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Abstract
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1 Preliminaries

1.1 Undecidability

Algorithmic unsolvability,undecidabilityappeared already in the very first article
establishing the basic notions of theoretical computesrs [13]. After Turing’s
pioneering article, many variants of undecidable problérage been presented.
One of the most useful variant is called tRest Correspondence ProblefRCP)
[12]. The usefulness of PCP is due to the combinatorial féatian of the problem.

There are many powerful results grasping the boundary aéldbitity. For in-
stance, an interesting theorem in [10] says thegmi-Thue systemith only three
rules can simulate an arbitrary semi-Thue system. Thisigsghat a universal
computing device, no matter how complicated, can be siredlay a semi-Thue
system with only three rules. An interesting corollary agtresult is that the Post
Correspondence Problem is undecidable for only seven gkiverds [5], [8].

By using the method of [11] one can encode PCP into integericeat Hence
it is possible to establish undecidability results on peotd on matrices. There are
a number of those problems known before (see [1], [2], [3], [, [8], and [11]
for instance). Especially in [4] and [2], problems involgionly two matrices are
studied, and the purpose of this article is to prove undédidaresults for such
problems so that the dimension of matrices is as small ashpess

1.2 Matrix Problems

In all the problems studied in this article, the semigr&p= (M,..., M) is
finitely generated and given simply by presenting all masit/y, .. ., M}. More-
over, the main results handle the case witere (M, M,) is generated by two
matrices.

Problem 1 (Scalar Reachability)Given a semigrouf of n x n integer matrices,
vectorsz, y € Z™ and a constant € Z. Decide if there exists a matriX € S
such thate” Ny = a.

Remark 1. We prove that ifS is generated by two matrices, this problem is unde-
cidable forn = 9.

Problem 2 (Zero in the Right Upper Corner{siven a semigrouf of n x n integer
matrices, decide i§ contains a matrixV with Ny, = 0.

Remark 2. In the case thaS8 is generated by two matrices, this problem was
proved undecidable far = 24 in [4], which was subsequently in [7] improved to
n = 23. In [1] this bound was lowered to = 18. Here we prove that this problem
is undecidable for, = 10.

As Zero in the Right Upper Corner is a special case of ScalacRability, any
of the previous bounds is valid also for the Scalar Reaciabil

Problem 3 (Vector Reachability) Given a semigrou® of n x n integer matrices
and two vectorse, y € Z". Determine whether or not there exists a matyixc S
such thatNy = x.



Remark 3. If Sis generated by two matrices, this problem was proved uddblz
for n = 16 in [1]. We show the undecidability fat = 11.

Problem 4 (Zero in the Left Upper Corner)Given a semigrou® of n x n integer
matrices. Determine whether or not there exists a mafrix S such thatVy; = 0,
i.e., the left upper corner element &fis zero.

Remark 4. Up to our knowledge, no previous bound for the undecidatidit this
problem has been introduced for a semigr@ugenerated by two matrices. Here
we prove the undecidability for = 13.

1.3 Graphsand Automata

The matrix combination techniques in this article are basedepresenting the
matrices and automata as weighted graphs. In this sectiomepresent the basic
notions on graphs and automata needed in this paper.

A (directed)graphwith n vertices is a pai&z = (V, E), whereV = {1,... ,n}
is the set ofvertices and £ C V x V is the set ofedges Also an arbitrary
finite setV can be used as the set of vertices, but then we fix an enunreratio
f:V —={1,...,|V]} and identify the vertex with its numberf(v) € N. A path
in a graphG is a sequencey, iy, . .., Of vertices satisfyingi;,i;1) € E for
eachj. Thelengthof pathig, i1, ..., iS1.

Let R be a semiring. AmkR-weighted graphs a tripletG = (V, E, wt), where
V an E are as before, andt is a mapping — R. For anyR-weighted graph
G = (V, E,wt) with n vertices we define aatrix representationV/ € R"*"
by M;; = wt((i, 7)) if (4,5) € E, andM;; = 0if (i,5) ¢ E (Recall thatV =
{1,...,n}).

Conversely, ifM € R™ ™ is a square matrix over a semiring, its graph
representations an R-weighted graph with vertices defines as follows: L&t =
{L,....,n}, E = {(3,5) | 4,5 € V,Mj; # 0}, andwt((i,5)) = Mj; for each
(i,7) € E. Itis worth noticing that by fixing the vertex set of a grapftliis way,
we gain uniqueness: given a matfix € R™*", its graph representation is defined
uniquely, and vice versa.

Example 1. In the sequel, we need matrices of form

k00
y(u,v) = 0 kMoo |, (1)
1

whose each entry is a natural number. The graph representdty (u, v) is shown
in figure 1.

An n-state R-weighted automatoifan R-automatonfor short) over a finite
alphabety = {1,...,k} is a triplet(z,{M, | a € ¥},y), wherey € R" is
theinitial vector, eachM, ann x n matrix with entries inR, andxz € R" is the
final vector The vectors inR™ are understood as column vectors, and sometimes,
though not in this article, the entries of the initial and fimectors are restricted to

2



klul 1ol 1

Figure 1: The graph representation of matypu, v).

{0,1}. Again, an arbitrary finite sef can serve as an alphabet, but in that case
we also fix an enumeratioR — {1,...,k} and identify each lettes with its
number. The empty word is denoted byAs usual, we denoté/;, M;, ... M; =

M, 4,4, for matricesM;, wherei; € ¥, and a similar notion is used for words:
Uy ... Ui, = Uiy 4,- THis is actually just one way to represent a morphism from
¥* to another semigroup. Equally well we could Wri€(i; . . . i,) = M;, ... M;,
oru(iy...in) = u; -..u;,, but we do not use such notions in this article.

Let the notations be as above and assume@hat ({1,...,n}, E,, wt,) IS
the graph representation of matix,. For convenience, we extend each weight
functionwt, by wt,((7,7)) = 0, if (4, j) ¢ E,. Thegraph representationf ann-
state R-automaton is a tripletG, I, F') defined as follows( is a weighted graph
G = (V,E,wt), whereV = {1,...,n}, E = Ugex, E,, andwt : E — RF is the
weight function defined byt(e) = (wty(e),...,wtr(e)). I andF are the initial
and final state functions defined &§j) = x; and F(j) = y; for eachj € V.
Hencel and F’' can be seen as vertex labelling. In figures, it is customavyrite
wt(e) asl | wti(e),...,k | wtg(e) instead of(wtq(e),...,wtg(e)). Also, the
vertices are usually callestatesin the graph representation of an automaton.

Example 2. Consider arN-automatonA on alphabe® = {a, b}, wherea andb
are enumerated dsand2, respectively, and/, = y(u, v) (cf. Equation (1)), and

2 00
My=1| 3 8 0
1 21

We also definec = (1,0,0) andy = (0,0,1). Then the graph representation of
A is shown in Figure 2. The nonzero values of the initial andl finaction are
customarily indicated by labelled ingoing and outcomingpas, respectively, as
in the figure.

Let A be anR-automaton. Ther defines a functiorf4 : ¥* — R by
fa(w) = 2T M ry,

whereMr = My, ... Mgy My, if w = ajay...a; € * (w? stands for thenir-
ror image of wordw). The following theorem is the core of our matrix compositio
techniques. The proof is straightforward by induction aad be found in [6].
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Figure 2: The graph representation of automaton

Theorem 1. Let A be anR-automaton and- 4 its graph representation. Then the
value f4(w) for wordw = a; ... a; coincides with the value

ST 5T N 16 wt(PG, ), w) F (), @)

i€V P(i,j) jEV

where the middle sum is over all paths(ity of length!/ starting ati and ending at
J, andwt(P(ip,;), w) for a pathP = (ig,1,...,7) is defined as

wt(Pio, it), w) = Wta, ((ig; 1)) - - - . - Wha, ((i1_1,41))-

Example 3. The automaton of Example 2 ha&)F'(j) # 0 only wheni = 1 and
j = 3. Hence, when computing sum (2), we need to find the paths ftataisto
3. As one can see from Figure 2, there érpaths of lengti8 leading from1 to
3. 1333, 1133, 1113, 1223, 1233, and1123. For wordw = abb paths1233 and
1233 yield zero weight, since they contain artransition from statd to 2. The
remaining paths contribute(u)-1-14+ k. 1.1+ kl“.2. 14 El4.3.2 = 9kl 5 (w).
The same result can be obtained by compufin¢ubb) = = My, M, M,y.

Another way to express aR-automaton is via th&ansition function§ : V' x
3> x V — R defined as

5(i7a7j) = (Ma)jz'~ (3)

This formulation becomes also convenient later. We wilbalse the terminology
rather flexibly. For instance, aspath in the automatomve mean a path in the
graph representation of the automaton, and as a transigamean both transition
function and a labelled path of lengthin an automaton.

1.4 ThePCP and Encodings

We prove the undecidability results by showing that for a&giinstanc& of Post
Correspondence ProbleifPCP) (see [9]), one can construct an automaton that
accepts words if and onl¥ has a solution. Thus our undecidability results are
based in the following theorem [10], [8]:

Theorem 2. For k > 7, itis undecidable whether an instanée= {(u1,v1), ...,

(ug,v)} of PCP has a solutiom,;, u;, ... u;, = v, v, ...0;,.
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To get improved results, we will also use the following vatiaf PCP [5], [8]:

Theorem 3. There are instance$ = {(ui,v1),..., (ux,vx)} of PCP such that
all minimal solutions Uy Uiy - - - Ui, = Vi, Vi, ... v;, are of formiy = 1,4, = k,
andis...i,—1 € {2,...,k—1}T. For k > 7, PCP remains undecidable when
restricting to these instances.

The instances of the above theorem are calldalus instances In fact, all
undecidability proofs of PCP known to the authors force theacidable instances
of PCP to be Claus instances, so the question “is a givemicstaClaus instance?”
is of no importance in this context.

Representing the words over as integers is rather easy. In fact,if =
{1,...,k}, we can definer (iyiz ... i) = >_7_; i;k" 7 anda(e) = 0. Itis then
easy to see that : ¥* — N = {0,1,2,...} is a bijection obeying a natural con-
catenation lawr (uv) = kl"lo(u) + o(v). However,N is commutative, and hence
a richer structure is needed to represent algebraic opasatin words, or even on
pairs of words.

To encode PCP into matrix problems, we use the embeddingldf [iL|X| =
k, itis easy to see that(u, v) of Equation (1) is an injective embedding©f x ¥*
onto N3*3, that is,y(u1,v1)7y(ug,v2) = y(ujus, v1v2) always, andy(uy,v) =
~(uz,v9) impliesu; = us andv; = vs.

Finally, to encode an alphabEt= {1,...,k} of £ > 2 symbols into a binary
alphabet{1,2}, we use an embedding(i) = 1~ '2for i < k, andy)(k) = 171,
Sincey (X)) is a prefix codey is clearly injective.

Lemmal. Letw € {1,2}*. Thenw = ¢ (w;)r, wherew; € {1,...,k}* and
re{e1,11,...,1F2},

Proof. If w = 112w/, wherel < k, thenw = +(l)w’, and we may apply the
same procedure far’. If w = 1¥~1w/, thenw = v (k)w’, and again we can
proceed recursively on’. The only case we cannot apply recursion occurs when
the remaining wordy’ consists entirely of’s and is shorter thah — 1. O

2 Scalar Reachability and Zero in the Right Upper Cor-
ner

We begin with a sharpening of Eilenberg’s result [6].
Theorem 4. It is undecidable foi3-stateZ-automataA over an alphabet of 5
symbols, iff 4 (w) = 0 for some wordv € ¥*.

Proof. LetZ = {(uj,v1),...,(u7,v7)} be an instance of PCP, and defite =
y(ug,v;) fori € {1,...,7}. Letalsox; = (0,0,1)T andy, = (1,-1,0)T.
Becausey is a morphism, it is easy to see that for= i ..., € {1,...,7}%,
x?Awyl = x{’Y(uh ) Uil) s ’Y(uin’vin)yl
= w1T’Y(uz‘1 e Wiy Vi - Vi )Y

= o(ujy ... u;,) —o(viy ... v;,).

1A solution to PCP isninimalif it is not a concatenation of two solutions.



Sinceo is injective, we haverl A,y, = 0if and onlyw;, ... u;, = v;, ... v;,.
Hence,x! A,y, = 0 for some wordw € {1,...,7}* if and only if Z has a
solution. This problem is undecidable by Theorem 2.

To reduce the number of matrices, and to remove the propgriy, = 0 we
notice that by Theorem 3 we can assume fhas a Claus instance. Hence we
can assume that if;, ... u;, = v;, ...v;,, thenw =iy,... i, € 1{2,...,6}T7.
Let thenzy = (z7A))T, y, = Avyy, andB; = Ay, ..., Bs = Ag. Then
xly, = T AjAzy # 0, since otherwise we would havgu; = vjvy, which

contradicts Theorem 3. Now’ B,,y, = 0 for somew € {1,...,5}* if and only
if 7' Ay, = 0 for somew’ € 1{2,...,6}77. The Z-automaton required is
thusB = (z2,{Bi,...,Bs},y,). Notice that since we are looking fany word

w with the aforementioned property, we can ignore the mapping w? in the
definition of functionf4. For later use, we find out that, = (o (uy), o (v1), 1)T
andyQ = (2|u7\’ _2‘U7|a O'(U7) - (/07))T' O

To combine thes matrices of the above theorem into two matrices with the
same undecidability property, we use Theorem 1 togethérthvé graph represen-
tations of the matrices.

Theorem 5. It is undecidable fop-stateZ-automataA over a binary alphabet, if
fa(w) = 0 for some wordw € {1,2}*.

Proof. Recall that the graph representations of all matriges . ., Bs of the above
theorem are of a special form shown in Figure 1. We will usedimg (1) = 2,
P(2) = 12, ¢(3) = 112, ¢(4) = 1112, andy(5) = 1111. Then we augment the
graph of Figure 1 with extra vertices, which will decoden the new automaton.

It is important to notice that the stageof the new automaton does not need any
decoder since the transition froenis unambiguous: Any transition from will
enter agair8 with weight1.

We define the new transition functiofl so that when reading a sequence of
1’s, the automaton will move from a state of forfh j) into the state(s, j + 1)
(casej = 4 is an exception), thus counting how matig have been read so far.
In all these transitions, a weight dfis introduced. When the fir& or the 4th
1 occurs, the automaton moves to the state of form) introducing the weight
corresponding t@(i, a, ) of the original automaton, whetee {1,...,5} is the
letter whose encoding(a) equals to the string ... 12 or (1*) that was recently
read.

More precisely: Let be the transition function of automatdhof Theorem 4
(recall Equation (3)). The state sEt of the new automatod’ consists of states
(i,7), wherei € {1,2}, andj € {1,...4}, plus a staté3, 1), altogether states.
The new transition function’ is defined as (fofi, ) # (3, 3))

0(i,5,r), if j=4,ands=1,

§((i,5),1,(r,s)) =< 1, ifi=r<2andj+1=s<4,
0 otherwise
/] P _ 5(i,j,7“) |f S = 17
5 ((7'7.])7 27 (Tv S)) - { 0 OtherWise
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8((3,1),¢,(3,1)) = 1forc € {1,2}, andd’((7,7), ¢, (r, s)) = 0 for the cases not
defined before. See Figure 3 for a graphical representafitimecautomatorC'.
Let C; andC, be the matrices of automatan (recall equation 3).

2lo (uz)

1o (ug)
2(2lusl
1)2luel

1)2lvel
Figure 3: The binary automatdafi.

We will then fix an enumeration : (1,1) — 1,...,(1,4) — 4, (2,1) — 5,...,
(2,4) — 8,(3,1) — 9, and define vectatr; € Z° such thai(xs) ;1) = (x2); for
i € {1,2,3}, and(z3),(;, 5 = 0 for j # 1. Vectorys is defined similarly. Finally,
letC, andCy € Z2*? be the matrices of' corresponding to the transition function
5.

We will then show thatc Cy(, rys = @3 B,,rys for eachw € {1,...,5}*.
Moreover, we will see thatl C,,y; # 0 for eachw € {1,2}* which is not in the
image ofi).

To prove the first assertion, we use Theorem 1. Since Agwj))F((r,s))
# 0onlyif j = s = 1, itis enough to show that for any word € {1,...,5}*
wt(P(i,7),w) = wt(P((i,1),(4,1)),%(w)) for any pathP(i, ;) in the original
automaton. But this is straightforward by the definitioofFor each transition in
automatonB there is a path?’ in automaton”' beginning at(ix, 1) and ending at
(ix+1,1) so that all weights along”’ are1, except the last one, which equals to the
weight B associates to the original transition. The claim followscs this holds
for each transition in pat (i, j).

To see that the latter claim holds, we assume thas not in the image of
¥, and use Lemma 1 to write asw = (wq)r, wherer € {1,11,111} and
wy € {1,...,5}*. Recall thaty, = A;y, = (27|, 21"l & (u;) — o(v7))T, and
as well, B, ry, = B, rAry; = Ay, = 2% 210wl o(uy) — o(v,)) is
of the same form (here’ = w7 € {2,...,6}*7). By the definition,

ys = (21*710,0,0,-2/"71,0,0,0, 0 (ur) — o(v7))7,
and according to the previous part of the pradf,,, )ry; is of form

Coptuwnynys = (2%1,0,0,0, —21%1,0,0,0,0(uy) — o(vu))’. (@)
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At the same timezs = (o(u1), o (u2), 1), and hence
x5 = (0(u1),0,0,0,0(usz),0,0,0,1)T. (5)
By the definition ofC', it is easy to see that
ClynnrYs = C10w,)rY3
= (0,2/"w,0,0,0, 2" 0,0, 0 (1) — (v )7,

as well as

Clyuwnnrys = (0,0,21%1,0,0,0, =210, 0 (wy) — o (vur))7,
and

Clywnyinrys = (0,0,0,2"1,0,0,0, =211 o () — o(vur))T,

Hence for eachr € {1,11,111} we have (recall Equation Sbch(w(wl)r)Ryg, =
0 () — 0 (V). Thusas C i, yrrY3 = 0 impliesu,s = vy, which is impos-
sible by Theorem 3, since’ € {2,...,6}*7. O

Corollary 1. The Scalar Reachability is undecidable for two integer tcas of
size9 x 9.

Proof. Choose the matrices, vectors, and scalaras’s, x3, y5, and0. O

Corollary 2. Zero in the Right Upper Corner is undecidable for two maticd
sizell x 11.

Proof. Let Cy, C9, o3, andy4 be as before, and define

0 x3C; xfCiys
Di=110 Ciys
0 0 0

Now D, and D, are the required matrices. O

We can improve the above corollary slightly by noticing thregtrix A; in the
initial part of the proof of Theorem 4 can be “wrapped arouti#® other matrices.

Theorem 6. Zero in the Right Upper Corner is undecidable for two matsicd
sizel0 x 10.

Proof. Let
klvl 0 0
B(u,v) = 0 il 0
—kllo(u) —kMo(v) kvl

and notice thaty(u,v)3(u,v) = B(u,v)y(u,v) = kI, that is, 8

(u,v)
k!l (u,v)~'. We choose therl; = ~(u1, v1)y(ui, v;)B(ur,v1) for 2 < i <

6,
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y = ~v(u1,v1)y(uz,v7)(1,-1,0)7, andz = (0,0,1)7. Then, for anyw =
11 ...19] 6{2,...,6}*,

el Ayy = xTA A, .. Ay
= @ y(ur, v1)y (i, viy ) B(ur, v1)y(ur, v1)y iy, viy) B(ur, v1) - -
(i, v1)y(wiy, v)B(ur, 01) - y(ur, 01)y(ug,vr)(1,—1,0)7
= (KD ey (ug, 01)y (s vy (ur, v7) (1, —1,0)7
= k‘um‘l(oa 0, )y(u1wr, v1w7) (1, =1, O)T

_ k\ulm\l(o.(ulw?) _ g(vlw7)).

Hencex® A,y = 0 for somew € {2,...,6}" if and only if the Claus in-
stanceZ = {(uy,v1),...,(ur,v7)} has a solutionw € 1{2,...,6}77. Let-
ting By = A,, ..., By = Ag it is therefore undecidable fdf-automatonB =
(x,{Bi,...,Bs},y) whetherfz(w) = 0 for some wordw € {1,...,5}" (asin
Theorem 4, it is easy to verify thaiz(¢) # 0).

The difference between this construction and that of Thmofeis that now
vector z is of a very clear forme = (0,0,1)”; otherwise we proceed as in the
proof or Theorem 4: The matrices of automat®rare of form

Bi1 = A =v(u1,v1)y(ui, vi) Bur,v1) = y(urug, v1v;) B(ur, vr)
fluauaval 0 0
= 0 flvrviwml 0 :

k\vﬂ(a(ului) —o(uy)) k'“l‘(a(vlvi) —o(v)) Eluroi]

and we see that in each mati¥, the transition from stat& to 3 has a constant
weight kl“1v1l Therefore we can construct, as in the proof of Theorem 4uan a
tomatonC' = (x1,{C1, C2},y,) with 9 states so that{y; # 0, 2] Cy,ry; =
a’ B,,ny for eachw € {1,...,5}*, andz{ C,ry, # 0 for eachw; € {1,2}* not
in the image ofy.

Equally importantly, we can choose the enumeration so:thdtas a special
form z; = (1,0,...,0)”. This is to say thaf has a solution if and only if the
topmost coordinate af',,y, is zero for somev € {1,2}*. Hence, choosing

(G Ciyy
2= %)

we have the required matrices. O

3 Vector Reachability

We need first some auxiliary results. In this sectipfy, v) will be as in Definition
1 with the choice: = 2.

Lemma 2. The setS consisting of all matrices ovéef of form

o 2 2
QU o

closed under multiplication.



Proof. By a direct matrix multiplication. O

1 0

1 0 | and~(u,v)asin Definition 1. Thed/~(u,v)
0 0 1

belongs to the sef of the previous lemma.

1
Lemma3. LetM = 1

Proof. By a direct matrix multiplication. O

Theorem 7. LetZ = {(uq,v1),..., (ur,v7)} be a Claus instance of PCP, and the
matricesA; and vectory defined asd; = M~y (uy,v1), 4; = v(u;,v;) for 2 <

i <6, andy = vy(ur,v7)(1,—1,0)". ThenA,y = 0 for somew € {1,...,6}* if
and only ifZ has a solution.

Proof. Notice first thatA,, is a product of matrices(u;,v;) and M so thatM
always occurs in the product in the front ofu,,v;), but nowhere else. Espe-
cially, no consecutivél/’s occur in the product. Ifv does not contain any, then
Ay = (U, vy = (21"], =210l o (u,) — o(v,))T. Because of the first and
the second coordinatel,,y # 0 in this case always.

Assume then that = w; 1wy, where the suffixv, belongs to{2,...,6}%, i.e.,
wy does not contain any’s. Now w; may contain some number %, sow; can
be written asw; = x11zol... 1z, (z; € {2,...,6}* for eachi). Assume first
thatw,; actually contains some number B$. SinceA,, = v(uy,, vz, ), We know
by Lemma 3 that4,,, € S, and by Lemma 2 we can writé,,, = v(ug,, vz, )B,

a b 0
whereB = a b 0 | isa matrix in setS of Lemma 2. It is important to
c d 1
notice that because of the forms of matriegs;, v;), we have necessarily+ b >
0. If wy does not contain any's, then B is the identity matrix, and the proof is
even easier. We handle here only the former case.
A direct computation shows that

Ay = Auy Aty = V(thay, 0z) BAry7(1,-1,0)"
2’%1 | (a + b)(2’“1w7| — 2‘”1w27|)
olveil (g 4 b)(2lwrwar| — glviusr]y
((a+b)(o(tg,) + 0 (vg,)) + e+ d) (2] — 2l
+0 (Wws7) — 0 (V1y7)
(the third coordinate is extended to two rows due to typdgjcg reasons).
Assume now thatl,,y = 0. Sincea + b > 0, we have necessarilg/“lw%’ —
glviwar| — 0, which implies thato (w14,7) — 0(viw,7) = 0, and sinces is an
injection, uy,,,7 = vV1w,7 IS @ solution tdZ.
On the other hand, i&,, = v,, is @ minimal solution taZ, thenw is of form

w = lwy7, wherews € {2,...,6}T, sinceZ was supposed to be a Claus instance.
It is easy to verify that

Alwgy - Alwgy - AlAwgy - A’Y(Ul, Ul)’Y(UwQ,Uwg)’Y(U% 07)(1) _1) O)T
Ay(Wiuy7, V1p7) (1, —1,0)T = 0.

10



O

Theorem 8. Vector Reachability is undecidable for twd x 11 matrices with
integer entries.

Proof. Consider &-automatord = (x,{A1, ..., A}, y), where the matriced;
andy are those of Theorem 7, aadis arbitrary. The form of matrix

Elual plvl
A1 = M’y(ul,vl) = k|u1| k'vl‘ 0
o(uy) o(vy) 1

is a bit different from those ofls, ..., Ag, but the most important thing remains,
namely that the transition from statds unambiguous: There is a transition from
state3 only to itself with a weight ofi. Hence we can produce matricBs and B,
exactly as we producetix 9 matricesC; andC, in theorem 5. we also defing =
(21v71,0,0,0,0,—2/"71,0,0,0,0, 0(u7) — o(v7)). Just like in the proof of Theorem
5, we cansee thdt ) ry; = ((B,rY)1,0,0,0,0, (B,rY)2,0,0,0,0, (B,ry)s3)
foranyw € {1,...,6}. Forl < k < 4 we have, similarly as in the proof of Theo-
rem5,

B(w(w)lk)Ryl = (0) B (BwRy)l) Oa 0) Oa 0) (BwRy)2) Oa ) (BwRy)3))

where(B,,ry); is atkth position. ThusB,,y = 0 if and only if Z has a solution.
O

4 ZerointhelLeft Upper Corner

Theorem 9. Zero in the Left Upper Corner is undecidable for two integettmces
of sizel3 x 13.

Proof. We assume that words, ..., z7, y1, ..., y7 are over an alphabet =
{1,2,3} and choosé& = 3 in Equation (1). Consider & stateZ-automatonAd =
(x,{A1, ..., A7}, y), where4; = ~(x;,y;) forl < i < 7, andy andz are
arbitrary. We call the transition function of this automato

We encode the alphabet by : {1,...,7} — {1,2}* as before:x)(1) = 2,
P(2) = 12, ..., %(6) = 12, ¥(7) = 1%, and construct &-automatonB =
(x1,{B1,B2},y;) with 6 + 6 + 1 = 13 states. The transition functiaofi of B
defined as in the proof of Theorem 4:

o(i,7,r), if j=6,ands=1,
§((i,5),1,(r,8)) =< 1, ifi=r<2andj+1=s<6,
0 otherwise

Vo o 5(’L.,j,7”) ifS:l’
6'((4,4),2,(r,s)) = { 0 otherwise

8((3,1),¢,(3,1)) = 1forc € {1,2}, andd’((i,7), ¢, (r,s)) = 0 for the cases not
defined before.

11



As in the proof of Theorem 5, it follows that{ B, ry; = ' A,ry, N0
matter howr andy were chosenaf; andy, are defined in accordance to Theorem
5). By using enumeratiofl, 1) — 1,...(1,6) —6,...,(2,1) — 7,...,(2,6) —

12 and(3,1) — 13 we get matrices3; and B, that are explicitly written in the
Appendix. We will use this enumeration in the rest of the fproo

As B, depends on words,...,xs,v1,...,Ys, it also defines a3 x 13-
matrices ovefZ of special kind. We denote these matricesBy(x1, . .., xs;y1,
..., Ys) (see the Appendix for the form of these matrices).

The following facts that can be verified by using the congioumcof automaton
B, are used in the sequel.

1. BQ($1,$2, s L6y Y1, Y2, - - ay6)B1

:B2($27$37---7$1x7§y2ay37---791y7)
2. By(w1,..., 26, Y1, - - -, Y6)BY = Ba(wra1, ..., 2726, YY1, - - -, Y7Y6)
3. Bo(z1,...,w65Y1,- .-, Ys)Ba(2h, .. g v, -, 06)

— / / /. / / /
- BQ(CClCCl,CCl.TQ, < D1 YLYT, Y1Yo,y - - - aylyG)

4. 1f 1 < i < 5, then BiBy(x1,...,76;¥1,---,Y6) can be obtained from
By(x1,...,26;y1,- - .,ye) by applying the cyclic permutatiofi, 2, ..., 12)
to rows: times. That is, by removing rowls3 — 4,13 — i+ 1,...,12, and
adding them to the top of the matrix.

All the above identities can be proved correct by direct matrultiplication,
but it may be easier to formulate the matrices by using thesitian function. For
the first identity, we notice that the produBt B, is the transition matrix for word
12 in automatonB. Forj € {1,...,13},

(BaBi)yj = 0'(5,12,1) = Y §'(j,1,k)d' (,2,1)
k

§'(j+1,2,1) = (B2)1,j+1, if j <6.
= 5/(6, 1, 1)5/(1, 2,1) + 5,(6, 1, 13)5/(13, 2,1) = (31)1,6(32)1,1’ if j =6.
0, if 7 > 6.

Fori € {2,...,6,8,...,12} (B2B1);; = ¢'(j,12,1) = 0, because’(k, 2,1) # 0
foronly: € {1,7,13} by the definition.
Equality

if j<6orj=13
(B2Bi)7j =14 (B2)7j+1 if7<j<11
(B1)7,12(B2)77 if j =12

can be found similarly.
Finally, to figure out the last row, we have

(BaBihs, = > 0'(G,1, k)8 (k,2,13),
k

12



which implies that forl < j <5, (B2B1)13; = (B2)13,j+1. Forj = 6, we have

(B2Bi)iss = »_6(6,1,k)5(k,2,13)
k
= §(6,1,1)8(1,2,13) +8(6,1,13)5(13,2,13)

377lo(21) + o(w7) - 1 = o(w127),

and the rest of the row3 in matrix B, B1 can be treated similarly.

Facts2, 3, and4 can also be proved in a similar manner, or directly by matrix
multiplication (cf. matrices in the Appendix).

Identities1 — 3 imply that for any wordw € {1,...,7}*

Bw(w)R :Bg(:cw,...,;yw,...), (6)
meaning that By, ,yr)11 = 317/, (By(uyr)zr = 39|, (Byayr)izn = o(zw),

and(B () r)13.7 = o(yw) for any wordw € {1,...,7}*.
Define matrixP as

i

I
O OO DD OO, OO OO O
O OO DD DO O OO OO -
OO OO OO OO OO+ O
OO O OO OO OO OO
OO OO OO OO OO O
O OO OO OO OO OO
O DO DD DD O OO OO OO
O OO OO R OO OO O OO
OO OO OO ODO OO oo
O OO H OO ODODOOoO O oo
OO H OO O OO oo o oo
O R O OO OO o oo
R O OO OO OO oo oo

It can be easily verified tha® is invertible, and thaP~! ¢ Z'3*13, Moreover, a
straightforward computation shows that for dhy 7313,

(PTP = > (Ta—Ta).
i€{1,...,6,13}

In particular, Equation (6) together with fact 4 above iraplthat

—1y. . _ 3lowl 4 o(xy) —o(yw) ifk=0,
(PB(ywyrsyr P~ )11 = { 3leul if1<k<5.

LetC, = PB;P~! andCy, = PB,P~!. Then clearlyC,, = PB,P~"' for any
w € {1,2}*. LetalsoZ = {(uy,v1),...,(ur,v7)} be a Claus instance of PCP.
Without loss of generality, we can assume that the waetdandv; are over an
alphabet{2,3}. We chooser; = uj, y1 = lv1, andz; = u; andy; = v; for
2<i<T.
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Thus we can conclude thét’, )11 # 0 for eachw not in the image of), and
(Cywyr)ir = 3" + o () — o(v) = o(1uw) — o(v)

for somev € {1,2,3}*. Hence(Cy )11 = 0 if and only if 1u,, = v. Because
u; andv; are over an alphabd®, 3}, this can happen if and only if = 1w’ for
somew’ € {2,...,7} anduy,, = vy, IS @ solution toZ (SinceZ is a Claus
instance, this also implies that € {2,...,6}17). O

Even though this article is focused on matrix pair results,mention the fol-
lowing corollary

Corollary 3. LetS be a semigroup generated thyeel3 x 13 integer matrices. It
is undecidable whethe$ contains the zero matrix.

Remark 5. By the proofs in [8] and [4] (see also [2]), it is undecidaldle semi-
group generated byvo matrices of dimensiof1 contains the zero matrix.

Proof. LetC; andC;, be the matrices of the above theorem, and dedireZ!3*13

by A;; = 0,if (1,7) # (1,1), andA;; = 1. ThenA is idempotent, ie.A? = A,
andAC,, A is a matrix having C\,)11 at the left upper corner, and zeros everywhere
else. Let therS = (C;,C5, A). Hence, ifS contains the zero matrix, we can
assume thatlC,,, ACy,, A ... AC\,, A = 0, which implies that

0 = (ACu ACu,A... ACy A1 = (ACw, A~ ACu A - ... ACu. A)nr
(Cu)11(Cug)11 -+ (Cyy )11

HenceO < S implies that(C,,)11 = 0 for somei. On the other direction, if
(Cw)11 = 0, then clearlyAC,,A = 0. O

5 Appendix

The matrices of automatafl in Theorem 5:

000 2% 000 0 0
100 O 00O O 0
010 0 000 0 0
001 0O 000 0 0
Ci=000 0 000 2l 9o
000 O 100 0 0
000 O 010 0 0
000 O 001 0 0
000 ofug) 0 0 0 o(vg) 1




gzl glusl  gluslglusl g 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Cy = 0 0 0 0 2kl aluslaleal - alesl g
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

o(ug) o(us) o(ug) o(us) o(vy) o(vs) o(vy) o(vs) 1

The matrices of automataoB in Theorem 9:
3lz7]

)
)
@)
@)
)
)

o O O oo

By 3‘97‘

I
N eoleolBolNeoNeoNeoBeoloNeoBael =
O OO H OO OO oo oo
OO OO OO oo oo
O R O OO OO OO oo oo
_H OO OO OO o000 o oo

OO O OO+ O OO o oo
OO OO R OO OO o oo

= elalealeoNeoNeolBeleBal s
OO O OO OO O o+ OO
OO OO OO O O+ OOoOOo
OO OO OO oo OO oo
8 OO OO OO o oo oo
3

N—
S oo oo o
S

2
2

and
glzal gleel L0 glwel

O O O O O
O OO O O
O O O O O

0 0o .- 0
lyil glv2l L. 3lusl
0 0

o O O O
o O O O

83 OO OO OO O oo oo
il

83 OO OO OO O oo oo
)

8 OO OO OO0 O oo oo
[=2]

— O OO OO O oo oo oo

SN—
S ooco oo
D

) o alws) o) olya) -+ of

o

2
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