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Abstract
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1 Preliminaries

1.1 Undecidability

Algorithmic unsolvability,undecidabilityappeared already in the very first article
establishing the basic notions of theoretical computer science [13]. After Turing’s
pioneering article, many variants of undecidable problemshave been presented.
One of the most useful variant is called thePost Correspondence Problem(PCP)
[12]. The usefulness of PCP is due to the combinatorial formulation of the problem.

There are many powerful results grasping the boundary of decidability. For in-
stance, an interesting theorem in [10] says that asemi-Thue systemwith only three
rules can simulate an arbitrary semi-Thue system. This implies that a universal
computing device, no matter how complicated, can be simulated by a semi-Thue
system with only three rules. An interesting corollary of this result is that the Post
Correspondence Problem is undecidable for only seven pairsof words [5], [8].

By using the method of [11] one can encode PCP into integer matrices. Hence
it is possible to establish undecidability results on problems on matrices. There are
a number of those problems known before (see [1], [2], [3], [4], [7], [8], and [11]
for instance). Especially in [4] and [2], problems involving only two matrices are
studied, and the purpose of this article is to prove undecidability results for such
problems so that the dimension of matrices is as small as possible.

1.2 Matrix Problems

In all the problems studied in this article, the semigroupS = 〈M1, . . . ,Mk〉 is
finitely generated and given simply by presenting all matricesM1, . . .,Mk. More-
over, the main results handle the case whereS = 〈M1,M2〉 is generated by two
matrices.

Problem 1 (Scalar Reachability). Given a semigroupS of n× n integer matrices,
vectorsx, y ∈ Z

n and a constanta ∈ Z. Decide if there exists a matrixN ∈ S

such thatxTNy = a.

Remark 1. We prove that ifS is generated by two matrices, this problem is unde-
cidable forn = 9.

Problem 2 (Zero in the Right Upper Corner). Given a semigroupS of n×n integer
matrices, decide ifS contains a matrixN with N1n = 0.

Remark 2. In the case thatS is generated by two matrices, this problem was
proved undecidable forn = 24 in [4], which was subsequently in [7] improved to
n = 23. In [1] this bound was lowered ton = 18. Here we prove that this problem
is undecidable forn = 10.

As Zero in the Right Upper Corner is a special case of Scalar Reachability, any
of the previous bounds is valid also for the Scalar Reachability.

Problem 3 (Vector Reachability). Given a semigroupS of n× n integer matrices
and two vectorsx, y ∈ Z

n. Determine whether or not there exists a matrixN ∈ S

such thatNy = x.
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Remark 3. If S is generated by two matrices, this problem was proved undecidable
for n = 16 in [1]. We show the undecidability forn = 11.

Problem 4 (Zero in the Left Upper Corner). Given a semigroupS of n×n integer
matrices. Determine whether or not there exists a matrixN ∈ S such thatN11 = 0,
i.e., the left upper corner element ofN is zero.

Remark 4. Up to our knowledge, no previous bound for the undecidability for this
problem has been introduced for a semigroupS generated by two matrices. Here
we prove the undecidability forn = 13.

1.3 Graphs and Automata

The matrix combination techniques in this article are basedon representing the
matrices and automata as weighted graphs. In this section, we represent the basic
notions on graphs and automata needed in this paper.

A (directed)graphwith n vertices is a pairG = (V,E), whereV = {1, . . . , n}
is the set ofvertices, andE ⊆ V × V is the set ofedges. Also an arbitrary
finite setV can be used as the set of vertices, but then we fix an enumeration
f : V → {1, . . . , |V |} and identify the vertexv with its numberf(v) ∈ N. A path
in a graphG is a sequencei0, i1, . . . , il of vertices satisfying(ij , ij+1) ∈ E for
eachj. Thelengthof pathi0, i1, . . . , il is l.

LetR be a semiring. AnR-weighted graphis a tripletG = (V,E,wt), where
V anE are as before, andwt is a mappingE → R. For anyR-weighted graph
G = (V,E,wt) with n vertices we define amatrix representationM ∈ Rn×n

by Mji = wt((i, j)) if (i, j) ∈ E, andMji = 0 if (i, j) /∈ E (Recall thatV =
{1, . . . , n}).

Conversely, ifM ∈ Rn×n is a square matrix over a semiringR, its graph
representationis anR-weighted graph withn vertices defines as follows: LetV =
{1, . . . , n}, E = {(i, j) | i, j ∈ V,Mji 6= 0}, andwt((i, j)) = Mji for each
(i, j) ∈ E. It is worth noticing that by fixing the vertex set of a graph inthis way,
we gain uniqueness: given a matrixM ∈ Rn×n, its graph representation is defined
uniquely, and vice versa.

Example 1. In the sequel, we need matrices of form

γ(u, v) =





k|u| 0 0

0 k|v| 0
σ(u) σ(v) 1



 , (1)

whose each entry is a natural number. The graph representation ofγ(u, v) is shown
in figure 1.

An n-stateR-weighted automaton(an R-automatonfor short) over a finite
alphabetΣ = {1, . . . , k} is a triplet (x, {Ma | a ∈ Σ},y), wherey ∈ Rn is
the initial vector, eachMa ann × n matrix with entries inR, andx ∈ Rn is the
final vector. The vectors inRn are understood as column vectors, and sometimes,
though not in this article, the entries of the initial and final vectors are restricted to
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σ(u)

σ(v)
1 2 3

k|u| k|v| 1

Figure 1: The graph representation of matrixγ(u, v).

{0, 1}. Again, an arbitrary finite setΣ can serve as an alphabet, but in that case
we also fix an enumerationΣ → {1, . . . , k} and identify each lettera with its
number. The empty word is denoted byǫ. As usual, we denoteMi1Mi2 . . .Min =
Mi1i2...in for matricesMij , whereij ∈ Σ, and a similar notion is used for words:
ui1 . . . uin = ui1...in . This is actually just one way to represent a morphism from
Σ∗ to another semigroup. Equally well we could writeM(i1 . . . in) = Mi1 . . .Min

or u(i1 . . . in) = ui1 . . . uin , but we do not use such notions in this article.
Let the notations be as above and assume thatGa = ({1, . . . , n}, Ea,wta) is

the graph representation of matrixMa. For convenience, we extend each weight
functionwta by wta((i, j)) = 0, if (i, j) /∈ Ea. Thegraph representationof ann-
stateR-automaton is a triplet(G, I, F ) defined as follows:G is a weighted graph
G = (V,E,wt), whereV = {1, . . . , n}, E = ∪a∈ΣEa, andwt : E → Rk is the
weight function defined bywt(e) = (wt1(e), . . . ,wtk(e)). I andF are the initial
and final state functions defined asI(j) = xj andF (j) = yj for eachj ∈ V .
HenceI andF can be seen as vertex labelling. In figures, it is customary towrite
wt(e) as1 | wt1(e), . . . , k | wtk(e) instead of(wt1(e), . . . ,wtk(e)). Also, the
vertices are usually calledstatesin the graph representation of an automaton.

Example 2. Consider anN-automatonA on alphabetΣ = {a, b}, wherea andb
are enumerated as1 and2, respectively, andMa = γ(u, v) (cf. Equation (1)), and

Mb =





2 0 0
3 8 0
1 2 1



 .

We also definex = (1, 0, 0) andy = (0, 0, 1). Then the graph representation of
A is shown in Figure 2. The nonzero values of the initial and final function are
customarily indicated by labelled ingoing and outcoming arrows, respectively, as
in the figure.

LetA be anR-automaton. ThenA defines a functionfA : Σ∗ → R by

fA(w) = x
TMwRy,

whereMwR = Mal
. . .Ma2Ma1 , if w = a1a2 . . . al ∈ Σ∗ (wR stands for themir-

ror image of wordw). The following theorem is the core of our matrix composition
techniques. The proof is straightforward by induction and can be found in [6].
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a | σ(u), b | 1

a | σ(v), b | 2a | 0, b | 3
1 2 3

a | k|u|, b | 2 a | k|v|, b | 8 a | 1, b | 1

1 1

Figure 2: The graph representation of automatonA.

Theorem 1. LetA be anR-automaton andGA its graph representation. Then the
valuefA(w) for wordw = a1 . . . al coincides with the value

∑

i∈V

∑

P (i,j)

∑

j∈V

I(i)wt(P (i, j), w)F (j), (2)

where the middle sum is over all paths inGA of lengthl starting ati and ending at
j, andwt(P (i0, il), w) for a pathP = (i0, i1, . . . , il) is defined as

wt(P (i0, il), w) = wta1((i0, i1)) · . . . · wtal
((il−1, il)).

Example 3. The automaton of Example 2 hasI(i)F (j) 6= 0 only wheni = 1 and
j = 3. Hence, when computing sum (2), we need to find the paths from state1 to
3. As one can see from Figure 2, there are6 paths of length3 leading from1 to
3: 1333, 1133, 1113, 1223, 1233, and1123. For wordw = abb paths1233 and
1233 yield zero weight, since they contain ana-transition from state1 to 2. The
remaining paths contributeσ(u)·1·1+k|u|·1·1+k|u|·2·1+k|u|·3·2 = 9k|u|+σ(u).
The same result can be obtained by computingfA(abb) = x

TMbMbMay.

Another way to express anR-automaton is via thetransition functionδ : V ×
Σ × V → R defined as

δ(i, a, j) = (Ma)ji. (3)

This formulation becomes also convenient later. We will also use the terminology
rather flexibly. For instance, as apath in the automatonwe mean a path in the
graph representation of the automaton, and as a transition we mean both transition
function and a labelled path of length1 in an automaton.

1.4 The PCP and Encodings

We prove the undecidability results by showing that for a given instanceI of Post
Correspondence Problem(PCP) (see [9]), one can construct an automaton that
accepts words if and onlyI has a solution. Thus our undecidability results are
based in the following theorem [10], [8]:

Theorem 2. For k ≥ 7, it is undecidable whether an instanceI = {(u1, v1), . . .,
(uk, vk)} of PCP has a solutionui1ui2 . . . uin = vi1vi2 . . . vin .
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To get improved results, we will also use the following variant of PCP [5], [8]:

Theorem 3. There are instancesI = {(u1, v1), . . . , (uk, vk)} of PCP such that
all minimal solutions1 ui1ui2 . . . uin = vi1vi2 . . . vin are of formi1 = 1, in = k,
and i2 . . . in−1 ∈ {2, . . . , k − 1}+. For k ≥ 7, PCP remains undecidable when
restricting to these instances.

The instances of the above theorem are calledClaus instances. In fact, all
undecidability proofs of PCP known to the authors force the undecidable instances
of PCP to be Claus instances, so the question “is a given instance a Claus instance?”
is of no importance in this context.

Representing the words overΣ as integers is rather easy. In fact, ifΣ =
{1, . . . , k}, we can defineσ(i1i2 . . . in) =

∑n
j=1 ijk

n−j andσ(ǫ) = 0. It is then
easy to see thatσ : Σ∗ → N = {0, 1, 2, . . .} is a bijection obeying a natural con-
catenation lawσ(uv) = k|v|σ(u) + σ(v). However,N is commutative, and hence
a richer structure is needed to represent algebraic operations on words, or even on
pairs of words.

To encode PCP into matrix problems, we use the embedding of [11]. If |Σ| =
k, it is easy to see thatγ(u, v) of Equation (1) is an injective embedding ofΣ∗×Σ∗

onto N
3×3, that is,γ(u1, v1)γ(u2, v2) = γ(u1u2, v1v2) always, andγ(u1, v1) =

γ(u2, v2) impliesu1 = u2 andv1 = v2.
Finally, to encode an alphabetΣ = {1, . . . , k} of k > 2 symbols into a binary

alphabet{1, 2}, we use an embeddingψ(i) = 1i−12 for i < k, andψ(k) = 1k−1.
Sinceψ(Σ) is a prefix code,ψ is clearly injective.

Lemma 1. Let w ∈ {1, 2}∗. Thenw = ψ(w1)r, wherew1 ∈ {1, . . . , k}∗ and
r ∈ {ǫ, 1, 11, . . . , 1k−2}.

Proof. If w = 1l−12w′, wherel < k, thenw = ψ(l)w′, and we may apply the
same procedure forw′. If w = 1k−1w′, thenw = ψ(k)w′, and again we can
proceed recursively onw′. The only case we cannot apply recursion occurs when
the remaining wordw′ consists entirely of1’s and is shorter thank − 1.

2 Scalar Reachability and Zero in the Right Upper Cor-
ner

We begin with a sharpening of Eilenberg’s result [6].

Theorem 4. It is undecidable for3-stateZ-automataA over an alphabetΣ of 5
symbols, iffA(w) = 0 for some wordw ∈ Σ∗.

Proof. Let I = {(u1, v1), . . . , (u7, v7)} be an instance of PCP, and defineAi =
γ(ui, vi) for i ∈ {1, . . . , 7}. Let alsox1 = (0, 0, 1)T and y1 = (1,−1, 0)T .
Becauseγ is a morphism, it is easy to see that forw = i1 . . . in ∈ {1, . . . , 7}∗,

x
T
1Awy1 = x

T
1 γ(ui1 , vi1) . . . γ(uin , vin)y1

= x
T
1 γ(ui1 . . . uin , vi1 . . . vin)y1

= σ(ui1 . . . uin) − σ(vi1 . . . vin).

1A solution to PCP isminimal if it is not a concatenation of two solutions.
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Sinceσ is injective, we havexT1Awy1 = 0 if and onlyui1 . . . uin = vi1 . . . vin .
Hence,xT1Awy1 = 0 for some wordw ∈ {1, . . . , 7}+ if and only if I has a
solution. This problem is undecidable by Theorem 2.

To reduce the number of matrices, and to remove the propertyx
T
1 y1 = 0 we

notice that by Theorem 3 we can assume thatI is a Claus instance. Hence we
can assume that ifui1 . . . uin = vi1 . . . vin , thenw = i1, . . . , in ∈ 1{2, . . . , 6}+7.
Let thenx2 = (xT1A1)

T , y2 = A7y1, andB1 = A2, . . ., B5 = A6. Then
x
T
2 y2 = x

T
1A1A7y 6= 0, since otherwise we would haveu1u7 = v1v7, which

contradicts Theorem 3. NowxT2Bwy2 = 0 for somew ∈ {1, . . . , 5}+ if and only
if x

T
1Aw′y1 = 0 for somew′ ∈ 1{2, . . . , 6}+7. The Z-automaton required is

thusB = (x2, {B1, . . . , B5},y2). Notice that since we are looking foranyword
w with the aforementioned property, we can ignore the mappingw 7→ wR in the
definition of functionfA. For later use, we find out thatx2 = (σ(u1), σ(v1), 1)

T

andy2 = (2|u7|,−2|v7|, σ(u7) − (v7))
T .

To combine the5 matrices of the above theorem into two matrices with the
same undecidability property, we use Theorem 1 together with the graph represen-
tations of the matrices.

Theorem 5. It is undecidable for9-stateZ-automataA over a binary alphabet, if
fA(w) = 0 for some wordw ∈ {1, 2}∗.

Proof. Recall that the graph representations of all matricesB1, . . .,B5 of the above
theorem are of a special form shown in Figure 1. We will use encodingψ(1) = 2,
ψ(2) = 12, ψ(3) = 112, ψ(4) = 1112, andψ(5) = 1111. Then we augment the
graph of Figure 1 with extra vertices, which will decodeψ in the new automaton.
It is important to notice that the state3 of the new automaton does not need any
decoder since the transition from3 is unambiguous: Any transition from3 will
enter again3 with weight1.

We define the new transition functionδ′ so that when reading a sequence of
1’s, the automaton will move from a state of form(i, j) into the state(i, j + 1)
(casej = 4 is an exception), thus counting how many1’s have been read so far.
In all these transitions, a weight of1 is introduced. When the first2 or the4th
1 occurs, the automaton moves to the state of form(r, 1) introducing the weight
corresponding toδ(i, a, r) of the original automaton, wherea ∈ {1, . . . , 5} is the
letter whose encodingψ(a) equals to the string1 . . . 12 or (14) that was recently
read.

More precisely: Letδ be the transition function of automatonB of Theorem 4
(recall Equation (3)). The state setV ′ of the new automatonC consists of states
(i, j), wherei ∈ {1, 2}, andj ∈ {1, . . . 4}, plus a state(3, 1), altogether9 states.
The new transition functionδ′ is defined as (for(i, r) 6= (3, 3))

δ′((i, j), 1, (r, s)) =







δ(i, 5, r), if j = 4, ands = 1,
1, if i = r ≤ 2 andj + 1 = s ≤ 4,
0 otherwise.

δ′((i, j), 2, (r, s)) =

{

δ(i, j, r) if s = 1,
0 otherwise,
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δ′((3, 1), c, (3, 1)) = 1 for c ∈ {1, 2}, andδ′((i, j), c, (r, s)) = 0 for the cases not
defined before. See Figure 3 for a graphical representation of the automatonC.
LetC1 andC2 be the matrices of automatonC (recall equation 3).

1, 1 2, 1 3, 1

1, 2

1, 3

1, 4

2, 2

2, 3

2, 4

2|σ(u2)

2|σ(u3)

2|σ(u4)

2|σ(u5)
1|σ(u6)

2|2|u2|

2|2|u3|

2|2|u4|

2|2|u5|

1|2|u6|

2|2|v2|

2|2|v3|

2|2|v4|

2|2|v5|

1|2|v6|

2|σ(v2)

2|σ(v3)

2|σ(v4)
2|σ(v5)
1|σ(v6)

1|1
2|11|1

1|1

1|1

1|1

1|1

1|1

Figure 3: The binary automatonC.

We will then fix an enumerationg : (1, 1) → 1, . . ., (1, 4) → 4, (2, 1) → 5, . . .,
(2, 4) → 8, (3, 1) → 9, and define vectorx3 ∈ Z

9 such that(x3)g(i,1) = (x2)i for
i ∈ {1, 2, 3}, and(x3)g(i,j) = 0 for j 6= 1. Vectory3 is defined similarly. Finally,
letC1 andC2 ∈ Z

9×9 be the matrices ofC corresponding to the transition function
δ′.

We will then show thatxT3 Cψ(w)Ry3 = x
T
2BwRy2 for eachw ∈ {1, . . . , 5}∗.

Moreover, we will see thatxT3 Cwy3 6= 0 for eachw ∈ {1, 2}∗ which is not in the
image ofψ.

To prove the first assertion, we use Theorem 1. Since nowI((i, j))F ((r, s))
6= 0 only if j = s = 1, it is enough to show that for any wordw ∈ {1, . . . , 5}∗

wt(P (i, j), w) = wt(P ((i, 1), (j, 1)), ψ(w)) for any pathP (i, j) in the original
automaton. But this is straightforward by the definition ofδ′: For each transition in
automatonB there is a pathP ′ in automatonC beginning at(ik, 1) and ending at
(ik+1, 1) so that all weights alongP ′ are1, except the last one, which equals to the
weightB associates to the original transition. The claim follows, since this holds
for each transition in pathP (i, j).

To see that the latter claim holds, we assume thatw is not in the image of
ψ, and use Lemma 1 to writew asw = ψ(w1)r, wherer ∈ {1, 11, 111} and
w1 ∈ {1, . . . , 5}∗. Recall thaty2 = A7y1 = (2|u7|,−2|v7|, σ(u7) − σ(v7))

T , and
as well,Bw1

Ry2 = Bw1
RA7y1 = Aw′y1 = (2|uw′ |,−2|vw′ |, σ(uw′) − σ(vw′)) is

of the same form (herew′ = wR1 7 ∈ {2, . . . , 6}∗7). By the definition,

y3 = (2|u7|, 0, 0, 0,−2|v7|, 0, 0, 0, σ(u7) − σ(v7))
T ,

and according to the previous part of the proof,Cψ(w1)Ry3 is of form

Cψ(w1)Ry3 = (2|uw′ |, 0, 0, 0,−2|vw′ |, 0, 0, 0, σ(uw′ ) − σ(vw′))T . (4)
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At the same time,x2 = (σ(u1), σ(u2), 1)
T , and hence

x3 = (σ(u1), 0, 0, 0, σ(u2), 0, 0, 0, 1)T . (5)

By the definition ofC1, it is easy to see that

C(ψ(w1)1)Ry3 = C1Cψ(w1)Ry3

= (0, 2|uw′ |, 0, 0, 0,−2|vw′ |, 0, 0, σ(uw′ ) − σ(vw′))T ,

as well as

C(ψ(w1)11)Ry3 = (0, 0, 2|uw′ |, 0, 0, 0,−2|vw′ |, 0, σ(uw′) − σ(vw′))T ,

and

C(ψ(w1)111)Ry3 = (0, 0, 0, 2|uw′ |, 0, 0, 0,−2|vw′ |, σ(uw′) − σ(vw′))T ,

Hence for eachr ∈ {1, 11, 111} we have (recall Equation 5)xT3 C(ψ(w1)r)Ry3 =

σ(uw′) − σ(vw′). Thusx
T
3 C(ψ(w1)r)Ry3 = 0 impliesuw′ = vw′ , which is impos-

sible by Theorem 3, sincew′ ∈ {2, . . . , 6}∗7.

Corollary 1. The Scalar Reachability is undecidable for two integer matrices of
size9 × 9.

Proof. Choose the matrices, vectors, and scalar asC1, C2, x3, y3, and0.

Corollary 2. Zero in the Right Upper Corner is undecidable for two matrices of
size11 × 11.

Proof. LetC1, C2, x3, andy3 be as before, and define

Di =





0 x
T
3 Ci x

T
3 Ciy3

0 Ci Ciy3

0 0 0



 .

NowD1 andD2 are the required matrices.

We can improve the above corollary slightly by noticing thatmatrixA1 in the
initial part of the proof of Theorem 4 can be “wrapped around”the other matrices.

Theorem 6. Zero in the Right Upper Corner is undecidable for two matrices of
size10 × 10.

Proof. Let

β(u, v) =





k|v| 0 0

0 k|u| 0

−k|v|σ(u) −k|u|σ(v) k|uv|





and notice thatγ(u, v)β(u, v) = β(u, v)γ(u, v) = k|uv|I, that is, β(u, v) =
k|uv|γ(u, v)−1. We choose thenAi = γ(u1, v1)γ(ui, vi)β(u1, v1) for 2 ≤ i ≤ 6,
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y = γ(u1, v1)γ(u7, v7)(1,−1, 0)T , and x = (0, 0, 1)T . Then, for anyw =
i1 . . . il ∈ {2, . . . , 6}∗,

x
TAwy = x

TAi1Ai2 . . . Aily

= x
Tγ(u1, v1)γ(ui1 , vi1)β(u1, v1)γ(u1, v1)γ(ui2 , vi2)β(u1, v1) · . . .

·γ(u1, v1)γ(uil , vil)β(u1, v1) · γ(u1, v1)γ(u7, v7)(1,−1, 0)T

= (k|u1v1|)lxTγ(u1, v1)γ(uw, vw)γ(u7, v7)(1,−1, 0)T

= k|u1v1|l(0, 0, 1)γ(u1w7 , v1w7)(1,−1, 0)T

= k|u1v1|l(σ(u1w7) − σ(v1w7)).

Hencex
TAwy = 0 for somew ∈ {2, . . . , 6}+ if and only if the Claus in-

stanceI = {(u1, v1), . . . , (u7, v7)} has a solutionw ∈ 1{2, . . . , 6}+7. Let-
ting B1 = A2, . . ., B5 = A6 it is therefore undecidable forZ-automatonB =
(x, {B1, . . . , B5},y) whetherfB(w) = 0 for some wordw ∈ {1, . . . , 5}+ (as in
Theorem 4, it is easy to verify thatfB(ǫ) 6= 0).

The difference between this construction and that of Theorem 4 is that now
vectorx is of a very clear formx = (0, 0, 1)T ; otherwise we proceed as in the
proof or Theorem 4: The matrices of automatonB are of form

Bi−1 = Ai = γ(u1, v1)γ(ui, vi)β(u1, v1) = γ(u1ui, v1vi)β(u1, v1)

=





k|u1uiv1| 0 0

0 k|v1viu1| 0

k|v1|(σ(u1ui) − σ(u1)) k|u1|(σ(v1vi) − σ(v1)) k|u1v1|



 ,

and we see that in each matrixBi, the transition from state3 to 3 has a constant
weightk|u1v1|. Therefore we can construct, as in the proof of Theorem 4, an au-
tomatonC = (x1, {C1, C2},y1) with 9 states so thatxT1 y1 6= 0, x

T
1 Cψ(w)Ry1 =

x
TBwRy for eachw ∈ {1, . . . , 5}∗, andx

T
1 CwR

1
y1 6= 0 for eachw1 ∈ {1, 2}∗ not

in the image ofψ.
Equally importantly, we can choose the enumeration so thatx1 has a special

form x1 = (1, 0, . . . , 0)T . This is to say thatI has a solution if and only if the
topmost coordinate ofCwy1 is zero for somew ∈ {1, 2}∗. Hence, choosing

Di =

(

Ci Ciy1

0 0

)

we have the required matrices.

3 Vector Reachability

We need first some auxiliary results. In this section,γ(u, v) will be as in Definition
1 with the choicek = 2.

Lemma 2. The setS consisting of all matrices overZ of form





a b 0
a b 0
c d 1



 is

closed under multiplication.
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Proof. By a direct matrix multiplication.

Lemma 3. LetM =





1 1 0
1 1 0
0 0 1



 andγ(u, v) as in Definition 1. ThenMγ(u, v)

belongs to the setS of the previous lemma.

Proof. By a direct matrix multiplication.

Theorem 7. LetI = {(u1, v1), . . . , (u7, v7)} be a Claus instance of PCP, and the
matricesAi and vectory defined asA1 = Mγ(u1, v1), Ai = γ(ui, vi) for 2 ≤
i ≤ 6, andy = γ(u7, v7)(1,−1, 0)T . ThenAwy = 0 for somew ∈ {1, . . . , 6}∗ if
and only ifI has a solution.

Proof. Notice first thatAw is a product of matricesγ(ui, vi) andM so thatM
always occurs in the product in the front ofγ(u1, v1), but nowhere else. Espe-
cially, no consecutiveM ’s occur in the product. Ifw does not contain any1, then
Awy = γ(uw, vw)y = (2|uw|,−2|vw|, σ(uw) − σ(vw))T . Because of the first and
the second coordinate,Awy 6= 0 in this case always.

Assume then thatw = w11w2, where the suffixw2 belongs to{2, . . . , 6}∗, i.e.,
w2 does not contain any1’s. Noww1 may contain some number of1’s, sow1 can
be written asw1 = x11x21 . . . 1xn (xi ∈ {2, . . . , 6}∗ for eachi). Assume first
thatw1 actually contains some number of1’s. SinceAxi

= γ(uxi
, vxi

), we know
by Lemma 3 thatA1xi

∈ S, and by Lemma 2 we can writeAw1 = γ(ux1 , vx1)B,

whereB =





a b 0
a b 0
c d 1



 is a matrix in setS of Lemma 2. It is important to

notice that because of the forms of matricesγ(ui, vi), we have necessarilya+ b >
0. If w1 does not contain any1’s, thenB is the identity matrix, and the proof is
even easier. We handle here only the former case.

A direct computation shows that

Awy = Aw1A1w2y = γ(ux1 , vx1)BA1w27(1,−1, 0)T

=











2|ux1|(a+ b)(2|u1w27| − 2|v1w27|)

2|vx1 |(a+ b)(2|u1w27| − 2|v1w27|)

((a+ b)(σ(ux1) + σ(vx1)) + c+ d)(2|u1w27| − 2|v1w27|)
+σ(u1w27) − σ(v1w27)











(the third coordinate is extended to two rows due to typographical reasons).

Assume now thatAwy = 0. Sincea + b > 0, we have necessarily2|u1w27 | −

2|v1w27| = 0, which implies thatσ(u1w27) − σ(v1w27) = 0, and sinceσ is an
injection,u1w27 = v1w27 is a solution toI.

On the other hand, ifuw = vw is a minimal solution toI, thenw is of form
w = 1w27, wherew2 ∈ {2, . . . , 6}+, sinceI was supposed to be a Claus instance.
It is easy to verify that

A1w2y = A1w2y = A1Aw2y = Aγ(u1, v1)γ(uw2 , vw2)γ(u7, v7)(1,−1, 0)T

= Aγ(u1w27, v1w27)(1,−1, 0)T = 0.
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Theorem 8. Vector Reachability is undecidable for two11 × 11 matrices with
integer entries.

Proof. Consider aZ-automatonA = (x, {A1, . . . , A6},y), where the matricesAi
andy are those of Theorem 7, andx is arbitrary. The form of matrix

A1 = Mγ(u1, v1) =





k|u1| k|v1| 0

k|u1| k|v1| 0
σ(u1) σ(v1) 1





is a bit different from those ofA2, . . ., A6, but the most important thing remains,
namely that the transition from state3 is unambiguous: There is a transition from
state3 only to itself with a weight of1. Hence we can produce matricesB1 andB2

exactly as we produced9×9 matricesC1 andC2 in theorem 5. we also definey1 =
(2|u7|, 0, 0, 0, 0,−2|v7|, 0, 0, 0, 0, σ(u7)−σ(v7)). Just like in the proof of Theorem
5, we can see thatBψ(w)Ry1 = ((BwRy)1, 0, 0, 0, 0, (BwR y)2, 0, 0, 0, 0, (BwR y)3)
for anyw ∈ {1, . . . , 6}. For1 ≤ k ≤ 4 we have, similarly as in the proof of Theo-
rem 5,

B(ψ(w)1k)Ry1 = (0, . . . , (BwRy)1, 0, 0, 0, 0, (BwR y)2, 0, . . . , (BwRy)3),

where(BwRy)1 is atkth position. ThusBwy = 0 if and only if I has a solution.

4 Zero in the Left Upper Corner

Theorem 9. Zero in the Left Upper Corner is undecidable for two integer matrices
of size13 × 13.

Proof. We assume that wordsx1, . . ., x7, y1, . . ., y7 are over an alphabetΣ =
{1, 2, 3} and choosek = 3 in Equation (1). Consider a3-stateZ-automatonA =
(x, {A1, . . . , A7},y), whereAi = γ(xi, yi) for 1 ≤ i ≤ 7, andy and x are
arbitrary. We call the transition function of this automaton δ.

We encode the alphabet byψ : {1, . . . , 7} → {1, 2}+ as before:ψ(1) = 2,
ψ(2) = 12, . . ., ψ(6) = 152, ψ(7) = 16, and construct aZ-automatonB =
(x1, {B1, B2},y1) with 6 + 6 + 1 = 13 states. The transition functionδ′ of B
defined as in the proof of Theorem 4:

δ′((i, j), 1, (r, s)) =







δ(i, 7, r), if j = 6, ands = 1,
1, if i = r ≤ 2 andj + 1 = s ≤ 6,
0 otherwise.

δ′((i, j), 2, (r, s)) =

{

δ(i, j, r) if s = 1,
0 otherwise,

δ′((3, 1), c, (3, 1)) = 1 for c ∈ {1, 2}, andδ′((i, j), c, (r, s)) = 0 for the cases not
defined before.

11



As in the proof of Theorem 5, it follows thatxT1Bψ(w)Ry1 = x
TAwRy, no

matter howx andy were chosen (x1 andy1 are defined in accordance to Theorem
5). By using enumeration(1, 1) 7→ 1, . . . (1, 6) 7→ 6, . . ., (2, 1) 7→ 7, . . ., (2, 6) 7→
12 and(3, 1) 7→ 13 we get matricesB1 andB2 that are explicitly written in the
Appendix. We will use this enumeration in the rest of the proof.

As B2 depends on wordsx1, . . . , x6, y1, . . . , y6, it also defines a13 × 13-
matrices overZ of special kind. We denote these matrices byB2(x1, . . . , x6; y1,
. . ., y6) (see the Appendix for the form of these matrices).

The following facts that can be verified by using the construction of automaton
B, are used in the sequel.

1. B2(x1, x2, . . . , x6; y1, y2, . . . , y6)B1

= B2(x2, x3, . . . , x1x7; y2, y3, . . . , y1y7)

2. B2(x1, . . . , x6; y1, . . . , y6)B
6
1 = B2(x7x1, . . . , x7x6; y7y1, . . . , y7y6)

3. B2(x1, . . . , x6; y1, . . . , y6)B2(x
′
1, . . . , x

′
6; y

′
1, . . . , y

′
6)

= B2(x1x
′
1, x1x

′
2, . . . , x1x

′
6; y1y

′
1, y1y

′
2, . . . , y1y

′
6)

4. If 1 ≤ i ≤ 5, thenBi
1B2(x1, . . . , x6; y1, . . . , y6) can be obtained from

B2(x1, . . . , x6; y1, . . . , y6) by applying the cyclic permutation(1, 2, . . . , 12)
to rowsi times. That is, by removing rows13 − i, 13 − i + 1, . . . , 12, and
adding them to the top of the matrix.

All the above identities can be proved correct by direct matrix multiplication,
but it may be easier to formulate the matrices by using the transition function. For
the first identity, we notice that the productB2B1 is the transition matrix for word
12 in automatonB. Forj ∈ {1, . . . , 13},

(B2B1)1j = δ′(j, 12, 1) =
∑

k

δ′(j, 1, k)δ′(k, 2, 1)

=







δ′(j + 1, 2, 1) = (B2)1,j+1, if j < 6.
δ′(6, 1, 1)δ′(1, 2, 1) + δ′(6, 1, 13)δ′(13, 2, 1) = (B1)1,6(B2)1,1, if j = 6.
0, if j > 6.

For i ∈ {2, . . . , 6, 8, . . . , 12} (B2B1)ij = δ′(j, 12, i) = 0, becauseδ′(k, 2, i) 6= 0
for only i ∈ {1, 7, 13} by the definition.

Equality

(B2B1)7,j =







0 if j ≤ 6 or j = 13
(B2)7,j+1 if 7 ≤ j ≤ 11
(B1)7,12(B2)7,7 if j = 12

can be found similarly.
Finally, to figure out the last row, we have

(B2B1)13,j =
∑

k

δ′(j, 1, k)δ′(k, 2, 13),
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which implies that for1 ≤ j ≤ 5, (B2B1)13,j = (B2)13,j+1. Forj = 6, we have

(B2B1)13,6 =
∑

k

δ(6, 1, k)δ(k, 2, 13)

= δ(6, 1, 1)δ(1, 2, 13) + δ(6, 1, 13)δ(13, 2, 13)

= 3|x7|σ(x1) + σ(x7) · 1 = σ(x1x7),

and the rest of the row13 in matrixB2B1 can be treated similarly.
Facts2, 3, and4 can also be proved in a similar manner, or directly by matrix

multiplication (cf. matrices in the Appendix).
Identities1 – 3 imply that for any wordw ∈ {1, . . . , 7}∗

Bψ(w)R = B2(xw, . . . , ; yw, . . .), (6)

meaning that(Bψ(w)R)11 = 3|xw|, (Bψ(w)R)77 = 3|yw|, (Bψ(w)R)13,1 = σ(xw),
and(Bψ(w)R)13,7 = σ(yw) for any wordw ∈ {1, . . . , 7}∗.

Define matrixP as

P =















































1 1 1 1 1 1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1















































It can be easily verified thatP is invertible, and thatP−1 ∈ Z
13×13. Moreover, a

straightforward computation shows that for anyΓ ∈ Z
13×13,

(PΓP−1)11 =
∑

i∈{1,...,6,13}

(Γi1 − Γi7).

In particular, Equation (6) together with fact 4 above implies that

(PB(ψ(w)1k)RP−1)11 =

{

3|xw| + σ(xw) − σ(yw) if k = 0,
3|xw| if 1 ≤ k ≤ 5.

Let C1 = PB1P
−1 andC2 = PB2P

−1. Then clearlyCw = PBwP
−1 for any

w ∈ {1, 2}∗. Let alsoI = {(u1, v1), . . . , (u7, v7)} be a Claus instance of PCP.
Without loss of generality, we can assume that the wordsui andvi are over an
alphabet{2, 3}. We choosex1 = u1, y1 = 1v1, andxi = ui andyi = vi for
2 ≤ i ≤ 7.
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Thus we can conclude that(CwR)11 6= 0 for eachw not in the image ofψ, and

(Cψ(w)R)11 = 3|uw| + σ(uw) − σ(v) = σ(1uw) − σ(v)

for somev ∈ {1, 2, 3}∗. Hence(Cψ(w)R)11 = 0 if and only if 1uw = v. Because
ui andvi are over an alphabet{2, 3}, this can happen if and only ifw = 1w′ for
somew′ ∈ {2, . . . , 7} andu1w′ = v1w′ is a solution toI (SinceI is a Claus
instance, this also implies thatw′ ∈ {2, . . . , 6}+7).

Even though this article is focused on matrix pair results, we mention the fol-
lowing corollary

Corollary 3. LetS be a semigroup generated bythree13× 13 integer matrices. It
is undecidable whetherS contains the zero matrix.

Remark 5. By the proofs in [8] and [4] (see also [2]), it is undecidable if a semi-
group generated bytwomatrices of dimension21 contains the zero matrix.

Proof. LetC1 andC2 be the matrices of the above theorem, and defineA ∈ Z
13×13

byAij = 0, if (i, j) 6= (1, 1), andA11 = 1. ThenA is idempotent, i.e.,A2 = A,
andACwA is a matrix having(Cw)11 at the left upper corner, and zeros everywhere
else. Let thenS = 〈C1, C2, A〉. Hence, ifS contains the zero matrix, we can
assume thatACw1ACw2A . . . ACwnA = 0, which implies that

0 = (ACw1ACw2A . . . ACwnA)11 = (ACw1A ·ACw2A · . . . ·ACwnA)11

= (Cw1)11(Cw2)11 · . . . · (Cwn)11.

Hence0 ∈ S implies that(Cwi
)11 = 0 for somei. On the other direction, if

(Cw)11 = 0, then clearlyACwA = 0.

5 Appendix

The matrices of automatonC in Theorem 5:

C1 =































0 0 0 2|u6| 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 2|v6| 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 σ(u6) 0 0 0 σ(v6) 1






























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C2 =































2|u2| 2|u3| 2|u4| 2|u5| 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 2|v2| 2|v3| 2|v4| 2|v5| 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

σ(u2) σ(u3) σ(u4) σ(u5) σ(v2) σ(v3) σ(v4) σ(v5) 1































The matrices of automatonB in Theorem 9:

B1 =















































0 0 0 0 0 3|x7| 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 3|y7| 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 σ(x7) 0 0 0 0 0 σ(y7) 1















































and

B2 =















































3|x1| 3|x2| · · · 3|x6| 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0

0 0 · · · 0 3|y1| 3|y2| · · · 3|y6| 0
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0

σ(x1) σ(x2) · · · σ(x6) σ(y1) σ(y2) · · · σ(y6) 1














































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Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 952-12-1840-1
ISSN 1239-1891


