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Abstract

We construct explicit rate-one, full-diversity, geometrically dense matrix lattices
with large, non-vanishing determinants (NVD) for four transmit antenna multiple-
input single-output (MISO) space-time (ST) applications. The constructions are
based on the theory of rings of algebraic integers and related subrings of the
Hamiltonian quaternions and can be extended to a larger number of Tx antennas.
The usage of ideals guarantees a non-vanishing determinant larger than one and
an easy way to present the exact proofs for the minimum determinants. The idea
of finding denser sublattices within a given division algebra is then generalized
to a multiple-input multiple-output (MIMO) case with an arbitrary number of Tx
antennas by using the theory of cyclic division algebras (CDA) and maximal or-
ders. It is also shown that the explicit constructions in this paper all have a simple
decoding method based on sphere decoding. Related to the decoding complexity,
the notion of defect is introduced for the first time and shown to be relevant both
in theory and practice. Simulations in a quasi-static Rayleigh fading channel show
that our dense quaternionic constructions outperform both the earlier rectangular
lattices and the rotated ABBA lattice as well as the DAST lattice.

Keywords: Cyclic division algebras, defect, dense lattices, maximal orders, multi-
ple-input multiple-output (MIMO) channels, multiple-input single-output (MISO)
channels, number fields, quaternions, space-time block codes (STBCs), sphere de-
coding
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1 Introduction and background

Multiple-antenna wireless communication promises very high data rates, in par-
ticular when we have perfect channel state information (CSI) available at the re-
ceiver. In [1] the design criteria for such systems were developed and further on
the evolution of ST codes took two directions: trellis codes and block codes. Our
work concentrates on the latter branch.

The very first ST block code for two transmit antennas was the Alamouti code
[2] representing multiplication in the ring of quaternions. As the quaternions form
a division algebra, such matrices must be invertible, i.e. the resulting STBC meets
the rank criterion. Matrix representations of other division algebras have been
proposed as STBCs at least in [3]-[14], and (though without explicitly saying so)
[15]. The most recent work [6]-[15] has concentrated on adding multiplexing
gain, i.e. multiple input-multiple output (MIMO) applications, and/or combining
it with a good minimum determinant. In this work, we do not specifically seek
any multiplexing gains, but want to improve upon e.g. the diagonal algebraic
space time (DAST) lattices introduced in [5] by using non-commutative division
algebras. Other efforts to improve the DAST lattices and ideas alike can be found
in [16]-[18].

The main contributions of this work are:

• We give energy efficient MISO lattice codes with simple decoding that win
over e.g. the rotated ABBA [19] and the DAST lattice codes in terms of the
block error rate (BLER) performance.

• It is shown that by using a non-rectangular lattice one can gain major energy
savings without significant increasement in decoding complexity. The usage
of ideals moreover guarantees a non-vanishing determinant > 1 and an easy
way to present the exact proofs for the minimum determinants.

• In addition to the explicit MISO constructions, we present a general method
for finding dense sublattices within a given CDA in a MIMO setting. This is
tempting as it has been shown in [14] that CDA-based square ST codes with
NVD achieve the diversity-multiplexing gain (D-MG) tradeoff introduced
in [20]. When a CDA is chosen the next step is to choose a corresponding
lattice or, what amounts to the same thing, choose an order within the alge-
bra. Most authors, among which e.g. [10], [14], and [15], have gone with
the so-called natural order (see Section 3.2, Example 3.2). In a CDA based
construction, the density of a sublattice is lumped together with the concept
of maximality of an order. The idea is that one can, on some occasions, use
several cosets of the natural order without sacrificing anything in terms of
the minimum determinant. So the study of maximal orders is easily mo-
tivated by an analogy from the theory of error correcting codes: why one
would use a particular code of a given minimum distance and length, if a
larger code with the same parameters is available.
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• Furthermore, related to the decoding complexity, the notion of defect is
introduced for the first time, and shown to be relevant both in theory and
practice.

At first, we are interested in the coherent MISO case with perfect CSI available
at the receiver. The received signal y ∈ Cn has the form

y = hX + n,

where X ∈ Cm×n is the transmitted codeword drawn from a ST code C, h ∈ Cm

is the Rayleigh fading channel response and the components of the noise vector
n ∈ Cn are i.i.d. complex Gaussian random variables.

A lattice is a discrete finitely generated free abelian subgroup of a real or com-
plex finite dimensional vector space V , also called the ambient space. Thus, if L is
a k-dimensional lattice, there exists a finite set of vectors B = {b1,b2, . . . ,bk} ⊂
V such that B is linearly independent over the integers and that

L = {
k∑

i=1

zibi | zi ∈ Z,bi ∈ V for all i = 1, 2, . . . , k}.

In the space-time setting a natural ambient space is the space Cn×n of complex
n × n matrices. When a code is a subset of a lattice L in this ambient space, the
rank criterion [21] states that any non-zero matrix in L must be invertible. This
follows from the fact that the difference of any two matrices from L is again in L.

The receiver and the decoder, however, (recall that we work in the MISO set-
ting) observe vector lattices instead of matrix lattices. When the channel state is
h, the receiver expects to see the lattice hL. If h �= 0 and L meets the rank crite-
rion, then hL is, indeed, a free abelian group of the same rank as L. However, it is
well possible that hL is not a lattice, as its generators may be linearly dependent
over the reals — the lattice is said to collapse, whenever this happens.

From the pairwise error probability (PEP) point of view [21], the performance
of a space-time code is dependent on two parameters: diversity gain and coding
gain. Diversity gain is the minimum of the rank of the difference matrix X − X ′

taken over all distinct code matrices X, X ′ ∈ C, also called the rank of the code
C. When C is full-rank, the coding gain is proportional to the determinant of the
matrix (X − X ′)(X − X ′)H , where XH denotes the transpose conjugate of the
matrix X . The minimum of this determinant taken over all distinct code matrices
is called the minimum determinant of the code C and denoted by δC . If δC is
bounded away from zero even in the limit as SNR → ∞, the ST code is said to
have the non-vanishing determinant property [8]. As mentioned above, for non-
zero square matrices being full-rank coincides with being invertible.

The data rate R in symbols per channel use is given by

R =
1

n
log|S|(|C|),
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where |S| and |C| are the sizes of the symbol set and code respectively. This
is not to be confused with the rate of a code design defined as the ratio of the
number of transmitted information symbols to the decoding delay (equivalently,
block length) of these symbols at the receiver for any given number of transmit
antennas using any complex signal constellations. If this ratio is equal to the delay,
the code is said to have full rate.

This report is organized as follows: basic definitions of algebraic number
theory and explicit MISO lattice constructions are provided in Section 2. As a
(MIMO) generalization for the idea of finding denser lattices within a given di-
vision algebra, the theory of cyclic algebras and maximal orders is briefly intro-
duced in Section 3. In Section 4, we consider the decoding of the nested sequence
of quaternionic lattices from Section 2. A variety of results on decoding complex-
ity is established in Section 4, where also the notion of defect is taken into account
and shown to be relevant. Simulation results are discussed in Section 5 along with
energy considerations. Related figures are provided at the end of the report.

This work has been partly published in a conference, see [3] and [4]. For more
background we refer to [21]-[28].

2 Rings of algebraic numbers, quaternions and lat-
tice constructions

We shall denote the sets of integers, rationals, reals, and complex numbers by
Z, Q, R, and C respectively.

Let us recall the set

H = {a1 + a2i + a3j + a4k | at ∈ R ∀t},
where i2 = j2 = k2 = −1, ij = k, as the ring of Hamiltonian quaternions. Note
that H � C ⊕ Cj, when the imaginary unit is identified with i. A special interest
lies on the subsets

HL = {a1 + a2i + a3j + a4k | at ∈ Z ∀t} ⊆ H

and

HH = {a1ρ + a2i + a3j + a4k | at ∈ Z ∀t, ρ =
1

2
(1 + i + j + k)} ⊆ H

called the Lipschitz’ and Hurwitz’ integral quaternions respectively.
We shall use extension rings of the Gaussian integers

G = {a + bi | a, b ∈ Z}
inside a given division algebra. It would be easy to adapt the construction to use
the slightly denser hexagonal ring of the Eisensteinian integers

E = {a + bω | a, b ∈ Z},
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where ω3 = 1, as a basic alphabet. However, the Gaussian integers nicely fit with
the popular 16-QAM and QPSK alphabets. Natural examples of such rings are
the rings of algebraic integers inside an extension field of the quotient fields of G,
as well as their counterparts inside the quaternions. To that end we need division
algebras A that are also 4-dimensional vectors spaces over the field Q(i).

2.1 Base lattice constructions

Let now ζ = eπi/8 (resp. ξ = eπi/4 = (1 + i)/
√

2) be a primitive 16th (resp.
8th) root of unity. Our main examples of suitable division algebras are the number
field

L = Q(ζ),

and the following subskewfield

H = Q(ξ) ⊕ jQ(ξ) ⊆ H

of the Hamiltonian quaternions. Note that as zj = jz∗ for all complex numbers
z, and as the field Q(ξ) is stable under the usual complex conjugation (∗), the set
H is, indeed, a subskewfield of the quaternions.

As always, multiplication (from the left) by a non-zero element of a division
algebra A is an invertible Q(i)-linear mapping (with Q(i) acting from the right).
Therefore its matrix with respect to a chosen Q(i)-basis B of A is also invert-
ible. Our example division algebras L and H have the sets BL = {1, ζ, ζ2, ζ3}
and BH = {1, ξ, j, jξ} as natural Q(i)-bases. Thus we immediately arrive at the
following matrix representations of our division algebras.

Proposition 2.1 Let the variables c1, c2, c3, c4 range over all the elements of Q(i).
The division algebras L and H can be identified via an isomorphism φ with the
following rings of matrices

L =


ML = ML(c1, c2, c3, c4) =




c1 ic4 ic3 ic2

c2 c1 ic4 ic3

c3 c2 c1 ic4

c4 c3 c2 c1







and

H =


M = M(c1, c2, c3, c4) =




c1 ic2 −c∗3 −c∗4
c2 c1 ic∗4 −c∗3
c3 ic4 c∗1 c∗2
c4 c3 −ic∗2 c∗1





 .

The isomorphism φ from L into the matrix ring is determined by Q(i)-linearity
and the fact that ζ corresponds to the choice c2 = 1, c1 = c3 = c4 = 0. The
isomorphism φ from H into the matrix ring is determined by Q(i)-linearity and the
facts that ξ corresponds to the choice c2 = 1, c1 = c3 = c4 = 0, and j corresponds
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to the choice c3 = 1, c1 = c2 = c4 = 0. In particular, the determinants of these
matrices are non-zero whenever at least one of the coefficients c1, c2, c3, c4 is non-
zero.

In order to get ST lattices and useful bounds for the minimum determinant,
we need to identify suitable subrings S of these two algebras. Actually, we would
like these rings to be free right G-modules of rank 4. This is due to the fact
that then the determinants of the matrices of Proposition 2.1 that belong to the
subring φ(S) must be elements of the ring G. We repeat the well-known reason
for this for the sake of completeness: the determinant of the matrix representing
the multiplication by a fixed element x ∈ S does not depend on the choice of the
basis B and thus we may assume that it is a G-module basis. However, in that case
xB ⊆ S, so the matrix will have entries in G as all the elements of S are G-linear
combinations of B. The claim follows.

In the case of the field L we are only interested in its ring of integers OL =
Z[ζ ] that is a free G-module with the basis BL. In this case the ring φ(OL) consists
of those matrices of L that have all the coefficients c1, c2, c3, c4 ∈ G. Similarly,
the G-module

L = G ⊕ ξG ⊕ jG ⊕ jξG
spanned by our earlier basis BH is a ring of the required type. We call this the ring
of Lipschitz’ integers of H. Again φ(L) consists of those matrices of H that have
all the coefficients c1, c2, c3, c4 ∈ G. While OL is known to be maximal among
the rings satisfying our requirements, the same is not true about L. The ring HH
also has an extension of the prescribed type inside H, called the ring of Hurwitz’
integers of H. This ring, denoted by

H = ρG ⊕ ρξG ⊕ jG ⊕ jξG,

is the right G-module generated by the basis BHur = {ρ, ρξ, j, jξ}, where again
ρ = (1 + i + j + k)/2. The fact that H is a subring can easily be verified by
straightforward computations, e.g. ξρ = ρξ − jξ. For future use we express the
ring H in terms of the basis BH of Proposition 2.1. It is not difficult to see that the
element

q = c1 + ξc2 + jc3 + jξc4 ∈ H

is an element of H, if and only if the coefficients ct satisfy the requirements (1 +
i)ct ∈ G for all t = 1, 2, 3, 4 and c1 + c3, c2 + c4 ∈ G. As the ideal generated
by 1 + i has index two in G, we see that L is an additive, index four subgroup in
H. We summarize these findings in Proposition 2.2. The bound on the minimum
determinant is a consequence of the fact that all the elements of G have a norm at
least one.

Proposition 2.2 The following rings of matrices form ST lattices with minimum
determinant equal to one.

L1 = {ML(c1, c2, c3, c4) | c1, c2, c3, c4 ∈ G} ,
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L2 = {M(c1, c2, c3, c4) | c1, c2, c3, c4 ∈ G} ,

L3 = {M(c1, c2, c3, c4) | c1, c2, c3, c4 ∈ 1 + i

2
G, c1 + c3 ∈ G, c2 + c4 ∈ G}.

Remark 2.1 The lattice L1 is quite similar to the DAST lattice in the sense that all
of its matrices can be simultaneously diagonalized. See more details in Section
4.2. The lattice L2, for its part, is a more developed case from the so-called
quasi-orthogonal STBC suggested e.g. in [29]. The matrix M(c1, c2, c3, c4) of
Proposition 2.1 can also be found as an example in the landmark paper [6], but
no optimization has been done there by using, for example, ideals as we shall do
here.

A drawback shared by the lattices L1 and L2 is that in the ambient space of the
transmitter they are isometric to the rectangular lattice Z8. The rectangular shape
does carry the advantage that the sets of information carrying coefficients of the
basis matrices are simple and all identical which is useful in e.g. sphere decoding.
But, on the other hand, this shape is very wasteful in terms of transmission power.
Geometrically denser sublattices of Z8, e.g. the checkerboard lattice

D8 =

{
(x1, ..., x8) ∈ Z8

∣∣∣∣
8∑

i=1

xi ≡ 0 (mod 2)

}

and the diamond lattice

E8 =

{
(x1, ..., x8) ∈ Z8

∣∣∣∣ xi ≡ xj (mod 2),

8∑
i=1

xi ≡ 0 (mod 4)

}
,

are well-known (cf. e.g. [30]). However, we must be careful in picking the copies
of the sublattices, as it is the minimum determinant we want to keep an eye on
(see Remark 2.3).

2.2 Dense sublattices inside the base lattice L2

As our earlier simulations [3],[4] have shown that L2 outperforms L1, we concen-
trate on finding good sublattices of L2. The units of the ring L2 are exactly the
non-zero matrices whose determinants have the minimal absolute value of one.
Thus a natural way to find a sublattice with a better minimum determinant is to
take the lattice φ(I), where I ⊂ S is a proper ideal. This idea has appeared at
least in [3], [4], and [8]. Even earlier, ideals of rings of algebraic integers were
used in [26] to produce dense lattices. Let us first record the following simple fact.
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Lemma 2.3 Let A and B be diagonalizable complex square matrices of the same
size. Assume that they commute and that their eigenvalues are all real and non-
negative. Then

det (A + B) ≥ det A + det B

with a strict inequality if both A and B are invertible.

Proof. As A and B commute, they can be simultaneously diagonalized. Hence,
we can reduce the claim to the case of diagonal matrices with non-negative real
entries. In that case the claim is obvious.

In Proposition 2.4 we give a construction isometric to the checkerboard lattice
D8

Proposition 2.4 Let I be the prime ideal of the ring G generated by 1 + i. Define

IL = {(c1 + ξc2) + j(c3 + ξc4) ∈ L | c1 + c2 + c3 + c4 ∈ I}.
Then IL is an ideal of index two in L. The corresponding lattice

L4 = {M(c1, c2, c3, c4) ∈ L2 | c1 + c2 + c3 + c4 ∈ I}
is an index 2 sublattice in L2. Furthermore, the absolute value of det(MMH), M
∈ L4 \ {0}, is then at least 4.

Proof. It is straightforward to check that IL is stable under (left or right) multi-
plication with the quaternions ξ and j, so IL is an ideal in L.

Let us consider a matrix M ∈ L4 and write it in the block form

M =

(
A −BH

B AH

)
.

We see that

MMH =

(
AAH + BBH 0

0 AAH + BBH

)
,

and

AAH + BBH =

(
α k∗

k α

)
,

where α =
∑4

j=1 |cj|2 is a non-negative integer and k = −ic1c
∗
2 + c2c

∗
1 − ic3c

∗
4 +

c4c
∗
3 is a Gaussian integer with the property k∗ = ik. We are to prove that

det MMH = (α2 − |k|2)2 ≥ 4. Assume first that c3 = c4 = 0, i.e. the block
B = 0. Then det(A) is the relative norm

det(A) = N
Q(ξ)
Q(i) (c1 + ξc2),

which is a Gaussian integer. As c1 + ξc2 is a non-zero element of the ideal I, we
conclude that det(A) is a non-zero non-unit. Therefore det(A) det(AH) ≥ 2, and
the claim follows.
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Let us then assume that both A and B are non-zero. Then det(A) and det(B)
are non-zero Gaussian integers and have a norm at least one. The matrices A, AH ,
B, and BH all commute, so by Lemma 2.3 we get

det(MMH) > det(AAH)2 + det(BBH)2 ≥ 2.

As det(MMH) = (α2 − |k|2)2 is a square of a rational integer, it must be at least
4.

Remark 2.2 It is easy to see that in the previous proposition a + bi ∈ I, if and
only if a+b is an even integer. Thus geometrically the matrix lattice L4 is, indeed,
isometric to D8.

We proceed to describe two more interesting sublattices of L2 with even better
minimum determinants. To that end we use the ring H (or the lattice L3). The
first sublattice is isometric to the direct sum D4 ⊥ D4 [30] of two 4-dimensional
checkerboard lattices.

Proposition 2.5 Let again I be the ideal (1 + i)G. The lattice

L5 = {M(c1, c2, c3, c4) ∈ L2 | c1 + c3, c2 + c4 ∈ I}

has a minimum determinant equal to 16. The index of L4 in L2 is 4.

Proof. The coefficients c1 and c3 can be chosen arbitralily within G. The the
ideal I has index 2 in G, and the coefficients c2 and c4 now must belong to the
cosets c1 + I and c3 + I respectively. Whence, the index of L5 in L2 is 4. The
matrices A in the lattice L5 are of the form A = (1+ i)M , where M is a matrix in
the lattice L3 of Proposition 2.2. Thus det(AAH) = 16 det(MMH) and the claim
follows from Proposition 2.2.

The diamond lattice E8 can be described in terms of the Gaussian integers as
(cf. [31])

E8 =
1

1 + i
{(c1, c2, c3, c4) ∈ G4 | c1 + I = ct + I, t = 2, 3, 4,

4∑
t=1

ct ∈ 2G}.

By our identification of quadruples (c1, c2, c3, c4) ∈ G4 and the elements of H it is
straightforward to verify that (1 + i)E8 has {2, (1 + i) + (1 + i)ξ, (1 + i)ξ + (1 +
i)j, 1+ξ+j+jξ} ⊆ L as a G-basis, whence the set {1+i, 1+ξ, ξ+j, ρ+ρξ} ⊆ H
is a G-basis for E8. By another simple computation we see that E8 = H(1 + ξ),
i.e. E8 is the left ideal of the ring H generated by 1 + ξ.
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Table 1: Lattices from a coding theoretical point of view

L2 ↔ The 8-dimensional rectangular grid Z8

↔ no coding
↓

L4 ↔ The checkerboard lattice D8

↔ overall parity check code of length 8
↓

L5 ↔ The lattice D4 ⊥ D4

↔ two blocks of the overall parity check code of length 4
↓

L6 ↔ The diamond lattice E8

↔ extended Hamming-code of length 8

Proposition 2.6 The lattice

L6 = {M(c1, c2, c3, c4) ∈ L2 | c1 + I = ct + I, t = 2, 3, 4,
4∑

t=1

ct ∈ 2G}

is an index 16 sublattice of L2. Furthermore, the minimum determinant of L6 is
64.

Proof. Let MI = M(1, 1, 0, 0) be the matrix φ(1 + ξ) under the isomorphism
of Proposition 2.1. We see that det(MIM

H
I ) = 4. By the preceding discus-

sion any matrix A of the lattice L6 has the form A = MMI(1 + i), where M
is a matrix in L3. As in the proof of Proposition 2.5, we see that det AAH =
16 det(MIM

H
I ) det(MMH). The claim on the minimum determinant now fol-

lows from Proposition 2.2. We see that the coefficient c1 can be chosen arbitrarily
within G. The coefficients c2 and c3 then must belong to the coset c1 + I, and c4

must be chosen such that c1 + c2 + c3 + c4 ∈ 2G = I2. As I has index two in G,
we see that the index of L6 in L2 is 16 as claimed.

Remark 2.3 We have now produced a nested sequence of lattices

2Z8 = 2L2 ⊆ L6 ⊆ L5 ⊆ L4 ⊆ L2 = Z8(⊆ L3). (1)

We concentrate on the lattices that are sandwiched between 2Z8 and Z8. It is
worthwhile to note that these lattices are in a bijective correspondence with a
binary linear code of length 8 by projection modulo 2, see Table 1 above. As
it happens, within this sequence of lattices the minimum Hamming distance of
the binary linear code and the minimum determinant of the lattice are somewhat
related.

9



Thereupon it is natural to ask that what if we simply concatenate the use of
L2 with a good binary code (extended over several L2-blocks, if needed), and be
done with it. While the binary linear codes appearing above are the first ones
that come to one’s mind, we want to caution the unwary end-user. Namely, it is
possible that there are high weight units in the ring in question. If such binary
words are included, then the minimum determinant of the corresponding lattice is
equal to 1, i.e. no coding gain will take place. E.g. the unit (1 − ξ 3)/(1 − ξ) =
1 + ξ + ξ2 = (1 + i) + ξ of the ring L corresponds to the matrix M(1 + i, 1, 0, 0)
of determinant 1, and thus we must not allow such words of weight 3. If the
lattice L1 were used, the situation would be even worse, as then we have units like
(1 − ζ7)/(1 − ζ) in the ring OL that would be mapped to a word of Hamming
weight 7. A construction based on ideals provides a mechanism to avoid this
problem caused by high weight units.

3 Cyclic algebras and orders

In Section 2 we produced a nested sequence (1) of quaternionic lattices with the
property that as the lattice gets denser after rescaling the increased minimum de-
terminant back to one, the BLER perfomance gets better. As the sequence (1)
lies within a specific division algebra, an obvious question evokes how to gen-
eralize this idea. The theory of cyclic division algebras and their maximal or-
ders offer us an answer. When designing square ST matrix lattices for MIMO
use, cyclic division algebras are of utmost interest as it has been shown in [14]
that a non-vanishing determinant is a sufficient condition for full-rate CDA based
STBC-designs to achieve the upper bound on the optimal D-MG tradeoff, hence
proving that the upper bound itself is the optimal DM-G tradeoff for any number
of transmitters and receivers. Given the number of transmitters n, we pick a suit-
able cyclic division algebra of index n (more on this in a forthcoming paper, see
Section 6. See also [14]). The matrix representation of the algebra, with some
constraints on the elements, will then correspond to the base lattice, similarly as
did the lattice L2 in Section 2. Now in order to make the lattice denser, we choose
the elements in the matrices from an order. The natural first choice for an order
is the one corresponding to the ring of algebraic integers of the maximal subfield
inside the algebra. The densest possible sublattice is the one where the elements
come from a maximal order.

All algebras considered here are finite dimensional associative algebras over a
field.

3.1 Cyclic algebras

The basic theory of cyclic algebras and their representations as matrices are thor-
oughly considered in [[32], Chapter 8.5] and [6]. We are only going to recapitulate

10



the essential facts here.
In the following, we consider number field extensions E/F , where F de-

notes the base field. F ∗ (resp. E∗) denotes the set of non-zero elements of
F (resp. E). Let E/F be a cyclic field extension of degree n with the Ga-
lois group Gal(E/F ) = 〈σ〉, where σ is the generator of the cyclic group. Let
A = (E/F, σ, γ) be the corresponding cyclic algebra of index n, that is,

A = E ⊕ uE ⊕ u2E ⊕ · · · ⊕ un−1E,

with u ∈ A such that xu = uσ(x) for all x ∈ E and un = γ ∈ F ∗. An element
a = x0 + ux1 + · · ·+ un−1xn−1 ∈ A has the following representation as a matrix

A =




x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)
x1 σ(x0) γσ2(xn−1) γσn−1(x2)
x2 σ(x1) σ2(x0) γσn−1(x3)
...

...
xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)


 . (2)

Let us compute the third column as an example:

u2 �→ au2 = x0u
2 + ux1u

2 + · · ·+ un−1xn−1u
2

= uσ(x0)u + u2σ(x1)u + · · ·+ γσ(xn−1)u

= u2σ2(x0) + u3σ2(x1) + · · ·+ uγσ2(xn−1),

and hence as the third column we get the vector

(γσ2(xn−2), γσ2(xn−1), σ
2(x0), . . . , σ

2(xn−3))
T .

Let us denote the ring of algebraic integers of E by OE . A basic, rate-n MIMO
STBC C is usually defined as

C =







x0 γσ(xn−1) · · · γσn−1(x1)
x1 σ(x0) γσn−1(x2)
x2 σ(x1) γσn−1(x3)
...

...
xn−1 σ(xn−2) · · · σn−1(x0)




∣∣∣∣∣ xi ∈ OE




. (3)

Further optimization might be carried out by using e.g. ideals. If we denote the
basis of E over OF by {1, e1, ..., en−1}, then the elements xi, i = 0, ..., n − 1 in
(3) take the form xi =

∑n−1
k=0 fkek, where fk ∈ OF for all k = 0, ..., n− 1. Hence

n complex symbols are transmitted per channel use, i.e. the design has rate n. In
literature this is often referred to as having a full rate.

Definition 3.1 An algebra A is called simple if it has no nontrivial ideals. An
F -algebra A is central if its center Z(A) = {a ∈ A|aa′ = a′a ∀a′ ∈ A} = F .
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Definition 3.2 An ideal I is called nilpotent if Ik = 0 for some k ∈ Z+. An
algebra A is semisimple if it has no nontrivial nilpotent ideals. Any finite dimen-
sional semisimple algebra over a field is a finite and unique direct sum of simple
algebras.

Definition 3.3 The determinant (resp. trace) of the matrix A is called the reduced
norm (resp. reduced trace) of an element a ∈ A and is denoted by nr(a) (resp.
tr(a)).

Remark 3.1 The connection with the usual norm map NA/F (a) (resp. trace map
TA/F (a)) and the reduced norm nr(a) (resp. reduced trace tr(a)) of an element
a ∈ A is NA/F (a) = (nr(a))n (resp. TA/F (a) = ntr(a)), where n is the degree of
E/F .

In Section 2 we have attested that the algebra H is a division algebra. The next
old result due to A. A. Albert [[33], Chapter V.9] provides us with a condition for
when an algebra is indeed a division algebra.

Proposition 3.1 The algebra A = (E/F, σ, γ) of index n is a division algebra,
if and only if the smallest factor t ∈ Z+ of n such that γt is the norm of some
element in E∗, is n.

3.2 Orders

We are now ready to present some of the basic definitions and results from the
theory of maximal orders. The general theory of maximal orders can be found in
[34].

Let S denote a Noetherian integral domain with a quotient field F , and let A
be a finite dimensional F -algebra.

Definition 3.4 An S-order in the F -algebra A is a subring Λ of A, having the
same identity element as A, and such that Λ is a finitely generated module over S
and generates A as a linear space over F .

As usual, an S-order in A is said to be maximal, if it is not properly contained
in any other S-order in A. If the integral closure S of S in A happens to be an
S-order in A, then S is automatically the unique maximal S-order in A.

Let us illustrate the above definition by the following example.

Example 3.1 (a) Orders always exist: If M is a full S-lattice in A, i.e. FM = A,
then the left order of M defined as

Ol(M) = {x ∈ A | xM ⊆ M}
is an S-order in A. The right order is defined in an analogous way.
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(b) If A = Mn(F ), the algebra of all n×n matrices over F , then Λ = Mn(S)
is an S-order in A.

(c) Let a ∈ A be integral over S, that is, a is a zero of a monic polynomial
over S. Then the ring S[a] is an S-order in the F -algebra F [a].

(d) Let S be a Dedekind domain, and let E be a finite separable extension
of F . Denote by S the integral closure of S in E. Then S is an S-order in E.
In particular, taking S = Z, we see that the ring of algebraic integers of E is a
Z-order in E.

Hereafter, F will be an algebraic number field and S a Dedekind ring with F
as a field of fractions.

Proposition 3.2 Let A be a finite dimensional semisimple algebra over F and Λ
be a Z-order in A. Let OF stand for the ring of algebraic integers of F . Then
Γ = OF Λ is an OF -order containing Λ. As a consequence, a maximal Z-order in
A is a maximal OF -order as well.

The following proposition provides us with a useful tool for finding a maximal
order within a given algebra.

Proposition 3.3 Let Λ be an S-order in A. For each a ∈ Λ we have nr(a) ∈
S and tr(a) ∈ S.

Proposition 3.4 Let Γ be a subring of A containing S, such that FΓ = A, and
suppose that each a ∈ Γ is integral over S. Then Γ is an S-order in A. Conversely,
every S-order in A has these properties.

Corollary 3.5 Every S-order in A is contained in a maximal S-order in A. There
exists at least one maximal S-order in A.

Remark 3.2 As the previous corollary indicates, a maximal order of an algebra
is not necessarily unique.

Remark 3.3 The algebra H can also be viewed as a cyclic division algebra. As it
is a subring of the Hamiltonian quaternions, its center consists of the intersection
H∩R = Q(

√
2). Also Q(ξ) is an example of a splitting field of H. In the notation

above we have an obvious isomorphism

H � (Q(ξ)/Q(
√

2), σ,−1),

where σ is the usual complex conjugation.

Remark 3.4 In principle, the lattices from Section 2 could also be used as MIMO
codes, but when we pack H in the form of (2), δC becomes vanishing and the
DM-G tradeoff cannot be achieved.
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One extremely well-performing CDA based code taking advantage of a maxi-
mal order is the celebrated Golden code [8] treated in the following example.

Example 3.2 In any cyclic algebra where the element γ happens to be an alge-
braic integer, we have the following natural order

Λ = OE ⊕ uOE ⊕ · · · ⊕ un−1OE ,

where OE is the ring of integers of the field E. We note that OE is the unique
maximal order in E. In the so-called Golden Division Algebra (GDA) [8], i.e. the
cyclic algebra (E/F, σ, γ) gotten from the data E = Q(i,

√
5), F = Q(i), γ = i,

n = 2, σ(
√

5) = −√
5, the natural order Λ is already maximal [35]. The ring of

algebraic integers OE = Z[i][θ], when we denote the golden ratio by θ = 1+
√

5
2

.
The authors of [8] further optimize the code by using an ideal (α) = (1 + i− iθ),
and the Golden code is then defind as

GC =

{
1√
5

(
αx0 iσ(α)σ(x1)
αx1 σ(α)σ(x0)

) ∣∣∣∣∣ x0, x1 ∈ OE

}
. (4)

The Golden code achieves the DM-G tradeoff as the element γ = i is not in the
image of the norm map. For the proof, see [8].

Remark 3.5 We feel that in [8], the usage of a maximal order is just a coinci-
dence, as in this case it coincides with the natural order which is generally used
in ST code designs (cf. (3)). At least the authors do not mention maximal orders.
As far as we know, above our construction there does not exist any designs using
a maximal order other than the natural one.

Next we prove that the lattice L6 is optimal within the cyclic division algebra
H in the sense that the diamond lattice E8 = H(1 + ξ) corresponds to a proper
ideal of a maximal order in H.

Proposition 3.6 The ring

H = {q = c1 + ξc2 + jc3 + jξc4 ∈ H | c1, . . . , c4 ∈ Q(i),

(1 + i)ct ∈ G ∀t, c1 + c3, c2 + c4 ∈ G}
is a maximal Z-order of the division algebra H.

Proof. Clearly the Q-span of H is the whole algebra H, and we have seen that
H is a ring, so it is an order of H. Furthermore, if Λ is any order of H, then so is
Λ[
√

2] = Λ · Z[
√

2], as the element
√

2 is in the center of H (cf. Proposition 3.2).
Therefore it suffices to show that H is a maximal Z[

√
2]-order. In what follows,

we will call rational numbers in the coset (1/2) + Z half-integers. Assume for
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contradiction that we could extend the order H into a larger order Γ = H[q] by
adjoining the quaternion q = a1 + a2j, where the coefficients

at = mt,0 + mt,1ξ + mt,2ξ
2 + mt,3ξ

3, mt,� ∈ Q for all t, �

are elements of the field Q(ξ). As ξ − ξ3 =
√

2, and ξ∗ = −ξ3, we see that

tr(q) = a1 + a∗
1 = 2m1,0 +

√
2(m1,1 − m1,3).

By Proposition 3.3 this must be an element of Z[
√

2], so we may conclude that
m1,0 must be an integer or a half-integer, and that m1,1 −m1,3 must be an integer.
Similarly

tr(qξ) = −2m1,3 +
√

2(m1,0 − m1,2)

must be an element of Z[
√

2]. We may thus conclude that all the coefficients
m1,�, � = 0, 1, 2, 3 are integers or half-integers, and that the pairs m1,0, m1,2 (resp.
m1,1, m1,3) must be of the same type, i.e. either both are integers or both are half-
integers. A similar study of tr(qj) and tr(qjξ) shows that the same conclusions
also hold for the coefficients m2,�, � = 0, 1, 2, 3. Because Z[ξ] ⊆ H, replacing
q with any quaternion of the form q − ω, where ω ∈ Z[ξ] will not change the
resulting order Γ. Thus we may assume that the coefficients m1,�, � = 0, 1, 2, 3
all belong to the set {0, 1/2}. Similarly, if needed, replacing q with q − ω ′j for
some ω′ ∈ Z[ξ] allows us to assume that the coefficients m2,�, � = 0, 1, 2, 3 also
all belong to the set {0, 1/2}. Further replacements of q by q − ρ or q − ρξ then
permit us to restrict ourselves to the case m2,� = 0, for all � = 0, 1, 2, 3. If we
are to get a proper extension of H, we are left with the cases q = (1 + i)/2,
q = ξ(1 + i)/2 and q = (1 + ξ)(1 + i)/2. We immediately see that none of these
have reduced norms in Z[

√
2], so we have arrived at a contradiction.

4 Decoding of the nested sequence of lattices

In this section, let us consider the coherent MIMO case where the receiver per-
fectly knows the channel coefficients. The received signal is

y = Bx + n,

where x ∈ Rm, y, n ∈ Rn denote the channel input, output and noise signals, and
B ∈ Rn×m is the Rayleigh fading channel response. The components of the noise
vector n are i.i.d. complex Gaussian random variables. In the special case of a
MISO channel (n = 1), the channel matrix takes a form of a vector B = h ∈ Rm

(cf. Section 1).
The information vectors to be encoded into our code matrices are taken from

the pulse amplitude modulation (PAM) signal set X of the size Q, i.e.,

X = {u = 2q − Q + 1 | q ∈ ZQ}
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with ZQ = {0, 1, ..., Q− 1}.
Under this assumption, the optimal detector g : y �→ x̂ ∈ X m that minimizes

the average error probability

P (e)
∆
= P (x̂ �= x)

is the maximum-likelihood (ML) detector given by

x̂ = arg minx∈Zm
Q
| y − Bx |2, (5)

where the components of the noise n have a common variance equal to one.

4.1 Code controlled sphere decoding

The search in (5) for the closest lattice point to a given point y is known to be NP-
hard in the general case where the lattice does not exhibit any particular structure.
In [36], however, Pohst proposed an efficient strategy of enumerating all the lattice
points within a sphere S(y,

√
C0) centered at y with a certain radius

√
C0 that

works for lattices of a moderate dimension. For background, see [37]-[40]. For
finite PAM signals sphere decoders can also be visualized as a bounded search in
a tree.

The complexity of sphere decoders critically depends on the preprocessing
stage, the ordering in which the components are considered, and the initial choice
of the sphere radius. We shall use the standard preprocessing and ordering that
consists of the Gram-Schmidt orthonormalization

B = (Q, Q′)
(

R
0

)

of the columns of the channel matrix B (equivalently, QR decomposition on B)
and the natural back-substitution component ordering given by xm, ..., x1. The
matrix R is an m×m upper triangular matrix with positive diagonal elements, Q
(resp. Q′) is an n×m (resp. n× (n−m)) unitary matrix, and 0 is an (n−m)×m
zero matrix.

The condition Bx ∈ S(y,
√

C0) can be written as

| y − Bx |2≤ C0 (6)

which after applying the QR decomposition on B takes the form

| y′ − Rx |2≤ C ′
0, (7)

where y′ = QTy and C ′
0 = C0 − |(Q′)Ty|2. Due to the upper triangular form of

R, (7) implies the set of conditions

m∑
j=i

∣∣∣y′
j −

m∑
�=j

rj,�x�

∣∣∣2 ≤ C ′
0, i = 1, ..., m. (8)
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The sphere decoding algorithm outputs the point x̂ for which the distance

d2(y, Bx) =

m∑
j=1

∣∣∣y′
j −

m∑
�=j

rj,�x�

∣∣∣2 (9)

is minimum. See details in [40].
The decoding of the base lattice L2 can be performed by using the algorithm

below proposed in [40].

Algorithm II, Smart Implementation (Input C ′
0, y′, R. Output x̂.)

STEP 1: (Initialization) Set i := m, Tm := 0, ξm := 0, and dc := C ′
0 (current

sphere squared radius).

STEP 2: (DFE on xi) Set xi := �(y′
i − ξi)/ri,i� and ∆i := sign(y′

i − ξi −
ri,ixi).

STEP 3: (Main step) If dc < Ti+ | y′
i − ξi − ri,ixi |2, then go to STEP 4 (i.e.,

we are outside the sphere).
Else if xi /∈ ZQ go to STEP 6 (i.e., we are inside the sphere but outside the

signal set boundaries).
Else (i.e., we are inside the sphere and signal set boundaries) if i > 1, then

{let ξi−1 :=
∑m

j=i ri−1,jxj , Ti−1 := Ti+ | y′
i − ξi − ri,ixi |2, i := i− 1, and go

to STEP 2}.
Else (i=1) go to STEP 5.

STEP 4: If i = m, terminate, else set i := i + 1 and go to STEP 6.

STEP 5: (A valid point is found) Let dc := T1+ | y′
1 − ξ1 − r1,1x1 |2, save

x̂ := x. Then, let i := i + 1 and go to STEP 6.

STEP 6: (Schnorr-Euchner enumeration of level i) Let xi := xi + ∆i, ∆i :=
−∆i − sign(∆i), and go to STEP 3.

Note that given the values xi+1, ..., xm, taking the ZF-DFE (zero-forcing deci-
sion-feedback equalization) on xi avoids retesting other nodes at level i in case
we fall outside the sphere. Setting dc = ∞ would ensure that the first point
found by the algorithm is the ZF-DFE point (or the Babai point) [40]. However, if
the distance between the ZF-DFE point and the received signal is very large this
choice may cause some inefficiency, especially for high dimensional lattices.

The decoding of the other three lattices in (1) also relies on this algorithm, but
we need to run some additional parity checks. This simply means that in addi-
tion to the checks concerning the facts that we have to be both inside the sphere
radius and inside the signal set boundaries, we also have to lie inside a given sub-
lattice. This will be taken care of by a method we call code controlled sphere
decoding (CCSD), that combines the algorithm above with certain case consid-
erations. To this end, let us write the constraints on the elements ci as modulo 2
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Table 2: CCSD: Additional case considerations

CASE L4

∑8
i=1 xi ≡ 0 (mod 2)

CASE L5 x1 + x2 ≡ x5 + x6,
x3 + x4 ≡ x7 + x8 (mod 2)

CASE L6 x1 + x2 ≡ x3 + x4 ≡ x5 + x6 ≡ x7 + x8,∑
2|i xi ≡

∑
2�i xi ≡ 0 (mod 2)

operations. Denote by x = (x1, x2, ..., x8) = (�c1,�c1, ...,�c4,�c4) ∈ R8 the
real vector corresponding to the channel input. Note that when exploiting these
relations in the CCSD algorithm, we have to use different orderings for the basis
matrices of the lattice in different cases in order to make the parity checks as sim-
ple as possible. Let us first order the basis matrices as B1 = M(1, 0, 0, 0), B2 =
M(i, 0, 0, 0), ..., B7 = M(0, 0, 0, 1), B8 = M(0, 0, 0, i). Then when decoding e.g.
the L5 lattice, we reorder the basis matrices as B1, B2, B5, B6, B3, B4, B7, B8 in
order to get the sum c1+c3 as the sum of the first 4 components and the sum c2+c4

as the sum of the last 4 components (cf. Proposition 2.5). The conditions for the
Gaussian elements of Propositions 2.4-2.6 can clearly be translated into the fol-
lowing modulo 2 integer conditions, see for instance Remark 2.2. The additional
parity check steps will hence be as shown in Table 2 above.

As the Alamouti scheme [2] has a very efficient decoding algorithm available,
and our quaternionic lattices have an Alamouti-like block structure, it is natural to
ask whether any of the benefits of Alamouti decoding will survive for our lattices.
We shall see that the block structure allows us to decode the two blocks inde-
pendently from each other. The following simple observation is the underlying
geometric reason for our ability to do this.

Lemma 4.1 Let A and B be two n×n matrices with the property that the matrices
A, B, AH , BH commute. Let h ∈ C2n be any (row) vector and write

M(A, B) =

(
A B

−BH AH

)
.

Then the vectors hM(A, 0) and hM(0, B) are orthogonal to each other when we
identify C2n with R4n and use the usual inner product of a vector space over the
real numbers.

Proof. With the identification C2n = R4n the real inner product is the real part
of the hermitian inner product 〈 , 〉 of C2n. Write the vector h in the block form
h = (h(1), h(2)), where the blocks h(j), j = 1, 2, are (row) vectors in Cn. Then we
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can compute

〈hM(A, 0),hM(0, B)〉 = 〈hM(A, 0)M(0, B)H ,h〉
= 〈hM(A, 0)M(0,−B),h〉
= 〈hM(0,−AB),h〉
= 〈h(2)AHBH , h(1)〉 − 〈h(1)AB, h(2)〉.

As 〈uM,v〉 = 〈vMH ,u〉∗ for all vectors u,v and matrices M , we see that the
above hermitian inner product is pure imaginary.

Corollary 4.2 Let A and B range over sets of n × n-matrices. Let h and r be
vectors in C2n. Then the Euclidean distance between r and hM(A, B) is mini-
mized for the A = A0 and B = B0, when A0 minimizes the Euclidean distance
between r and hM(A, 0) and B0 minimizes the Euclidean distance between r and
hM(0, B).

Proof. Write VA (resp. VB) for the real vector space spanned by the vectors
hM(A, 0) (resp. hM(0, B)). These subspaces are orthogonal to each other in the
sense of Lemma 4.1. Whence we can uniquely write r = rA + rB + r⊥, where
rA ∈ VA, rB ∈ VB and r⊥ is in the (real) orthogonal complement of the direct
sum VA ⊕VB . A similar decomposition for the vector hM(A, B) is hM(A, B) =
hA + hB , where hA = hM(A, 0) ∈ VA and hB = hM(0, B) ∈ VB . By the
Pythagorean theorem

|r − hM(A, B)|2 = |rA − hM(A, 0)|2 + |rB − hM(0, B)|2 + |r⊥|2.

Furthermore, here

|rA − hM(A, 0)|2 = |r − hM(A, 0)|2 − |rB|2 − |r⊥|2,

so the quantities |rA − hM(A, 0)|2 and |r − hM(A, 0)|2 are minimized for the
same choice of the matrix A. A similar argument applies to the B-components,
so the claim follows.

4.2 Complexity analysis and the notion of defect

The number of nodes in the search tree is used as a measure of complexity so that
the implementation details or the physical environment do not affect it. We have
analyzed many different kinds of situations concerning the change of complexity
of the sphere decoder when moving in (1) from right to left.

In Fig. 1 we have plotted the average number of points visited by the algorithm
in different cases at the rates approximately 4 and 8 bpcu. The SNR regions cover
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the block error rates between ≈ 10% − 0.01%. As can be seen, in the low SNR
end, the difference in complexity between the different lattices is clear but evens
out when the SNR increases. For the sublattices L4, L5, and L6 the algorithm
visits 1.1 − 2.1 times as many points as for the base lattice L2. In the larger SNR
end, the performance is fairly similar for all the lattices. E.g. at 4 and 8 bpcu,
when all the lattices reach the bound of maximum 20 points visited, the block
error rates of L4, L5, and L6 are still as big as 5%, 2%, and 1% respectively.

Definition 4.1 In a MISO setting we say that a matrix lattice L has defect r [4], if
its rank is m, but the minimum positive real dimension of the span of bL is m− r.
In other words, the lattice collapses by dimension r. What comes to the decoding
complexity, a high defect means bad worst case decoding complexity.

In Example 4.1 below we show that for certain non-zero choices of the chan-
nel vector the receiver’s version of the four antenna DAST lattice (see [4],[5])
collapses into a dense set within a real vector space of dimension 2. Thus the
8-dimensional four antenna DAST lattices have defect six.

Example 4.1 There exist 8-dimensional lattices [5] of 4 × 4 matrices of the form

MDAST =




x1 x2 x3 x4

x1 −x2 x3 −x4

x1 x2 −x3 −x4

x1 −x2 −x3 x4


 .

When h = (1, 1, 1, 1), the receiver observes the vector lattice

hMDAST = (4x1, 0, 0, 0),

so the image lattice is contained in a vector space of dimension at most 2.

We proceed to determine the defects of the lattices L1 of Proposition 2.2 and
the ones within the nested sequence (1). Let us first consider L1. Let

U =




h1
...

h4




be the 4 × 4 matrix with rows h1,h2,h3,h4 of the form (1, ζ j, ζ2j, ζ3j) for j =
1, 5, 9, 13. Recall that earlier we have used {1, ζ, ζ2, ζ3} as an integral basis, so
the rows of U are the images of this ordered basis under the action of the Galois
group G of the extension Q(ζ)/Q(i). Now it happens that the matrix U is unitary
(up to a constant factor) as UU ∗ = 4I4. Let z = c1 + c2ζ + c3ζ

2 + c4ζ
3 be an

arbitrary algebraic integer of Q(ζ), and M(z) = ML(c1, c2, c3, c4) ∈ L1 be the
corresponding matrix of Proposition 2.2. According to the theory of algebraic
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numbers (and also trivially verified by hand) the rows of U are (left) eigenvectors
of M(z), and

UM(z)U−1 =




z 0 0 0
0 σ2(z) 0 0
0 0 σ3(z) 0
0 0 0 σ4(z)




is a diagonal matrix with entries gotten by applying the elements of the Galois
group G = {σ1 = id, σ2, σ3, σ4} to the number z.

So all the matrices ML(c1, c2, c3, c4) are diagonalized by U . Therefore we
might call the lattice L1 ‘DAST-like’, as it shares this property with the lattices
from [5].

Nevertheless, our ability to simultaneously diagonalize all the matrices in the
lattice gives the following somewhat unwelcome result.

Proposition 4.3 The lattice L1 has defect six.

Proof. Let h ∈ C4 be any non-zero channel vector. Then obviously the vectors
h = hML(1, 0, 0, 0) and ih = hML(i, 0, 0, 0) are linearly independent over the
reals. Thus the real span of hL1 has dimension at least two, whence the defect
cannot be higher than six.

On the other hand, let h be one of the common eigenvectors of all the matrices
of the lattice, i.e. a scalar multiple of one of the rows of the matrix U above.
Then hL1 consists of various (complex) scalar multiples of h and thus has real
dimension exactly 2.

In order to study the quaternionic lattices we first observe that the 2 × 2-
matrices A and B appearing as blocks of a matrix M ∈ L2 all have (1,±ξ) as
their common (left) eigenvectors. The same holds for the adjoints A∗, B∗ as they
also appear as blocks of M∗ that also happens to belong to the lattice L2. From the
proof of Proposition 2.4 we see that the matrix MM ∗, M = M(c1, c2, c3, c4), has
eigenvalues α±|k|with respective (left) eigenvectors (1,±ξ, 0, 0) and (0, 0, 1,±ξ).
Here α =

∑4
j=1 |cj|2 and k = −ic1c

∗
2 + c2c

∗
1 − ic3c

∗
4 + c4c

∗
3.

Proposition 4.4 The lattices Lt, t = 2, 4, 5, 6, have defect four.

Proof. As 2L2 ⊂ L6 ⊂ L5 ⊂ L4 ⊂ L2, it suffices to prove the statement for
L2. We first observe that the 4-dimensional real vector space generated by M1 =
M(1, 0, 0, 0), M2 = M(i, 0, 0, 0), M3 = M(0, 0, 1, 0), and M4 = M(0, 0, i, 0)
consists of invertible matrices only (apart from the zero matrix). This is because
these matrices really are 2 × 2 Alamouti matrices, where each complex entry is
replaced by a 2 × 2 scalar block. If h is a non-zero channel vector, the vectors
hMj , j = 1, 2, 3, 4 must then be linearly independent over the reals. Otherwise, h
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would belong to the eigenvalue zero for the corresponding linear combination of
the matrices Mj contradicting the fact that the matrix in question is invertible. We
may thus conclude that the defect of L2 is at most four.

On the other hand, if h = (1, ξ, 0, 0) then by our earlier observations hM is
a complex linear combination of h and (0, 0, 1, ξ) for all the matrices M ∈ L2.
Thus hL2 spans a 4-dimensional real vector space, so the defect is also at least
four.

We skip the proof of the following rather trivial observation.

Proposition 4.5 Let V+ (resp. V−) be the complex subspace of C4 generated by
the vectors (1, ξ, 0, 0) and (0, 0, 1, ξ) (resp. by (1,−ξ, 0, 0) and (0, 0, 1,−ξ)). The
subspaces V+ and V− are orthogonal complements of each other in C4, so any
channel vector can be uniquely written as

h = h+ + h−,

where h± ∈ V± respectively. If h belongs to one of the subspaces V+, V−, the
lattice hL2 collapses.

Remark 4.1 Similarly, the lattice L1 collapses if h is in the span of any three
or less of the rows of the matrix U above. Also for any DAST lattice LDAST

of 4 × 4-matrices there are four ‘forbidden’ subspaces V1, V2, V3, V4 of C4 with
the property that hLDAST does not collapse if, and only if, h has a non-zero
component in each one of the subspaces Vj, j = 1, 2, 3, 4.

Remark 4.2 A plausible explanation to the performance of suboptimal decoding
algorithms based on iterative interference cancellation is that such algorithms
cannot work well, when h is in one of the forbidden subspaces V leading to a
collapsed lattice hL. Thus the ‘effective’ diversity is cut down by dimC V .

Let us now yet more closely analyze the situation in which the receiver’s
version of the lattice L2 collapses in the sense that the real span V of the free
abelian group hL2 has dimension strictly less than 8. Obviously, the space V is
the R⊗Q H-submodule of C4 generated by the vector h. It is readily seen that the
R-algebra R⊗Q H is a direct sum of two copies of the algebra of the Hamiltonian
quaternions. Thus the space C4 will also be a direct sum of two 4-dimensional
submodules, i.e. the defect is 4 (cf. Definition 4.1 and Proposition 4.4), and the
lattice collapses exactly when the channel state vector happens to be in one of the
submodules. This is in sharp contrast to the case of the commutative ring L1 and
the DAST construction due to the fact that the R-algebra R ⊗Q L is isomorphic
to a direct sum of four copies of the field of complex numbers (a consequence of
simultaneous diagonalizability). Thus in those cases the receiver’s signal space
C4 has four submodules of real dimension 6 (i.e., defect = 6, cf. Example 4.1
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and Proposition 4.3) as well as smaller submodules that are intersections of the
maximal ones. Therefore, we have theoretical reasons to expect that the lattice
will collapse more often, if we use, e.g. the lattice L1 or the DAST lattices as
compared to the L2 lattice. The set of these critical channel vectors (= the union
of proper submodules) obviously has measure zero, but, nevertheless, it can be
assumed that something vicious will happen, when we approach the critical set.
Our simulations indeed show that the complexity of a sphere decoder increases
sharply, when we approach the critical set. A comparison between the lattices L1

and L2 does not show a dramatic difference between the average complexities of
a sphere decoder, but the difference becomes very apparent, when studying the
high-complexity tails of the complexity distribution.

In Fig. 2 and 3 we have plotted the complexity distribution of 5000 trans-
missions for different data rates. On the horizontal axis the quantity min( |hi|2 )
(resp. min( |h+|2, |h−|2 )) describes how close the lattice L1 (resp. L2) is to the
situation where it would collapse. That is, how close to zero the minimum of the
components hi ∈ Vi, i = 1, 2, 3, 4, (resp. h± ∈ V±) gets (cf. Remark 4.1 and
Proposition 4.5). For both L1 and L2 the figure shows that the smaller the quan-
tity, the higher the complexity. We can also conclude that the lattice L1 nearly
collapses a lot more often than the lattice L2. In addition, the number of points
visited by the sphere decoding algorithm is much higher for L1 than for L2. These
are phenomena caused by the defect. In Fig. 4 and 5 the scaled impact of defect
is depicted.

Note that as LDAST has the same structure in terms of the defect as L1, we can
equally well analyze the behavior of the DAST lattice on the basis of Fig. 2–Fig.
5.

5 Energy considerations and simulations

As a summary of Propositions 2.2–2.6 we get the following.

Proposition 5.1 (1) The lattice L2 is isometric to the rectangular lattice Z8 and
has a minimum determinant equal to 1.

(2) The lattice L4 isometric to D8 is an index two sublattice of L2 and has a
minimum determinant equal to 4.

(3) The lattice L5 isometric to D4⊥D4 is an index four sublattice of L2 and
has a minimum determinant equal to 16.

(4) The lattice L6 isometric to E8 is an index 16 sublattice of L2 and has a
minimum determinant equal to 64.

In order to compare these lattices we scale them to the same minimum determi-
nant. When a real scaling factor ρ is used the minimum determinant is multiplied
by ρ2. As all the lattices have rank 8, the fundamental volume is then multiplied
by ρ8. Let us choose the units so that the fundamental volume of L2 is m(L2) = 1.
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Then after scaling m(L4) = 1/2, m(L5) = 1/4, and m(L6) = 1/4. As the density
of a lattice is inversely proportional to the fundamental volume, we thus expect
the codes constructed within e.g. the lattices L4 and L6 to outperform the codes
of the same size within L2.

The exact average transmission power data in Fig. 6 is computed as follows.
Given the size K of the code we choose a random set of K shortest vectors from
each lattice. The average energy of the code

Eav =

∑
x∈C ‖x‖2

K

is then computed with the aid of theta functions [30]. All the lattices were nor-
malized to have minimum determinant equal to 1. When using the matrices
M(c1, c2, c3, c4) of Proposition 2.1, in some cases we are better off selecting the
input vectors (c1, c2, c3, c4) from the coset 1

2
(1 + i, 1 + i, 1 + i, 1 + i) +G4 instead

of letting them range over G4. Obviously such a translation does not change the
minimum determinant of the code, but it sometimes results in significant energy
savings. E.g. to get a code of size 256 it is clearly desirable to let the coefficients
c1, c2, c3, c4 range over the QPSK-alphabet.

Fig. 7 and Fig. 8 show the block error rates of the various competing lattice
codes at the rates approximately 2, 4, 6, and 8 bpcu, i.e. all the codes contain
roughly 28, 216, 224 or 232 matrices respectively. For the lattices L1, L2, LDAST ,
and LABBA [19] this simply amounted to letting the coefficients c1, c2, c3, c4 take
all the values in a QPSK-alphabet. Therefore, it would have been easy to obtain
bit error rates as well. For the lattices L4, L5, L6 the rate is not exact, see (10)
below and the preceding explanation. Of course also the exact rate equal to a
power of two could be achieved by just choosing a more or less random set of
shortest lattice vectors. As there is no natural way to assign bit patterns to vectors
of D8, D4⊥D4 or E8, we chose to show the block error rates instead of the bit
error rates.

The simulations were set up, here, so that the 95 per cent reliability range
amounts to a relative error of about 3 per cent at the low SNR end and to about 10
per cent at the high SNR end (or to about 4000 and 400 error events respectively).
One receiver was used for all the lattices.

When moving left in (1) the minimum determinant increaces while the BLER
decreases at the same time. However, the other side of the coin is that improve-
ments in the BLER performance cause a slightly more complex decoding process
by increasing the number of points visited in the search tree. Still after this in-
creasement, even the lattice L6 admits a fairly low average complexity as com-
pared to the lattices L1 and LDAST due to its lower defect. In part of the pictures
in Fig. 7 and Fig. 8, the order of the curves seems not to respect the above men-
tioned order, but this only happens because the rates are not exactly the same for
all the lattices. E.g. at the rate ≈ 4 bpcu, the exact rates for L2, L4, L5, and L6

are 4, 3.75, 4.14, and 4.17 bpcu respectively. Consequently, the lattice L4 seems
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to perform better than what it actually does. Let us shortly explain how these
rates follow: when picking the elements x1, ..., x8 from the set ZQ (cf. Section
4 (5) and the discussion after Algorithm II), the size of the code within the lat-

tice Li, i = 2, 4, 5, 6, will be Q8

[L2:Li]
= 2

log Q8

[L2:Li] , where [L2 : Li] is the index of
the sublattice Li inside L2 (cf. Proposition 5.1). Hence, the data rate in bits per
channel use can be computed as

R =
log Q8

[L2:Li]

4
. (10)

Now, for instance, to get as close to the rate R = 4 bpcu as possible, we have
to choose Q = 4, Q = 4, Q = 5, and Q = 6 for the lattices L2, L4, L5, and L6

respectively. By substituting Q and the sublattice index in question to (10) we
obtain the above rates.

Simulations at the rate 6 bpcu with one receiver show that the lattice L6 wins
by approximately 1 dB over the lattice L2 and by at least 2.5 dB over LDAST . At
the rate 2 bpcu, the rotated ABBA lattice LABBA is already beaten by the L2 lattice
by a fraction of a dB. The difference between L2 and LDAST is even clearer: L2

gains 1−2 dB over LDAST , depending on the SNR. At all data rates the lattice L6

outperforms all the other lattices.

6 Conclusions and suggestions for further research

In this paper, we have presented new constructions of rate-one, full-diversity, and
energy efficient 4 × 4 space-time codes with non-vanishing determinant by using
the theory of rings of algebraic integers and their counterparts within the divi-
sion rings of Lipschitz’ and Hurwitz’ integral quaternions. A comfortable, purely
number theoretic way to improve space-time lattice constellations was introduced.
The use of ideals provided us with denser lattices and an easy way to present the
exact proofs for the minimum determinants. The constructions can be extended
also to a larger number of transmit antennas, and they nicely fit with the popular
Q2-QAM and QPSK modulation alphabets. The idea of finding denser sublattices
within a given division algebra was also generalized to a MIMO case with arbi-
trary number of Tx antennas by using the theory of cyclic division algebras and,
as a novel method, their maximal orders. This is encouraging as the CDA based
square ST constructions with NVD are known to achieve the DM-G tradeoff. We
have also shown that the explicit constructions in this paper all have a simple de-
coding method based on sphere decoding. Related to the decoding complexity,
the notion of defect was introduced for the first time in this paper. Both the theory
and experimental results have proven the relevance of this new notion.

Comparisons with the four antenna DAST block code have shown that our
codes provide lower energy and block error rates due to their good minimum de-
terminant, i.e. high density and low defect. At the moment, we are searching for
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well-performing MIMO codes arising from the theory of crossed product alge-
bras and maximal orders of cyclic division algebras. We have noticed that also
the discriminant of a maximal order plays an important role in code design. It is
desirable to choose cyclic division algebras for which the discriminant of a maxi-
mal order is as small as possible [41]. By now, we are able to construct an explicit
cyclic division algebra of an arbitrary index over Q(i) (or Q(w)) that has a max-
imal order with minimal discriminant. Despite the fact that we have not yet fully
analyzed the practical performance of codes arising from these constructions, the
preliminary results have been very promising. Further details on this and on the
algorithmic properties of maximal orders (see also [42]-[44]) will be given in a
forthcoming paper.
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Figure 1: Average complexity of 4 tx-antenna matrix lattices at rates (approxi-
mately) R = 4 and R = 8 bpcu.
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