1yα2(x, xt)y . . . yαn(x, xt) = tβ1(x, xt)yβ2(x, xt)y . . . yβn(x, xt)
xi−1yγ2(x, xt)y . . . yγm(x, xt) = tδ1(x, xt)yδ2(x, xt)y . . . yδm(x, xt)
xi−1yµ2(x, xt)y . . . yµp(x, xt) = tν1(x, xt)yν2(x, xt)y . . . yνp(x, xt)

,
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which is of the same type as the initial one and possesses a shorter solution
(X,Y, T ). So, we can apply inductively for this system the same reasoning as
above.

If i = 1, then after applying the transformation z = xt for some new unknown
t, the obtained system is of the form







yi1xα′(x, y, t) = tβ1(x, xt)yβ
′(x, y, t)

yi2xγ′(x, xt) = tδ1(x, xt)yδ
′(x, y, t)

yi3xµ′(x, y, t) = tν1(x, xt)yν
′(x, y, t)

.

Suppose first that at least two of i1, i2, or i3 are distinct, e.g., i1 6= i2. If at
least one of β1(x, z) or δ1(x, z) are the empty word, then Theorem 21 implies
that this system admits only periodic solutions or it is not independent. Thus,
either the chosen solution is periodic or the initial system is equivalent to one
of its subsystems on the set of solutions of the form (X,Y, Z) ∈ (Σ∗)3 with
|X| < |Z|. Otherwise, i.e. i1 = i2 = i3, this is of the same type as the initial
system and admits a shorter solution (T, Y, Z) so we can apply inductively the
same reasoning.

Since with every transformation we reduce the length of the chosen solution,
we have to stop after a finite number of steps. But, the previous considerations
imply that we stop either with a periodic solution or with a non-independent
system.

Note that if in the previous theorem the equations of the initial system are bal-
anced, then so are all the equations derived throughout the proof. In particular,
this implies that all these equations have exactly the same set of periodic solu-
tions, i.e., the set of all periodic triples. In other words, if on one class of the
partition the initial system possesses only periodic solutions, then, on that class,
it is equivalent with any of its equations. Moreover, if the initial system is always
equivalent to exactly the same subsystem or to equivalent subsystems, then it is
not independent. This would completely solve the open problem from [4], by giv-
ing a negative answer. On the other hand, this theorem gives us some clues on
how to look for an example of an independent system of three equations accept-
ing non-periodic solutions, if there exists one. However, searching for such an
example seems to be a very difficult task.
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