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Abstract

It is shown that the (infinite) tiling problem is undecidable even if the given tile
set is deterministic by two opposite corners, i.e. a tile is uniquely determined by
both the colors of the two sides adjacent to some corner and the colors of the sides
directly opposite to these sides. The reduction is done from the Turing machine
halting problem and uses the 4-way deterministic aperiodic tile set of Kari and
Papasoglu.

The tile set construction given here implies also the universality of one-dimen-
sional reversible cellular automata. More specifically, a new proof is given for the
result of Dubacq, that any (irreversible) Turing machine can be simulated in real
time with a one-dimensional reversible cellular automaton.

Keywords: cellular automata, determinism, reversibility, tiling problem, Wang
tiles
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1 Introduction

A Wang tile (or a tile in short) is a unit square with colored edges. The edges of a
Wang tile are called north, east, west and south edges in a natural way. A Wang tile
t can be considered also as an ordered 4-tuple t = (Nt, Et,Wt, St) containing the
colors in a predefined order. For the given tile t, expressions Nt, Et, Wt and St are
used to denote north, east, west and south side colors, respectfully. A Wang tile set
T (or a tile set in short) is a finite set containing Wang tiles. A tiling is a mapping
f : Z

2 → T , which assigns a unique Wang tile for each integer pair of the plane.
A tiling f is said to be valid, if for every pair (x, y) ∈ Z

2 the tile f(x, y) ∈ T

matches its neighboring tiles (e.g. the south side of tile f(x, y) has the same color
as the north side of tile f(x, y − 1) etc.).

A Wang tile set T is said to be NW-deterministic, if within the tile set there does
not exist two different tiles with the same colors on the north- and west-sides. In
general, a Wang tile set is XY-deterministic, if the colors of X- and Y-sides uniquely
determine a tile in the given Wang tile set. A Wang tile set is 4-way deterministic,
if it is NE-, NW-, SE- and SW-deterministic.

A mapping f : T1 → T2 is called a tile homomorphism if it respects the colors,
i.e. f(t) = t′ with Nt′ = g(Nt), Et′ = g(Et), Wt′ = g(Wt) and St′ = g(St),
where g is a mapping from the set of the colors of the tile set T1 to the set of the
colors of the tile set T2. The homomorphic image f(T ) of a tile set T is defined in
the natural way as the set

f(T ) = {f(t)|t ∈ T} .

A tiling f : Z
2 → T is called periodic with period (a, b) if f(x, y) = f(x +

a, y + b) for all (x, y) ∈ Z
2 and (a, b) 6= (0, 0). A tile set T is called aperiodic,

if there exists some tiling with the tile set T , but no tiling with the tile set T is
periodic. If the tile set T admits a periodic tiling f : Z

2 → T with some period,
then it admits also a doubly periodic tiling g : Z

2 → T , that is, there exists such
non-zero integers a and b that g(x, y) = g(x + a, y) and g(x, y) = g(x, y + b) for
all (x, y) ∈ Z

2 [7].
The following question is referred to as the tiling problem: “Given a Wang tile

set T , does there exist a valid tiling of the plane?” A tiling f : Z
2 → T is said

to contain tile t ∈ T , if for some integers x, y ∈ Z equation f(x, y) = t holds.
The following question is referred to as the tiling problem with a seed tile: “Given
a Wang tile set T and a tile t ∈ T , does there exist a valid tiling of the plane that
contains the tile t?” If the tiling problem with a seed tile was decidable, then the
tiling problem would be decidable. Let T be the tile set of the given instance of
the tiling problem. Then the answer for the tiling problem is affirmative, if, and
only if, for some tile t ∈ T the answer for the tiling problem with a seed tile is
affirmative considering the tile set T as the tile set of the instance and the tile t as
the seed tile of the instance.

It is already known, that the tiling problem is undecidable [7, 2]. Furthermore,
it is known to be undecidable even when restricted to tile sets that are deterministic
by one corner [4]. In this article it is shown that the tiling problem is undecidable
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for tile sets that are deterministic by two opposite corners. The proof relies on the
4-way deterministic aperiodic tile set given by Kari and Papasoglu [5].

2 The tiling problem with a seed tile

2.1 The idea for the undecidability proof

The basic idea is to represent the Turing machine tape on diagonal rows as in [4].
It is easy to show, that an arbitrary Turing machine computation can be represented
on diagonal rows. The computation on diagonal rows is done in the manner of
figure 1(a). Every second diagonal row in the northwest-southeast direction is used
to represent the Turing machine configuration at a certain moment. One tile at each
diagonal row represents the read-write head and the current symbol to be read. The
other tiles of the diagonal row represent the other symbols on the tape located to
the left and to the right from the read-write head.

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

tape

- -

6

6
-

6
-

(a) The rough idea of representing Turing
machine computation on diagonal rows.
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(b) The Turing machine computation
with additional information signals of ear-
lier read-write operations.

Figure 1: The general idea of representing the computation on diagonal rows.

Since a Turing machine is a deterministic method of computation, the tile set
constructed in this manner is clearly deterministic in (at least) one direction. More
specifically, it is the direction to which the computation advances in time. To force
determinism also in the opposite direction, some modifications are needed. On
every operation of the read-write head, a “signal” is sent to the direction that is
opposite to the read-write head movement. This signal contains information about
the read-write operation which is currently being conducted and the direction from
which the read-write head entered the current cell after the previous move. The
computation with signals is represented in figure 1(b). In figure 1(b), if the read-
write head moves to the left, the signal is sent towards east, and if the read-write
head moves to the right, the signal is sent towards north. In practice, the signal
is just a component of a side color which is moved onward unobstructed. These
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signals containing information about the previous move and the current one are
referred to as the move signals. The move signals are started on the tiles in figures
2 and 4 (i.e. the tiles that represent the read-write head). The tiles in figure 5 (i.e.
the tiles that represent the tape) just move the possible move signals onward. This
construction will make the tile set representing the given Turing machine both NE-
and SW-deterministic.

2.2 The tile set for the given Turing machine

In this subsection a NE- and SW-deterministic tile set is constructed for the given
Turing machine. In what follows, the diagonal rows of tiles are referred to as
diagonals in short.

In this article, a Turing machine M is considered to be a four-tuple M =
(S, T, δ, q0), where S is the state set, T is the tape alphabet, δ is the transition
function and q0 ∈ S is the initial state. No “accept”-, “reject”- or “halt”-states are
defined explicitly. The tape of a Turing machine is defined to be two-way infinite
and symbol ε is used to denote the empty symbol of the Turing machine. The
transition function is a mapping

δ : S × T → S × T × {L,R},

that is, at every time step the read-write head moves either to the left or to the right.
A Turing machine is said to halt, if it is in state q reading symbol s and δ(q, s)
in undefined. Transition of the form δ(x, y) = (a, b, c) can also be written in the
form (x, y) → (a, b, c). The Turing machine halting problem is considered to be
the following question: “Does the given Turing machine M halt when started on
an empty tape?” The halting problem is known to be undecidable.

The tiles to represent read-write operations For every possible move of the Tur-
ing machine, either the tiles in figure 2 and the tile in figure 3(a), or the tiles
in figure 4 and the tile in figure 3(b) are added to the tile set.

The tiles for a left move Assume that the Turing machine contains move
(q, a) → (q′, a′, L). Then the tiles in figure 2 and the tile in figure 3(a)
are added to the tile set.

The tile in figure 2(a) is used if the previous move was to the left and
the current move is to the left. If the previous move was to the right,
then the tile in figure 2(b) is used.

The tiles for a right move Assume that the Turing machine contains move
(q, a) → (q′, a′, R). Then the tiles in figure 4 and the tile in figure 3(b)
are added to the tile set.

The tile in figure 4(a) is used if the previous move was to the left and
the current move is to the right. If the previous move was to the right
and the current move is to the right, then the tile in figure 4(b) is used.

The tiles that are used to represent the moves of the given Turing machine
M are referred to as move tiles or the tile set MM.
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′ )
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)

a qa

(a) The new move is to the left and
the previous move was to the left.

(q
′ , a

′ )
(a ′

, qa, R
)

qa a

(b) The new move is to the left and
the previous move was to the right.

Figure 2: The tiles representing the read-write head for move (q, a) → (q ′, a′, L)

q
′ b a ′

b
(q
′ , a

′ )

(a) The tile for read-write operation
(q, a) → (q′, a′, L).

a
′ q ′

b

(q ′
, a ′) b

(b) The tile for read-write operation
(q, a) → (q′, a′, R).

Figure 3: The tiles for the read-write operations. The tiles depend on the new state
q′, the new symbol a′ to be written, the move direction and on the new symbol b to
be read.

The tiles to represent tape contents For every state q and every element a, b and
c of the tape alphabet, the tiles in figure 5 are added to the tile set. The tile
in figure 5(a) is used to represent a cell (or the border between two cells
if a 6= b) of the tape without any information about an earlier read-write
operation.

The tiles in figure 5(b) represent tape contents likewise, but contain also
information about a read-write operation during which the read-write head
moved to the left. That is, the east side and the west side have colors of form
(·, qc, ·) if, and only if, there exist a move of form (q, c) → (·, ·, L).

The tiles in figure 5(c) are similar to the tiles in figure 5(b) with the exception
that they contain information about a read-write operation during which the
read-write head moved to the right and not to the left. The north side and the

(a
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a,
L
)(q ′

, a ′)

a qa

(a) The new move is to the right and
the previous move was to the left.

(a
′ , q

a,
R
)(q ′

, a ′)

qa a

(b) The new move is to the right and
the previous move was to the right.

Figure 4: The tiles representing the read-write head for move (q, a) → (q ′, a′, R)
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south side have colors of form (·, qc, ·) if, and only if, there exist a move of
form (q, c) → (·, ·, R).

The tile set is being constructed so, that if the seed tile (i.e. the tile in figure
6(c)) is located on an even diagonal, then on every odd diagonal symbols a

and b in figure 5 are equal.

a b

a b

(a) A tile without read-
write information.

a

(b, qc,L
)(a, qc, L

)
b

a

(b, qc,R
)(a, qc,R

)
b

(b) The tiles with information about a move to the
left.

(a
, q

c,
L
)

b

a

(b
, q

c,
L
) (a

, q
c,
R
)

b

a

(b
, q

c,
R
)

(c) The tiles with information about a move to the
right.

Figure 5: The tiles to represents the symbols on the tape. Here q denotes an arbi-
trary state and symbols a, b and c denote arbitrary elements of the tape alphabet.

The tiles that are used to represent the tape contents of the given Turing
machine M are referred to as symbol tiles or as the tile set SM.

The auxiliary tiles To force the Turing machine to start on a blank tape only, the
tiles in figure 6 are added to the tile set. One of these tiles (namely, the tile in
figure 6(c)) is chosen to be the seed tile. If the seed tile is contained within a
tiling, then the tiling represents a Turing machine computation. Other tiles in
figure 6 force the Turing machine to start on a blank tape. The blank initial
configuration of the Turing machine is represented by the tile pattern shown
in figure 8. In short, if the seed tile is located in the origin, then the Turing
machine simulation is done in one of the quadrants.

For the given Turing machine M, the tiles in figure 6 are referred to as
initialization tiles or as the tile set IM.

For every Turing machine M, the Wang tile set constructed using the method
above is denoted by TM (i.e. TM = MM ∪ SM ∪ IM). An example of a Turing
machine operation is shown in figure 7.

Let (q, a) be any preimage pair for which the transition δ(q, a) is not defined.
Then there will be no tile that would have the color qa on its west side or south
side. Therefore, if the Turing machine halts, that is, if at some moment of time the
read-write head in state q reads symbol a, then the tiling cannot be completed to
cover the entire plane in a valid way.
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(a) The blank
tile.

W (q
0
,
ε)

q0

(b) The tile to
place the read-
write head.

q0
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(c) The seed tile.
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ε

SS

(e) The south
border.

W̄

W̄

(f) The west bor-
der extension.

S̄S̄

(g) The south
border extension.

Figure 6: The tiles that are used to start the Turing machine simulation.

Lemma 2.1. For any given (deterministic) Turing machine M, the tile set TM is
both NE- and SW-deterministic.

Proof. The tile set is SW-deterministic, since clearly it has no two tiles having
same colors on the south sides and the west sides.

Similarly, the tile set is NE-deterministic. No two tiles in figures 2, 3, 4 and 5
have the same colors on the north side and the east side.

Theorem 2.2. The following question is undecidable: “Given a Turing machine
M, does the tile set TM admit a valid tiling of the plane containing the tile in
figure 6(c)?”

Proof. The tile set TM quite obviously corresponds the actions and configurations
of the given Turing machine M. Requiring the seed tile to be the tile in figure 6(c),
the structure in figure 8 is forced to be tiled on the plane.

The structure in figure 8 obviously corresponds the initial configuration with
a blank tape. Therefore, the plane can be tiled correctly if, and only if, the given
Turing machine does not halt (when started on a blank tape). Of course, the halting
problem with a blank tape is undecidable.

Since the tiling problem with a seed tile is a generalization of the problem in
theorem 2.2, corollary 2.2.1 follows.

Corollary 2.2.1. The tiling problem with a seed tile is undecidable for tile sets that
are both NE-deterministic and SW-deterministic.

Moreover, the tile set TM would be NE-deterministic even if the Turing ma-
chine M was nondeterministic. No matter what the state q and symbol a are, the
tiles in figures 2, 3 and 4 are uniquely defined by the colors of their north and east
sides. Hence, lemma 2.3 follows.

Lemma 2.3. For any given nondeterministic Turing machine M, the tile set TM

is NE-deterministic.

A NE- and SW-deterministic tile set can be constructed even for any nondeter-
ministic Turing machine. This tile set is constructed by modifying the tile set TM.
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Figure 7: Rewrite operation abqcd ` aq′bc′de ` ab′qc′de ` ab′c′′qde. For clarity,
the tiles in figure 3 are represented by arrows and the tiles in figure 5 on every
second row are represented by blanks.

Modification is based on using signals containing information about the particular
move that was chosen. These signals are referred to as decision signals. The tile in
figure 2 is modified so, that it sends a decision signal to the left and backwards in
time (i.e. towards west since the computation advances towards northeast). Like-
wise, the tile in figure 4 is modified to send a decision signal to the right and
backwards in time (i.e. towards south). Furthermore, the tiles in figures 5 and 6 are
modified to allow crossings with any kinds of decision signals. This new modified
tile set is referred to as the tile set T N

M
(where N stands for non-determinism). It

is quite straightforward to see, that the tile set T N
M

is indeed both NE- and SW-
deterministic. By using decision signals and lemma 2.3, lemma 2.4 follows.

Lemma 2.4. For any given nondeterministic Turing machine M, the tile set T N
M

is both NE-deterministic and SW-deterministic.

3 The tiling problem without a seed tile

In this section the tiling problem without a seed tile is shown to be undecidable even
for those tile sets that are deterministic by two opposite corners. The argumentation
is quite similar to that of earlier proofs [4, 7]. The only difference is the requirement
that the final tile set must be both NE- and SW-deterministic.
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Figure 8: Using the tiles in figure 6 to start the Turing machine simulation on a
blank tape.

3.1 A brief outline of the argumentation

The proof for undecidability is similar to that of Kari [4]. The difference is that
the tile set construction is more complicated due to the additional requirements of
determinism.

The reduction is done from the tiling problem with a seed tile to the tiling
problem (when restricted to the instances that are both NE- and SW-deterministic,
or course). That is, if there was an algorithm for solving the tiling problem, then
there would be also an algorithm for solving the tiling problem with a seed tile.

The idea of the reduction is to construct a more complicated tile set according
to the original tile set. For the new tile set, the answer for the tiling problem will
be affirmative if, and only if, the answer for the tiling problem with a seed tile is
affirmative for the original given tile set and the given seed tile.

The new tile set is such, that on a valid tiling certain areas are used to simu-
late a tiling with the original tile set. These areas are referred to as free rows and
free columns. Identifying the free areas in the earlier case [4] required some mod-
ifications to the original proof of Robinson [7]. Now the tile set construction for
identifying the free areas is somewhat more complicated.

The construction of the new tile set relies heavily on the use of an aperiodic
tile set. By using the square patterns generated by Robinson’s tile set, copies of the
seed tile are forced to be located at certain points of the plane.

In [4] Kari modified Robinson’s tile set resulting a new aperiodic tile set which
is deterministic by one corner. Later in [5], Kari and Papasoglu presented an aperi-
odic 4-way deterministic tile set which can be mapped homomorphically onto the
original Robinson’s tile set. This 4-way deterministic tile set will be used in the
proof instead of Robinson’s aperiodic tile set.

The new tile set is constructed in six layers for the given tile set T and a seed
tile t ∈ T . The rough outline of the layers is the following:

Layer 1. The tiling forced by the aperiodic tile set of Kari and Papasoglu.

Layer 2. The tiles to identify free areas.

Layer 3. A tiling simulating a tiling by the given tile set T .
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Layer 4. The tiles to force a copy of the seed tile t ∈ T to be located at the center
of every red square of layer 1

Layer 5. The tiles to forward the colors of the tile set T at the layer 3 from a free
area border to a free area border.

Layer 6. The tiles to forward the colors of the tile set T at the layer 3 from a red
border to a red border.

Theorem 3.1. The tiling problem is undecidable for tile sets that are both NE-
deterministic and SW-deterministic.

Proof (sketch). Subsection 3.2: It is possible to divide the plane into squares of
increasing size using the tile set of Kari and Papasoglu. The squares are colored
either red or blue. No borders of two squares of the same color can coincide.

Subsection 3.3: Each of the red squares contains free areas that are not between
any of the smaller red squares. The free areas can be recognized NE- and SW-
deterministically.

Subsection 3.4: A finite area of a tiling by the original tile set is simulated on
the free areas within the red squares. The size of the free area inside a red square
square is directly proportional to the size of the red square.

Subsection 3.5: One copy of the seed tile can be forced to be located at the
center of the simulation area with a 4-way deterministic construction. Therefore, a
tiling by the original tile set is forced to be simulated at arbitrarily long distances
from the seed tile to any direction.

Subsection 3.6: The area consisting of disjoint free areas can be considered
as a single continuous square. This is seen by transferring the colors between
the free areas using a 4-way deterministic construction (except for the non-4-way
determinism caused by layer 2).

Subsection 3.7: The plane is tiled correctly if, and only if, on every red square
the free area is tiled correctly using the original tile set. Any valid tiling by the
original tile set can be simulated using the new tile set without a tiling error. This
is seen by transferring the outermost colors between the red squares using a 4-way
deterministic construction (again, except for the non-4-way determinism caused by
layer 2).

3.2 The aperiodic tile set (layer 1)

A general outline of Robinson’s tile set is shown in figure 9. The tile set consists of
tiles that are called crosses and tiles that are called arms as shown in the figure. The
colors of the tiles are defined using patterns consisting of single arrows and double
arrows. The arrows are colored either red or blue. In a cross tile all the arrows
are of the same color and in an arm tile the intersecting arrows are of different
color. Two tiles are considered to match at their abutting sides if an arrow (of some
particular type) exiting one of the tiles enters the other tile. Robinson’s tile set has
also some parity constraints that are not shown in the tiles in figure 9. A more
thorough description of Robinson’s tile set can be found (naturally) in [7].
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Figure 9: The basic tiles of Robinson’s tile set (with colors, reflections, rotations
and parity constraints omitted).

Figure 10: A part of the self-similar pattern generated by the tile set of Robinson
(and the tile set of Kari and Papasoglu).

Robinson’s tile set forces a self-similar pattern to be tiled, a part of which is
shown in figure 10. The tiling forced by the Robinson’s tile set is divided into
square areas bounded by blue squares or red squares. More specifically, the tiling
contains blue squares of height 22n+1 + 1 and red squares of height 22n + 1, for
every integer n. Furthermore, the borders of the squares of the same color never
coincide. In the center of the area bounded by a blue square there is always some
corner of a red square, and likewise in the center of the area bounded by a red
square there is always some corner of a blue square.

Kari and Papasoglu have constructed a 4-way deterministic tile set which will
be used in this article instead of Robinson’s tile set. Formally, the following theo-
rem holds:

Theorem 3.2 (Kari and Papasoglu [5]). There exists a 4-way deterministic tile
set, which

1. admits a valid tiling and
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2. can be mapped homomorphically onto Robinson’s tile set.

An implication of property 2 is the aperiodicity of the tile set. However, the
exact structure of the tile set of Kari and Papasoglu is irrelevant. It is sufficient to
know that there exists a NE- and SW-deterministic tile set, which can be mapped
homomorphically onto Robinson’s tile set. In this sense, the tile set of Kari and
Papasoglu is more than enough, since it is not only NE- and SW-deterministic, but
even 4-way deterministic. Formally, the tile set of and Kari and Papasoglu will be
used as layer 1 of the final set of sandwich tiles to remove the requirement of the
seed tile.

The aperiodic tile set will be used to admit only such a tiling, that the seed tile
is contained in it infinitely many times. Moreover, every instance of the seed tile
will be associated with a specific area of the tiling.

3.3 Identifying the free areas (layer 2)

A tile within a red square is said to be located on a free column of the red square, if
there are no smaller red squares above or below it within the red square. Likewise,
a tile within a red square is said to be located on a free row of the red square, if
there are no smaller red squares within the red square to the right or to the left from
its position. A tile within a red square is said to be free, if it is located on both a
free row and a free column. For example, the free tiles of a (26 +1)× (26 +1) red
square are shown in figure 11.

Figure 11: The free area of 9 × 9 squares within a red square spanning 65 × 65
squares.

An identification diagonal is a diagonal signal advancing from southwest to
northeast. If it encounters the lower left corner of a red square, it splits into two
component signals that move along the borders of this particular red square. As the
component signals meet at the upper right corner of a red square, the component
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signals are merged to form again the diagonal signal. The identification diago-
nals are used to identify the largest red squares that are centered on the northeast-
southwest diagonal between two predefined points. An identification diagonal is
shown in figure 12. If the identification diagonal encounters the lower left corner
(and then also on the upper right corner) of a red square, then it surrounds the red
square with component signals as shown in figure 12.

��

��

��

��

Figure 12: An identification diagonal is used to identify the red squares that are
located on a specific northeast-southwest diagonal.

If the end points can be identified using some construction, finite diagonal sig-
nals in the northeast-southwest direction can be drawn with a tile set that is both
NE- and SW-deterministic. Likewise, the diagonal signals can be split into sepa-
rate signals (at a specific point) and these signals can be later merged (at a specific
point) to form a diagonal signal.

a5

a3

a1

a6

a4

a2

a7

Figure 13: The end points of border diagonals. All the tiles representing the points
can be identified 4-way deterministically.

To identify the free areas within the given red square, a set of eight identi-
fication diagonals will be drawn in the northeast-southwest direction around the
square. Two diagonals will be drawn for each side of the square. These identifi-
cation diagonals are referred to as border diagonals of that particular red square.
The end points for the border diagonals are shown in figure 13. In figure 13 it is
shown, which specific points of the tiling forced by Robinson’s tile set will be used
as end points for the border diagonals. The end points correspond the following
tiles (enumerated as in figure 13) of Robinson’s tile set:
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1. The meeting point of red single arrows of the south borders of two red
squares.

2. The meeting point of red double arrows of the west border of a red square.

3. The meeting point of red double arrows of the east border of a red square.

4. The meeting point of red single arrows of the north borders of two red
squares.

5. The lower right corner of a red square.

6. The meeting point (single or double) horizontal blue arrows.

7. The upper left corner of a red square.

The border diagonals that are drawn between the tiles of types 1 and 2 or 6 and 7
are referred to as west border diagonals. Likewise, the border diagonals that are
drawn between the tiles of types 3 and 4 or 5 and 6 will be referred to as east
border diagonals. In a similar way, it is possible to define north border diagonals
and south border diagonals to be located vertically between two red squares.

To determine the boundaries of the free areas, signals called border signals are
drawn between two border diagonals. The border signals act as the borders of the
free areas. In short, the border signals are horizontal and vertical signals drawn
between some of the corners of the red squares centered at border diagonals. The
border diagonals are used to locate the tiles between which the border signals can
be drawn to maintain both NE- and SW-determinism.

West border diagonals determine (at the east corners of a red square) the left
end points of the horizontal border signals and east border diagonals determine
(at the west corners of a red square) the right end points of the horizontal border
signals. In a similar way, north border diagonals determine the upper end points
points of the vertical border signals and south border diagonals determine the lower
end points of the vertical border signals. Figure 14(a) shows the border diagonals
for a (42 + 1) × (42 + 1) red square. Figure 14(b) shows the border diagonals and
the border signals of a (42 + 1) × (42 + 1) red square.

A border signal is defined to be in two different states, either active or inactive.
Only the border signals in the active state are considered to be borders of the free
areas. As a border signal is started on a border diagonal, it is in the inactive state.
As the signal enters a red square, the state is changed from inactive to active, and
as it exists a red square, the state is changed from active to inactive. As the border
signal stops at a border diagonal on the other side of the red square, it is again in
the inactive state.

The border signals are started on the corners of a red square if a component
signal of a particular border diagonal is met at the corner. Horizontal border signals
are drawn between the east corners of the red squares at west border diagonals and
the west corners of the red squares at east border diagonals. Similarly, vertical
border signals are drawn between the south corners of the red squares at north
border diagonals and the north corners of the red squares at south border diagonals.

13



Figure 14(a) shows the border diagonals of a (42 + 1) × (42 + 1) red square.
Figure 14(b) shows the border diagonals along with inactive border signals (dotted
lines) and active border signals (dashed lines). The outcome of drawing the east
border diagonals and the west borders diagonals for a (43+1)×(43+1) red square
is shown in figure 14(c). Both inactive and active border signals are drawn with
dashed lines in figure 14(c).
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(a) The border diagonals of a (42 + 1) ×
(42 + 1) red square.

��

��
��

��

��

��
��

��

��

��

��

��

��

��

��

��

(b) The border diagonals and the border
signals of a (42+1)×(42+1) red square.
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(c) The horizontal border diagonals and the horizontal border signals of a (43 +
1)× (43 + 1) red square. The border diagonals and signals of the smaller squares
are omitted in the figure.

Figure 14: Border diagonals are used to set up end points for border signals.

Theorem 3.3. The free areas of the tiling forced by Robinson’s tile set can be
identified simultaneously NE- and SW-deterministically.

Proof. The end point for the border diagonals can be determined 4-way determin-
istically using the tile set of Kari and Papasoglu. The tiles that act as the end points
are the preimages of the tiles enumerated in figure 13. The tile acting as the end
point determines uniquely of which type (“north”, “east”, “west” or “south”) the
border diagonal will be. Depending on the type, the border diagonal will draw the
border signals to one of the four directions.
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There is no ambiguity between the tiles for the end points and the tiles for the
middle points of a diagonal, since both sets of tiles are paired with a different,
mutually exclusive subset of the (4-way deterministic) aperiodic tile set.

Furthermore, the non-periodic tiling remains valid even if both the border di-
agonals and the border signals are drawn.

3.4 Simulating the original tile set (layer 3)

Assume that the given instance for the tiling problem with a seed tile is the tile set
T and the seed tile t. The goal is to construct a tile set for which the tiling problem
has an affirmative answer if, and only if, the given instance of the tiling problem
with a seed tile has an affirmative answer.

A tiling by the original tile set T is simulated within all the red squares. How-
ever, since larger red squares contain smaller red squares, the simulation area can-
not be the entire square itself. Instead, the simulation corresponding the particular
red square is done on the free areas.

Lemma 3.4 (Robinson [7]). For every (4n +1)× (4n +1) red square, the number
of free columns is 2n + 1 and the number of free rows is 2n + 1.

Lemma 3.4 states that the free area within a red square increases with respect
to the size of the square. Hence, the tiling by the original tiles (on layer 3) can be
arbitrarily large even when restricted to the free rows and free columns. Hence, it
is enough to restrict the simulation only to free rows and free columns.

x

(a) The tiles on red north
borders.

x

(b) The tile on red south
borders.

x

(c) The tiles on red east
borders.

x

(d) The tile on red west
borders.

(e) The blank tile on the
corners of red squares
and non-free areas.

Figure 15: The tiles to restrict the simulation to the inside of a red square. Symbol
x denotes an arbitrary color of the tile set T .

There are four simulations on the smaller red squares and one longer simulation
on the free rows and columns of the 9 × 9 red square itself. From the view of the
simulation, the disjoint free rows and columns are not considered to be disjoint at
all. For example, the area on both the free rows and the free columns of the 9 × 9
square is considered as a single continuous 5×5 square. Likewise, the area on both
the free rows and the free columns of a 65 × 65 square is considered as a single
continuous 9 × 9 square. It will be shown (in subsection 3.6), that it is possible to
consider the area consisting of the free tiles as a single continuous square.
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(a) The tile on non-free
areas.

x

(b) The tiles on north
border signals.

x

(c) The tiles on south
border signals.

x

(d) The tiles on east bor-
der signals.

x

(e) The tiles on west bor-
der signals.

Figure 16: The tiles to restrict the simulation to free areas. Symbol x denotes an
arbitrary color of the tile set T .

3.5 Forcing the seed tile presence (layer 4)

The seed tile is forced to be contained in the tiling using the construction that is
shown in figure 17. The tiles, that are located in the middle of a red border, are
used to start signals towards the center of the red square. That is, all the meeting
points of red double arrows launch a signal towards the center of the square to
which they belong. The tile, on which these signals meet, is paired only with the
seed tile t ∈ T at the layer 3. Hence, the seed tile presence can be forced with a
4-way deterministic construction.

- �

6

?
t

Figure 17: Forcing the seed tile t to be tiled in the center of a red square.

3.6 Joining the free areas (layer 5)

In figure 18 it is shown, how the tiles of layers 3, 5 and 6 are paired to form
sandwich tiles for the free areas, the non-free areas and the active border signals of
the given red square. In figure 18 symbol x denotes a color (of the given tile set T )
encountered at the border of a free area (i.e. on an active border signal) and symbols
y and z denote arbitrary colors. For example, at the north border of a free area the
last color on layer 3 is erased and raised onto layer 5 to be transferred northwards.
At the southern boundary of another free area color x is lowered from layer 5 back
to layer 3. The sandwich tiles that are used to transfer colors horizontally between
free areas are constructed in a similar way.
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x

×
x

×
(y, z)

(y, z)

(a) The tiles at the north border
of a free area.

x

×
x

×
(y, z)

(y, z)

(b) The tiles at the south border
of a free area.

T × ×
(y, z)

(y, z)

(c) The tiles on free areas.

×
x

x

×
(y, z)

(y, z)

(d) The tiles on non-free areas.

Figure 18: The tile construction at layers 3, 5 and 6 to transfer vertical colors
between the free areas inside a red square. Symbols x, y and z denote arbitrary
colors of the given tile set T .

The tiles of form 18(a) are used on the northern boundaries of free areas. Like-
wise, the tiles of form 18(b) are used on the southern boundaries of free areas. On
a free area, the sandwich tiles are formed from the tiles of set T according to figure
18(c). On a non-free area, the sandwich tiles are formed according to figure 18(d).

The tiles in figure 18 form a 4-way deterministic tile set when paired properly
with the tiles of Kari and Papasoglu. Therefore, the free areas inside inside the
given red square can be considered as a continuous square area while maintaining
NE- and SW-determinism.

3.7 Allowing arbitrary colors on the red borders (layer 6)

To ensure NE- and SW-determinism of the tile set, the colors of the simulation tiles
next to the red borders will be forwarded. In the vertical direction this is done by
using the tiles in figure 19.

x

× ×
(x, y)

(x, y)

(a) The tiles on a red north bor-
der next to a free area.

y

× ×
(x, y)

(x, y)

(b) The tiles on a red south bor-
der next to a free area.

× ×
(x, y)

(x, y)

(c) The tiles on a red north bor-
der next to a non-free area.

× ×
(x, y)

(x, y)

(d) The tiles on a red south bor-
der next to a non-free area.

Figure 19: The tile construction at layers 3, 5 and 6 to transfer the uppermost colors
on the simulation area of the given red square to the next simulation area of a red
square of the same size. Symbols x and y denote arbitrary colors of the given tile
set T .

It is shown in figure 19, how the tiles of layers 3, 5 and 6 are paired to form
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sandwich tiles for the horizontal red borders. Construction for the vertical borders
is the same with the exception that the colors are transferred horizontally. In short,
at the north and east borders of the red squares the outermost colors are transferred
from layer 3 to layer 6.

The parts of the red borders that are located on free rows or columns can be
distinguished from the other parts using a NE- and SW-deterministic construction.
This can be seen by sending a parity signal from the red crosses along the red
double arrows (i.e. the borders of the square). At a point where a border signal
enters the square, the parity of the signal is changed to the opposite. If the parity of
the signal is initially, say, odd, then every odd run identifies a location of a free row
(or column). Hence, it is possible to decide NE- and SW-deterministically, whether
a particular location at a red border belongs to a free row or a column. The use of
parity signal is in itself a 4-way deterministic construction, but the border signal
construction is only NE- and SW-deterministic.

It can be seen straightaway, that the tiles in figure 19 form a 4-way deterministic
tile set when restricted to their particular locations. Likewise, there is no ambiguity
between the tiles in figure 18 and the tiles in figure 19, since (by definition) the tiles
are paired with different tiles of the aperiodic tile set. Hence, the colors next to the
right borders can be arbitrary while the final sandwich tile set remains both NE-
and SW-deterministic.

4 Corollaries on reversible cellular automata

4.1 A tile set as a cellular automaton

Following the presentation of Kari [4], it is possible to regard Wang tile sets (that
are deterministic at least in one direction) as one-dimensional cellular automata.

If the given tile set is SW-deterministic, it is possible to consider the tiles as
states of a cellular automaton. As shown in figure 20, with a one-dimensional
cellular automaton (with neighborhood {0, 1}) the next state of a cell is determined
with a similar procedure as the next tile (to the northeast) in a tiling with a SW-
deterministic tile set. With a cellular automaton the new state depends on the old
states and in a tiling (with a SW-deterministic tile set) the new tile is determined
by the colors of its neighbors.

c
(t)
i

c
(t)
i+1

c
(t+1)
i

(a) Cells ci and ci+1 determine
the next state of the cell ci.

t1

t2

t3

(b) Tiles t1 and t2 determine tile
t3 SW-deterministically.

Figure 20: The tiles of a NE-deterministic tile set can be considered as states of a
cellular automaton.
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It should be noted, that the given Wang tile set may not contain all the possible
color pairs in the southwest corners of the tiles. If the given tile set T is assumed
to be deterministic in only one direction, say, by the southwest corner, it is enough
to add a tile to the original tile set for every missing southwest corner color pair.
For example, if there is no tile t with Wt = x and St = y in the given tile set T , a
tile t with Nt = Et = z, Wt = x and St = y, where z is any color of the tile set
T , could be added to the tile set while maintaining SW-determinism.

If the given tile set is assumed to be both NE- and SW-deterministic, equally
many colors are missing as northeast corner color pairs. It is trivial to construct
(for example, by some ordering method) a one-to-one correspondence between the
missing colors in the southwest corners and the missing colors of the northeast
corners. This bijection can clearly be considered as a NE- and SW-deterministic
set of tiles. Moreover, the union of the initial tile set and this new tile set is both
NE- and SW-deterministic tile set containing N 2 tiles, where N is the number of
colors in the original tile set.

One of the NE- and SW-deterministic tile sets, in which occur only all the
southwest corner color pairs and northeast corner color pairs missing in tile set T ,
is denoted by expression CT . Now it is straightforward to see, that all the tile sets
T ∪CT can be considered as cellular automata. It also follows, that the answer for
the tiling problem is affirmative for any tile set T ∪ CT .

For the NE- and SW-deterministic tile set T , a reversible cellular automaton
AT = (1, T ∪ CT , {0, 1}, fT ) can be defined. The local rule of AT is defined as

fT (x, y) = z if x, y ∈ T ∪ CT , Ex = Wz and Ny = Sz.

The function fT : (T ∪CT )2 → T ∪CT is total and well-defined, since the tile set
T ∪ CT is both NE- and SW-deterministic. Expression Gf (·) is used to denote the
global function of a cellular automaton with the local rule f .

Theorem 4.1. Given a reversible cellular automaton AT , the following question
is undecidable: “Does there exist such a configuration c, that Gi

fT
(c)j ∈ T , for all

integers i, j ∈ Z?”

Proof. Undecidability of the question follows by a reduction from the problem of
theorem 3.1.

Assume first, that the given tile set T admits a valid tiling. Then one can
choose any northwest-southeast diagonal row of tiles of the valid tiling to be the
configuration c. Since the tile set is NE-deterministic and “diagonal” c is part of a
valid tiling, Gi

fT
(c)j ∈ T , for all integers i, j ∈ Z.

Assume second, that the given tile set T does not admit a valid tiling. If for
some configuration c (considered again as a northwest-southeast diagonal row of a
valid tiling) the condition did hold, then it would be possible to construct a valid
tiling. However, this contradicts the assumption.

Hence, a configuration c exists if, and only if, the tile set T admits a valid
tiling.

Corollary 4.1.1. Let C be a reversible cellular automaton and set T be a subset of
the state set. Then the following question is undecidable: “Does there exist such a
configuration c, that Gi

f (c)j ∈ T , for all integers i, j ∈ Z?”
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4.2 Universality of reversible cellular automata

It has been shown by Morita and Harao that one-dimensional reversible cellular
automata are computationally universal [6]. More precisely, they have shown
that any reversible Turing machine can be simulated with some reversible one-
dimensional cellular automaton. Since any Turing machine can be simulated with
a reversible Turing machine [1], the universality of one-dimensional reversible cel-
lular automata follows.

However, the requirement of reversibility (made in [6]) for the given Turing
machine is not necessary for the machine to be simulated with a reversible one-
dimensional cellular automaton. In fact, Dubacq has given a construction for a
family of reversible cellular automata to simulate any (irreversible) Turing machine
in real time [3]. Dubacq’s approach was more from the cellular automata point of
view. The construction of the family of tile sets MM ∪ SM gives a different proof
for Dubacq’s result.

The elements of set MM ∪ SM can be used to represent a cellular automaton.
For example, the colors adjacent to southwest corners of the tiles can be considered
as color pairs representing the states of a two-partitioned cellular automaton. Since
the tile set MM ∪ SM is both NE- and SW-deterministic, the tiling procedure can
be modelled with the (reversible) local rule of a cellular automaton. The initial
configuration of the Turing machine is represented with the tiles of the form shown
in figure 5(a). The cellular automaton computes one Turing machine computation
step in two of its of computation steps.

Theorem 4.2 (J.-C. Dubacq, 1995 [3]). Any (deterministic) Turing machine can
be simulated using a reversible one-dimensional cellular automaton in real time.

Proof. The given Turing machine M can be simulated with the cellular automaton
AMM∪SM

. However, for every computation step of the Turing machine M the cel-
lular automaton AMM∪SM

needs to conduct two computation steps. To simulate a
given Turing machine in real time, a new family of cellular automata is introduced.

c
(2t−1)
i

c
(2t)
i

- c
(t)
i

Figure 21: Modifying the cell structure of the cellular automata AT to simulate
Turing machines in real time.

The new family of cellular automata is constructed by modifying the cell struc-
ture of the cellular automata AT as shown in figure 21. That is, the computation
steps are divided by time into even and odd computation steps. Regrouping the
cells of the even and odd computation steps to form “larger” cells (as shown in
figure 21), one has a cellular automaton which simulates the given Turing machine
in real time.

Corollary 4.2.1 (K. Morita and M. Harao, 1989 [6]). Reversible one-dimensional
cellular automata are computationally universal.
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5 Conclusions

It was noted that the tiling problem is undecidable even if the tile set was deter-
ministic by two opposite corners. The proof used the aperiodic tile set of Kari and
Papasoglu [5].

Open problem: Is the tiling problem undecidable for 4-way deterministic tile
sets?

6 Acknowledgements

The author expresses his gratitude to Turku University Foundation and Finnish Cul-
tural Foundation for financial support. The author is grateful to Professor J. Kari
for guidance, useful discussions and advices. Furthermore, the implications 4.1.1,
4.2 and 4.2.1 following the construction of tile sets TM were initially pointed out
by Prof. Kari.

References

[1] C. H. Bennett. Logical reversibility of computation. IBM Journal of research
and development, 6:525–532, 1973.

[2] R. Berger. The undecidability of the domino problem. Mem. Amer. Math. Soc.,
66:1–72, 1966.

[3] J.-C. Dubacq. How to simulate any Turing machine by reversible one-
dimensional cellular automaton. International Journal of Foundations of Com-
puter Science, 6(4):395–402, 1995.

[4] J. Kari. The nilpotency problem of one-dimensional cellular automata. SIAM
Journal on Computing, 21:571–586, 1992.

[5] J. Kari and P. Papasoglu. Deterministic aperiodic tile sets. Geometric and
functional analysis, 9:353–369, 1999.

[6] K. Morita and M. Harao. Computation universality of one-dimensional one-
way reversible (injective) cellular automata. The transactions of the IEICE, E
72:758–762, 1989.

[7] R. M. Robinson. Undecidability and nonperiodicity for tilings of the plane.
Inventiones Mathematicae, 12:177–209, 1971.

21



Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology
• Department of Mathematics

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 952-12-1787-1
ISSN 1239-1891


	Introduction
	The tiling problem with a seed tile
	The idea for the undecidability proof
	The tile set for the given Turing machine

	The tiling problem without a seed tile
	A brief outline of the argumentation
	The aperiodic tile set (layer 1)
	Identifying the free areas (layer 2)
	Simulating the original tile set (layer 3)
	Forcing the seed tile presence (layer 4)
	Joining the free areas (layer 5)
	Allowing arbitrary colors on the red borders (layer 6)

	Corollaries on reversible cellular automata
	A tile set as a cellular automaton
	Universality of reversible cellular automata

	Conclusions
	Acknowledgements

