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Abstract

In order to increase the flexibility and performance of hydraulically actuated
machines there is a demand for more intelligent controllers. This leads to a
rapid increase in complexity of the control systems. To manage the complexity
and to ensure reliability of these systems, adequate software development meth-
ods are needed. In this work, we propose a methodology for structured design
of digital hydraulics controllers in Simulink/Stateflow. A model architecture
based on mode-automata is introduced to separate control and data processing.
Furthermore, design by contract is advocated as a method for system develop-
ment. The contracts can be used to mathematically reason about correctness
of Simulink/Stateflow models and thereby increase the safety and reliability of
the developed systems. The usefulness of these concepts are demonstrated on a
larger case study from the area of digital hydraulics.

Keywords: Controller Architecture, Mode-Automata, Simulink/Stateflow, De-
sign by Contract, Reliability
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1 Introduction

There is a trend toward adding more intelligent controllers in hydraulically actu-
ated machines in order to increase their flexibility and performance. The trend
is also to replace hydromechanical functions - such as load-sensing - with sen-
sors, electrically controlled valves and intelligent control. An extreme example
is the Digital Hydraulics technology [1] , in which simple on/off valves are used
together with intelligent control. The result of these trends is that complexity
of control systems increases rapidly. Modern systems also have high require-
ments on performance, safety and reliability. To handle these requirements,
appropriate software development and validation methods are needed.

This paper presents development techniques used for a digital hydraulics
controller with energy saving [2]. Since high reliability of the controller soft-
ware is desired, formal software design methods are beneficial. These methods
enable mathematical reasoning about correctness of models. They also enable
mathematical proofs that certain properties are satisfied in the system. Among
these properties, the focus will mainly be on safety properties, which estab-
lish that some bad behaviour will never happen. The work is carried out using
Simulink1/Stateflow2, which have become a widely used tool for model based
design of control systems. Our propositions articulate around two main points.
First, we advocate a particular software architecture for developing mode-based
systems in Simulink. Second, formal techniques for increasing the confidence
that the system works correctly are presented. Related techniques have pre-
viously been successfully applied to safety-critical systems e.g. [3]. What we
propose here is to adapt those techniques to the development of systems where
safety issues are less critical and developers are not formal methods experts.
The aim is here to maximise the efficiency and ease of use of these methods.

The rest of the paper is structured as follows. In Section 2 the digital
hydraulics application is presented. Section 3 describes the development of
controllers in Simulink/Stateflow, while Section 4 gives an example and outlines
the controller architecture. Design by contract of models is introduced in Section
5 and analytical verification of mode switching based on this method is presented
in 6. Section 7 gives the conclusions of the paper.

2 The Digital Hydraulics System

The idea of digital hydraulics is to use simple on/off valves [1] together with an
intelligent controller to achieve desired performance. Figure 1 shows an overview
of such a system. The hydraulic cylinder is controlled by four digital flow control
units (DFCU) with five on/off valves each (PAi, PBi, ATi, BTi, i = 1..5). The
configuration of a DFCU gives the open and closed valves and thereby controls
the flow of fluid through it. The configuration of the first DFCU (uAT ) controls
the flow from A to tank, the second controls the flow of fluid from the pump to
A (uPA) , the third (uPB) from pump to B and the last (uBT ) controls the flow
from B to tank.

To control the speed of the piston, suitable combinations of valves are
opened. The controller computes optimal valve configurations at each sampling
time, taking into account pressure limitations. The controller has different run-
ning modes for normal motion and energy saving motion. Energy efficient modes

1Simulink, Mathworks Inc, http://www.mathworks.com
2Stateflow, Mathworks Inc, http://www.mathworks.com
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Figure 1: Overview of a hydraulic cylinder controlled by a set of digital control
flow units

should then be used whenever possible. Due to the complex calculations needed,
the software for the controller is large and involves both signal processing and
discrete control logic to handle the switching of modes.

3 Controller Development in Simulink/Stateflow

A controller usually consists of two parts; signal processing and control logic.
Simulink is used to describe the signal processing and Stateflow is used to de-
scribe the control logic. In this paper the control logic consists of switching
between control modes.

Stateflow is a state-machine implementation for Simulink similar to Stat-
echarts [4]. It is a sequential and deterministic language for creating the su-
pervisory control logic in control applications. Consider the Stateflow chart in
Figure 2. The square boxes are states and the circles are junctions. An arrow
is referred to as a transition segment. Stateflow supports hierarchical state-
machines containing both or-state and and-states. In an or-state (s2) only one
sub-state is active modelling sequencing of transitions, while in a and-state all
sub-states are active modelling parallelism. Transition segments in Stateflow
can be labelled by events (e), guards (g1, g2, h1, h2), and actions (act).

The action language of Stateflow is very expressive and contain many ad-
vanced features for defining behaviour. However, some of these features have
counter intuitive semantics and are difficult to use correctly. Therefore, to aid
verification and to only use constructs with a simple semantics, only a subset of
Simulink/Stateflow should be used. Guidelines for development of controllers
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Figure 2: A schematic example of a Stateflow chart

using Simulink/Stateflow have been developed to increase the readability and
maintainability of models [5]. In order to have efficient code generation suitable
for safety critical systems, even stricter guidelines need to be followed [6, 7].

Even when the guidelines above are followed formal verification is difficult
in Stateflow, due to the large number of features for defining behaviour. When
considering ease of verification, Simulink often offers a better choice for defin-
ing behaviour. Additionally, Simulink/Stateflow models can analysed by graph
based techniques if textual descriptions are avoided, whenever it is possible.
The following restrictions to Stateflow are used in this paper:

• Activities inside states are not allowed in Stateflow. Simulink is instead
used to define all behaviour inside states (modes).

• Transitions that cross composite state boundaries are not allowed.

• Events, actions and condition actions are not allowed on transition seg-
ments.

• Transition segments are restricted to only be labelled by a guard (condi-
tion) name, e.g., g1, g2 in Figure 2. A guard name is always an input port
name in the Stateflow block. In practise we often also need the negation
¬g if guard g is used. Therefore guards of the type [g] or [∼g] are allowed
on the transition segments. Conjunction (and) and disjunction (or) of
conditions can be implemented using junctions.

These constraints restrict Stateflow to a safe subset that is easy to analyse, and
yet sufficiently powerful to be used in practise.

3.1 Semantics of the considered subset of Stateflow

To get an understanding of how a Stateflow chart is executed a short introduc-
tion to the Stateflow semantics is needed. Due to the restrictions in this paper,
transition segments can be labelled by a guard condition of the form [g] or [∼g].
A transition is a sequence of transition segments connected by junctions that
starts and ends in a state. The guard of a transition is given as the conjunction
of the guard conditions on the individual transitions segments, e.g., g1 ∧ g2 for
the transition between s1 and s2 in Figure 2. A transition is enabled, if its
guard evaluates to true. Transitions with the source state higher in the state
hierarchy have higher priority, while the ones with the same source either have
a fixed priority given by the developer or a priority given by the internal rules
of Stateflow. The internal rules in Stateflow for assigning priorities depends on
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the graphical layout of the diagram and is therefore not safe to use. The explicit
ordering mechanism should therefore always be used.

During the execution of the Stateflow chart, a subset of the states are active.
The transitions between states describe how the set of active states changes.
When the chart is executed, the enabled transitions from the currently active
states are computed. The enabled transition with the highest priority is then
executed and the active states are changed to the destination of the transition.
If an and-state is active several transitions can be executed concurrently. If the
destination of a transition is a composite state, then the corresponding default
transitions are also executed.

4 Controller Architecture Example

A good architecture is needed in order to structure the system. This guarantees
that the controller is maintainable, extensible and the logic of the controller
is easy to understand. The architecture proposed here separates control logic
from signal processing. The mode specific behaviour is, hence, isolated from the
parts common for all modes.

4.1 Controller overview

The controller presented here is used for energy saving digital hydraulics in
[2]. The focus in this paper is on architecture and verification of the system,
while [2] presents the functionality of the system. An overview of the different
parts of the controller is given in Figure 3. Most of the controller functionality
is common for all modes. The mode specific behaviour is given in subsystem
Selection of control mode.

The inputs to the controller are position, x, reference position, xref , and
reference speed, vref , of the piston, as well as pressure provided by the pump
pP and the cylinder chamber pressures, pA and pB. Based on this informa-
tion, the controller then computes the optimal valve configurations uPA, uAT ,
uPB and uBT . The subsystem selection of control mode computes optimal pres-
sure references for the pump (pPref ) and for the chamber pressures (pAref and
pBref ) based on the reference speed vrC , (filtered) chamber pressures (p̂A and
p̂B) and pump pressure (pPref ). Furthermore, it provides mode specific param-
eters in the signal MODE . The signals from the mode selection block are then
used for the model-based controller to determine the optimal valve configuration
independent of the running mode.

4.2 Mode switching

To increase readability and ease verification of the mode switching system an
appropriate design has to be used. Mode-automata [8, 9, 10, 11, 12] is such
an architecture for developing mode-based systems. It is used for systems that
consist of a set of running modes, where each mode is associated with mode-
specific signal processing. The switching between modes is described using a
state-machine (here a Stateflow chart), where each transition is guarded by a
condition. Each non-composite state in the Stateflow chart is connected to an
enabled subsystem in Simulink giving the mode specific behaviour.

Figure 4 shows a simplified version of the core of the mode switching logic.
The subsystem Conditions computes the conditions that are used to decide
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Figure 5: Switching of the actual mode

when modes should be switched, vref positive, . . . ,m3b efficient . These con-
ditions correspond ultimately to the guards [g] that are used in the Stateflow
chart. Each output from the subsystem is a boolean stating wether the condi-
tion holds or not. The Stateflow chart outputs which modes are currently active.
The active modes then triggers enabled subsystems giving the mode dependent
behaviour. There are two parallel modes (i.e. sub-states of an and-state) Target
mode and Actual mode. The enabled subsystems activated by target mode are
first used for computing the pressure reference (pPref ) for the freely adjustable
pump pressure. The best actual mode is then determined based on the actual
pump pressure pP . The subsystems enabled by the actual mode then com-
pute chamber pressure references (pAref and pBref ), as well as mode specific
parameters (MODE).

The Stateflow chart determines the running mode of the system. Figure 5
shows the switching of the actual mode. The switching of the target mode is
similar. The actual mode consists of the following submodes [2]:

0 Stopped motion. If the reference speed is close to zero
(vref NOT positive(vrC)∧ vref NOT negative(vrC)) or no other mode is
feasible (¬Mi feas(F, pP , ∆pmin)) this mode is used.

1 Normal extending motion. This mode is selected if the reference speed is
greater than a threshold value (vref positive(vrC)), the mode is feasible
(M1 feas(F, pP , ∆pmin)) and energy saving should not be used
(¬(M3a feas(F, pP , ∆pmin)∧Target mode 3a)). The last condition is de-
rived from the priority of the transitions.

2 Retracting motion. This mode is similar to mode 1, but it involves move-
ment in the opposite direction.

3a Extending energy saving motion. If the reference speed is greater than
a threshold value (vref positive(vrC)) and energy saving can be used
(M3a feas(F, pP , ∆pmin) ∧ Target mode 3a), this mode is selected.

3b Retracting energy saving motion. This mode is similar to mode 3a, but
it involves movement in the opposite direction .
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Figure 6: Definition of chamber pressure references pAref and pBref in each
mode inside subsystem A- and B-side

Due to noise in the input signals there is a problem with excessive mode switch-
ing when the signals remain close to a switching condition. To remedy this
problem, e.g. the condition vref NOT positive(vrC) is not the negation of
vref positive(vrC), but it contains extra conditions to inhibit switching between
modes, when signal values remain close to this switching condition. The con-
ditions vref NOT positive(vrC) and vref positive(vrC) can, hence, evaluate to
false at the same time. A further measure to prevent excessive switching is that
some conditions also have to evaluate to true for a certain amount of time in
the Simulink diagram before they become true in the Stateflow chart.

The actual modes are used to compute the optimal chamber pressures refer-
ences pAref and pBref , which is illustrated in Figure 6. The final pressures are
computed with merge-blocks that take the latest value computed by an enabled
subsystem.
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4.3 Mode Dependent Behaviour

The mode-automata architecture puts restrictions on the way the system de-
signer can describe behaviour. The first restriction concerns the memory inside
enabled subsystems and the second the connection of enabled subsystems to
merge blocks.

Consider the case when a memory block inside a mode enabled system stores
a signal value. When the mode is exited and then re-entered the signal value
stored in the block refers to possibly a very old value. This can lead to problems
in the control algorithms. For example, if the mode dependent behaviour is a
PI-controller the integrator might have a value not relevant anymore. The mode
dependent behaviour should, therefore, either not contain blocks with memory
or the memory should be reset whenever the mode is entered in order to ensure
predictable behaviour.

The mode selection system should also define the value of all output signals
all the time. Furthermore, each signal value should be uniquely defined. Hence,
every enabled subsystem should be connected to merge blocks to obtain the
final result and every merge block should have exactly one enabled input at all
times.

5 Design by Contract

The term Design by Contract was first used by B. Meyer in the Eiffel program-
ming language [13]. The idea of Design by Contract is that software should have
precise checkable interface specifications. Each component should state explic-
itly what conditions on the inputs it require from the environment and what
conditions on the output it ensures. Optionally, the component can also state
what internal conditions it will always maintain. The theory behind contracts is
discussed in [14]. Design by Contract ideas are implemented in e.g. Eiffel [13],
JML [15] for Java and in Spec# [16] for C#. These languages are accompanied
by various tools for compiling, static checking and dynamic checking (testing).

Design by contract can be used for assume-guarantee reasoning. The idea
behind assume guarantee style reasoning about system correctness is that each
component only guarantee that it functions correctly as long as its assumptions
about the environment are satisfied. This enables compositional reasoning, since
components can be verified individually. Assume-guarantee reasoning about
embedded and hybrid systems have been investigated by several authors [17,
18, 19, 20].

5.1 Design by Contract in Simulink

A Simulink subsystem can be viewed as a tuple (i, o, p, f), where i is a set of
input signals, o is a set of output signals, p is a set of parameters and f is
a function that update the output signals based on the parameters and input
signals o = f(p, i, x), where x is the memory contained in block inside the
subsystem. To use Design by Contract and enable assume-guarantee reasoning
about correctness in Simulink we need to be able to state what a subsystem
assumes of its environment and what it guarantees. To express these kinds of
constraints we need two types of conditions: assume conditions and guarantee
conditions. Assume condition violations and guarantee condition violations are
interpreted in different ways. Assume violations are not the responsibility of
the subsystem the condition belongs to, while a guarantee violations is the

9



responsibility of that subsystem. Four types of conditions can be identified for
stating properties about different aspects of a subsystem.

• Initialisation condition R(p). This is an assume-condition for stating prop-
erties describing the parameter values the subsystem expects.

• Pre-condition P (p, i). This conditions is an assume-condition for stating
pre-conditions on the input values from the environment.

• Invariants I. These conditions are guarantee-conditions for stating inter-
nal conditions (invariants) that the subsystem should maintain.

• Post-condition Q(p, i, o). This is again a guarantee-conditions giving the
conditions on the output that the subsystem guarantees.

The parameter values cannot depend on the signals in the subsystem and, there-
fore, the condition describing the parameters depends only on the parameter val-
ues. The environment cannot see anything inside the subsystem block. Hence,
the pre-condition can only state properties about the input signals. The invari-
ant condition can state properties about inputs, outputs and all internal signals.
Since a post-condition again guarantees a condition for the environment, it can
only state properties about the input and output signals of the block. Note that
it is here assumed that all signals used in the conditions have the same timing.
Contracts over signals with different timing is more complicated and require
special treatment.

To illustrate how contracts can be used to define the interfaces of compo-
nents, a contract is defined for the subsystem enabled by actual mode 1 in Figure
6. The subsystem uses constants AB and AB giving the areas of the A and B

sides of the piston. The input signals are pmin, pmax, F , pP , and ∆p. The block
computes the values of pAref and pBref . The following conditions can be given.

RM1(AA, AB)=̂(AB < AA)
PM1(pmin, pmax, F, pP , ∆p)=̂

(pmin < pmax ∧ pmin > 0 ∧ ∆p > 0 ∧ M1 feas(F, pP , ∆pmin)
QM1(pmin, pmax, pP , pAref , pBref )=̂

(pmin ≤ pAref ≤ pmax ∧ pmin ≤ pBref ≤ pmax∧
pP − pAref ≥ ∆pmin ∧ pBref ≥ ∆pmin)

(1)

The initialisation condition states that the piston area on the A side is greater
than the piston area on the B side, while the pre-condition states that actual
mode 1 is feasible. Furthermore, the post-condition states that pAref and pBref

are within limits pmin and pmax. Finally, in order to ensure controllability of
the system the pressure over the valves should not be smaller than ∆pmin.

There are several benefits in using Design by Contract in Simulink. Model
reuse is becoming more important and the contracts are useful for this purpose,
since they state the exact environment where the component is intended to work.
Since each component is accompanied by a contract, assumptions components
make about each other are clearly stated. This means that responsibility for
error handling becomes clearer. The developer is also forced to think more
about the interfaces of components and thereby inconsistencies can be identified
earlier in the design process. Erroneous components can be identified by finding
components that first broke a contract. The conditions used in the design
by contract gives concrete condition that can be checked during testing and
validation to ensure that the models work as intended. Design by contract
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also makes compositional verification possible, since we only need to show that
each component satisfies its contract and that the contracts between different
connected components are compatible.

Note that contracts (which are specifications) should not be confused with
error handling (which handles exceptional behaviour). A contract violation
always means that the system is incorrect. Error handling should be used to
ensure that the contracts can be maintained regardless of possible errors that
can occur.

5.2 Correctness of Models

Contracts can be used to define correctness of models. A model is correct if
it is impossible for contract violations to occur. Consider a subsystem block
C with assumption about parameters RC , pre-condition PC , invariant IC and
post-condition QC . Assume there are n blocks B1, . . . , Bn connected to the
inputs of C with assumption about parameters RB1, . . . , RBn, pre-conditions
PB1, . . . , PBn and post-conditions QB1, . . . , QBn. The correctness conditions
can be defined as follows:

Correctness of the Parameters of C. The parameters of C are correct if
RC holds for the parameter values.

Correctness of C. The block C is correct iff when RC holds for the parameter
values and PC holds for all input values so far, then IC and QC also hold.

Correct connection between components. The connections between blocks
B1, . . . , Bn and C is correct if, whenever the initialisation condition holds for
the parameters and the blocks Bi are assumed correct then the precondition of
C holds.

RC ∧
∧

1≤i≤n

(RBi ∧ PBi ∧ QBi) ⇒ PC (2)

Signals from a subsystem to itself should be avoided, since PC ⇒ PC is trivially
true. The condition PBi is also only needed, if QBi refers to the input of Bi.

Note, that this notion of correctness does not ensure that the model behaves
as desired, since contracts often do not capture all properties of the system. It
can also sometimes be difficult to derive contracts from the system requirements.
However, many types of errors can be found using contracts, such as interface
errors between subsystems and safety condition violations.

5.3 Implementation of Design by Contract in Simulink

Design by Contract can be implemented using the model validation blocks in
Simulink, which consists of different types of assertion blocks. These assertion
blocks can be used to give the contract conditions. The different types of condi-
tions need to be identifiable, since violations of them are interpreted in different
ways. One way to distinguish a block is to prefix the name of the block with
either Assume or Guarantee. Verification of assume conditions for parameters
are best implemented as a preprocessing step in Matlab.

Scalability suffers since, adding assert blocks to the model can make it more
cluttered and harder to read. To remedy this problem, the pre- and post-
conditions can be added to a separate contract library. Using the Matlab model
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constructions commands a validation model can be created from the original
model and the contracts. This model contains the pre- and post-conditions
inserted into the model in the appropriate places. Efficient and user friendly
implementation of contracts is still ongoing research.

To ensure that a model is correct, the correctness constraints have to be
satisfied. It is straightforward to ensure that no parameter assumption violations
exists. Since all parameters are constants, it is sufficient to check that these
constant values satisfy the conditions directly after they have been defined.
The most challenging problem is to show that a subsystem always satisfies its
invariant and post-condition. Tools such as ss2lus3 [21, 22] and the validation
tools for Lustre [23, 24] can be used. If no tool for for static verification exist
the subsystem need to be validated by testing. Valid test cases consists of any
input that satisfies the pre-condition. The post-condition and invariant are then
used as the acceptance test. The final condition is the correctness condition for
connections between subsystems, which consist of a logical formula. This means
that it is easier to verify the composition of subsystems than the correctness of
subsystems themselves.

6 Analytical Validation of the Mode-Switching

System

Design by contract is used to describe the assumption the subsystem selection of
control mode makes about its environment and what it guarantees. If the sub-
system conforms to the mode-automata architecture and the mode dependent
behaviour does not contain memory, it is possible to derive simple conditions
for the correctness. The memory requirement might seem very restrictive, but
often the memory is more naturally placed as a common part of all modes. If
no memory is present in mode specific behaviour it can also potentially reduce
problems with transients when switching modes.

6.1 Correctness conditions

To prove that the mode transition subsystem (i, o, p, f) satisfies its contracts
we derive conditions based on the behaviour in each mode and the transitions
between modes. Assume that mode m has behaviour given by the enabled sub-
system (im, om, pm, fm). Since the enabled subsystem m does not have memory,
the output is a function of the input and the parameters. The following cor-
rectness condition is then derived (see correctness of subsystems in Subsection
5.2).

Rm(pm) ∧ Pm(pm, im) ∧ (om = fm(pm, im)) ⇒ Qm(pm, im, om) (3)

The condition states that if the assumption about constants, the pre-condition
of the enabled subsystem and the function from input to output signal holds,
then so does the post-condition.

The transitions between modes are correct, if they guarantee that the pre-
conditions of the enabled subsystems associated with each mode holds. Assume
that there are l transitions with guards g1, . . . , gl into the mode m, and k outgo-
ing transitions with guards h1, . . . , hk. The pre-condition of a mode dependent

3ss2lus, VERIMAG, http://www-verimag.imag.fr/∼synchron/
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behaviour in mode m need to be guaranteed when the mode is entered and when
the mode is not exited. The condition for correct entry into a mode is given as:

Rm(pm) ∧ (
∨

1≤j≤l

gj(i)) ⇒ Pm(pm, im) (4)

This condition states that if a transition into the mode can be taken then the
pre-condition of the mode dependent behaviour holds. Note that the condition
is sufficient, but not necessary. The transition described by gj is not necessar-
ily taken if it is enabled, since there might be enabled transitions with higher
priority. The condition for correct stay in the mode can be given as follows:

Rm(pm) ∧ ¬(
∨

1≤j≤k

hj(i)) ⇒ Pm(pm, im) (5)

This condition states that if no transition leaving mode m can be taken, then
the pre-condition of the mode dependent behaviour holds. This condition can
be shown to be necessary and sufficient.

The post-condition Q of the entire mode switching block should be guaran-
teed independently of the mode m the system is in. This can be stated as the
condition:

∧

m

Rm(pm) ∧ Pm(pm, im) ∧ Qm(pm, im, om) ⇒ Q(p, i, o) (6)

All these conditions can be proved with a theorem provers such as e.g. PVS4.
However, automatic proofs often require that all conditions are linear inequali-
ties c1x1+. . .+cnxn ≤ d or linear equalities c1x1+. . .+cnxn = d combined with
the logical connectives ¬, ∧ and ∨. Satisfiability of other types of formulae are
in general not decidable. However, many model-checking techniques based on
abstractions or other validation techniques based on approximations can solve
other types of problems, as well. Usually these techniques are sound but not
complete. This means that if they state that a property is true, it is guaranteed
to be true. If they state that a property is false, it can be either true or false.

6.2 Example

As an example of how conditions can be derived from the Stateflow chart con-
sider actual mode 1 in Figure 5. The contract for the subsystem enabled in
this mode was given in Subsection 5.1, while the function computed by it is
described in detail in [2]. The function is here denoted by pAref , pBref =
fM1(F, pP , pmin, pmax, ∆pN) for brevity. The correctness of this enabled sub-
system is defined as follows.

RM1(AA, AB) ∧ PM1(pmin, pmax, F, pP , ∆pmin)∧
(pAref , pBref = fM1(F, pP , pmin, pmax, ∆pN ))
⇒ QM1(pmin, pmax, pP , pAref , pBref)

(7)

Every transitions into actual mode 1 should establish the pre-condition PM1 of
the corresponding enabled subsystem. The correctness of transitions into actual
mode 1 is defined by the following condition as can be seen from Figure 5 by
examining the guards of the transitions entering the mode.

(vref positive(vrC) ∧ M1 feas(F, pP , ∆pmin))∨
(¬M3a feas(F, pP , ∆pmin) ∧ M1 feas(F, pP , ∆pmin))
⇒ PM1(pmin, pmax, F, pP , ∆pmin)

(8)

4PVS specification and verification system, SRI International, http://pvs.csl.sri.com
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When there is no enabled transition leaving actual mode 1 then the precondition
of the enabled subsystem should also hold. When actual mode 1 is not exited
the following conditions can be derived by using the guards of the transitions
leaving the mode:

¬(vref NOT positive(vrC) ∨ ¬M1 feas(F, pP , ∆pmin)∨
(M3a feas(F, pP , ∆pmin) ∧Target mode 3a))
⇒ PM1(pmin, pmax, F, pP , ∆pmin)

(9)

Here Target mode 3a denotes that the target mode of the system is mode 3a. It
is possible to derive the condition corresponding to the system being in this mode
using the information about transitions to and from the mode. The condition
is for brevity not shown here, but guard conditions for the transitions can be
found in [2].

The conditions have been checked with the PVS theorem prover. The con-
ditions are not linear if pmin, pmax and ∆p are considered to be variables.
However, they are actually constants in the application. If the constant val-
ues are used the conditions are linear and the validity of the conditions can be
automatically proved.

7 Conclusions

This paper presented a controller architecture for mode based systems and tech-
niques for reason about correctness of Simulink/Stateflow models. The tech-
niques were illustrated by a controller for a digital hydraulics system. First,
an architecture based on mode-automata that separated signal processing from
control logic was introduced. Signal processing was implemented in Simulink,
while control logic was implemented in Stateflow. To reason about model cor-
rectness the concept of design by contract was used. Each subsystem in the
Simulink model can be specified by a contract in order to describe its interface
to the environment. Assume guarantee reasoning about the correctness of the
system using the contracts were then presented. Finally, a technique to analyt-
ically derive correctness conditions for the mode switching system based on the
contracts was presented.

The contracts encourage the developer to more carefully design the interface
between different subsystems, as well as explicitly write down assumptions that
the subsystems rely on. This makes the models more robust and easier to reuse.
The assume-guarantee style reasoning gives precise rules for how subsystems
can be connected to each other. The contract also provides conditions that
each component should satisfy. This gives acceptance conditions when creating
unit tests for the subsystems.

As future work, the design by contract method will be extended to consider
refinement [25] of Simulink models. This will provide a comprehensive frame-
work to reason about model correctness. Refinement also enables development
of models in smaller manageable parts. Tools that support this process and
improve usability of design by contract are also under development.

Safety and reliability of the software used for control of machines are very
important properties. To achieve high quality of the software in a timely fashion,
adequate software development techniques are needed. This paper presented
techniques for structuring a mode based controller, as well as reasoning about
correctness of the Simulink/Stateflow models. Using these methods and ideas
the quality and reliability of the software can be significantly improved.
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