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Abstract

Conjunctive grammars are context-free grammars with an explicit conjunc-
tion operation in the formalism of rules; Boolean grammars are further
equipped with an explicit negation. The paper briefly reviews these gram-
mars and proposes 9 most interesting and important research problems for
them. An award of $240 Canadian is offered for the first correct solution of
each of these problems.
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1 Introduction

A context-free grammar is the most obvious formalism for specifying syn-
tax, and actually one of the first formal objects encountered by mankind:
Pān. ini’s treatise on Sanskrit written around 5th century B. C. used context-
free productions to specify parts of the grammar. In the mid-20th century
context-free grammars were rediscovered by Chomsky [1] and by the Algol
60 committee [16], and their mathematical study began, leading to what we
know as formal language theory.

The formalism of context-free grammars contains one logical operation,
the disjunction, which is represented by multiple rules for a single nontermi-
nal. This makes it easy to express the set of all strings that satisfy one of
the several given syntactical conditions: two rules A → α and A → α′

essentially say that whatever satisfies the condition α or the condition α′

therefore satisfies the condition represented by the nonterminal A. However,
any other logical operations, conjunction and negation in particular, are not
expressible using context-free grammars: if we want to specify all strings
that satisfy a condition α and at the same time another condition β, this
might be impossible (as the intersection of two context-free languages is not
necessarily context-free), or the grammar for such an intersection might be
immensely large and completely unlike the original grammar.

These logical operations are an essential part of any formal reasoning,
and being able to express them is important for any mathematical model of
syntax. Extending context-free grammars to support these operations can be
regarded as completing the incomplete definition of context-free grammars.
Some early attempts to do this were undertaken by Latta and Wall [12]
and by Heilbrunner and Schmitz [8], who proposed formalisms for specifying
Boolean combinations of context-free languages. Latta and Wall, in particu-
lar, argued for the relevance of their formalism for linguistics. However, the
use of conjunction and negation in these grammars was heavily restricted,
and one still could not use them as freely as the disjunction.

Conjunctive grammars [17] are a natural extension of context-free gram-
mars, which partially fills this gap: the conjunction of two syntactical con-
ditions can be directly expressed in the form of a rule

A → α&β

Boolean grammars [27] further extend conjunctive grammars by allowing an
explicit negation, that is, finally, every operation of Boolean logic is directly
expressible in their formalism. For instance, the set of strings that satisfy a
condition α and at the same time do not satisfy a condition β can be written
as a rule

A → α&¬β

The language generated by a conjunctive grammar can be formally defined
using derivations [17] that generalize context-free derivations, or, equiva-
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lently, by means of language equations [21]. The semantics of Boolean gram-
mars has originally been defined using language equations [24, 27], while some
alternative approaches based upon ideas from logical programming have re-
cently been proposed by Wrona [39] and by Kountouriotis et al. [10].

Boolean grammars can specify many abstract non-context-free languages,
such as {anbncn | n > 0} [17], {ww | w ∈ {a, b}∗} and {a2n | n > 0} [27], the
latter being outside of the Boolean closure of the context-free languages. An-
other evidence of their expressive power is given by a fairly compact grammar
for the set of well-formed programs in a simple model programming language
[30], which became the first specification of any programming language by a
formal grammar from a computationally feasible class.

Though conjunctive and Boolean grammars have a greater expressive
power than the context-free grammars, this increase in power does not lead
to a complexity blowup: the languages generated by Boolean grammars are
contained in DTIME(n3) ∩DSPACE(n). Practical parsing techniques for
context-free grammars, such as the recursive descent and the generalized
LR, have been extended first to conjunctive and then to Boolean grammars
[18, 19, 23, 28, 32], and the algorithms have been implemented in an ongoing
research-oriented parser generator project [20]. Recently Megacz [15] started
the development of a practically oriented parser generator for Boolean gram-
mars.

Context-free grammars can be regarded as a particular case of Boolean
grammars, in which the set of allowed Boolean operations is restricted to
disjunction only. The studies conducted so far show that the most essen-
tial practical properties of this particular case carry on to the general case.
Some theoretical properties of conjunctive and Boolean grammars were es-
tablished in the first papers [17, 27]. Later a characterization of a subcase
of conjunctive grammars by cellular automata was obtained [25], as well as
a characterization of Boolean grammars by derivations of a special kind [29].
However, most of the theoretical problems on these grammars are still open,
and solving these problems will significantly contribute to an emerging the-
ory of Boolean grammars. The extensive theory made for the restricted case
of context-free grammars deserves to be developed in the general case!

This paper gives a brief overview of these grammars and states the most
important open problems in the area. An award is offered for the first solution
of any of these problems.

2 Definitions

2.1 Conjunctive grammars

Conjunctive grammars are context-free grammars with an explicit conjunc-
tion operation that has semantics of intersection of languages. In addition to
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the implicit disjunction represented by multiple rules for a single nontermi-
nal, which is the only logical operation expressible in context-free grammars,
conjunctive grammars contain conjunction in the formalism of rules.

Definition 1. A conjunctive grammar [17] is defined as a quadruple G =
(Σ, N, P, S), in which

� Σ and N are disjoint finite nonempty sets of terminal and nonterminal
symbols respectively;

� P is a finite set of grammar rules, each of the form

A → α1& . . . &αn (where A ∈ N , n > 1 and α1, . . . , αn ∈ (Σ ∪N)∗)

� S ∈ N is a nonterminal designated as the start symbol.

For every rule A → α1& . . . &αn ∈ P and for every i (1 6 i 6 n), an object
A → αi is called a conjunct.

A collection of rules for a single nonterminal can be written using the
common notation

A → α11& . . . &α1n1 | . . . | αm1& . . . &αmnm ,

in which the vertical line is, in essence, disjunction.
Similarly to the context-free case, a conjunctive grammar is called

linear conjunctive if every rule it contains is either of the form A →
u1B1v1& . . . &unBnvn, where n > 1, ui, vi ∈ Σ∗ and Bi ∈ N , or of the
form A → w, where w ∈ Σ∗.

The semantics of conjunctive grammars is defined using derivation, gen-
erally in the same way as in the context-free case. The only difference is in
the objects being transformed: while context-free derivations operate with
strings over Σ ∪ N , which are terms over concatenation, a derivations in
conjunctive grammars use terms over concatenation and conjunction.

Let us denote such terms as strings over an extended alphabet Σ ∪ N ∪
{“(”, “&”, “)”}, assuming that none of the three special symbols is in Σ∪N .
The set of valid string representations is defined inductively as follows:

1. ε is a term.

2. Every symbol from Σ ∪N is a term.

3. If A and B are nonempty terms, then AB is a term.

4. If A1, . . . ,An (n > 1) are terms, then (A1& . . . &An) is a term.

Definition 2. Given a grammar G, define the relation
G

=⇒ of immediate
derivability on the set of terms:
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1. A nonterminal can be rewritten by the body of some rule enclosed in
parentheses, that is, for all s1, s2 ∈ (Σ∪N∪{“(”, “&”, “)”})∗ and for all
A ∈ N , if s1As2 is a term, then, for every rule A → α1& . . . &αn ∈ P ,

s1As2
G

=⇒ s1(α1& . . . &αn)s2 (1)

2. A conjunction of several identical terminal strings enclosed in paren-
theses can be replaced by one such string without the parentheses, that
is, for all s1, s2 ∈ (Σ ∪ N ∪ {“(”, “&”, “)”})∗, for all w ∈ Σ∗ and for
all n > 1, if s1(w& . . . &w︸ ︷︷ ︸

n

)s2 is a term, then

s1(w& . . . &w︸ ︷︷ ︸
n

)s2
G

=⇒ s1ws2 (2)

Let
G

=⇒∗ be the reflexive and transitive closure of
G

=⇒ .
The language generated by a term A is the set of all strings over Σ deriv-

able from its start symbol in a finite number of steps:

LG(α) = {w | w ∈ Σ∗, A G
=⇒∗ w} (3)

The language generated by the grammar is the language generated by the term
S:

L(G) = LG(S) = {w | w ∈ Σ∗, S
G

=⇒∗ w}
Let us construct a conjunctive grammar for the most common example

of a non-context-free language.

Example 1 ([17]). The following conjunctive grammar generates the lan-
guage {anbncn | n > 0}:

S → AB&DC

A → aA | ε

B → bBc | ε

C → cC | ε

D → aDb | ε

The grammar is based upon the representation of this language as an
intersection of two context-free languages:

{anbncn | n > 0}︸ ︷︷ ︸
L(S)

= {aibjck | j = k}︸ ︷︷ ︸
L(AB)

∩{aibjck | i = j}︸ ︷︷ ︸
L(DC)

According to this grammar, the string abc can be derived in the following
way:

S =⇒ (AB&DC) =⇒ ((aA)B&DC) =⇒ ((aA)(bBc)&DC) =⇒
((aA)(bBc)&(aDb)C) =⇒ ((aA)(bBc)&(aDb)(cC)) =⇒4

((a())(b()c)&(a()b)(c())) =⇒4 ((a)(bc)&(ab)(c)) =⇒4 (abc&abc) =⇒ abc
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In essence, here two context-free derivations are done in parallel, and the
same string has to be derived from AB and from DC in order to do the last
step of the derivation.

An important property of conjunctive grammars is that every derivation
can be represented in the form of a tree with shared leaves, which generalizes
context-free parse trees. The tree corresponding to the above derivation is
given in Figure 1, and one can clearly see how it combines two interpretations
of the same string according to two conjuncts of the rule for S. A formal
definition of such trees can be found in the literature [17, 19].

Figure 1: Parse tree of abc ∈ L(G) according to the grammar in Example 1.

Another common example of a non-context-free language, {wcw | w ∈
{a, b}∗}, forms a more interesting case, because, as proved by Wotschke [38],
it is not expressible as a finite intersection of context-free languages. Let
us give a linear conjunctive grammar for this language and explain how it
works.

Example 2 ([17]). The following conjunctive grammar generates the lan-
guage {wcw | w ∈ {a, b}∗}:

S → C&D

C → aCa | aCb | bCa | bCb | c

D → aA&aD | bB&bD | cE

A → aAa | aAb | bAa | bAb | cEa

B → aBa | aBb | bBa | bBb | cEb

E → aE | bE | ε

The nonterminal C generates {xcy | x, y ∈ {a, b}∗; |x| = |y|} and thus
ensures that the string consists of two equal-length parts separated by a
center marker. D takes one symbol from the left and uses A or B to compare
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it to the corresponding symbol at the right. At the same time, D recursively
refers to itself in order to apply the same rule to the rest of the string.
Formally, A generates {xcvay | x, v, y ∈ {a, b}∗, |x| = |y|}, B generates
{xcvby | x, v, y ∈ {a, b}∗, |x| = |y|} and therefore D produces {uczu | u, z ∈
{a, b}∗} (the last result may be obtained by a straightforward induction on
the length of the string). Finally,

{xcy | x, y ∈ {a, b}∗, |x| = |y|} ∩ {uczu | u, z ∈ {a, b}∗} = {wcw |w ∈ {a, b}∗}

Let us construct a derivation of the string abcab and thus formally demon-
strate that it is generated by the given grammar:

S =⇒ (C&D) =⇒ ((aCb)&D) =⇒ ((a(bCa)b)&D) =⇒ ((a(b(c)a)b)&D) =⇒
((a(bca)b)&D) =⇒ ((abcab)&D) =⇒ (abcab&D) =⇒ (abcab&(aA&aD)) =⇒
(abcab&(a(bAb)&aD)) =⇒ (abcab&(a(b(cEa)b)&aD)) =⇒
(abcab&(a(b(c()a)b)&aD)) =⇒ (abcab&(a(b(ca)b)&aD)) =⇒
(abcab&(a(bcab)&aD)) =⇒ (abcab&(abcab&aD)) =⇒
(abcab&(abcab&a(bB&bD))) =⇒ (abcab&(abcab&a(b(cEb)&bD))) =⇒
(abcab&(abcab&a(b(c(aE)b)&bD))) =⇒
(abcab&(abcab&a(b(c(a())b)&bD))) =⇒
(abcab&(abcab&a(b(c(a)b)&bD))) =⇒ (abcab&(abcab&a(b(cab)&bD))) =⇒
(abcab&(abcab&a(bcab&bD))) =⇒ (abcab&(abcab&a(bcab&bD))) =⇒
(abcab&(abcab&a(bcab&b(cE)))) =⇒ (abcab&(abcab&a(bcab&b(c(aE))))) =⇒
(abcab&(abcab&a(bcab&b(c(a(bE)))))) =⇒
(abcab&(abcab&a(bcab&b(c(a(b())))))) =⇒
(abcab&(abcab&a(bcab&b(c(a(b)))))) =⇒
(abcab&(abcab&a(bcab&b(c(ab))))) =⇒ (abcab&(abcab&a(bcab&b(cab)))) =⇒
(abcab&(abcab&a(bcab&bcab))) =⇒ (abcab&(abcab&abcab)) =⇒
(abcab&abcab) =⇒ abcab

It is important to note that the construction essentially uses the center
marker, and therefore this method cannot be applied to writing a conjunc-
tive grammar for the language {ww | w ∈ {a, b}∗}. The question of whether
{ww | w ∈ {a, b}∗} can be specified by a conjunctive grammar remains an
open problem.

Let us now consider a representation of conjunctive grammars by language
equations, which generalizes the well-known characterization of the context-
free grammars due to Ginsburg and Rice [5].

Definition 3. For every conjunctive grammar G = (Σ, N, P, S), the associ-
ated system of language equations [21] is a system of equations in variables
N , in which each variable assumes a value of a language over Σ, and which
contains the following equation for every variable A:

A =
⋃

A→α1&...&αm∈P

m⋂
i=1

αi (for all A ∈ N) (4)
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Each instance of a symbol a ∈ Σ in such a system defines a constant language
{a}, while each empty string denotes a constant language {ε}. A solution
of such a system is a vector of languages (. . . , LC , . . .)C∈N , such that the
substitution of LC for C, for all C ∈ N , turns each equation (4) into an
equality.

It is known that every such system has solutions, and among them the
least solution with respect to componentwise inclusion, and this solution
consists of exactly the languages generated by the nonterminals of the original
conjunctive grammar: (. . . , LG(C), . . .)C∈N [21].

This representation by language equations constitutes an equivalent se-
mantics of conjunctive grammars, and it is this semantics, and not the fairly
artificial derivation, that accounts for the intuitive clarity of conjunctive and
context-free grammars.

2.2 Boolean grammars

Boolean grammars are context-free grammars augmented with all proposi-
tional connectives, or, in other words, conjunctive grammars with negation.

Definition 4. A Boolean grammar [27] is defined as a quadruple G =
(Σ, N, P, S), where Σ and N are disjoint finite nonempty sets of terminal
and nonterminal symbols respectively; P is a finite set of rules of the form

A → α1& . . . &αm&¬β1& . . . &¬βn (A ∈ N, m+n > 1, αi, βj ∈ (Σ∪N)∗),
(5)

while S ∈ N is the start symbol of the grammar.

For each rule (5), the objects A → αi and A → ¬βj (for all i, j) are called
conjuncts, positive and negative respectively. A conjunct with an unknown
sign can be denoted A → ±γ, which means “A → γ or A → ¬γ”.

A Boolean grammar becomes a conjunctive grammar if negation is never
used, that is, n = 0 for every rule (5); it degrades to a standard context-free
grammar if neither negation nor conjunction are allowed, that is, m = 1 and
n = 0 for all rules. As in the case of conjunctive grammars, let us adopt a
short notation A → ϕ1 | . . . | ϕ` for ` rules A → ϕi of the form (5) for a
single nonterminal A.

Intuitively, a rule (5) can be read as “if a string satisfies the syntactical
conditions α1, . . . , αm and does not satisfy any of the syntactical conditions
β1, . . . , βn, then this string satisfies the condition represented by the nonter-
minal A”. This intuitive interpretation is not yet a formal definition, but
this understanding is sufficient to construct grammars.
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Example 3 (cf. Example 1). The following Boolean grammar generates the
language {ambncn |m,n > 0,m 6= n}:

S → AB&¬DC

A → aA | ε

B → bBc | ε

C → cC | ε

D → aDb | ε

The rules for the nonterminals A, B, C and D are context-free, so, ac-
cording to the intuitive semantics, they should generate the same languages
as in Example 1. Then the propositional connectives in the rule for S spec-
ify the following combination of the conditions given by AB and DC (see
Example 1):

{anbmcm |m,n > 0,m 6= n}︸ ︷︷ ︸
L(S)

= {aibjck | j = k and i 6= j} = L(AB) ∩ L(DC)

Example 4. The following Boolean grammar generates the language
{ww | w ∈ {a, b}∗}:

S → ¬AB&¬BA&C

A → XAX | a

B → XBX | b

C → XXC | ε

X → a | b

Again, according to the intuitive semantics, the nonterminals A, B, C
and X should generate the appropriate context-free languages, and

L(A) = {uav | u, v ∈ {a, b}∗, |u| = |v|},
L(B) = {ubv | u, v ∈ {a, b}∗, |u| = |v|}.

This implies

L(AB) = {uavxby | u, v, x, y ∈ {a, b}∗, |u| = |x|, |v| = |y|},
that is, L(AB) contains all strings of even length with a mismatched a on
the left and b on the right (in any position). Similarly,

L(BA) = {ubvxay | u, v, x, y ∈ {a, b}∗, |u| = |x|, |v| = |y|}
specifies the mismatch formed by b on the left and a on the right. Then the
rule for S specifies the set of strings of even length without such mismatches:

L(S) = L(AB) ∩ L(BA) ∩ {aa, ab, ba, bb}∗ = {ww | w ∈ {a, b}∗}.
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Though such a common-sense interpretation of Boolean grammars is clear
for “reasonably written” grammars, the use of negation can, in general, lead
to logical contradictions (consider the grammar S → ¬S), and for that rea-
son the task of defining a mathematically sound formal semantics for Boolean
grammars is far from being trivial. All existing definitions of Boolean gram-
mars [27, 39, 10] start with representing a grammar as a system of language
equations with concatenation, union, intersection and complementation.

Definition 5 (cf. Definition 3). For every Boolean grammar G =
(Σ, N, P, S), the associated system of language equations is defined by analogy
with the conjunctive case, with the following equations:

A =
⋃

A→α1&...&αm&¬β1&...&¬βn∈P

[ m⋂
i=1

αi ∩
n⋂

j=1

βj

]
(6)

In general, systems of language equations of the form (6) have a high
expressive power and the associated undecidability results [24]. The notion
of a least solution is no longer useful [27]. The class of languages represented
by their unique solutions is exactly the class of recursive languages, and the
way these languages are represented does not well correspond to the intuitive
semantics of Boolean grammars defined above. However, different restrictions
upon these equations lead to feasible semantics for Boolean grammars [27,
39]. Let us define the simplest of these restrictions:

Definition 6. Let G = (Σ, N, P, S) be a Boolean grammar, let (6) be the as-
sociated system of language equations. Suppose that for every finite substring-
closed language M ⊂ Σ∗ (that is, for every w ∈ M all substrings of w are also
in M) there exists a unique vector of languages (. . . , LC , . . .)C∈N (LC ⊆ M),
such that a substitution of LC for C, for each C ∈ N , turns every equation
(6) into an equality modulo intersection with M . Then G complies to the
semantics of a strongly unique solution, and, for every A ∈ N , the language
LG(A) can be defined as LA from the unique solution of this system. The
language generated by the grammar is L(G) = LG(S).

A simple example of a grammar deemed invalid according to Definition 6
is the grammar {S → ¬S&aA,A → A}. Here the associated system of
language equations {S = S ∩ aA,A = A} has a unique solution S = A = ∅:
supposing w ∈ A, a contradiction of the form “aw ∈ S if and only if aw /∈ S”
is obtained. However, this system has two solutions modulo every language
{ε, a, . . . , an}, namely, (S = ∅, A = ∅) and (S = ∅, A = {an}). This makes
it invalid.

The simplest example of a grammar that does not meet the condition
of this definition is S → S. However, it is valid according to alternative
semantics for Boolean grammars, see Wrona [39], Kountouriotis et al. [10]
and the author [27, 32]. The grammar S → ¬S is invalid according to
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all known semantics. But it should be noted that, with the exception of
Wrona’s semantics [39], these semantics disagree only on extremal examples
and ultimately define the same family of languages. It is also possible to
extend the applicability of conjunctive parse trees to Boolean grammars.

Returning to Example 4, the corresponding system of language equations
is 




S = AB ∩BA ∩ C
A = XAX ∪ {a}
B = XBX ∪ {b}
C = XXC ∪ {ε}
X = {a} ∪ {b}

and the following assignment of languages to variables is its unique solution:
S = {ww |w ∈ {a, b}∗}, A = {uav |u, v ∈ {a, b}∗, |u| = |v|}, B = {ubv |u, v ∈
{a, b}∗, |u| = |v|}, C = {aa, ab, ba, bb}∗, D = {a, b}. It is not hard to verify
that the solution modulo every finite language, in the sense of the above
definition, is unique, and hence L(G) = {ww | w ∈ {a, b}∗}.

Despite the increased descriptive power, the theoretical upper bound for
the parsing complexity for Boolean grammars is still O(n3) [27], the same
as in the context-free case, which is obtained by an extension of the Cocke–
Kasami-Younger algorithm. This algorithm uses cubic time for every lan-
guage generated by a Boolean grammar and on every input, and it requires
that the grammar is transformed to the following extension of Chomsky nor-
mal form [27]:

Definition 7. A Boolean grammar G = (Σ, N, P, S) is in the binary normal
form if every rule in P is of the form

A → B1C1& . . . &BmCm&¬D1E1& . . . &¬DnEn&¬ε (m > 1, n > 0)

A → a

S → ε (only if S does not appear in right-hand sides of rules)

Other algorithms that do not require grammar transformation have been
proposed [28, 32, 39].

2.3 Linear conjunctive grammars and trellis automata

The family of languages defined by linear conjunctive grammars has actually
been known for almost thirty years before these grammars were introduced
[25]: this is the family defined by one of the simplest types of cellular au-
tomata. These are one-way real-time cellular automata, also known as trellis
automata, studied by Dyer [4], Culik, Gruska and Salomaa [3], Ibarra and
Kim [9], and others. Let us explain this concept following Culik, Gruska and
Salomaa [3], who proposed it as a model of parallel computation in some
electronic circuits.
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A trellis automaton, defined as a quintuple (Σ, Q, I, δ, F ), processes an
input string of length n using a uniform array of n(n+1)/2 processor nodes,
as in Figure 2. Each processor computes a value from a fixed finite set Q.
The processors in the bottom row obtain their values directly from the input
symbols using a function I : Σ → Q. The rest of the processors compute the
function δ : Q × Q → Q of the values in their predecessors. The string is
accepted if and only if the value computed by the topmost processor belongs
to the set of accepting states F ⊆ Q.

a1 a2 a3 a4

Figure 2: Computation done by a trellis automaton.

Evidently, trellis automata are one of the simplest computational models
one can imagine, and they were proved to be computationally equivalent to
conjunctive grammars:

Theorem 1 ([25]). A language L ⊆ Σ+ is generated by a linear conjunctive
grammar if and only if L is recognized by a trellis automaton.

One can attain complete equivalence by extending the definition of a
trellis automaton by a single bit that determines whether ε is recognized
or not. The proof of Theorem 1 is by an effective construction of a trellis
automaton out of a grammar, and vice versa. Furthermore, the following
refinement of the automaton-to-grammar construction is known:

Theorem 2 ([26]). For every trellis automaton M there exists and can be
effectively constructed a two-nonterminal linear conjunctive grammar gener-
ating the same language.

The entire machinery of a trellis automaton is simulated using just one
nonterminal, while the other decodes L(M) from the language of the first
nonterminal.

One can define linear Boolean grammars by the same restriction as for
linear conjunctive grammars. These grammars actually define the same class
of languages as linear conjunctive grammars and trellis automata [27].

2.4 Comparison of the families

Three families of languages have been considered. One of them, the linear
conjunctive languages, turned out to be known, while the languages gener-

11



ated by conjunctive grammars and by Boolean grammars are new. Let us
summarize the relation between these families shown in Figure 3.

Figure 3: Hierarchy of languages.

Obviously, both the context-free languages (CF) and the linear conjunc-
tive languages (LinConj) contain the linear context-free languages (LinCF).
Both inclusions are strict, which is witnessed, for instance, by the languages
{ambm+nan |m,n > 0} and {anbncn | n > 0}. It is known from Terrier [36]
that CF and LinConj are incomparable: there exists a linear context-free lan-
guage LT , such that L2

T (obviously a context-free language) is not recognized
by any trellis automaton. The language L2

T also certifies proper containment
of LinConj in the conjunctive languages (Conj).

Reg LinCF CF LinConj Conj Bool DetCS CS
Closure properties
∪ + + + + + + + +
∩ + − − + + + + +
∼ + − − + ? + + +
· + − + − + + + +
∗ + − + − + + + +
h + + + − − − − −
h−1 + + + + + ? + +
Decision problems
Membership + + + + + + + +
Emptiness + + + − − − − −
Universality + − − − − − − −
Equivalence + − − − − − − −
Table 1: Closure properties and decidability of decision problems.

Since conjunctive grammars are a special case of Boolean grammars, the
containment of one language family in the other is obvious. However, it is not
known whether the inclusion is strict. Also, while it is known that the lan-
guages generated by Boolean grammars (Bool) are contained in DSPACE(n),
or, in other words, they are all deterministic context-sensitive (DetCS) [27],
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there is no proof of the strictness of this inclusion. Finally, it is a long-
standing open problem whether DSPACE(n) is smaller than NSPACE(n),
the latter also known as the family of context-sensitive languages (CS).

Decidability of most common decision problems for the families mentioned
above, as well as the closure of the resulting families of languages under
standard operations, are compared in Table 1.

3 The problems

3.1 Limitations of Boolean grammars

The limitations of the expressive power of the context-free grammars have
been investigated quite well. Besides the complexity upper bounds, there ex-
ist direct techniques of proving non-context-freeness of particular languages,
such as the pumping lemma and its variants, as well as Parikh’s theorem,
which show that some computationally very easy languages cannot be gen-
erated by any context-free grammar. Simple examples of non-context-free
languages include {anbncn | n > 0}, {wcw | w ∈ {a, b}∗}, {anb2n | n > 0} and
{a2n | n > 0}.

In contrast, no methods of proving nonrepresentability of languages by
Boolean grammars are currently known, and this can be regarded as the
most important theoretical problem on these grammars. Note that even for
conjunctive grammars no techniques for proving non-existence of grammars
for particular languages are known, and only for linear conjunctive grammars
one can use fairly sophisticated counting arguments developed for the trellis
automaton representation [36].

Of course, the known upper bounds on the complexity of parsing for
Boolean grammars (deterministic cubic time or, using a different algorithm,
deterministic linear space [27]) already imply that computationally harder
languages are beyond their scope (by the time and the space hierarchies). The
question is, whether any computationally easy languages cannot be specified
by Boolean grammars, and how can one generally prove statements of this
kind? Let us formally state this question as follows:

Problem 1. Are there any languages recognized by deterministic lin-
ear bounded automata working in time O(n2) that cannot be specified by
Boolean grammars?

Following is quite an interesting candidate:

{u1 . . . un | for every i, either ui ∈ a∗c, or ∃j, k: ui = bkc and uj = akc}
This is an abstract language, which represents declaration of identifiers before
or after their use; substrings of the form akc represent declarations, while
every substring bkc is a reference to a declaration of the form akc.
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It is known that Boolean grammars can specify a related language, in
which declarations must precede references, that is, the number j is required
to be always less than i [30]. However, the corresponding grammar does not
generalize for the given case.

Other languages possibly not representable by Boolean grammars can

be sought for in the domain of unary languages: consider {a22n | n > 0} or
{an2 |n > 0}. Actually, some related nonrepresentability results are known for
a certain subfamily of Boolean grammars [33]. The case of unary languages
is the subject of the second problem.

3.2 Conjunctive grammars over a one-letter alphabet

It is well-known that context-free grammars over a one-letter alphabet gen-
erate only regular languages [5]. On the other hand, Boolean grammars
can generate some nonregular unary languages, as shown by the following
example:

Example 5. The following Boolean grammar generates the language
{a2n | n > 0}:

S → A&¬aA | aB&¬B | aC&¬C

A → aBB

B → ¬CC

C → ¬DD

D → ¬A

The rules for A, B, C and D represent the following language equation:

X = aX
2
2
2

This equation was studied by Leiss [13], and its unique solution was found
to be {an | ∃k > 0 : 23k 6 n < 23k+2}. Therefore, the corresponding
nonterminals of the above grammar generate the following languages:

L(A) = {an | ∃k > 0 : 23k 6 n < 23k+2},
L(B) = {an | ∃k > 0 : 23k − 1 6 n < 23k+1},
L(C) = {an | ∃k > 0 : 23k+1 6 n < 23k+2}, and

L(D) = {an | ∃k > 0 : 23k+2 6 n < 23k+3} ∪ {ε}.

Then it is easy to verify that

L(S) = (L(A) ∩ aL(A))︸ ︷︷ ︸
{a23k | k>0}

∪ (aL(B) ∩ L(B))︸ ︷︷ ︸
{a23k+1 | k>0}

∪ (aL(C) ∩ L(C))︸ ︷︷ ︸
{a23k+2 | k>0}

= {a2n | n > 0}
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Conjunctive grammars stand in the middle between context-free and
Boolean grammars, and their expressive power in the case of a unary al-
phabet remains unknown. Do they generate only regular languages, like
context-free grammars, or can they generate some nonregular language, like
Boolean grammars? The Boolean grammar in Example 5 essentially uses
negation, and it looks that there is no obvious way to replicate these con-
structions using conjunctive grammars. On the other hand, the regularity
proof does not generalize from the context-free case, since it relies upon the
pumping lemma.

Problem 2. Do conjunctive grammars over a one-letter alphabet generate
only regular languages?

If they can generate any nonregular language, this would be a surprise.
On the other hand, if only regular unary languages are generated, then some
new idea would be needed for the proof. Perhaps one could first establish
a pumping lemma for conjunctive grammars over a one-letter alphabet, but
even this seems to be not an easy task.

3.3 Time complexity

The membership of a given string in a context-free language can be tested in
time Θ(n3) using the well-known Cocke–Kasami–Younger algorithm. At the
same time, some asymptotically more efficient methods of context-free recog-
nition are known: Valiant [37] reduced context-free membership problem to
matrix multiplication, which allowed him to apply Strassen’s [35] fast matrix
multiplication algorithm to obtain a context-free recognizer working in time
O(n2.807). Using an asymptotically better matrix multiplication method due
to Coppersmith and Winograd [2], the complexity of Valiant’s recognizer can
be improved to O(n2.376).

However, already for conjunctive grammars there seems to be no way
to reduce the membership problem to matrix multiplication. Therefore, the
DTIME(n3) upper bound for the complexity given by the extension of the
Cocke–Kasami–Younger algorithm remains the best known, and to improve
this bound one would have to invent an entirely new algorithm. The question
is, can this be done?

Problem 3. Are the languages generated by Boolean grammars contained
in DTIME(n3−ε) for any ε > 0?
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3.4 Space complexity

The Cocke–Kasami–Younger algorithm for context-free grammars uses space
Θ(n2), and its generalization for Boolean grammars fits its data in the same
amount of memory [27]. In both cases this is the best known upper bound
for practically useful algorithms applicable to grammars of the general form.
In the context-free case it was established by Lewis, Stearns and Hartmanis
[14] that it is possible to trade time for space and use as little as O(log2 n)
memory.

Adapting the method of Lewis, Stearns and Hartmanis to Boolean gram-
mars, and even to linear conjunctive grammars, does not seem to be pos-
sible, since O(log2 n) space complexity is achieved by a binary search in a
context-free derivation, while the generation of a string by a conjunctive or a
Boolean grammar is not known to have such a structurally simple represen-
tation. Also, consider that already linear conjunctive grammars can specify
a P-complete language [9], which makes polylogarithmic-space recognition
not very likely.

The best known upper bound for the space complexity of Boolean gram-
mars is O(n) [27]. This suggests the task of improving this result, if that is
possible:

Problem 4. Are the languages generated by Boolean grammars contained
in DSPACE(n1−ε) for any ε > 0?

If this were proved for any ε > 0, this would, in particular, separate
Boolean grammars from the context-sensitive grammars. On the other hand,
if the converse is the case, proving that would involve a lower bound technique
interesting in itself.

As a simpler problem, consider separating the family generated by con-
junctive grammars from NSPACE(n).

3.5 Greibach normal form

A context-free grammar is said to be in Greibach normal form if every rule
is either A → ε, or A → aα for some a ∈ Σ and α ∈ (Σ ∪ N)∗. It is known
from Greibach [6] that every context-free grammar can be transformed to an
equivalent grammar with rules of this form.

A generalization for Boolean grammars will have rules of the form

A → aα1& . . . &aαm&¬aβ1& . . . &¬aβn, (7)

where a ∈ Σ, m + n > 1 and αi, βi ∈ (Σ ∪ N)∗. However, it is not known
whether the family of languages generated by Boolean grammars in Greibach
normal form is the same as the entire family generated by Boolean grammars.
This is proposed as a research problem:
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Problem 5. Is it true that for every Boolean grammar there exists a
Boolean grammar in Greibach normal form that generates the same lan-
guage?

For potentially simpler problems, consider the case of conjunctive gram-
mars. Let us say that a conjunctive grammar is in Greibach normal form if
its rules are

A → aα1& . . . &aαm,

where a ∈ Σ, m > 1 and αi ∈ (Σ ∪N)∗. Can every conjunctive grammar be
transformed to Greibach normal form?

In the same way one can define a linear conjunctive grammar in Greibach
normal form, in which all rules must be of the form A → w (w ∈ Σ∗) or

A → aB1u1& . . . &aBmum,

where a ∈ Σ, m > 1 and αi ∈ (Σ ∪ N)∗. Here it should be rather easy to
prove that the linear conjunctive language {anb2n | n > 1} [25] cannot be
generated by any linear conjunctive grammar in Greibach normal form.

The question whether the language {anb2n |n > 1} can be represented by
a Boolean grammar in Greibach normal form might be a good starting point
in approaching Problem 5. The answer to this question is likely negative,
and a negative solution to the problem can be thus obtained.

3.6 Complementation of conjunctive grammars

The family of languages generated by Boolean grammars is closed under all
Boolean operations and concatenation simply by virtue of having the corre-
sponding operators as a part of the formalism. However, conjunctive gram-
mars do not have an explicit negation operator, and the question whether for
every conjunctive grammar G there exists a grammar for the complement of
L(G) is open:

Problem 6. Is the family of conjunctive languages closed under comple-
mentation?

If the answer is negative, a possible witness language is the one from
Example 4: the language {ww | w ∈ {a, b}∗} is known to be context-free,
while its complement might be nonrepresentable by conjunctive grammars.

Let us note that linear conjunctive languages are closed under comple-
mentation, which easily follows from their automaton representation [25],
and can also be proved by an explicit construction [22].
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3.7 Inherent ambiguity

Let us say that a Boolean grammar G = (Σ, N, P, S) is unambiguous [34] if

1. For every nonterminal A and for every string w there exists at most
one rule

A → α1& . . . &αm&¬β1& . . . &¬βn,

such that w ∈ LG(α1) ∩ . . . ∩ LG(αm) ∩ LG(β1) ∩ . . . ∩ LG(βn).

2. For every conjunct A → ±s1 . . . s` and for every string w there exists
at most one factorization w = u1 . . . u`, such that ui ∈ LG(si) for all i.

A language L can be called inherently ambiguous with respect to Boolean
grammars if every Boolean grammar generating it is ambiguous.

The ambiguity of the first type can be effectively eliminated by supply-
ing every rule with an additional conjunct that expresses the condition of
nonrepresentability by all other rules for this nonterminal. However, the am-
biguity of the second type might be necessary to represent some languages.
Is it truly necessary? This question can be stated as follows:

Problem 7. Do there exist any inherently ambiguous languages with re-
spect to Boolean grammars?

There are strong reasons to expect a positive answer, that is, that there
exist such languages. Note that an O(n2)-time parsing algorithm for unam-
biguous Boolean grammars is known [34], and so if there are no inherently
ambiguous languages, then the languages generated by Boolean grammars
are contained in DTIME(n2) (see also Problem 3), which is an upper bound
unheard of even for context-free languages of the general form. If the answer
to Problem 7 is negative, this would be an extremely surprising result.

If we consider obtaining a positive answer, the languages {ww | w ∈
{a, b}∗} and {a2n | n > 0} are possible candidates for being inherently am-
biguous. Let us show that the existing grammars given in Examples 4 and 5
are ambiguous. In Example 4, consider the string w = aabb and the conjunct
S → ¬AB: there are two factorizations w = a · abb = aab · b, such that
a ∈ L(A), abb ∈ L(B), aab ∈ L(A) and b ∈ L(B). For Example 5 it is suffi-
cient to take w = aa and A → aBB: there exist factorizations w = a · ε · a
and w = a · a · ε, where ε, a ∈ L(B). But perhaps there could still exist
unambiguous Boolean grammars for these languages.

As a special case of this problem, one can consider ambiguity with re-
spect to conjunctive grammars, and investigate whether there exist inherently
ambiguous languages in this sense. Let us note that all linear conjunctive
languages are unambiguous already with respect to linear conjunctive gram-
mars, which easily follows from the form of grammars obtained from trellis
automata [25].
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3.8 Hierarchy of Boolean LL(k) languages

A certain subclass of Boolean grammars can be parsed using a generalized
form of the well-known recursive descent method [18, 28].

Let k > 1 be the length of parser’s lookahead, and let us say that a
Boolean grammar G = (Σ, N, P, S) is LL(k) if for every nonterminal A, for
every lookahead string u ∈ Σ∗ (|u| 6 k), and for every sequence of conjuncts
B0 → ±η1B1θ1, . . . , B`−1 → ±η`B`θ`, such that B0 = S and B` = A, there
exists at most one rule

A → α1& . . . &αm&¬β1& . . . &¬βn,

such that
LG((α1& . . . &αm&¬β1& . . . &¬βn)θ` . . . θ1)

contains u or, if |u| = k, any strings that begin with u.
The class of Boolean LL(k) grammars is more powerful than it seems.

Following is a small and simple LL(1) Boolean grammar, which generates a
P-complete language [31]; the proof of its P-completeness can be found in
the cited technical report.

Example 6. The following LL(1) Boolean grammar generates a P-complete
language:

S → B&¬AbS&¬CS

A → aA | ε

B → aB | bB | ε

C → aCAb | b

It is known that all Boolean LL(k) grammars over a one-letter alphabet
generate only regular languages [28], and therefore this subfamily is strictly
weaker than the general family of Boolean grammars. The question is, do the
languages generated by LL(k) Boolean grammars form an infinite hierarchy
with respect to the length of the lookahead k, or does this hierarchy collapse
at some point k0?

Problem 8. Does there exist a number k0 > 0, such that, for all k > k0,
Boolean LL(k) grammars generate the same family of languages as Boolean
LL(k0) grammars?

To compare, for LL(k) context-free grammars, an infinite hierarchy with
respect to k was established by Kurki-Suonio [11].

One can also study the intermediate case of LL(k) conjunctive grammars,
which probably have less expressive power than LL(k) Boolean grammars.
In particular, no LL(k) conjunctive grammar for any P-complete language
has been found.
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3.9 Nonterminal complexity of Boolean grammars

It has long been known that n-nonterminal context-free languages form an
infinite hierarchy [7], in the sense that for every n > 2 there exists a lan-
guage representable using n nonterminals and not representable using n− 1
nonterminals. Consider the families of languages generated by n-nonterminal
Boolean grammars, for all n > 1. Do these families form an infinite hierarchy,
or does this hierarchy collapse at some point?

Problem 9. Does there exist a number k > 0, such that every language
generated by any Boolean grammar can be generated by a k-nonterminal
Boolean grammar?

For conjunctive grammars the answer to this question is also unknown.
On the other hand, for linear conjunctive grammars the hierarchy collapses,
as 2 nonterminals are sufficient to describe every language from this family
[26].

4 Conclusion and award announcement

Context-free grammars are a very natural and important particular case of
Boolean grammars, which was discovered early in the history of mankind,
and which has been studied rather extensively in the last fifty years. It
turns out that several key properties of this particular case, in which only
disjunction is allowed, are the same in the general case of grammars with all
Boolean operations. This makes the general case of Boolean grammars both
theoretically and practically important. It is time to study this general case!

To promote the research on conjunctive and Boolean grammars, I decided
to offer awards for the first correct solutions of any of the nine problems
proposed in this paper. The award is $240 Canadian per problem, which is
equally distributed between the authors of the solution. If two papers solving
the same question appear simultaneously, the award is split between them.
Each author receives a handwritten certificate and an award cheque. Every
lady among the authors additionally receives a flower. In most cases a solu-
tion must be published in a recognized journal or presented at a recognized
conference to qualify for the award.
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Dobogókő, Hungary).

[31] A. Okhotin, “A simple P-complete language and its specification by lan-
guage equations”, TUCS TR 703, Turku Centre for Computer Science,
Turku, Finland, August 2005.

[32] A. Okhotin, “Generalized LR parsing algorithm for Boolean grammars”,
International Journal of Foundations of Computer Science, 17:3 (2006),
629–664; preliminary version presented at DLT 2005.

[33] A. Okhotin, O. Yakimova, “On language equations with complementa-
tion”, Developments in Language Theory (DLT 2006, Santa Barbara,
USA, June 26–29, 2006), LNCS 4036, 420–432.

[34] A. Okhotin, “Unambiguous Boolean grammars”, manuscript.

[35] V. Strassen, “Gaussian elimination is not optimal”, Numerische Math-
ematik, 13 (1969), 354–356.

[36] V. Terrier, “On real-time one-way cellular array”, Theoretical Computer
Science, 141 (1995), 331–335.

[37] L. G. Valiant, “General context-free recognition in less than cubic time”,
Journal of Computer and System Sciences, 10 (1975), 308–315.

[38] D. Wotschke, “The Boolean closures of deterministic and nondetermin-
istic context-free languages”, In: W. Brauer (ed.), Gesellschaft für In-
formatik e. V., 3. Jahrestagung 1973, LNCS 1, 113–121.

[39] M. Wrona, “Stratified Boolean grammars”, Mathematical Founda-
tions of Computer Science (MFCS 2005, Gdansk, Poland, August 29–
September 2, 2005), LNCS 3618, 801–812.

23

http://dx.doi.org/10.1016/j.ic.2004.03.006�
http://dx.doi.org/10.1016/j.tcs.2005.07.019�
http://www.elsevier.com/locate/tcs�
http://dx.doi.org/10.1142/S0129054106004029�
http://dx.doi.org/10.1016/0304-3975(94)00212-2�
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