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Abstract

SOCOS is a prototype tool for constructing programs and reasoning about their
correctness. It supports the invariants-first programming methodology by provid-
ing a diagrammatic environment for specification, implementation and execution
of procedural programs. Invariants, pre- and postconditions can be evaluated at
runtime, following the Design by Contract paradigm. SOCOS can also generate
correctness conditions for static program verification based on the weakest pre-
condition semantics of statements. To verify the program the user can attempt
to automatically discharge these conditions using the Simplify theorem prover;
conditions which were not automatically discharged can be proved interactively
in PVS.
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1 Introduction
We present here tool support for an approach to program construction, which we
refer to as invariant based programming [6, 3]. This approach is different from
other programming paradigms in that it lifts specifications and invariants to the
role of first-class citizens. The programmer starts by formulating the specifi-
cations and the internal loop invariants before writing the program code itself.
Expressing the invariants first has two main advantages: they are immediately
available for evaluation during execution to identify invalid assumptions about the
program state. Furthermore, if strong enough, invariants can be used to prove the
correctness of the program. To mechanize this step, we have already developed
a static checker [9], which generates verification conditions for invariant based
programs and sends them to an external theorem prover. In this paper we continue
on the topic by presenting the SOCOS tool, an effort to extend this checker into a
fully diagrammatic programming environment.

The syntax of SOCOS programs is highly visual and based on a precise di-
agrammatic syntax. We use invariant diagrams [6], a graphical notation for de-
scribing imperative programs, to model procedures. The notation is intuitive and
shares similarities with both Venn diagrams and state charts—invariants are de-
scribed as nested sets and statements as transitions between sets. As a means for
constructing programs, the notation differs from most programming languages in
that invariants, rather than control flow blocks, serve as the primary organizing
structure.

SOCOS has been developed in the Gaudi Software Factory [7], our experimen-
tal software factory for producing research software. The tool is being developed
in parallel with the theory for incremental software construction with refinement
diagrams [5], and the project has undergone a number of shifts in focus to accom-
modate the ongoing research. By using an agile development process [8] we have
been able to keep the software up to date with the changing requirements.

1.1 Related Work

Invariant based programming is not a new idea. It has been considered before in
a number of different forms by Dijkstra [14], Reynolds [19], Back [3] and van
Emden [22]. Basic in all these approaches is that loop invariants are formulated
before the program code.

Equipping software components with specifications (contracts) and assertions
is the central idea of Design by Contract [17]. This method is supported either
by add-on tools, or is integrated into the language itself (most notably in the case
of Eiffel). Most languages and tools which support Design by Contract do not,
however, provide static checking.

There exists a number of methods and tools for formal program verification,
some with a long standing tradition. Verification techniques typically include a
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combined specification and programming language, supported by software tools
for verification condition generation and proof assistance. For the construction
of realistic software systems, a mechanism that allows reasoning on higher levels
of abstraction becomes crucial; some approaches, such as the B Method [1], pro-
vide supports for the correct refinement of abstract specifications into executable
implementations. This method has had success in safety-critical and industrial
applications and is a testament to the feasibility of the correct-by-construction
methodology for software systems of realistic scales.

For Java and the JML specification language a host of tools have been de-
veloped for both runtime and static checking [12]. In particular, ESC/Java2 [16]
enables programmers to catch common errors by sending proof conditions to an
automatic theorem prover. However, it is fully automatic and thus not suitable for
full formal verification. The LOOP tool [21], on the other hand, translates JML-
annotated Java programs into a set of PVS theories, which can be proved interac-
tively using the PVS proof assistant. Another tool called JACK, the Java Applet
Correctness Kit [11], allows the use of both automatic and interactive provers, and
is even nicely integrated into the Eclipse IDE.

1.2 Contribution

The above mentioned tools work by implementing a wp (weakest precondition)
calculus for Java to automate correctness condition generation. The verification
conditions generated for invariant-enriched existing languages become quite com-
plex, and it is often difficult to understand from which part of the code a lemma
has been generated. The main difference here is that rather than adding speci-
fications and invariants to an existing language, we start with a simple notation
based on nested invariants. Our belief is that an intuitive notation that enables the
proof conditions to be easily understood from the program decreases the mental
gap between programming and verification.

In this paper we show how proper tool support can make invariant based pro-
gramming useful in practice. We have implemented the SOCOS environment for
construction, testing, verification and visualization of invariant programs. Both
run-time checking and static verification are available to achieve higher assur-
ance. A SOCOS program can be developed incrementally until total correctness
is achieved. Reasoning is carried out locally and the user is not burdened with a
large proof task up front.

Since the notation requires the programmer to carefully describe the interme-
diate states, invariant based programs serve as documentation of design decisions
and are thus more easily inspected than ordinary programs. Our preliminary ex-
perience indicates that the tool is quite useful for constructing small programs and
reasoning about them: firstly, it removes the tedium of checking trivial verification
conditions; secondly, it automates the run-time checking of contracts and invari-
ants; and thirdly, it provides an intuitive visual feedback when something goes
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wrong.
The remainder of this paper is structured as follows. In Section 2 we de-

scribe the diagrammatic notations used to implement SOCOS programs and give
an overview of the SOCOS invariant diagram editor component. In Section 3 we
describe how programs are compiled, executed and debugged. In Section 4 we
discuss the formal semantics of SOCOS programs and the generation of proof
conditions. Section 5 provides a use case of SOCOS as we demonstrate the im-
plementation of a simple sorting program. Section 6 concludes with some general
observations and a summary of on-going research.

2 Invariant Diagrams
Invariant based programs are constructed using a new diagrammatic programming
notation, nested invariant diagrams [6], where specifications and invariants pro-
vide the main organizing structure. To illustrate the notation we will consider as
an example a naive summation program which calculates the sum of the integers
0..n using simple iteration, accumulating the result in the program variable sum.
An invariant diagram describing this program is given in Figure 1.

Figure 1: Summation program

Rounded boxes in the diagram represent situations. A situation describes the
set of program states that satisfy the invariant inside the box. When multiple
predicates are written on consecutive lines they are understood to be combined
with conjunction. The middle-sized box in Figure 1 thus constrains the variable k
to be an integer between 0 and n, and the variable sum to have the value 0 + 1 +
2+ ...+k. Furthermore, nested situations inherit the predicates of outer situations,
so additionally y n and sum are integers and n is greater than or equal to 0. In the
smallest situation, all these predicates hold and in addition k = n holds. A more
deeply nested box thus strengthens the invariant.

A transition is a sequence of arrows that start in one situation and end in the
same or another situation. Each arrow can be labeled with:

1. A guard [g], where g is a Boolean expression - g is assumed when the tran-
sition is triggered.
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2. A program statement S - S is executed when the transition is triggered. S
can be a sequence of statements, but loop constructs are not allowed.

To simplify the presentation and logic of transitions, we can add intermediary
choice points (forks) to branch the transition. However, joins and cycles between
choice points are not allowed. Transitions thus form trees where each branch acts
as an if-statement.

It should be noted that the nesting semantics of invariant diagrams that apply
to situations do not apply to transitions. The program state does not have to satisfy
the situation invariant while executing the transition.

In general, any situation that does not have an incoming transition can be con-
sidered an initial state. Conversely, we will consider situations without outgoing
transitions terminal states.

To prove the correctness of a program described by an invariant diagram, we
need to prove consistency and completeness of the transitions, and that the pro-
gram cannot start an infinite loop. A transition from situation I1 to situation I2
using program statement S is consistent if and only if I1 ⇒ wp.S.I2 where wp is
Dijkstra’s weakest-precondition predicate transformer [15]. The program is com-
plete if there is at least one transition with an enabled guard in each state, with the
exception of terminal states. We show that a program terminates by providing a
variant, a function which is bounded from below and which is decreased by every
cycle in the diagram. In the summation example the variant, n−k, together with
its lower bound ,0, is written in the upper right corner of the situation box.

The notion of correctness for invariant diagrams is further discussed in Section
4 when we consider formal verification of SOCOS programs. For a more general
treatment of invariant diagrams and invariant based programming we refer to [6].

2.1 Invariant Diagrams in SOCOS
Figure 1 showed an example of a purely conceptual invariant diagram. SOCOS
diagrams, which we will use in this paper, are annotated with some additional
elements. Some restrictions have also been introduced for implementation and
usability reasons. Figure 2 shows the equivalent summation program implemented
as a SOCOS procedure.

Compared to the conceptual notation, the main differences are:

• The outer situation is a procedure box, which represents a procedure decla-
ration with a procedure name, parameters and local variables. This directly
reflects a design decision—since we are working with procedures, we refine
the outer box into a format which includes procedure-specific attributes.
Due to restrictions in our implementation local variables have procedure
scope and it is presently not possible to introduce new variables in nested
situations, as was done in Figure 1.
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Sum

k: Int

const n: Int
result sum: Int

POSTPRE LOOP

sum = n � (n+1) div 2n � 0 sum = k � (k+1) div 2
0 � k �  k � n

n-k
k,sum := 0,0

[ � ]

k := k+1; sum := sum + k

[k � n]

[k=n]

Figure 2: Summation program, SOCOS syntax

• Each situation is labeled with a descriptive name, such as LOOP for a recur-
ring situation. The label is used as a general identifier so that the situation
can be referred to in error reports and generated proof conditions.

• For simplicity the variant is assumed to be a function to natural numbers
and to be bounded from below by zero, so in SOCOS we write just n−k
since the bound is implicit.

• In each cycle of transitions at least one transition has to be marked as de-
creasing the variant. Such transitions are rendered in the diagram as thicker
arrows, indicating that the variant must decrease when this transition is ex-
ecuted. At other transitions in the cycle, the requirement is only that the
variant must not increase. This is further discussed in Section 4.

• We provide an initial and a terminal situation representing the entry and exit
point of the procedure, respectively. These situations constitute the contract
(pre- and postcondition) of the procedure. The precondition situation is
called PRE and is additionally marked with a thick outline, while the post-
condition is called POST and is marked with a double outline. Note that
in the example we do not nest POST within LOOP, but instead we repeat
part of the invariant in the postcondition. Since the contract constitutes the
external interface to other procedures, it should constrain local variables
(such as k in this case).

• SOCOS does not support a general summation operator, in this specific
example we have used the direct formula k(k+1)

2 for expressing the sum
0+1+2+ ...+ k.

SOCOS implements a minimal set of executable and non-executable program
statements according to the syntax:
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S::= magic | abort |
x1,...,xm:=v1,...,vm |
S0;S1 |
[b] | {b} |
P(a1,...,an)

Here magic is the miraculous statement—it satisfies every postcondition. abort
represents the aborting program, which never terminates. The assignment state-
ment assigns a list of values v1, ...,vm to a list of variables x1, ...,xm. The ; operator
represents sequential composition of two statements S0 and S1. An assume state-
ment [b] means that we can assume the predicate b at that point in the transition,
while an assert statement {b} tells us that we have to show that b holds at a in the
transition. A procedure call P(a1,...,an) stands for a call to procedure P with the
actual parameters a1,...,an. The type of an actual parameter ai depends on how the
parameter type is qualified: for unqualified and const parameters, an expression is
accepted. For result and valres parameters, the actual must be a simple variable.
The formal weakest precondition semantics of these statements are the standard
ones [10].

2.2 Diagram Editor

Procedures are constructed in the SOCOS invariant diagram editor. Any number
of diagrams can be open simultaneously, and there are no sequential constraints
imposed on editing operations: any part of the program can be changed at any
time. A screen shot of the SOCOS invariant diagram editor can be seen in Figure
3. The highlighted tab below the main toolbar indicates that an invariant diagram
is currently being edited. To the left of the diagram is an outline editor for brows-
ing model elements, and the bottom pane holds the property editors and various
communication windows.

The SOCOS diagram editor is implemented on top of another project devel-
oped in the Gaudi software factory, the Coral modeling framework [2]. Coral is a
metamodel-independent toolkit which can easily be extended with custom meta-
models. A metamodel is a syntax description for Coral models: it defines the
available model elements and their relationships. Coral features a powerful pro-
grammatic interface which makes it possible to build Python programs that use a
Coral model as the main data repository, and provides features such as transaction
management and serialization into the XMI format, an OMG standard [18].
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Figure 3: Invariant diagram editor of SOCOS

3 Run-time Checking of Invariant Diagrams

3.1 Compilation
A SOCOS invariant diagram is executed by compiling it into a Python program
which is executed by the standard Python interpreter. We selected a very sim-
ple approach for code generation; the generated program is effectively a goto-
program. Each situation is represented by a method. The body of a situation’s
method executes the transition statements and returns a reference to the next
method to be executed as well as an updated environment (a mapping from vari-
able names to values). The main loop of the program is simply:

while s:
s,env = s(env)

where s is the currently executing situation and env is the environment.
If run-time checking is enabled, invariants and assertions are evaluated during

execution of a situation’s method. For situations that are part of a cycle, the variant
is compared to its lower bound, as well as to its value in the previous cycle to
ensure that it is decreasing. In the case that any of these checks evaluate to false,
an exception is raised and the execution halts.

While SOCOS automatically evaluates only a pre-defined subset of all ex-
pressible invariants (those composed of arithmetic expressions and Boolean ex-
pressions containing only bounded quantifiers), it is possible to extend the dy-
namic evaluation capabilities for special cases by writing a side-effect free Python
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script to perform the evaluation. This requires adding a translation rule (explained
in the next subsection) which translates the expression to a Python function call;
the function is then executed each time SOCOS needs to evaluate an invariant
containing the expression.

3.2 Translating Conditions to Python
SOCOS uses a set of translation rules to produce an executable Python program.
In order to make the compilation easily extensible we provide the user with the
capability to define new translations. The translation of a mathematical expression
is done through simple rewrite rules. The user may define new translation rules.
Here are a few of the predefined translation rules:

rule Py00[group=python] python(>)≡ True.

rule Py03[group=python] python(a∧b)≡ python(a) and python(b).

rule Py13[group=python] python(m+n)≡ python(m) + python(n).

All translation rules are similar in shape. They push a translation function (python
above) through the expression to be translated. The translation of an expression e
is performed by repeatedly applying the rewrite rules to the expression python(e)
until the function symbol python does not occur in the resulting expression. Com-
pilation succeeds if all expressions of the program are translated successfully.

3.3 Debugging
SOCOS provides a graphical debugger for tracking the execution of invariant dia-
grams. All SOCOS programs define a main procedure, which acts as the program
entry point. A program can be run continuously or stepped through transition by
transition. During execution the current program state, consisting of the proce-
dure call stack, the values of allocated variables and the current situation, can be
inspected. It is possible to set breakpoints to halt the execution in specific situa-
tions.

Program execution is visualized by highlighting diagram elements in the ed-
itor. Active procedures, i.e. procedures on the call stack, as well as the current
situation and the currently executing transition are highlighted. The values of local
variables for each stack frame are displayed in a call stack view.

Invariants are evaluated at run-time and are highlighted in red, green or gray
depending on the result: for invariants that evaluate to true the highlight color is
green, for invariants that evaluate to false it is red, and if SOCOS is unable to
evaluate the invariant it is gray. The termination condition is also compared to its
lower bound and highlighted in the same way. The program execution is halted
whenever an invariant evaluates to false.
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4 Proving Correctness of Invariant Diagrams

The SOCOS environment supports interactive and non-interactive verification of
program diagrams. It generates the verification conditions and sends them to proof
tools. At the time of writing two proof tools are supported: Simplify [13] and
PVS [20]. Simplify is a validity checker that suffices to automatically discharge
simple verification conditions such as conditions on array bounds. PVS is an
interactive proof environment in which the user may verify the correctness of
parts that Simplify is unable to check.

4.1 Verification Condition Generation

SOCOS generates verification conditions using MathEdit [9]. Three types of veri-
fication conditions are generated: consistency, completeness and termination con-
ditions. All of these use the weakest precondition semantics as their basis [15].
The consistency conditions ensure that the invariants are preserved; completeness
conditions that the program is live; and termination conditions that the program
does not diverge.

Consistency:

A program is consistent whenever each transition is consistent. A
transition from I1 to I2 realized by program statement S is consistent
iff

I1 ⇒ wp.S.I2.

Completeness:

A program is complete whenever each nonterminal situation is com-
plete. A situation I is complete iff

I ⇒ wp.S∗.false

where S∗ is the transition tree from I with each branch being an if . . .fi
statement and each leaf being magic.1

1

E.g, the completeness condition for I in this case is:
I ⇒ wp.if g1 → if h1 →magic [] h2 →magic fi [] g2 →magic fi . false,
which is equivalent to: I ⇒ (g1 ⇒ h1∨h2)∧ (g1∨g2)
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Termination:

A program does not diverge if the program graph can be divided into
subgraphs, such that the transitions in between the subgraphs consti-
tute an acyclic graph and each subgraph is terminating. A subgraph
of the program diagram is terminating if (i) it is acyclic or (ii) has a
bounded variant that decreases on each cycle within that subgraph.2

The cycles considered in case (ii) can consist of any number of tran-
sitions that do not increase the subgraph’s variant (v below)

I1∧ (v0 = v)⇒ wp.S.(0≤ v≤ v0) (1)

as long as each cycle contains one transition (indicated by the user)
that strictly decreases the subgraph’s variant:

I1∧ (v0 = v)⇒ wp.S.(0≤ v < v0) . (2)

The termination conditions are generated for the transitions that make
up cycles in the program graph.3

The interested reader is referred to [6] for a more detailed presentation of the
notion of correctness of invariant diagrams.

4.2 Interaction with External Tools
SOCOS communicates through MathEdit with external proofs tools. Interfaces to
PVS and Simplify are currently implemented in MathEdit. The interface to Sim-
plify is from the users point of view non-interactive. Behind the scenes MathEdit
runs an interactive session with Simplify. MathEdit sets up the logical context
and then checks the validity of each verification in turn, splitting the verification
conditions to pinpoint problematic cases. For a more detailed description of the
interaction with Simplify see [9].

Interaction with PVS is made simple. By clicking a button in SOCOS, MathEdit
produces a theory file containing the verification conditions and starts PVS which
opens the generated theory file. A non-interactive mode for using PVS is also sup-
plied. In the non-interactive mode PVS is run in batch mode behind the scenes.
PVS applies a modified version of the grind tactic to all verification conditions
and reports success or failure for each verification condition. The output is shown
to the user of SOCOS.

2SOCOS will automatically divide the program graph into the smallest possible subgraphs that
constitute an acyclic graph and then require that the situations within the subgraph are annotated
with identical variants.

3Termination and consistency conditions are actually merged together so as to avoid duplica-
tion of proof efforts. Their structure allows them to be merged: I1 ∧ (v0 = v)⇒ wp.S.(I2 ∧ (0 ≤
v < v0)) and similarly for the case v≤ v0.
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4.3 Translation of Verification Conditions

The verification conditions are translated using rewrite rules similar to those used
for compilation into Python code. The user may define new translation rules for
translation into PVS and Simplify.

The verification conditions sent to Simplify and PVS differ in more than just
syntax. PVS has a stronger input language, which among other things supports
partial functions well. Simplify’s input language is untyped, which means that
some expressions require side conditions to ensure that they are well defined, for
example k div m requires the side condition m 6= 0. We cannot guarantee that the
generated side conditions are strong enough for user defined operands. Hence we
recommend that Simplify is used for spotting bugs early in the design and PVS is
used for formal verification of the final components.

Please note that care must be taken while writing new translation rules for
the verification conditions. Mistakes in the translation rules can jeopardize the
validity of the correctness proof.

5 Example: Sorting

In this section we will demonstrate how a procedure specification, consisting of a
procedure interface and given pre- and postconditions, is implemented in SOCOS.
We choose a simple sorting algorithm as our case study. The focus will be mainly
on the tool and how invariant based programming is supported in practice—for a
more detailed treatment of the methodology itself, we refer to [6].

5.1 Specification

We start by introducing a procedure specification consisting of a signature, i.e.
the names and types of parameters, and a contract (pre- and postcondition). A
standard sorting specification is shown in Figure 4. The procedure accepts one
parameter, an integer array a with N elements. Indexes are 0-based; the index of
the first element is 0 and the index of the last element is N−1. The valres keyword
indicates that a is a value-result parameter. Because a is updated by the sorting
routine, but should remain a permutation of the original array, the postcondition
relates the old and new values of a to each other by the permutation predicate. We
use the convention of appending 0 to the parameter name to refer to the original
value of the parameter. The sorted predicate simply means that each element is
less than or equal to its successor in the array.
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Figure 4: A specification of a sorting procedure

SOCOS (non-empty) integer arrays are modeled as functions from the interval
[0,N) to Int, where N is a positive natural number. Array access of element i
is defined as function application: a[i] = a.i. We can then define the predicates
sorted and permutation as follows:

sorted(a,n) =̂ (∀i : Int•0 < i∧ i < n⇒ a[i−1]≤ a[i])
permutation(a,b) =̂ (∃ f • (bijective. f )∧ f .a = b)

Some invariants that are guaranteed by the system are implicit. The precondition
as specified is empty, however, during verification condition generation the addi-
tional assumption a = a0 is added automatically. Furthermore, the type invariant
for nonempty arrays allows us to assume N > 0 in every situation in Sort.

Given this specification, the next task is to provide an executable program
which takes the program state from PRE to POST.

5.2 Implementation
For simplicity and brevity we will implement a very basic sorting algorithm, se-
lection sort, which performs in-place sorting in O(n2) time. Our implementation
SelectionSort can be seen in Figure 5; two helper procedures, Min and Swap, are
given in Figure 6. Min finds the index of the smallest element in the subarray
a[s..N) and returns its index, while Swap exchanges the two elements at indexes
m and n in the array a.

SelectionSort sorts an array by partitioning it into two portions, one unsorted
followed by one sorted. Each iteration of the main loop exchanges the largest
element from the unsorted portion of the array with the element just before the
beginning of the already sorted portion, until no elements are left in the unsorted
portion.

5.3 Testing the Implementation
We can gain an understanding of how selection sort works by implementing a
simple test case and examining the transitions between program states by single-
stepping through the call to SelectionSort in the SOCOS debugger. Figure 7 shows
such a debugging session.
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Figure 5: Selection sort

In Figure 7 the current procedure and situation is shown with a blue outline.
The BODY situation has been marked as a breakpoint (indicated by a red dot). This
causes the execution flow to temporarily halt at this point, and the current program
state is shown in the pane to the right. Both the original value of the array prior to
the call, a0, and the partially sorted array, a, are shown. Furthermore, invariants
are evaluated and color-coded. In the absence of a breakpoint, execution also halts
whenever an invariant evaluates to false.

SOCOS can translate most simple invariants automatically to Python run-time
checks based on a number of built-in rules. However, permutation is a predicate
that is not automatically translatable to Python, and by default such an invariant
will be colored gray during execution to indicate that it was not evaluated. If we
want to enable runtime checking of permutation, we can add a Python function
which checks whether the array xs is a permutation of the array ys:

def permutation( xs, ys ):
xs,ys = list(xs),list(ys)
xs.sort()
ys.sort()
return xs==ys

In addition to the code snippet we also provide a rewrite rule to make SOCOS gen-
erate a call to this function whenever it encounters permutation during evaluation
of an invariant.

5.4 Verifying the Implementation
While dynamic checking of invariants is valuable in that it catches many com-
mon programming errors, its efficiency is highly dependent on good test cases.
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Swap

valres a: Int[N]
const m, n: Int

POSTPRE

a[m] = a0[n]
a[n] = a0[m]
a0[0..N) = a[0..N) except m, n
permutation(a0,a)

0 �  m < N �  0 �  n < N
[ � ]

a := a[ m �  a[n] ][ n �  a[m] ]

Figure 6: Utility procedures Min and Swap

Since we have put much effort into writing down the invariants, we can go one
step further and attempt formal verification. In this mode, SOCOS generates ver-
ification conditions for consistency, completeness and termination as described
in the previous section. The automatic correctness checking command, Verify .
Check Correctness (Simplify), employs Simplify to attempt automatic discharging
of verification conditions. If we run this command on the example, SOCOS will
tell us that Simplify was able to discharge 99.7 percent of the conditions (Figure
8). While all conditions for SelectionSort and Max are automatically discharged,
problems occur due to the use of permutation in Swap.

SOCOS has pinpointed a specific verification condition for us that we need
to check. However, since permutation is a higher-order property, we can not give
a definition of permutation that Simplify can use. In this situation we have two
options—we can temporarily get rid of the error by adding assumptions: in the
case of Swap we would add an assumption statement, [permutation(a,a0)], fol-
lowing the assignment statement in the transition from PRE to POST if we believe
that a[m 7→ a[n]][n 7→ a[m]] is indeed a permutation of a. This could correspond
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Figure 7: Stepping through a test case of selection sort

Verification initiated for SelectionSort, Swap and Min.
99.7% of the verifications were proved automatically.
Condition: POST (Swap)
Assumptions:

0 < N

0≤m

m < N

0≤ n

n < N

a0 = a

Imply:
permutation(a0,a[m 7→ a[n]][n 7→ a[m]])

Figure 8: Remaining condition for Swap

to simple “belief”. During initial development of a procedure it is a useful way
of postponing proofs until the final structure of invariants has been established.
SOCOS will always warn that an assumption is being used.

Alternatively we can start proving the remaining conditions interactively in
PVS. The prover to be used (PVS or Simplify) can be chosen on the level of
single transitions, with Simplify being the default. In this case the PVS language is
expressive enough to allow us to provide a higher-order definition of permutation:

index: type = {i:nat|i<N}
permutation( a:index, b:index ): bool =

exists(f:(bijective[index,index])): a = b o f

In PVS, SOCOS arrays are represented by functions from indexes (natural num-
bers below N) to values (integers). An array is a permutation of another array if
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there exists a one-to-one correspondence (a bijection) between the sets of indexes
which, when applied to one array yields the other array. This definition is actually
part of the SOCOS background theory which is automatically loaded when PVS
verification is initiated.4 In addition the background theory includes previously
proved lemmas about arrays and permutations to facilitate new proofs.

Given the PVS definition of permutation it is easy to prove the remaining
conditions in PVS by providing a bijection and applying built-in lemmas from the
PVS prelude; however, to conserve space we have not included the actual proofs
here.

6 Conclusion and Future Work

We have here presented SOCOS, a tool to support diagrammatic invariant based
programming. SOCOS can currently be used to develop procedural programs. In
the early phases of development simple errors are found by testing. At a later
stage of development the programmer can prove, using formal reasoning, that the
program is error-free. All but the most trivial programs generate a large number of
lemmas to be proved. The tool translates these lemmas into the PVS and Simplify
input languages. Most of the generated lemmas are rather trivial and automatically
discharged by Simplify or the PVS grind strategy. For more difficult lemmas, the
proofs can be completed interactively in PVS.

The SOCOS system is currently in early stages and the framework is still be-
ing worked on. Most importantly, the issue of applicability and scalability should
be addressed. We have so far limited our focus to programming “in the small”,
which is indeed the main target for invariant based programming. However, to
make SOCOS suitable for systems of realistic scales, support for classes and other
software decomposition mechanisms becomes critical. As a first step we are cur-
rently adding support for object-orientation in SOCOS. Introducing objects makes
the verification problem more difficult and significantly complicates reasoning;
the challenge here is to equip a formalism for classes and objects with an intuitive
diagrammatic notation, and provide means for reasoning in terms of these dia-
grams. Refinement diagrams [5], a diagrammatic representation of lattice theory,
will provide the basis for the SOCOS class notation.

Another issue of key importance is performance; SOCOS is currently rather
slow—generating and checking (with Simplify) the proof conditions of the exam-
ple in Section 5 takes several seconds on a modern PC.5 Replaying PVS proofs
is even slower. This limits the use of SOCOS to simple programs. While our
implementation is in some cases sub-optimal, it is inevitable that automated ver-

4A (much simpler) background theory is also sent to Simplify; part of this theory is that
permutation is reflexive—this explains why Simplify was able to prove the transition between
PRE and LOOP in SelectionSort.

52.8 GHz Intel Pentium 4 with 1 GB of random access memory.
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ification of correctness conditions is computationally taxing. We are currently
working on background checking to alleviate this problem—instead of having a
separate verification cycle, the proof checker runs continuously in the background
and discharges conditions as they are generated while the user is entering the pro-
gram, much like how many modern IDEs (Integrated Development Environments)
semantically analyze programs as the user is typing.

We are carrying out a number of case studies in invariant based programming.
These case studies are conducted on two different levels: firstly, we are building a
larger example of higher complexity with many interacting components (a string
processing library); secondly, we will teach invariant based programming to a
group of undergraduate students, using SOCOS as the programming tool. The
objective of the first experiment is to evaluate the scalability of the method and its
feasibility in construction larger programs. In the second experiment, we explore
the educational merits of invariant based programming—it is our belief that the
direct connection to logic, together with the use of diagrams and visualization, will
make it a useful method for teaching the use of formal methods in programming.

SOCOS currently supports basic program proof management, but does not
provide adequate facilities for managing program proofs in a way that accommo-
dates continuous change. PVS proofs must be managed by hand by the user, and
if a procedure is changed, however slightly, all proofs must be replayed. It would
be desirable if the tool kept track of dependencies between program elements, and
in the event of a change, only replayed proofs of possibly invalidated transitions.
A nice feature of interactive provers like PVS is that advanced proof strategies do
not mention specific terms but rather work on the high-level structure of a formula.
So, in the case of slight changes, when an existing proof is replayed chances are
good that it will be able to prove the new correctness condition as well.

Finally, there is a need for a way to make incremental software extensions and
reason about their correctness. Stepwise Feature Introduction [4], a sound layered
extension mechanism based on superposition refinement, is intended to be the
main method by which a SOCOS program is extended with new functionality.
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