
Alexander Okhotin

Unambiguous Boolean grammars

TUCS Technical Report
No 802, January 2007

Unambiguous Boolean grammars

Alexander Okhotin
Academy of Finland, and
Department of Mathematics, University of Turku, Turku, Finland, and
Turku Centre for Computer Science
alexander.okhotin@utu.fi

TUCS Technical Report

No 802, January 2007

Abstract

Boolean grammars are an extension of context-free grammars, in which all
propositional connectives can be explicitly used in the rules. In this paper,
the notion of ambiguity in Boolean grammars is defined. It is shown that
the known transformation of a Boolean grammar to the binary normal form
preserves unambiguity, and that every unambiguous Boolean language can
be parsed in time O(n2). Linear conjunctive languages are shown to be
unambiguous, while the existence of languages inherently ambiguous with
respect to Boolean grammars is left open.

Keywords: ambiguity, parsing, Boolean grammars, conjunctive grammars,
language equations

TUCS Laboratory
Discrete Mathematics for Information Technology

1 Introduction

Unambiguous context-free grammars are those that define a unique parse tree
for every string they generate, that is, a syntactic structure is unambiguously
assigned to every grammatical sentence.

A theoretical study of this class of grammars was carried out already in
the first years of formal language theory. The undecidability of the problem
whether a given context-free grammar is ambiguous was first proved by Floyd
[4], while Greibach [7] extended this result to one-nonterminal linear context-
free grammars. Some properties of unambiguous languages were determined
by Ginsburg and Ullian [6]. In the later years a sophisticated theory was
developed around the notion of ambiguity, leading, in particular, to deep
results on the degree of ambiguity recently obtained by Wich [23].

As compared to context-free grammars of the general form, unambiguous
context-free grammars are notable for their lower parsing complexity. A
logarithmic-time parallel algorithm was proposed by Rytter [21], and later
improved by Rossmanith and Rytter [20]. An adaptation of the well-known
Cocke–Kasami–Younger algorithm for unambiguous grammars developed by
Kasami and Torii [10] works in square time, while Earley’s [3] algorithm
achieves square-time performance on unambiguous grammars without any
special modifications. The subclasses of even lower parsing complexity, the
LR(k) and LL(k) context-free grammars, are notable for being the most
practically used families of formal grammars.

This paper is the first to consider the notion of ambiguity in Boolean
grammars [16], which are an extension of context-free grammars with explicit
propositional connectives. Besides giving a greater freedom of constructing
grammars, Boolean grammars are capable of specifying many non-context-
free languages [16], as well as a simple model programming language [17].
On the other hand, the extended expressive power of Boolean grammars
does not increase the complexity of parsing, which can still be done in time
O(n3) using variants of Cocke–Kasami–Younger and Generalized LR [16, 19].

These results give a hope that Boolean grammars could be useful in prac-
tice, and it is worthwhile to investigate the unambiguous subclass of these
grammars. Following an overview of the family of Boolean grammars given
in Section 2, a definition of ambiguity for this family is given in Section 3.
Ambiguity in the choice of a rule means that two distinct rules for some non-
terminal can produce the same string; it is shown that this kind of ambiguity
can be effectively eliminated in a given grammar. Ambiguity of concatenation
means multiple factorizations of some string according to the body of some
rule. A grammar is unambiguous if neither type of ambiguity occurs.

Given this definition, Section 4 reconsiders the known transformation of
a Boolean grammar to a normal form, and it is shown that if the given
grammar is unambiguous, then the resulting grammar in the normal form
will be unambiguous as well. This result is useful for establishing an upper

1

bound on parsing complexity for unambiguous Boolean grammars, which is
done in Section 5, where a new parsing algorithm for Boolean grammars in the
normal form is obtained. The algorithm can be regarded as another variant
of the Cocke–Kasami–Younger algorithm, obtained by refactoring both its
data structures and its loops. Finally, the family of languages generated by
unambiguous Boolean grammars is considered in Section 6 and compared
to the related families. Some candidates for being inherently ambiguous
languages are presented.

2 Boolean grammars

Definition 1 ([16]). A Boolean grammar is a quadruple G = (Σ, N, P, S),
where Σ and N are disjoint finite nonempty sets of terminal and nonterminal
symbols respectively; P is a finite set of rules of the form

A → α1& . . . &αm&¬β1& . . . &¬βn, (1)

where m+n > 1, αi, βi ∈ (Σ∪N)∗; S ∈ N is the start symbol of the grammar.

For each rule (1), the objects A → αi and A → ¬βj (for all i, j) are
called conjuncts, positive and negative respectively; the set of all conjuncts
is denoted conjuncts(P). Conjuncts of unknown sign will be referred to as
unsigned conjuncts, and denoted A → ±αi and A → ±βj, Let uconjuncts(P)
be the set of all unsigned conjuncts.

A Boolean grammar is called a conjunctive grammar [13], if negation is
never used, that is, n = 0 for every rule (1). It is a context-free grammar
if neither negation nor conjunction are allowed, that is, m = 1 and n = 0
for each rule. Another important particular case of Boolean grammars is
formed by linear conjunctive grammars, in which every conjunct is of the
form A → uBv or A → w, where u, v, w ∈ Σ∗, w ∈ N . (1). Linear
conjunctive grammars are equal in power to linear Boolean grammars with
conjuncts A → ±uBv or A → w, as well as to trellis automata, also known
as one-way real-time cellular automata [2, 14]. The relation between these
families and other common families of formal languages is shown in Figure 1,
where arrows indicate inclusions, proper unless labelled by a question mark.

Figure 1: The hierarchy of language families.

2

Intuitively, a rule (1) of a Boolean grammar can be read as follows: every
string w over Σ that satisfies each of the syntactical conditions represented
by α1, . . . , αm and none of the syntactical conditions represented by β1, . . . ,
βm therefore satisfies the condition defined by A. Though this is not yet a
formal definition, this understanding is sufficient to construct grammars.

Example 1. The following grammar generates the language {anbncn |n > 0}:

S → AB&DC

A → aA | ε

B → bBc | ε

C → cC | ε

D → aDb | ε

This grammar, which is actually conjunctive, represents this language as
an intersection of two context-free languages:

{anbncn | n > 0}︸ ︷︷ ︸
L(S)

= {aibjck | j = k}︸ ︷︷ ︸
L(AB)

∩{aibjck | i = j}︸ ︷︷ ︸
L(DC)

A related non-context-free language can be specified by inverting the sign
of one of the conjuncts in this grammar.

Example 2. The following Boolean grammar generates the language
{ambncn |m,n > 0,m 6= n}:

S → AB&¬DC

A → aA | ε

B → bBc | ε

C → cC | ε

D → aDb | ε

This grammar is based upon the following representation.

{anbmcm |m,n > 0,m 6= n}︸ ︷︷ ︸
L(S)

= {aibjck | j = k and i 6= j} = L(AB) ∩ L(DC)

Let us now consider formal definitions of the language generated by a
Boolean grammar, which can be given in several different ways [11, 16].
Each definition departs, explicitly or implicitly, from the interpretation of a
grammar as a system of equations with formal languages as unknowns:

Definition 2. Let G = (Σ, N, P, S) be a Boolean grammar. The system
of language equations associated with G is a resolved system of language

3

equations over Σ in variables N , in which the equation for each variable
A ∈ N is

A =
⋃

A→α1&...&αm&¬β1&...&¬βn∈P

[m⋂
i=1

αi ∩
n⋂

j=1

βj

]
(2)

Each instance of a symbol a ∈ Σ in such a system defines a constant language
{a}, while each empty string denotes a constant language {ε}. A solution
of such a system is a vector of languages (. . . , LC , . . .)C∈N , such that the
substitution of LC for C, for all C ∈ N , turns each equation (2) into an
equality.

The semantics of the special case of conjunctive and context-free gram-
mars is easy to define [13], because in the absence of negation a system (2)
always has a least solution with respect to componentwise inclusion.

This is no longer the case for Boolean grammars of the general form, for
which this system may have no solutions or multiple pairwise incomparable
solutions. If there are no solutions, the grammar is always considered invalid,
and if there are solutions, there is a room for interpretation: one of these
solutions can be deemed “the right one” and used to define the semantics,
or the grammar could also be considered invalid. Different ways of settling
this question are known as semantics for Boolean grammars [11, 16].

Definition 3. A semantics of Boolean grammars is a certain law, according
to which some quadruples G = (Σ, N, P, S) as in Definition 1 are consid-
ered well-formed grammars, and for every such quadruple, a certain solu-
tion (. . . , LC , . . .) of the associated system of language equations is speci-
fied. Then, for every A ∈ N , the language LG(A) is defined as LA (with
respect to this semantics). This notation is extended to any expressions
formed of terminal and nonterminal symbols, concatenation and Boolean op-
erations as follows: LG(ε) = {ε}, LG(a) = {a}, LG(ψ | ξ) = LG(ψ)∪LG(ξ),
LG(ψ&ξ) = LG(ψ) ∩ LG(ξ), LG(¬ψ) = LG(ψ), LG(ψ · ξ) = LG(ψ) · LG(ξ).
The language generated by the grammar is L(G) = LG(S).

A requirement that naturally comes to mind is the uniqueness of a so-
lution. However, the resulting class of languages is too broad to be useful:
it is known that every recursive language can be represented as a unique
solution of such a system [16], and the way it is represented contradicts the
intuitive semantics of Boolean grammars given above. In order to give a
satisfactory formal definition of Boolean grammars, some stronger condition
must be assumed [16].

The most straightforward semantics is defined by the following condition
of strong uniqueness of a solution. Other semantics have also been consid-
ered [11, 16], but these details of formal definition are beyond the scope of
this paper.

4

Definition 4. Let G = (Σ, N, P, S) be a Boolean grammar, let (2) be the as-
sociated system of language equations. Suppose that for every finite language
M ⊂ Σ∗ (such that for every w ∈ M all substrings of w are also in M) there
exists a unique vector of languages (. . . , LC , . . .)C∈N (LC ⊆ M), such that a
substitution of LC for C, for each C ∈ N , turns every equation (2) into an
equality modulo intersection with M .

Let us now define parse trees for Boolean grammars [16]. These are,
strictly speaking, finite acyclic graphs rather than trees. A parse tree of
a string w = a1 . . . a|w| from a nonterminal A contains a leaf labelled ai for
every i-th position in the string; the rest of the vertices are labelled with rules
from P . The subtree accessible from any given vertex of the tree contains
leaves in the range between i + 1 and j, and thus corresponds to a substring
ai+1 . . . aj. In particular, each leaf ai corresponds to itself.

For each vertex labelled with a rule

A → α1& . . . &αm&¬β1& . . . &¬βn

and associated to a substring ai+1 . . . aj, the following conditions hold:

1. It has exactly |α1 . . . αm| direct descendants corresponding to the sym-
bols in positive conjuncts. For each nonterminal in α1 . . . αm, the cor-
responding descendant is labelled with some rule for that nonterminal,
and for each terminal a ∈ Σ, the descendant is a leaf labelled with a.

2. For each t-th positive conjunct of this rule, let αt = s1 . . . s`. There
exist numbers i1, . . . , i`−1, where i = i0 6 i1 6 . . . 6 i`−1 6 i` = j, such
that each descendant corresponding to sr encompasses the substring
air−1+1 . . . air .

3. For each t-th negative conjunct of this rule, ai+1 . . . aj /∈ LG(βt).

The root is the unique node with no incoming arcs; it is labelled with any
rule for the nonterminal A, and all leaves are reachable from it. To consider
the uniqueness of a parse tree for different strings, it is useful to assume that
only terminal leaves can have multiple incoming arcs.

The condition 3 ensures that the requirements imposed by negative con-
juncts are satisfied. However, nothing related to these negative conjuncts is
reflected in the actual trees. For some grammars, this effectively means that
the tree does not convey any information. Consider the following example.

Example 3 (cf. [16, Example 4]). The language {a2n | n > 0} is generated

5

by the following Boolean grammar:

S → A&¬aA | aB&¬B | aC&¬C

A → aBB

B → E&¬CC

C → E&¬DD

D → E&¬A

E → aE | ε

Looking at the positive conjuncts in this grammar, it can be seen that
the parse tree of any a2n

from S reflects only the decomposition of the string
as aE or aEE, which has no meaning. However, this is quite an artificial
grammar, while in more common cases, such as in Example 2, the parse tree
contains useful partial information.

3 Defining ambiguity

Unambiguous context-free grammars can be defined in two ways:

1. for every string generated by the grammar there is a unique parse tree
(in other words, a unique leftmost derivation);

2. for every nonterminal A and for every string w ∈ L(A) there exists
a unique rule A → s1 . . . s`, such that w ∈ L(s1 . . . s`), and a unique
factorization w = u1 . . . u`, such that ui ∈ L(si).

Assuming that L(A) 6= ∅ for every nonterminal A, these definitions are
equivalent.

The first definition becomes useless in the case of Boolean grammars,
because the parse tree does not reflect the full information about the mem-
bership of the string in the language (negative conjuncts are not accounted
for). The requirement of parse tree uniqueness can be trivially satisfied as
follows. Given any grammar G over an alphabet Σ = {a1, . . . , am} and with a
start symbol S, one can define a new start symbol S ′ and additional symbols
Ŝ and A, with the following rules:

S ′ → A&¬Ŝ

Ŝ → A&¬S

A → a1A | . . . | amA | ε

This grammar generates the same language, and every string in L(G) has a
unique parse tree, which reflects only the nonterminal A and hence bears no
essential information.

Let us generalize the second approach to defining ambiguity.

6

Definition 5. A Boolean grammar G = (Σ, N, P, S) is said to be unambigu-
ous if

I. Different rules for every single nonterminal A generate disjoint lan-
guages, that is, for every string w there exists at most one rule

A → α1& . . . &αm&¬β1& . . . &¬βn,

such that w ∈ LG(α1) ∩ . . . ∩ LG(αm) ∩ LG(β1) ∩ . . . ∩ LG(βn).

II. All concatenations are unambiguous, that is, for every conjunct A →
±s1 . . . s` and for every string w there exists at most one factorization
w = u1 . . . u`, such that ui ∈ LG(si) for all i.

Note that this definition is applicable to any semantics of Boolean gram-
mars, as long as LG(γ) is defined according to Definition 3.

For instance, both grammars in Examples 1 and 2 are unambiguous. To
see that condition II is satisfied with respect to the conjunct S → AB,
consider that a factorization w = uv, where u ∈ L(A) and v ∈ L(B), implies
that u = a∗ and v ∈ b∗c∗, so the boundary between u and v cannot be moved.
The same argument applies to the conjuncts S → DC and S → ¬DC.
Different rules for each of A,B,C,D clearly generate disjoint languages.

On the other hand, the grammar in Example 3 is ambiguous. To see
this, consider the string w = aa and the conjunct A → aBB: there exist
factorizations w = a · ε · a and w = a · a · ε, where ε, a ∈ L(B), so the
concatenation {a} · L(B) · L(B) is ambiguous.

Though, as mentioned above, the uniqueness of a parse tree does not
guarantee that the grammar is unambiguous, the converse holds:

Proposition 1. For any unambiguous Boolean grammar, for any nontermi-
nal A ∈ N and for any string w ∈ LG(A), there exists a unique parse tree of
w from A (assuming that only terminal nodes may have multiple incoming
arcs).

Another thing to note is that the first condition in the definition of unam-
biguity can be met for every grammar using simple transformations. Consider
any nonterminal A and assume each of its rules consists of a single positive
conjunct, that is, its rules are

A → α1 | . . . | αn (where αi ∈ (Σ ∪N)∗) (3)

There is no loss of generality in this assumption, because any rule for A can
be replaced with a rule of the form A → A′, where A′ is a new nonterminal
with a single rule replicating the original rule for A. Then the rules (3) can be

7

replaced with the following n rules, which clearly generate disjoint languages:

A → α1

A → α2&¬α1

A → α3&¬α1&¬α2
...

A → αn&¬α1&¬α2& . . . &¬αn−1

(3′)

If this transformation is applied to every nonterminal, the resulting gram-
mar will satisfy condition I. Additionally, condition II, if it holds, will be
preserved by the transformation.

Proposition 2. For every Boolean grammar there exists a Boolean gram-
mar generating the same language, for which the condition I is satisfied. If
the original grammar satisfies the condition II, then so will the constructed
grammar.

This property does not hold for context-free grammars. Consider the
standard example of an inherently ambiguous context-free language:

{aibjck | i, j, k > 0, i = j or j = k}.

Following is the most obvious ambiguous context-free grammar generating
this language:

S → AB | DC
A → aA | ε
B → bBc | ε
C → cC | ε
D → aDb | ε

The condition II is satisfied for the same reasons as in Examples 1 and 2. On
the other hand, the condition I is failed for the nonterminal S and for strings
of the form anbncn, which can be obtained using each of the two rules, and
this is what makes this grammar ambiguous.

If the above context-free grammar is regarded as a Boolean grammar (am-
biguous as well), then the given transformation disambiguates it in the most
natural way by replacing the rules for the start symbol with the following
rules:

S → AB | DC&¬AB .

We have thus seen that ambiguity in the choice of a rule represented
by condition I can be fully controlled in a Boolean grammar, which is a
practically very useful property not found in the context-free grammars. On
the other hand, ambiguity of concatenations formalized in condition II seems
to be, in general, beyond such control.

8

4 Normal forms

Definition 6. A Boolean grammar is said to be in the binary normal form
[16], if all of its rules are of the form

A → B1C1& . . . &BmCm&¬D1E1& . . . &¬DnEn&¬ε (m > 1, n > 0)

A → a

S → ε (only if S does not appear in right-hand sides of rules)

It is known that every Boolean grammar can be transformed to an equiv-
alent grammar in the binary normal form [16]. Let us refine this result by
showing that this known transformation converts an unambiguous Boolean
grammar to an unambiguous grammar in the normal form.

The transformation of a Boolean grammar G = (Σ, N, P, S) to the binary
normal form proceeds as follows. For every s1 . . . s` ∈ (Σ ∪N)∗, denote

ρ(s1 . . . s`) = {si1 . . . sik | k > 1, 1 6 i1 < . . . < ik 6 `, and

j /∈ {i1, . . . , ik} implies ε ∈ LG(sj)}

At the first step, a new grammar G1 = (Σ, N, P1, S) is constructed, where,
for every rule

A → α1& . . . &αm&¬β1& . . . &¬βn,

from P , in which ρ(αi) = {µi1, . . . , µiki
} and ρ(βj) = {νj1, . . . , νj`j

}, the set
P1 contains a rule

A → µ1t1& . . . &µmtm&¬ν11& . . . &¬ν1`1& . . . &¬νn1& . . . &¬ν1`n&¬ε,

for every vector of numbers (t1, . . . , tm) (1 6 ti 6 ki for all i). It is known
that, for every A ∈ N , LG1(A) = LG(A) \ {ε} [16].

At the second step, another Boolean grammar G2 = (Σ, N, P2, S) is con-
structed on the basis of G1. This grammar is free of unit conjuncts of the
form A → ±B. The most important property of the constructed grammar is
as follows. Let R = {γ | A → ±γ ∈ uconjuncts(P1), γ /∈ N} = {η1, . . . , η`}.
Then every rule in P2 is of the general form

A → α1& . . . &αm&¬β1& . . . &¬βn,

where {α1, . . . , αm, β1, . . . , βn} = R
(4)

In other words, the body of every conjunct in P1 appears either positively or
negatively in every rule in P2.

The rest of the transformation is obvious. At the third step, every “long”
conjunct of the form A → ±sα, where s ∈ Σ∪N and |α| > 2, is shortened by
adding a new nonterminal A′ with a rule A′ → α and by replacing the body
of the original conjunct with sA′. This is done until every conjunct is either
A → ±α with |α| = 1, 2 (where |α| = 1 implies α = a ∈ Σ) or A → ¬ε.

9

Let G3 = (Σ, N ∪ N ′, P3, S) be the resulting grammar; obviously, L(G3) =
L(G2). At the final fourth step every conjunct A → ±as or A → ±sa, where
a ∈ Σ and s ∈ Σ ∪ N , has its body replaced with Xas or sXa, respectively,
where Xa is a new nonterminal with a rule Xa → a. The resulting grammar
G4 = (Σ, N ∪N ′ ∪N ′′, P4, S) generates the same language L(G4) = L(G3).

The following property of this transformation is important for this paper.

Lemma 1. Let G = (Σ, N, P, S) be a Boolean grammar compliant to the
semantics of strongly unique solution, assume LG(A) 6= ∅ for any A ∈ N .
Let G1, G2, G3 and G4 be obtained from G by the above construction. Then

• The grammar G2, as well as the subsequent grammars obtained, satis-
fies condition I from the definition of an unambiguous grammar.

• If G satisfies condition II, then each grammar obtained satisfies condi-
tion II.

Proof. Let us first prove that the grammar G2 satisfies condition I. Assume
the contrary, then for some A ∈ N there exist two distinct rules of the form
(4), such that some string w ∈ Σ∗ can be obtained from either rule. Both
rules are formed from the same set of unsigned conjuncts, but some of them
may have different signs in different rules. Since the rules are distinct, at least
one pair of conjuncts with different signs should exist; let one rule contain a
conjunct A → γ and let the other contain A → ¬γ. Each rule generates w by
assumption, and hence w ∈ L(γ) and w /∈ L(γ), which forms a contradiction.

It is easy to see that condition I is preserved in the transformation of
G2 to G3 and G4. For each nonterminal A ∈ N , there is a one-to-one cor-
respondence between rules for A in P2 and in P3 (or in P4), such that the
corresponding rules generate the same languages, and thus these languages
remain disjoint. Each of the new nonterminals in N ′ and N ′′ has a unique
rule, so condition I is again met.

Now assume G satisfies condition II, and let us prove that each step
of the transformation preserves this property. Consider the first step. For
every A → ±s1 . . . s` ∈ uconjuncts(P), uconjuncts(P1) contains every A →
±si1 . . . sik , such that k > 1, 1 6 i1 < . . . < ik 6 ` and for every j in
{1, . . . , `} \ {i1, . . . , ik}, ε ∈ LG(sj). Every conjunct in G1 is formed in this
way, with the exception of A → ¬ε. Consider any two representations of any
string as LG1(si1) · . . . · LG1(sik):

w = ui1 . . . uik = vi1 . . . vik (where uit , vit ∈ LG1(sit) for all t) (5)

Consider that LG1(sij) ⊆ LG(sij), and define uj = vj = ε ∈ LG(sj) for all
j ∈ {1, . . . , `} \ {i1, . . . , ik}. Then u1 . . . u` = v1 . . . v` = w, and since G
satisfies condition II, uj = vj for all j ∈ {1, . . . , `}. Hence, the factorizations
(5) are actually the same, and, since the choice of the conjunct and the string
was arbitrary, G1 satisfies condition II.

10

In the next phase, when G1 is converted to G2, no new conjunct bodies are
created, and thus condition II is trivially preserved. The conversion of G2 to
G3 is a series of elementary steps, and it is sufficient to prove the correctness
of one such step. Let Ĝ be a grammar with a conjunct A → ±s1s2 . . . s`, and
let G̃ be constructed by replacing this conjunct with A → ±s1A

′, where A′

is a new nonterminal with the rule A′ → s2 . . . s`.
Suppose some string w ∈ Σ∗ can be represented as w = u2 . . . u` =

v2 . . . v`, where uj, vj ∈ LG̃(sj) = LĜ(sj) for j = 2, . . . , `. Since it is assumed
that LĜ(s1) 6= ∅, there exists a string x ∈ LĜ(s1). Let u1 = v1 = x, then the
string xw can be represented as xw = u1u2 . . . u` = v1v2 . . . v`, where uj, vj ∈
LĜ(sj) for j = 1, . . . , `. By assumption, Ĝ satisfies condition II, hence uj = vj

for all j, and hence the given factorization of w as LG̃(s2) · . . . · LG̃(s`) is
unambiguous.

Consider the other case of a conjunct A → ±s1A
′. Suppose some string

w ∈ Σ∗ can be represented as w = u1u
′ = v1v

′, where u1, v1 ∈ LG̃(s1)
and u′, v′ ∈ LG̃(A′) Since LG̃(A′) = LĜ(s2 . . . s`), there exist factorizations
u′ = u2 . . . u` and v′ = v2 . . . v`, where uj, vj ∈ LĜ(sj) for j = 2, . . . , ` Thus
we obtain two factorizations of w as w = u1u2 . . . u` = v1v2 . . . v`, such that
uj, vj ∈ LĜ(sj) for j = 1, . . . , `. Since Ĝ satisfies condition II, this implies
u1 = v1 and hence u′ = v′. This completes the proof that G2 satisfies
condition II.

In the final step, a conjunct A → ±as is replaced with A → ±Xas, where
Xa generates {a}, and A → ±sa is treated similarly. The factorizations as
and Xas are the same with respect to ambiguity.

Theorem 1. For every Boolean grammar there exists and can be effectively
constructed a Boolean grammar in the binary normal form (as in Defini-
tion 6) generating the same language. If the original Boolean grammar is
unambiguous, then so will be the constructed Boolean grammar.

5 Parsing unambiguous languages

One of the important properties of unambiguous context-free grammars is
efficient parsing. Some cubic-time algorithms for general context-free gram-
mars work in square time in the unambiguous case [3, 10]. Similarly, log-
square-time parallel algorithms can be sped up to logarithmic time [21]. As
we shall see later on, Rytter’s [21] parallel algorithm is very unlikely to have
an analogue for unambiguous Boolean grammars.

On the other hand, the idea behind Earley’s [3] argument that his algo-
rithm works in square time for unambiguous context-free grammars is gen-
erally applicable to parsing algorithms for Boolean grammars, provided that
the data flow inside the algorithm arranges for different conjuncts of the same
rule to be considered together. If the grammar contains a rule A → α&β,
and it holds that u ∈ LG(α) and u ∈ LG(β) for some substring u of the input

11

string, then the algorithm should determine the membership of u in LG(α)
and in LG(β) at the same time, so that u ∈ LG(A) could be deduced. Since
no such property is required for context-free grammars, Earley’s algorithm
can consider u ∈ LG(α) and u ∈ LG(β) (for a grammar containing the rules
A → α and A → β) at different times. Therefore, a parsing algorithm for
unambiguous Boolean grammars has to be constructed from scratch.

The proposed algorithm is applicable to all Boolean grammars in the
binary normal form, as in Definition 6. In view of Theorem 1, there is no loss
of generality in this assumption. The algorithm uses dynamic programming
to construct a two-dimensional table E indexed by positions in the input and
nonterminals. Each entry of this table assumes the value of a set of positions
in the input string, which are stored as a list in an ascending order. The
element corresponding to a position k (1 6 k 6 n) and a nonterminal A ∈ N
is denoted Ek[A]. By definition, i should be in Ek[A] if and only if 0 6 i < k
and ai+1 . . . ak ∈ LG(A). In the end of the computation, each list Ek[A] will
contain exactly these numbers. Then, accordingly, the entire string a1 . . . an

is in L(G) if and only if the position 0 is in En[S].

Algorithm 1. Let G = (Σ, N, P, S) be a Boolean grammar in binary normal
form. For every X ⊆ conjuncts(G), define

f(X) = {A | ∃A → B1C1& . . . &B`C`&¬D1E1& . . . &¬DmEm&¬ε ∈ P,

such that A → B1C1, . . . , A → B`C` ∈ X and

A → ¬D1E1, . . . , A → ¬DmEm /∈ X}

Let w = a1 . . . an, where n > 1 and ai ∈ Σ, be an input string. For all
j ∈ {1, . . . , n}, let Ej[A] be a variable ranging over subsets of {0, . . . , j − 1};
for all k ∈ {0, . . . , n−1}, T [k] ranges over subsets of uconjuncts(P).

1: let Ej[A] = ∅ for all j = 1, . . . , n and A ∈ N
2: for j = 1 to n do
3: for all all A ∈ N do
4: if A → aj ∈ P then
5: Ej[A] = {j − 1}
6: else
7: Ej[A] = ∅
8: let T [k] = ∅ for all k (0 6 k < j − 1)
9: for k = j − 1 to 1 do

10: for all A → ±BC ∈ uconjuncts(P) do
11: if k ∈ Ej[C] then
12: for all i ∈ Ek[B] do
13: T [i] = T [i] ∪ {A → ±BC}
14: for all A ∈ f(T [k − 1]) do
15: Ej[A] = Ej[A] ∪ {k − 1}
16: accept iff 0 ∈ En[S]

12

Each Ej[A] is stored as a list, with elements sorted in an ascending order.
The operations on this data structure are implemented as follows:

Lines 1, 5 and 7: A one-element list or an empty list is created.

Line 11: The first element in the list is checked. If it is not k, it is assumed
that k is not in the list.

Line 12: The list is traversed.

Line 15: The new element is inserted in the beginning of the list.

Line 16: As in line 11, only the first element is checked.

The goal of each j-th iteration of the outer loop (line 2) is to determine,
for all A ∈ N , the membership in LG(A) of substrings of the input string
ending at its j-th position. This information is stored in Ej[A]. The first
nested loop in lines 3–7 handles substrings of length 1, that is, it records in
Ej[A] whether aj is in LG(A). Substrings of greater length ending at the j-th
position are processed in the second nested loop by k (line 9).

This loop constructs an auxiliary data structure T : for each i ∈ {0, . . . , j−
2}, T [i] is meant to contain all conjuncts A → ±BC, such that the substring
starting from the position i + 1 and ending at the position j is in LG(BC).
Every k-th iteration of this loop, denoted (j, k), considers substrings of var-
ious length starting at any position i + 1 ∈ {1, 2, . . . , k} and ending at the
position j. The goal is to determine all such substrings, which belong to
LG(BC) for some unsigned conjunct A → ±BC, and in which the middle
point in their factorization into u ∈ LG(B) and v ∈ LG(C) is exactly k + 1,
that is, the first part u ends at the position k and the second part v starts at
the position k +1. These substrings uv are identified by first considering the
appropriate unsigned conjunct, then checking the membership of the second
substring in LG(C) (line 11), and finally by enumerating all appropriate first
parts using the data in Ek[B].

This is used to fill the elements of T , namely T [k− 1], T [k− 2], . . . , T [0],
with appropriate conjuncts. An element T [k − 1] gets completely filled in
course of iteration (j, k), and at this point the set of nonterminals generating
the substring starting from the position k and ending at the position j can
be obtained as f(T [k − 1]), which is done in lines 14–15.

To verify the algorithm’s correctness, there are three properties to estab-
lish: first, that the given implementation of Ej[A] by lists faithfully represents
the high-level set operations. Second, it has to be shown that the algorithm
is a correct recognizer, that is, it accepts w if and only if w ∈ L(G). Third,
it remains to demonstrate that the algorithm works in time O(n2) on every
unambiguous grammar.

Let us see that, indeed, the lists Ej[A] stay sorted in course of the com-
putation, and the tests in lines 11, 16 and the insertion in line 15 can be
implemented as described.

13

Lemma 2. Each list Ej[A] always remains sorted. Each time the algorithm
checks the condition in line 11, every set Ej[A] does not contain elements less
than k. Each time the algorithm is about to execute line 15, the set Ej[A]
does not contain elements less than k.

Proof. An element k − 1 (1 6 k < j) can be added to Ej[A] only at the
iteration (j, k). Hence, in the beginning of each iteration (j, k) the current
value of Ej[A] is a subset of {k, k+1, . . . , j−1}. As a result, if Ej[A] is sorted
before the assignment in line 15, it remains sorted after the assignment. All
three claims follow.

Let us continue with the correctness statement of the algorithm, which
claims what values should the variables have at certain points of the compu-
tation.

To unify the notation, let us refer to the point before the iteration j = 1,
that is, to the very beginning of the execution, as “after the iteration 0”.
Similarly, the point before the iteration (j, k = j−1), that is, inside iteration
j right before the loop by k is entered, will be referred to as “after the iteration
(j, j)”. Then the statement of correctness can be succinctly formulated as
follows:

Lemma 3 (Correctness of Algorithm 1). For every Boolean grammar in the
binary normal form, in the computation of the above algorithm on a string
w ∈ Σ+,

i. after iteration j, for each A ∈ N and for each t ∈ {1, . . . , j}, the set
Et[A] equals

{i | 0 6 i < t and ai+1 . . . at ∈ LG(A)}; (6)

ii. after iteration (j, k), every Ej[A] (A ∈ N) equals

{i | k − 1 6 i < j and ai+1 . . . aj ∈ LG(A)}; (7)

iii. after iteration (j, k), every T [i] (0 6 i < j) equals

{A → ±BC|∃`(k 6 ` < j) : ai+1 . . . a` ∈ L(B) and a`+1 . . . aj ∈ L(C)}.
(8)

Proof. The proof is by a nested induction corresponding to the structure of
the loops. The outer claim (i) is proved by induction on j.

Basis: the beginning of the execution is the point “after iteration j = 0”,
when each Ej[A] equals ∅. Here claim (i) trivially holds, because there are
no applicable ts.

Induction step: It has to be proved that every j-th iteration of the outer
loop effectively assigns

Ej[A] = {i | 0 6 i < j and ai+1 . . . aj ∈ LG(A)} (for every A ∈ N).

To prove this, an inner induction is used to establish claims (ii–iii).

14

Basis, k = j: The point “after iteration (j, j)” is reached when lines 3–8
have been executed, and the nested loop by k is about to be entered.
Let us substitute k = j into claim (ii):

{i| j − 1 6 i < j︸ ︷︷ ︸
i=j−1

and ai+1 . . . aj︸ ︷︷ ︸
aj

∈ LG(A)} =

{
∅, if aj /∈ LG(A)

{j − 1}, if aj ∈ LG(A)

Since the grammar is in the normal form, ai ∈ LG(A) if and only if A →
ai ∈ P , and hence the lines 3–7 assign the appropriate values. A similar
substitution of k = j into claim (iii) results in {A → ±BC | ∃` (j 6
` < j) : 〈. . .〉} = ∅, which is consistent with line 8.

Induction step k + 1 → k (j > k > 1): Assume iterations (j, j−1), (j, j−
2), . . . , (j, k+2), (j, k+1), have already been executed, and the iteration
(j, k) has just started, in which line 10 is about to be executed. By the
(inner) induction hypothesis, at this point, for each A ∈ N ,

Ej[A] = {i | k 6 i < j and ai+1 . . . aj ∈ LG(A)}, (9)

while for each i,

T [i] = {A → ±BC | there exists ` (k + 1 6 ` < j), such that

ai+1 . . . a` ∈ L(B) and a`+1 . . . aj ∈ L(C)}.

Let us first show that the execution of lines 10–13 sets every T [i] to
(8). It has to be proved that an unsigned conjunct A → ±BC is added
to T [i] if and only if ai+1 . . . ak ∈ L(B) and ak+1 . . . aj ∈ L(C).

Suppose these statements hold. Then, according to the outer induction
hypothesis, i ∈ Ek[B] (since k < j), and by (9), k ∈ Ej[C]. Therefore,
once the conjunct A → ±BC is considered in line 10, the condition in
line 11 will be true, then the loop in line 12 will be executed and will
eventually find i in the list, and A → ±BC will be added to T [i] in
line 13. Conversely, if A → ±BC is added to T [i], then i ∈ Ek[B] and
k ∈ Ej[C], which implies ai+1 . . . ak ∈ L(B) and ak+1 . . . aj ∈ L(C),
respectively.

We have thus proved that when the iteration (j, k) proceeds with the
second inner loop starting in line 9, each T [i] is already of the form (8).
This, in particular, implies

T [k − 1] = {A → ±BC | ak . . . aj ∈ L(BC)}, (10)

because the middle point in the factorization of ak . . . aj as L(B) ·L(C)
is always in {k, . . . , j − 1}. Each Ej[A] remains as in (9) at this point,
and the claim is that the lines 14–15 set Ej[A] to (ii), for each A ∈ N .

15

It suffices to prove that k−1 is added to Ej[A] if and only if ak . . . aj ∈
LG(A).

Note that |ak . . . aj| > 2, since k < j. Then ak . . . aj ∈ LG(A) if and
only if there exists a rule

A → B1C1& . . . &B`C`&¬D1E1& . . . &¬DmEm&¬ε,

such that ak . . . aj ∈ LG(BiCi) and ak . . . aj /∈ LG(DtEt) for all appro-
priate i and t. By (10), this is equivalent to A → ±BiCi ∈ T [k−1] and
A → ±DtEt /∈ T [k−1] for all i and t, which in turn holds if and only if
A ∈ f(T [k− 1]). This completes the proof of the inner induction step,
the outer induction step and the entire lemma.

Lemma 4 (Algorithm 1 on unambiguous grammars). Assume G satisfies
condition II in the definition of an unambiguous grammar, let w be an n-
symbol input string. Then the assignment statement T [i] = T [i] ∪ {A →
±BC} in the inner loop is executed at most |uconjuncts(G)| · n2 times.

Proof. Let us prove that for every j, for every conjunct A → ±BC and for
every i there exists at most one number k, such that iteration (j, k, A →
±BC, i) of four nested loops is executed.

Suppose there exist two such numbers, k and k′. For the inner loop in
lines 12–13 to be executed, both k and k′ have to be in Ej[C]. Then, by
Lemma 3(ii),

ak+1 . . . aj ∈ L(C) and (11a)

ak′+1 . . . aj ∈ L(C). (11b)

Furthermore, for the corresponding iterations of the inner loop to be exe-
cuted, i must be both in Ek[B] and in Ek′ [B]. By Lemma 3(i), this means
the following:

ai+1 . . . ak ∈ L(B), (12a)

ai+1 . . . ak′ ∈ L(B). (12b)

Combining (12a) with (11a) and (12b) with (11b), one obtains two fac-
torizations of ai+1 . . . aj as u · v, where u ∈ L(B) and v ∈ L(C). By the
condition II from the definition of an unambiguous grammar, which holds
by assumption, there is at most one such factorization. Therefore, the con-
structed factorizations are the same, that is, k = k′.

Theorem 2. For every Boolean grammar G = (Σ, N, P, S) in binary normal
form and for every input string w ∈ Σ∗, Algorithm 1 accepts if and only if
w ∈ L(G). Implemented on a random access machine, it terminates after
O(n3) elementary steps, where n = |w|, or after O(n2) elementary steps, if
the grammar is unambiguous.

16

Proof. The correctness of the algorithm is given by Lemma 3(i): for j = n
and A = S, the final value of Ej[A] is

En[S] = {i | 0 6 i < n and ai+1 . . . an ∈ L(G)},

and therefore 0 ∈ En[S] if and only if a1 . . . an ∈ L(G).
Next, let us note that each statement of the algorithm is executed in a

constant number of elementary steps. Indeed, the only data of non-constant
size are the lists Ej[A], and the implementation notes in the end of Algo-
rithm 1 cover each reference to these variables in the algorithm. Then the
cubic time upper bound for the execution time is evident.

Note that these are lines 14–15 that are responsible for cubic time, and
each of the rest of the statements is visited O(n2) times in any computation.
Since, by Lemma 4, on any unambiguous grammar lines 14–15 are visited
O(n2) times as well, this implies the algorithm’s square-time performance on
any unambiguous grammar.

Corollary 1. For every unambiguous Boolean grammar G there exists and
can be effectively constructed an algorithm to test the membership of given
strings in L(G) in time O(n2).

6 The family of unambiguous languages

Let us consider the language family generated by unambiguous Boolean
grammars, which will be denoted UnambBool . The family generated by un-
ambiguous conjunctive grammars will be similarly denoted UnambConj. As in
the theory of context-free languages, let us say that a language is inherently
ambiguous with respect to conjunctive (Boolean) grammars, if it is gener-
ated by some conjunctive (Boolean) grammar, but all conjunctive (Boolean)
grammars generating it are ambiguous. The sets of inherently ambiguous
languages are UnambConj \ Conj and UnambBool \ Bool , respectively.

Concerning linear conjunctive languages, we shall now see each of them
is unambiguous, so there is no third family to consider.

Theorem 3. For every linear conjunctive grammar there exists and can be
effectively constructed an equivalent unambiguous linear conjunctive gram-
mar.

Note that every linear conjunctive grammar satisfies condition II on
uniqueness of factorization, because there is at most one nonterminal in every
conjunct. So it remains to reconstruct the grammar so that different rules
for any nonterminal generate disjoint languages.

The construction is based upon the representation of linear conjunctive
languages by trellis automata [14]. Trellis automata [2, 9], also known as
one-way real-time cellular automata, are defined as quadruples (Σ, Q, I, δ, F),

17

where Σ is an input alphabet, Q is a finite nonempty set of states, I : Σ → Q
is the initial function, δ : Q×Q → Q is the transition function, and F is the
set of accepting states. The computation on a string a1 . . . an, where n > 1
and ai ∈ Σ, is arranged as a triangle of states 〈qij〉16i6j6n, where the bottom
row is obtained from the symbols of the input string as qii = I(ai), while
each of the rest of the states is computed from two of its predecessors as
qij = δ(qi,j−1, qi+1,j). The string is accepted if q1n ∈ F .

Proof of Theorem 3. Construct a trellis automaton M = (Σ, Q, I, δ, F) gen-
erating L \ {ε}, where L is the language generated by the original grammar.

Let us use a known transformation of a trellis automaton to a linear
conjunctive grammar [14]. A grammar G = (Σ, {Aq | q ∈ Q} ∪ {S}, P, S) is
constructed, where P consists of the following rules:

S → Aq (for all q ∈ F) (13a)

S → ε (if ε ∈ L) (13b)

AI(a) → a (for all a ∈ Σ) (13c)

Aδ(q1,q2) → Aq1c&bAq2 (for all q1, q2 ∈ Q and b, c ∈ Σ) (13d)

For this grammar it is known [14, Lemma 2] that LG(Aq) = {w|∆(I(w)) = q},
L(G) ∩ Σ+ = L(M) and L(G) = L. It will now demonstrated that this
grammar is unambiguous.

The condition II satisfied. Suppose condition I is not met for some string
w ∈ Σ∗ and for some nonterminal Aq, that is, there exist two distinct rules,

Aq → Aq1c&bAq2 and (14a)

Aq → Aq3c
′&b′Aq4 , (14b)

such that w belongs to each of the four languages LG(Aq1c), LG(bAq2),
LG(Aq3c

′), LG(b′Aq4). Note that this implies b = b′, c = c′ and w = buc,
where bu ∈ LG(Aq1), bu ∈ LG(Aq3), uc ∈ LG(Aq2) and uc ∈ LG(Aq4).
The latter, according to the correctness statement of the construction [14,
Lemma 2], in turn implies ∆(I(bu)) = q1, ∆(I(bu)) = q3, ∆(I(uc)) = q2 and
∆(I(uc)) = q4. Therefore, q1 = q3 and q2 = q4, and the rules (14) coincide,
which contradicts the assumption.

It remains to show that Condition I holds for the start symbol S. This
is so, because any languages LG(Aq) = {w | ∆(I(w)) = q} and LG(Aq′) =
{w | ∆(I(w)) = q′}, where q 6= q′, are disjoint, and each of them is disjoint
with {ε}.

This result immediately provides us with many interesting examples of
unambiguous languages.

Proposition 3. The language {wcw | w ∈ {a, b}∗} is a linear conjunctive
language [13] and hence it is unambiguous.

18

Proposition 4. Let M be a Turing machine over an alphabet Σ, let Γ be
an alphabet, let CM(w), where w ∈ L(M), be an appropriate encoding of
its accepting computation on w [18], let \ /∈ Σ ∪ Γ. Then the language of
computations of M ,

VALC(M) = {w\CM(w) | w ∈ L(M)},

is an intersection of two LL(1) linear context-free languages [18], hence it is
linear conjunctive, and therefore unambiguous.

Recalling some known examples of P-complete linear conjunctive lan-
guages [9, 15], one can conclude that there exist unambiguous grammars for
these languages.

Proposition 5. There exists a P-complete unambiguous linear conjunctive
language.

Since the language VALC(M) is unambiguous, this implies some basic
undecidability results for unambiguous linear conjunctive grammars, which
carry on to unambiguous Boolean grammars.

Proposition 6. The following problems are undecidable for unambiguous
linear conjunctive grammars, unambiguous conjunctive grammars and un-
ambiguous Boolean grammars: emptiness, universality, finiteness, regularity,
equality, inclusion, etc.

The existence of a P-complete language claimed in Proposition 5 indi-
cates that efficient parallel parsing for unambiguous Boolean grammars is
quite unlikely, because the non-existence of efficient parallel algorithms for
P-complete languages is one of the common current assumptions of the com-
plexity theory (P 6= NC).

Proposition 7. Unless P = NC , there can be no polylogarithmic-time parallel
parsing algorithm for unambiguous conjunctive (Boolean) grammars.

Let us now find a place for the two new families of languages in the
hierarchy of language families shown in the earlier Figure 1. The updated
hierarchy is presented in Figure 2. The family UnambConj could be placed be-
tween LinConj and Conj by Theorem 3. The inclusion UnambCF ⊂ UnambConj

is proper, because there exist non-context-free linear conjunctive languages,
such as {anbncn | n > 0} [13] or the language in Proposition 3. None of
the inclusions LinConj ⊆ UnambConj and UnambConj ⊆ Conj is known to be
proper, which is indicated in the figure by question marks upon the arrows;
however, at least one of them must be proper, because LinConj ⊂ Conj [14].

The four families UnambConj , UnambBool , Conj and Bool naturally form
four inclusions among themselves, none of which is known to be proper.
Of these inclusions, Conj ⊆ Bool holds because conjunctive grammars are a

19

Figure 2: Unambiguous language families in the overall hierarchy.

particular case of Boolean grammars, but it remains unknown whether their
expressive power is different [16]. For the inclusion in the case of unambiguous
grammars, UnambConj ⊆ UnambBool , is also unknown whether it is strict.
The inclusions UnambConj ⊆ Conj and UnambBool ⊆ Bool are obvious, and
the question of whether they are proper is exactly the problem of the existence
of inherently ambiguous conjunctive (Boolean) languages. Even the inclusion
UnambConj ⊆ Bool is not known to be proper, so the possibility of all four
families collapsing into one cannot be ruled out.

Though no proofs of inherent ambiguity of any languages have been found
so far, there is a certain evidence that both inherently ambiguous conjunctive
languages and inherently ambiguous Boolean languages do exist. Consider
the opposite; then, by Corollary 1, the language generated by any conjunctive
grammar could be parsed in time O(n2), which would be faster than the
asymptotically best known general context-free parsing algorithms.

Consider some candidate languages for being inherently ambiguous. One
of them is the language {a2n | n > 0} given in Example 3. It was shown in
Section 3 that the known Boolean grammar for this language is ambiguous.
In fact, the grammar in Example 3 employs ambiguous concatenations as a
principal device of expressing the language L(A) through itself. It is con-
jectured that this kind of ambiguity cannot be avoided when expressing this
language by a Boolean grammar.

Another candidate is the language {ww | w ∈ {a, b}∗}. The only known
way of representing this language by a Boolean grammar essentially uses
a context-free grammar for its complement and a negation on top of it.
However, since {ww | w ∈ {a, b}∗} is most likely inherently ambiguous as
a context-free language, any Boolean grammar constructed in this way also
has to be ambiguous.

One more question made apparent by Figure 2 is whether the families
UnambCF and LinConj are incomparable. It is known from Terrier [22] that
context-free grammars and trellis automata have incomparable expressive
power; hence, CF and LinConj are incomparable. However, the only known
example of a context-free language not representable by trellis automata, due
to Terrier [22], is inherently ambiguous.

20

Proposition 8. The language L2
T , where

LT = {ambm |m > 0} ∪ {anbxabn | n > 0, x ∈ {a, b}∗},

which is a context-free language that is not linear conjunctive [22], is an
inherently ambiguous context-free language.

Sketch of a proof. Consider the intersection

L2
T∩a+b+a+b+a+b+ = {aibjakb`ambn|(i = j and k = n) or (i = ` and m = n)}

The inherent ambiguity of this language follows by a straightforward mod-
ification of the well-known proof based upon Ogden’s lemma [12] that the
language {aibjck | i = j or j = k} is inherently ambiguous, see Harrison [8,
Th. 7.2.2].

Suppose that this language is generated by an unambiguous context-free
grammar. Let p0 be the constant given by Ogden’s lemma, let p = p0! and
consider the string

a3pb4pa4pb3pa4pb4p = a3pb4pa4pbpbpbpa4pb4p = xuyvz

with the specified distinguished positions. Standard case analysis shows that
the only factorization satisfying the conditions of Ogden’s lemma is of the
form

x = as,

u = ak,

y = a3p−k−sb4pa4pbp+t,

v = bk,

z = b2p−k−ta4pb4p,

for some k 6 p0 and s, t > 0. The string is then pumped to xuiyviz for any
i > 0. Taking i = p/k (which divides evenly), the string a4pb4pa4pb4pa4pb4p

is obtained. By a symmetric argument, a4pb4pa3pb4pa4pb3p can be pumped to
a4pb4pa4pb4pa4pb4p. Since the regions of pumping overlap, two different parse
trees of a4pb4pa4pb4pa4pb4p are constructed.

It follows that L2
T is inherently ambiguous, because unambiguous context-

free languages are known to be closed under intersection with regular lan-
guages.

Proposition 8 points out a certain gap in our knowledge on linear con-
junctive grammars and trellis automata:

Remark 1. It is not known whether there exists any unambiguous context-
free language, which is not linear conjunctive (equivalently, “which cannot be
recognized by a trellis automaton”).

21

Figure 3: Complexity of languages.

Compare the complexity of the families of languages considered in this pa-
per. According to the time complexity of recognition, all unambiguous classes
of grammars are contained in deterministic square time, and no better bound
is known even for unambiguous linear context-free grammars. Context-free
grammars can be parsed as fast as matrices can be multiplied, which is
DTIME(n2.376), while practical general algorithms work in worst-case cubic
time. Cubic time remains the best known theoretical upper bound for con-
junctive and Boolean grammars. This partition is shown in Figure 3 by
dotted lines.

In relation to the complexity-theoretic hierarchy, the families are sepa-
rated into four classes, UL, NL, NC 2 and P. It is known that linear context-free
grammars can be parsed in nondeterministic logarithmic space (NL), while
their unambiguous subfamily can obviously be parsed in unambiguous loga-
rithmic space (UL, see Álvarez and Jenner [1]). Parallel parsing algorithms
for context-free grammars can be formalized by circuits of height log2 n, that
is, context-free languages belong to NC 2. Finally, the languages generated
by Boolean grammars are contained in P, and already linear conjunctive
grammars can specify P-complete languages [9, 15].

Finally, consider the closure properties of the unambiguous classes. Some
straightforward positive results can be given:

Proposition 9. The family UnambConj is closed under intersection. The
family UnambBool is closed under all Boolean operations.

Other properties, such as whether unambiguous conjunctive languages are
closed under union, complementation, concatenation and star, and whether
the last two operations preserve unambiguous Boolean languages, are left as
research problems.

22

7 Conclusion

The notion of ambiguity has been extended to Boolean grammars. The main
practical properties of the class generalized well from the context-free case.
On the other hand, the inherent ambiguity proofs did not generalize, and,
accordingly, no closure properties besides the obvious could be established.

This picture is familiar, since everything related to Boolean grammars
has been like that so far: attractive practical properties are found, while
nontrivial theoretical problems have to be left open. Let us hope that yet
another result on efficient parsing for Boolean grammars will attract further
attention to this theoretical model, and the language-theoretic open questions
shown in Figure 2 will be answered.

References

[1] C. Álvarez, B. Jenner, “A very hard log-space counting class”, Theoret-
ical Computer Science, 107:1 (1993), 3–30.

[2] K. Culik II, J. Gruska, A. Salomaa, “Systolic trellis automata”, I and
II, International Journal of Computer Mathematics, 15 (1984), 195–212,
and 16 (1984), 3–22.

[3] J. Earley, “An efficient context-free parsing algorithm”, Communica-
tions of the ACM, 13:2 (1970), 94–102.

[4] R. W. Floyd, “On ambiguity in phrase structure languages”, Commu-
nications of the ACM, 5:10 (1962), pp. 526, 534.

[5] S. Ginsburg, H. G. Rice, “Two families of languages related to ALGOL”,
Journal of the ACM, 9 (1962), 350–371.

[6] S. Ginsburg, J. S. Ullian, “Ambiguity in context free languages”, Journal
of the ACM, 13:1 (1966), 62–89.

[7] S. A. Greibach, “The undecidability of the ambiguity problem for min-
imal linear grammars”, Information and Control, 6:2 (1963), 119–125.

[8] M. A. Harrison, Introduction to formal language theory, Addison-Wesley,
1978.

[9] O. H. Ibarra, S. M. Kim, “Characterizations and computational com-
plexity of systolic trellis automata”, Theoretical Computer Science, 29
(1984), 123–153.

[10] T. Kasami, K. Torii, “A syntax-analysis procedure for unambiguous
context-free grammars”, Journal of the ACM, 16:3 (1969), 423–431.

23

[11] V. Kountouriotis, Ch. Nomikos, P. Rondogiannis, “Well-founded seman-
tics for Boolean grammars”, Developments in Language Theory (DLT
2006, Santa Barbara, USA, June 26–29, 2006), LNCS 4036, 203–214.

[12] W. F. Ogden, “A helpful result for proving inherent ambiguity”, Math-
ematical Systems Theory, 2:3 (1968), 191–194.

[13] A. Okhotin, “Conjunctive grammars”, Journal of Automata, Languages
and Combinatorics, 6:4 (2001), 519–535.

[14] A. Okhotin, “On the equivalence of linear conjunctive grammars to
trellis automata”, RAIRO Informatique Théorique et Applications, 38:1
(2004), 69–88.

[15] A. Okhotin, “The hardest linear conjunctive language”, Information
Processing Letters, 86:5 (2003), 247–253.

[16] A. Okhotin, “Boolean grammars”, Information and Computation, 194:1
(2004), 19–48.

[17] A. Okhotin, “On the existence of a Boolean grammar for a simple
programming language”, Proceedings of AFL 2005 (May 17–20, 2005,
Dobogókő, Hungary).

[18] A. Okhotin, “Language equations with symmetric difference”, Computer
Science in Russia (CSR 2006, St. Petersburg, Russia, June 8–12, 2006),
LNCS 3967, 292–303.

[19] A. Okhotin, “Generalized LR parsing algorithm for Boolean grammars”,
International Journal of Foundations of Computer Science, 17:3 (2006),
629–664.

[20] P. Rossmanith, W. Rytter, “Observation on log(n) time parallel recogni-
tion of unambiguous cfl’s”, Information Processing Letters, 44:5 (1992),
267–272.

[21] W. Rytter, “Parallel time O(log n) recognition of unambiguous contex-
t-free languages”, Information and Computation, 73:1 (1987), 75–86.

[22] V. Terrier, “On real-time one-way cellular array”, Theoretical Computer
Science, 141 (1995), 331–335.

[23] K. Wich, “Sublogarithmic ambiguity”, Theoretical Computer Science,
345:2–3 (2005), 473–504.

24

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematical Sciences

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN 978-952-12-1846-0
ISSN 1239-1891

