

Tur ku Cent re Computer Sciencefor

TUCS Technical Report

No 807, December 2006

Author One | Author Two | Author Three
Author Four | Author Five

Title of the Technical Report

Jerker Björkqvist

| Janne Kempe

| Kristian
Nybom | Michael Stormbom| Raoul
Sundsten

A system for measuring
application level quality of

service in a DVB-H

network

TUCS Technical Report
No 807, December 2006

A system for measuring application level
quality of service in a DVB-H network

Jerker Björkqvist
Åbo Akademi University, Department of Information Technologies

Janne Kempe
Åbo Akademi University, Department of Information Technologies

Kristian Nybom
Åbo Akademi University, Department of Information Technologies

Michael Stormbom
Åbo Akademi University, Department of Information Technologies

Raoul Sundsten
Åbo Akademi University, Department of Information Technologies

Abstract

In this report, a measurement system for measuring DVB-H signal
performance in field conditions is presented. The system gives performance
values for both physical layer DVB-T conditions, such as transport stream
error rate, but also error rates after applying application layer coding (ALC).
The report presents the fundamentals of the used error correction coding
systems used, and the stacks used for delivery of test data objects.

Keywords: DVB-H, Forward Error Correction Coding, Field
Measurements, Measurement Systems, Tornado Coding.

TUCS Laboratory
Embedded Systems Laboratory

1-1

1 Introduction
The DVB-H technology was standardized in late 2005 for enabling data
broadcasting to mobile, handheld terminals. The main objective of DVB-H is
to provide video streaming to mobile terminals, but as the transport stream
is data, any data can be broadcasted using the system.
DVB-H is based on the DVB-T standard, which main objective was to
provide rooftop antenna (fixed-point) reception of MPEG2 encoded video
streams. DVB-H adds an additional error correction layer to the system and
a time slicing system. The error correcting is needed for improving mobile
capabilities of the system, whereas the time slicing is used for energy
minimization in the terminals.

Performance of newly standardized telecommunication systems can quite
well be estimated using simulation methods (using simulation software) or
lab tests in laboratory conditions. However, any results must also be
validated using filed tests. In a field test, actual receiver equipment is used
in conditions corresponding to typical system use cases, and during the
usage, performance measures are recorded. These performance records can
for instance be current signal to noise level (S/N), bit error rate, Transport
Stream (TS) Packet error rate, physical location and speed vectors of
receiver device. Using these measurements, the performance of the system
can be estimated and validated against simulated and lab data.

The main difficulty measuring DVB-H systems is the vast amount of
parameters that can be used for specifying modulations and error
corrections used in different layers of the overall system. However, the
physical layer is very similar to DVB-T, and at that level, the number of
combinations of parameters is smaller. Both DVB-T and DVB-H use a
common packet for transporting data, the TS packet. By recording TS
packet error rates, upper layers may be simulated using different
parameters. Hence, it becomes important to get relevant TS packet error
traces, corresponding to actual use cases.

In order to easily acquire these error traces, a system for field
measurements where built. The objective of the system was to build it using
standardized, non-expensive equipment. As the DVB-T and DVB-H systems
are almost the same on physical layer, the system was build around a DVB-
T receiver device targeted for PC (laptop) usage. These receiver devices
usually contains the same (or very similar) silicon as that being used in
future DVB-H devices, hence performance can be assumed to resemble real
future DVB-H receivers.

The target was to build a system by which TS error traces can be easily
acquired, but also a system that can be used to show the capabilities of
DVB-H in real time, in terms of video streaming, but also in terms of file
object download.

2-2

2 Equipment

The hardware setup consisted of a laptop, a DVB-T device with an antenna
and a GPS.

Figure 1 . HP Compaq nx6110

The laptop was an HP Compaq nx6110, equipped with a Celeron M 360
1400 MHz processor and 256 MB memory. It was chosen because of its low
price, small weight, relatively long battery time, and compatibility with
Linux. The processor was enough for the kind of processing we would do,
and the memory requirements were not that high either, so the
performance of it fulfilled our needs. When doing measurements in a car a
car battery charger was used.

Figure 2 . Hauppauge Nova-T USB2.

The DVB-T receiver was Hauppauge Nova-T USB2, a device that is able to
deliver the whole transport stream, and it works well with Linux. It
supported the front-end parameters that were in use by the DVB-H
transponder. The antenna was an active one, also powered by USB.

3-3

3 Receiving DVB-H using PC equipment

Since DVB-H is based on DVB-T, it is possible to use a DVB-T receiver to get
the DVB-H data, as long as the device supports the transmission
parameters in use. Since the Hauppauge device we used supports all
parameters except 4K mode, which was not used anyway, it was suitable
for our needs.

Because we needed to do a lot of programming, the obvious choice of OS
was Linux, more specifically Ubuntu 5.04, which was successfully installed
on the laptop. To get the DVB-T device to work, drivers were needed. They
were found at www.linuxtv.org

that is an open source community developing
drivers and utilities for various digital TV cards and devices for Linux.

The driver sources were downloaded from their CVS repository. In order to
compile the modules the source for a recent Linux kernel (2.6.x) is also
needed, which can be obtained from www.kernel.org, or by using Ubuntu's
built in packaging system (apt). After compiling and loading the drivers
some devices are created in /dev/dvb/adapterX/, where X is the index of
the DVB adapter, which in our case was zero, since we only had one. There
is for example a device for the front-end, demux, and DVR (Digital Video
Recorder). To do the actual programming the Linuxtv DVB API v3 was used
which can be found on their pages.

A typical scenario for receiving data, along with the transport stream
headers, would be the following:

1) Open a frontend device, using the open system call.

fefd = open(/dev/dvb/adapter0/frontend0 , O_RDWR);

2) Set the front-end parameters with an ioctl system call, which needs a
pointer to a structure specifying the parameters, such as the frequency to
tune to, guard interval, code rate and so on. See the DVB API
documentation for details.

ioctl(fefd, FE_SET_FRONTEND, ¶meters);

3) Open a demux device, which filters out the PIDs that are interesting.

dmxfd = open(/dev/dvb/adapter0/demux0 , O_RDWR);

4) Setup a PID filter using an ioctl call on the demux device. A pointer to
a structure with filter parameters has to be provided; including the PID, we
want to filter out (the special value of 8192 means that all available PIDs
are taken out). Another parameter is whether we want to read the data

http://www.linuxtv.org
http://www.kernel.org

4-4

directly from the demux device, or if we want to redirect it to a DVR, in
which case we also get the TS headers.

ioctl(dmxfd, DMX_SET_PES_FILTER, &filter);

5) Open a DVR device.

dvrfd = open(/dev/dvb/adapter0/dvr0 , O_RDONLY);

6) Read the data from the DVR device, which, if PID 8192 is used, is the
complete transport stream with headers included.

read(dvrfd, buf, sizeof(buf));

The data can now be used for the purposes intended, which in our case was
to pick out the transport_error_indicator bit in the transport stream header,
to get an overview of the quality of the data received.

4 Tracking reception conditions using GPS data

Using the coordinates retrieved from the GPS device, it is possible to plot
the reception conditions to an image, possibly overlaying some form of
map.

Figure 3 . Example of a measurement route plot.

6-5

The GPS receiver is a BU-303 USB 1.1 device. Once every second, the GPS
receiver generates various ASCII sentences containing the relevant
information, such as longitude, latitude, velocity and time, as specified by
the NMEA standard.

The GPS device requires signals from four satellites in order to be able to
determine longitude and latitude. Based on previous coordinates, the device
is also capable of calculating the velocity and direction the device is
traveling.

The GPS receiver, though an USB device, acts as a serial device when
plugged in, which makes it fairly easy a task to retrieve data from the
device.

5 Logging reception conditions

The measurement program operates in two processes. One process polls
the DVB device for TS packets and writes an error map, based on the
TS_Error flag in the TS packet headers, to a shared memory structure. The
process also writes other relevant information to the shared memory, such
as device conditions (including signal strength), the total amount of packets
received and the total amount of erroneous packets received.
Whenever the GPS device generates an interrupt, the other process stores
the new data in a buffer. The second process also contains a timer, which
generates an interrupt once every second. When that occurs, the process
parses the data from the GPS device, reads the information from the shared
memory and displays the current conditions on screen. The process then
writes all the relevant information in two rows to a file: one row containing
the error map and one row containing the time, longitude, latitude, DVB
device status etc. In principle, each error map row should contain error
flags for approximately 6750 TS packets for a 16-QAM transmission.
However, in practice this is not the case: no error flags are written for TS
packets that aren t received, and depending on the status of the buffer, the
interval for reading from the buffer may fluctuate somewhat, resulting in a
significantly uneven distribution of error flags on the error map rows.

6 Data layers for DVB-H multicasting

The same building blocks as in DVB-T [1], with a few optional modifications,
comprise the physical layer of DVB-H [2]. The optional modifications include
the new 4k mode, which is believed to offer an alternative solution to the
existing 2k and 8k modes, with respect to Doppler tolerance and feasible
single frequency network (SFN) cell size. DVB-H also proposes a new in-

6-6

depth interleaver mechanism to the DVB-H inner interleaver. The real
difference between DVB-T and DVB-H is above the physical layer, also
referred to as the link layer. Whereas DVB-T is dedicated to transmission of
digital audio and video, DVB-H focuses on IP datacasting. These
mechanisms are described in detail in the ETSI standard DVB specification
for data broadcasting [3] and the ETSI standard Transmission System for
Handheld Terminals (DVB-H) [2]. The link layer in a DVB-H system includes
time slicing, multiprotocol encapsulation (MPE) and optional forward error
correction for the multiprotocol encapsulated data (MPE-FEC). Time slicing
is introduced in order to reduce the average power consumption for the
reception terminal and also to enable smooth seamless frequency
handovers between adjacent SFNs. The MPE is a mechanism for
encapsulation of arbitrary protocols into sections. In case of DVB-H the
encapsulated protocol is often IP. The optional MPE-FEC addresses C/N-
performance improvement, Doppler tolerance in mobile channels and
resistance against impulse interference.

MUX

MPEG-2 TV Service
MPEG-2 TV Service

MPEG-2 TV Service
MPEG-2 TV Service

MPEG-2 TV Service
MPEG-2 TV Service

MPEG-2 TV Service
MPEG-2 TV Service

MPE MPE-
FEC

Time
Slicing

DVB-H
IP- EncapsulatorIP

MPE MPE-
FEC

Time
Slicing

DVB-H
IP- Encapsulator

MPE MPE-
FEC

Time
Slicing

DVB-H
IP- EncapsulatorIP

8k 4k 2k DVB-H TPS

DVB-T ModulatorTS

RF

RF

Transmitter

8k 4k 2k DVB-H TPS

DVB-T Demodulator TS
MPEMPE-

FEC
Time

Slicing

DVB-H
IP- Decapsulator

IPMPEMPE-
FEC

Time
Slicing

DVB-H
IP- Decapsulator

IP

Receiver

New to DVB-HNew to DVB-H

Channel

Figure 4 . Block diagram for DVB- H transmission

Figure 4 shows an overview of and DVB-H transmission system. The IP
Encapsulator is fed with IP packets belonging to a certain service and output
consists of standardized mapping of MPE sections into MPEG-2 compliant
transport stream. These TS packets may then be multiplexed together with
other services and fed into the DVB-T Modulator. After travelling through
the channel the OFDM symbols are received and the transmission process is
reversed at the terminal side.

Multicasting IP data to endpoints utilize protocols from the standard
Internet Protocol Suite (IPS). The IPv6/IPv4 encapsulates UDP datagrams.
These protocols enable multicast data to be received by specific endpoints,
defined by a combination of an IP address and a UDP port. The choice of
using IP datagrams is mainly justified by the vast adoption of the IPS in
networking.

6-7

Figure 5 . Data layers in DVB-H.

Figure 5 shows the different data layers in a DVB-H transmitter. In the
measurement system described in this report a proprietary Object Delivery
Protocol (ODP) is included above the UPD layer. The purpose of this protocol
is merely to assist in the delivery of larger files over the multicast network.
The file to be transmitted is split into fragments, which together with the
ODP header fit into a single UDP datagram. The ODP header contains
metadata about the payload. In a data carousel application, these object
delivery fragments may be transmitted and received in an arbitrary order.
The ODP header contains information about which object and which part of
the object the payload belongs to, how large the object is and what kind of
application layer coding is used. The object fragments are encapsulated into
UDP datagrams and further into IP packets. The optional MPE-FEC sections,
containing the Reed-Solomon parity bytes, are concatenated to a group of
MPE sections, which contain the source IP packets. This ensemble is called
an MPE frame. These sections are then mapped into MPEG-2 compliant TS
packets, each 188 bytes long. The TS packets are then routed to the DVB-
T/H physical layer.

6.1 The application layer

In mobile field measurements, the terminal experiences a great variety of
reception conditions. Particularly when measurements occur in an
environment where direct line-of-sight to the radio transmitter is not

DSMCC_section

t

UDP

k

UDP

k+1

UDP

k+N

k

UDP

k

IP

UDP

k+1

IP

UDP

k+N

IP

k+1

k+N

UDP

k

IP

MPE

UDP

k+1

IP

MPE

UDP

k+N

IP

MPE

MPE-FEC

k

RS col 1

MPE-FEC

k+1

k+N

RS col M

MPE-FEC

Data

-UDP port

-IP address

DSMCC_section
(with MPE-FEC)

MPE

MPE

MPE

MPE

MPE

TS

payload

TS

payload

TS

payload

TS

payload

MPE sections
(DSMCC_section)

-MAC address

MPEG-2 TS

188 bytes

Transmitter

DSM-CC sections includes IP packets and optional Reed-
Solomon columns from the MPE -FEC (if supported)

ODP

ODP

6-8

available (e.g. in urban areas) and the measurement terminal is moving
arbitrarily. Even if the actual distance from the transmitter is relatively
constant, the quality of reception is constantly affected by building
obstacles, multi-path reflections, Doppler phenomena, etc. The affect of
these are constantly changing since the terminal is moving, which is not the
case for DVB-T designed for fixed rooftop antenna reception. Mobile
broadcast systems must be more robust in terms of criteria for antenna
placement and size. The encoding of the data should consider the various
reception environments that might be encountered. In order to account for
all of this with technology designed for fixed rooftop reception the
parameters of the transmission should be optimized and possibly the
effective data rate decreased.

The measurement system presented in this report focuses on buffered
services, i.e. for instance, an object download service. Typically, a binary
object is a movie clip, application program, system software patch,
document, or a music file. In many of these cases the criterion for the
object downloading system is that the file must be delivered to the terminal
without any errors. Since requested retransmission is generally not
available in broadcast networks, the possibilities of recovering lost or
erroneous packets are to incorporate forward error correcting (FEC) codes
and/or to simply wait for the recurring transmission from the data carousel.

When measuring the quality of the application layer at least the following
aspects may be taken into consideration:

1. The IP error rate (IP PER)
2. The time it takes to download a certain object
3. The overall efficiency of the encoding scheme. This can be calculated

by energy per bit, i.e. how much energy is used for error free
delivery of an object compared to the size of the actual source file.
Naturally, the total amount of redundancy in the system affects this
energy.

4. The number of data carousel rounds for successful decoding. How
many times an object must be transmitted before an object can be
completely received

5. The IP burst error length distribution. This may also include the
length distribution of the burst lengths of correct packets

6-9

Figure 6 . DVB-H field receiver block diagram.

Figure 6 shows a block diagram over the Åbo Akademi University DVB-H
measurement receiver. The system consists on two parts: the object
download application (to the left) and the reception condition recorder. In
addition, this system builds complete IP reception log files. The ODP is
designed to contain one extra field, which is used for acquiring precise
information about which packets are lost during transmission. A simple two
tuple IP packet/carousel round counter at the transmitter side assists the
receiver in calculating the actual number of lost IP packets. This information
is used for building simple reception success/failure maps on transmitted IP
packets. A similar error map is output also from the reception condition
receiver but for TS packets. The main difference is that the TS error map is
based on the transport_error_indicatior flag embedded into the TS packet
header. The flag is computed by the physical layer RS decoder. If the RS
decoder is not capable of correcting the errors in a TS packet it will label
that packet as erroneous. This implies that when a simple success/failure
map is output, the TS packets that are lost during the time that the receiver
is out of sync, i.e. outside the radio coverage area, will not show at all in
the map. Therefore, the IP reception log is the best source for packet burst
length analysis.

7-10

7 Application layer coding

Application layer coding (ALC) provides DVB-H networks with additional
protection against data corruption. Desirable properties of application layer
codes are long code lengths, efficient encoding, and decoding algorithms
and large symbol sizes. When the target is file delivery, there is no
tolerance for errors in the delivered objects. Therefore, the encoding of
objects should include a sufficient amount of redundant data in order for the
decoder to be able to reproduce the transmitted objects.

Recently, there have been several breakthroughs in the development of
codes suitable for the application layer, such as Tornado codes, LT-codes
[4] and Raptor codes [5]. Both the LT-code and the Raptor code are
rateless codes that can potentially produce infinite streams of encoding
packets, giving each receiver the possibility to wait for enough packets to
arrive and then reproduce the original object, regardless of the IP packet
error rate (IP PER) in the channel. Because file deliveries require successful
decoding, what remains to be analyzed is suitable code rates for fixed-rate
codes, guaranteeing this criterion and the average amount of carousel
rounds required for error free delivery of objects. Because the reception
conditions vary greatly in mobile networks, finding a suitable code rate for
fixed-rate codes is a complex issue. Since LT-codes and Raptor codes can
produce an infinite number of encoding symbols, these codes are not
directly subject to this problem. On the other hand, producing greater
numbers of encoding symbols than there are message symbols results in
overhead, which is the same as reducing the code rate. The difference is
that rateless codes gives the sender the possibility to produce as many
encoding symbols as required for error free delivery on the fly while fixed-
rate codes requires that the number of redundant symbols is determined in
advance. In multicast networks, however, the receiver is likely not able to
inform the sender that the entire object has been received and therefore,
even when using rateless codes, some upper number of encoding symbols
must be determined in advance. In this report, the focus is on the fixed-rate
Tornado code, which has been slightly modified so that the probability of
successful decoding is improved.

7.1 Tornado Codes

Tornado codes [6-8] are fixed rate, near optimal erasure correcting codes,
suitable for multicasting of bulk data. The Tornado code consists of several
sparse bipartite graphs in a cascading manner, as illustrated in figure 7. The
rightmost graph can be replaced by some other forward error correcting
code (FEC). The nodes in the graphs correspond to message symbols or
check symbols. The size of the symbols can be chosen arbitrarily. Typically,
they are chosen to equal the IP packet payload. A criterion is that all the
symbols in a block are of equal length. The error correcting performance of

7-11

the code is critically dependent on the dependencies between the nodes. In
[7] an analysis of the Tornado code structure is given.

Figure 7 . The structure of a Tornado code.

Tornado codes have the property that they require only a small fraction of
the check symbols in order to successfully reconstruct the message
symbols. The code is, however, quite vulnerable to burst errors and without
interleaving mechanisms, the decoding process is prone to fail for higher
error rates. When designed as a hyper code [9], the Tornado code has
several dimensions, where each dimension is a high code rate Tornado code
with the check symbols calculated on permutations of the message
symbols. This design methodology results in a better resistance against
burst errors, compared to standard Tornado codes. Tornado codes have the
property that they can detect when enough data has arrived in order to
reconstruct the entire object.

Encoding Tornado codes consists of calculating the check symbols in every
bipartite graph as the exclusive-OR of all the other symbols with which the
check symbol shares edges. Decoding Tornado codes consists of finding
check symbols that know all their neighbors but one, where a neighbor is a
symbol that is connected to the given check symbol, and then calculating
that missing symbol as the exclusive-OR of the check symbol and all of the
check symbols known neighbors.

From the algorithms for encoding and decoding Tornado codes, it can be
seen that the time required for encoding and decoding is proportional to the
symbol size, the code length and to the number of edges in the bipartite
graphs. Because the Tornado codes are built up by sparse bipartite graphs,
both the encoding and decoding speeds are very fast.

Standard
FEC code

= Message Node

= Check Node

Bipartite

Graph

Bipartite

Graph

8-12

8 Analyzing the application layer test data

For field testing a 4,2 MB file was encoded with the Tornado code utilizing a
code rate of 3/4 (4000,3000) and then encapsulated into IP packets. It
should be noted that in this report the notion of a file is associated with the
actual source data file and that the notion of an object is associated with
the encoded source file including source data fragments, check data
fragments, and ODP fragment headers. One fragment contains exactly one
code symbol. The final IP packet size is in this case fixed to 1500 bytes. The
encoded 6 MB object was transmitted using two transmitters, also shown in
figure 3. The transmission was performed using QPSK modulation, 8 MHz
bandwidth, 8k-mode, convolutional code rate 1/2, and guard interval 1/8.

An overview of the application layer system is given in the block diagram in
figure 8. Since the ODP fragments can be received in arbitrary order, a
block interleaver was used for reorganizing the IP packets belonging to a
single object before transmission. The interleaving protects an object
against longer burst errors. At the receiver terminal, the reception software
extracts object fragments from IP packets destined to a specific object.
Simultaneously, the application layer Tornado code corrects and re-
constructs missing fragments. If errors occur to such an extent that the
Tornado code is not able to correct all the errors which occurred during the
reception of the object, the only alternative is to wait for the next
transmission of that particular object from the data carousel. During empiric
tests, the (4000,3000) Tornado code showed to correct up to approximately
19 % of randomly distributed packet erasures, and up to approximately 16
% of non-randomly distributed erasures (i.e. contains bursts of errors).

Figure 8 . Block diagram of the file delivery system.

The route displayed in figure 3 was subject to measurement during the field
tests. The measurement was performed by the receiver equipment in a car.

Obj A

Obj B

File A

File B

A

A

A

A

A

B

B

B

B

B

A

A

A

A

A

B

B

B

B

B

DVB-H transmitter

DVB-H receiver

IP interleaver

FEC

A

A

A

ODP

UDP/IPv

Obj A

File A

FEC

A

A

ODP

UDP/IPv

File carousel

IP

8-13

In figure 9, the measurement is represented as a sequence of completely
received objects along the route. For each object, the number of carousel
rounds required to receive the object completely is shown. One carousel
round is here equal to the transmission of the entire object. Certainly,
during the following carousel round the receiver must wait for exactly the
missing fragments, which might be found at an arbitrary position in the file.
This appears in the results as a fraction of complete carousel rounds. For
instance, object number 31 required approximately 1,4 carousel rounds of
data to be transmitted before the object was completely received.

0

0,5

1

1,5

2

2,5

3

0 5 10 15 20 25 30 35 40 45 50

Received objects

C
ar

ou
se

l r
ou

nd
s

Figure 9 . Num ber of carousel rounds needed for successful object delivery
of a 4,2 MB source file, utilizing a Tornado 3/4.

If the reception conditions are very good and almost all transmitted packets
are received, the object is complete when slightly more than 3/4 of the
object fragments have arrived. However, if the fragments would be
transmitted without interleaving, i.e. all the source symbols followed by the
check symbols, the redundant check symbols would not be used and the
object would be complete when exactly 3/4 of the data is received. Most of
the objects in this measurement required approximately 0,8 carousel
rounds of transmission to be completely received. This means that
downloading a 4,2 MB file encoded with a (4000,3000) Tornado code,
approximately 3200 (0,8*4000) interleaved object fragments (IP packets)
must be received before the file is completely available at the terminal. The
source data consists of 3000 fragments, which mean that there is an
approximate 200-fragment overhead, in error-free delivery conditions, for
the IP interleaver and the structure of the Tornado code. The justification

8-14

for including the interleaver is its ability to protect the system against
longer burst errors.

Figure 10 shows an excerpt from the outdoor field measurement data. On
average, 37,7 IP packets were transmitted per second. The curve shows the
received IP packets per second during a period of 1500 seconds. The circles
denote the points in time when the file download completed. The
transmission of the object is constantly recurring. Figure 10 shows a typical
situation when reception is almost impossible for long periods of time during
a file download. Unsurprisingly, the downloading time increases when the
reception is poor. However, this picture also illustrates that the FEC code
recovers missing packets and that a second transmission is not always
needed even if portions of the initial transmission were missed. The three
first and the three last circles in the figure gives an impression of the error-
free object reception pace.

0

5

10

15

20

25

30

35

40

4000 4200 4400 4600 4800 5000 5200 5400
time (s)

C
o

rr
ec

t
IP

 p
ac

ke
ts

/s
ec

IP packets per second Object dow nloaded

Figure 10. Average received I P packets per second and com pleted file
downloads.

The measurement equipment also logs the C/N values read in one-second
intervals from the frontend hardware. In figure 11, average C/N values
have been calculated for the same download measurement as displayed in
figure 9. The number of data points is too low for further statistical analysis,
but it is clear that lower C/N values result in more reception errors
increasing the downloading time.

8-15

Figure 11. Outdoor m easurem ent plot of the average C/ N value and the
num ber of carousel rounds needed for com plete recept ion of the 4 ,2 MB
file.

8.1 Analyzing ALC performance

Figure 12 shows how the application layer codes performed in terms of
reconstructing received objects when the receiving terminal was indoors.
The ideal code would successfully reconstruct every transmitted object in
every carousel round and, hence, produce 18 objects in this time span.
Because the Tornado code managed to reconstruct 14 of the 18 transmitted
objects, one can see that the code is close to the ideal code. This implies
that for good code performance, the curve for the code should be parallel to
the ideal code. This was clearly not the case for the MPE-FEC.

8-16

18

147

0

2

4

6

8

10

12

14

16

18

1 6 11 16
Received objects

T
ra

n
sm

it
te

d
 o

b
je

ct
s

Ideal

Tornado

MPE-FEC

Figure 12. Exam ple of an indoor m easurem ent . Com parison betw een ideal,
Tornado- based, and MPE- FEC recept ion of a 4 ,2 MB object . The code rate is
3/4 for both Tornado and MPE-FEC.

47 50 57

0

10

20

30

40

50

1 11 21 31 41 51

Received objects

T
ra

n
sm

it
te

d
 o

b
je

ct
s

MPE-FEC

Tornado

Ideal

Figure 13. Exam ple of an outdoor m easurem ent . Com parison betw een
ideal, Tornado- based, and MPE- FEC recept ion of a 4 ,2 MB object . The code
rate is 3/4 for both Tornado and MPE- FEC.

When the receiving terminal was outdoors, the difference between
performances of the MPE-FEC and the Tornado code was quite small. The
outdoor measurement is shown in figure 13 and the figure reveals that both

8-17

of the codes reconstructed close to 90% of the transmitted objects. These
results do not give much information about the performances of the codes
since the IP PERs were very low, but rather proved that the system works
quite well.

Figure 12 and figure 13 show the benefit of using application layer coding
instead of the MPE-FEC, used in DVB-H, when delivering files over the
network. In this scenario, the Tornado code is clearly more reliable than the
MPE-FEC, since the transmitted object was successfully downloaded more
often than with the MPE-FEC. This difference in efficiency comes from the
longer code length of the Tornado code.

8.2 Burst length analysis

A tool for analyzing the burst length profiles provides live graphs such as
seen in figure 14. The y-axis on the histogram represents the number of
consecutive bad/good packets. The four histograms can be dimensioned
individually, but in the case of figure 14 the graph in the upper left corner
shows a 43 packet (typically the number of packets in an 256 row MPE-FEC
frame) burst profile. The y-axis tick marks are positioned in 20 packet
intervals in all histograms but in the lower right corner, where this interval
equals 100. The x-axis shows the occurrence count of bad (red) and good
(green) packet bursts of certain lengths. The window to the left displays
data for a mobile indoor measurement and the window to the right for the
outdoor measurement.

Figure 14. Plot of the I P error m ap as a burst length histogram . I ndoor
(left) and outdoor (right).

9-18

Another way of representing the results from such an analysis is to pair a
consecutive bad and good burst, analyze their lengths, and combine these
in a logarithmic scatter plot. In figure 15, the y-axis represents the length
of a good burst and the x-axis the length of a bad burst. Data for an indoor
measurement (to the left) and an outdoor measurement (to the right) are
plotted in the figure. The area of the circle is proportional to the occurrence
count of a particular bad/good burst pair. It can be seen that indoors
contain pairs of long bad burst and long good bursts. This may be explained
by the varying reception conditions, when for instance entering and exiting
an elevator, resulting in a long bad burst followed buy a long good burst.
The measurement is not in anyway comprehensive. It is included here for
demonstration only.

Indoor

1,E-01

1,E+00

1,E+01

1,E+02

1,E+03

1,E+04

1,E+05

1,E-01 1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05

Bad burst length

G
o

o
d

b
u

rs
t l

e
n

g
th

Occurence of bad-good burst pairs

Outdoor

1,E-01

1,E+00

1,E+01

1,E+02

1,E+03

1,E+04

1,E+05

1,E-01 1,E+00 1,E+01 1,E+02 1,E+03 1,E+04 1,E+05
Bad burst length

G
o

o
d

b
u

rs
t l

e
n

g
th

Occurence of bad-good burst pairs

Figure 15. Bad/good burst pair plot.

9 Summary

This report presents a measurement system for DVB-H systems. The
system is built using standard consumer equipment, i.e. normal PC
hardware, DVB-T receiver using USB interface and GPS receiver. The
measurement system was mainly built to collect Transport Stream (TS)
error traces in normal field conditions, but can also be used as an online
system evaluation tool.
As the system is built from consumer quality equipment, there is a certain
uncertainty about how given signal strength indicators correspond to actual
value. For this particular equipment, the system was calibrated using
laboratory test equipment.

9-19

The data acquired using this system was used for several analyses after the
actual measurement session. The recorded TS error traces was used as
input in DVB-H system simulation models, implementing the higher layers
of the DVB-H system. By using TS error trace, the upper layers can be
simulating with different parameters, such as coding rates, block sizes etc.
Even if the simulations do not exactly correspond to the actual system, the
simulations give a good picture of final system performance.
The report shows how the recorded TS error traces can be used. An
application layer coding system is evaluated using the system, showing
improving the data transmission for file delivery systems, which require
error free transmissions. In parallel a system simple implementation of a
file delivery protocol is shown, which cooperates with the ALC system.
Using an analysis of the relative lengths of TS packet error bursts versus TS
packet correct burst, a classification of the reception conditions can be
made. Using this classification, the required strength of the error correction
system can be made.
As conclusions, the report shows how standard equipment can be utilized to
build a measurement system that can be used for rigorous assessment of
DVB-H system performance. As many part of the communication system is
digital, i.e. has deterministic properties, these parts can be modeled in
software. However, the probabilistic properties given by antenna and
receiver chip implementation varies from hardware instance to hardware
instance, and should be subject to critical review before stating performance
of measured system.

References

[1] Digital Video Broadcasting (DVB); Framing structure, channel coding and
modulation for digital terrestrial television . (DVB-T), ETSI EN 300 744.

[2] Digital Video Broadcasting (DVB); Transmission System for Handheld
Terminals (DVB-H) , ETSI EN 302304 V1.1.1, 2004.

[3] "Digital Video Broadcasting (DVB); DVB specification for data broadcasting".
(DVB-DATA), ETSI EN 301192

[4] M. A. Shokrollahi, Raptor Codes , in Proceedings of ISIT 2004.

[5] M. Luby, LT Codes , in the 43rd Annual IEEE Symposium on Foundations of
Computer Science, 2002.

[6] M. Luby, M. Mitzenmacher, M.A. Shokrollahi, D.A. Spielman and V. Stemann,
Practical Loss-Resilient Codes , in Proceedings of the 29th Annual Symposium

on Theory of Computing, 1997, pp. 150-159.

9-20

[7] M. Luby, M. Mitzenmacher, M.A. Shokrollahi and D.A. Spielman, Efficient
Erasure Correcting Codes , IEEE Transactions on Information Theory, 2001,
47(2). pp. 569-584.

[8] J.W. Byers, M. Luby, M. Mitzenmacher and A. Rege, A Digital Fountain
Approach to Reliable Distribution of Bulk Data , in Proceedings of ACM
SIGCOM 98, 1998, pp. 56-67.

[9] K. Nybom and J. Björkqvist, Designing Tornado Codes as Hyper Codes for
Improved Error Correcting Performance , in Proceedings of AICT 06, 2006, to
appear.

University of Turku

Department of Information Technology

Department of Mathematics

Åbo Akademi University

Department of Computer Science

Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

Institute of Information Systems Sciences

ISBN 978-952-12-1856-9
ISSN 1239-1891

