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Abstract  

In this report, a measurement system for measuring DVB-H signal 
performance in field conditions is presented. The system gives performance 
values for both physical layer DVB-T conditions, such as transport stream 
error rate, but also error rates after applying application layer coding (ALC). 
The report presents the fundamentals of the used error correction coding 
systems used, and the stacks used for delivery of test data objects.   
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1 Introduction 
The DVB-H technology was standardized in late 2005 for enabling data 
broadcasting to mobile, handheld terminals. The main objective of DVB-H is 
to provide video streaming to mobile terminals, but as the transport stream 
is data, any data can be broadcasted using the system. 
DVB-H is based on the DVB-T standard, which main objective was to 
provide rooftop antenna (fixed-point) reception of MPEG2 encoded video 
streams. DVB-H adds an additional error correction layer to the system and 
a time slicing system.  The error correcting is needed for improving mobile 
capabilities of the system, whereas the time slicing is used for energy 
minimization in the terminals.  

Performance of newly standardized telecommunication systems can quite 
well be estimated using simulation methods (using simulation software) or 
lab tests in laboratory conditions. However, any results must also be 
validated using filed tests. In a field test, actual receiver equipment is used 
in conditions corresponding to typical system use cases, and during the 
usage, performance measures are recorded. These performance records can 
for instance be current signal to noise level (S/N), bit error rate, Transport 
Stream (TS) Packet error rate, physical location and speed vectors of 
receiver device. Using these measurements, the performance of the system 
can be estimated and validated against simulated and lab data.  

The main difficulty measuring DVB-H systems is the vast amount of 
parameters that can be used for specifying modulations and error 
corrections used in different layers of the overall system. However, the 
physical layer is very similar to DVB-T, and at that level, the number of 
combinations of parameters is smaller. Both DVB-T and DVB-H use a 
common packet for transporting data, the TS packet. By recording TS 
packet error rates, upper layers may be simulated using different 
parameters. Hence, it becomes important to get relevant TS packet error 
traces, corresponding to actual use cases.  

In order to easily acquire these error traces, a system for field 
measurements where built. The objective of the system was to build it using 
standardized, non-expensive equipment. As the DVB-T and DVB-H systems 
are almost the same on physical layer, the system was build around a DVB-
T receiver device targeted for PC (laptop) usage. These receiver devices 
usually contains the same (or very similar) silicon as that being used in 
future DVB-H devices, hence performance can be assumed to resemble real 
future DVB-H receivers.   

The target was to build a system by which TS error traces can be easily 
acquired, but also a system that can be used to show the capabilities of 
DVB-H in real time, in terms of video streaming, but also in terms of file 
object download. 
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2 Equipment  

The hardware setup consisted of a laptop, a DVB-T device with an antenna 
and a GPS.  

 

Figure 1 . HP Compaq nx6110 

The laptop was an HP Compaq nx6110, equipped with a Celeron M 360 
1400 MHz processor and 256 MB memory. It was chosen because of its low 
price, small weight, relatively long battery time, and compatibility with 
Linux. The processor was enough for the kind of processing we would do, 
and the memory requirements were not that high either, so the 
performance of it fulfilled our needs. When doing measurements in a car a 
car battery charger was used.  

 

Figure 2 . Hauppauge Nova-T USB2.  

The DVB-T receiver was Hauppauge Nova-T USB2, a device that is able to 
deliver the whole transport stream, and it works well with Linux. It 
supported the front-end parameters that were in use by the DVB-H 
transponder. The antenna was an active one, also powered by USB.  
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3 Receiving DVB-H using PC equipment  

Since DVB-H is based on DVB-T, it is possible to use a DVB-T receiver to get 
the DVB-H data, as long as the device supports the transmission 
parameters in use. Since the Hauppauge device we used supports all 
parameters except 4K mode, which was not used anyway, it was suitable 
for our needs.  

Because we needed to do a lot of programming, the obvious choice of OS 
was Linux, more specifically Ubuntu 5.04, which was successfully installed 
on the laptop. To get the DVB-T device to work, drivers were needed. They 
were found at www.linuxtv.org

 

that is an open source community developing 
drivers and utilities for various digital TV cards and devices for Linux.  

The driver sources were downloaded from their CVS repository. In order to 
compile the modules the source for a recent Linux kernel (2.6.x) is also 
needed, which can be obtained from www.kernel.org, or by using Ubuntu's 
built in packaging system (apt). After compiling and loading the drivers 
some devices are created in /dev/dvb/adapterX/, where X is the index of 
the DVB adapter, which in our case was zero, since we only had one. There 
is for example a device for the front-end, demux, and DVR (Digital Video 
Recorder). To do the actual programming the Linuxtv DVB API v3 was used 
which can be found on their pages.   

A typical scenario for receiving data, along with the transport stream 
headers, would be the following:  

1) Open a frontend device, using the open system call.  

fefd = open( /dev/dvb/adapter0/frontend0 , O_RDWR);  

2) Set the front-end parameters with an ioctl system call, which needs a 
pointer to a structure specifying the parameters, such as the frequency to 
tune to, guard interval, code rate and so on. See the DVB API 
documentation for details.    

ioctl(fefd, FE_SET_FRONTEND, &parameters);  

3) Open a demux device, which filters out the PIDs that are interesting.    

dmxfd = open( /dev/dvb/adapter0/demux0 , O_RDWR);  

4) Setup a PID filter using an ioctl call on the demux device. A pointer to 
a structure with filter parameters has to be provided; including the PID, we 
want to filter out (the special value of 8192 means that all available PIDs 
are taken out). Another parameter is whether we want to read the data 

http://www.linuxtv.org
http://www.kernel.org
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directly from the demux device, or if we want to redirect it to a DVR, in 
which case we also get the TS headers.   

ioctl(dmxfd, DMX_SET_PES_FILTER, &filter);    

5) Open a DVR device.  

dvrfd = open( /dev/dvb/adapter0/dvr0 , O_RDONLY);   

6) Read the data from the DVR device, which, if PID 8192 is used, is the 
complete transport stream with headers included.   

read(dvrfd, buf, sizeof(buf));    

The data can now be used for the purposes intended, which in our case was 
to pick out the transport_error_indicator bit in the transport stream header, 
to get an overview of the quality of the data received.  

4 Tracking reception conditions using GPS data  

Using the coordinates retrieved from the GPS device, it is possible to plot 
the reception conditions to an image, possibly overlaying some form of 
map.  

 

Figure 3 . Example of a measurement route plot. 
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The GPS receiver is a BU-303 USB 1.1 device. Once every second, the GPS 
receiver generates various ASCII sentences containing the relevant 
information, such as longitude, latitude, velocity and time, as specified by 
the NMEA standard.  

The GPS device requires signals from four satellites in order to be able to 
determine longitude and latitude. Based on previous coordinates, the device 
is also capable of calculating the velocity and direction the device is 
traveling.  

The GPS receiver, though an USB device, acts as a serial device when 
plugged in, which makes it fairly easy a task to retrieve data from the 
device.  

5 Logging reception conditions  

The measurement program operates in two processes. One process polls 
the DVB device for TS packets and writes an error map, based on the 
TS_Error flag in the TS packet headers, to a shared memory structure. The 
process also writes other relevant information to the shared memory, such 
as device conditions (including signal strength), the total amount of packets 
received and the total amount of erroneous packets received. 
Whenever the GPS device generates an interrupt, the other process stores 
the new data in a buffer. The second process also contains a timer, which 
generates an interrupt once every second. When that occurs, the process 
parses the data from the GPS device, reads the information from the shared 
memory and displays the current conditions on screen. The process then 
writes all the relevant information in two rows to a file: one row containing 
the error map and one row containing the time, longitude, latitude, DVB 
device status etc. In principle, each error map row should contain error 
flags for approximately 6750 TS packets for a 16-QAM transmission. 
However, in practice this is not the case: no error flags are written for TS 
packets that aren t received, and depending on the status of the buffer, the 
interval for reading from the buffer may fluctuate somewhat, resulting in a 
significantly uneven distribution of error flags on the error map rows.  

6 Data layers for DVB-H multicasting  

The same building blocks as in DVB-T [1], with a few optional modifications, 
comprise the physical layer of DVB-H [2]. The optional modifications include 
the new 4k mode, which is believed to offer an alternative solution to the 
existing 2k and 8k modes, with respect to Doppler tolerance and feasible 
single frequency network (SFN) cell size. DVB-H also proposes a new in-
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depth interleaver mechanism to the DVB-H inner interleaver. The real 
difference between DVB-T and DVB-H is above the physical layer, also 
referred to as the link layer. Whereas DVB-T is dedicated to transmission of 
digital audio and video, DVB-H focuses on IP datacasting. These 
mechanisms are described in detail in the ETSI standard DVB specification 
for data broadcasting [3] and the ETSI standard Transmission System for 
Handheld Terminals (DVB-H) [2]. The link layer in a DVB-H system includes 
time slicing, multiprotocol encapsulation (MPE) and optional forward error 
correction for the multiprotocol encapsulated data (MPE-FEC). Time slicing 
is introduced in order to reduce the average power consumption for the 
reception terminal and also to enable smooth seamless frequency 
handovers between adjacent SFNs. The MPE is a mechanism for 
encapsulation of arbitrary protocols into sections. In case of DVB-H the 
encapsulated protocol is often IP. The optional MPE-FEC addresses C/N-
performance improvement, Doppler tolerance in mobile channels and 
resistance against impulse interference.  
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Figure 4 . Block diagram for DVB- H transmission  

Figure 4 shows an overview of and DVB-H transmission system. The IP 
Encapsulator is fed with IP packets belonging to a certain service and output 
consists of standardized mapping of MPE sections into MPEG-2 compliant 
transport stream. These TS packets may then be multiplexed together with 
other services and fed into the DVB-T Modulator. After travelling through 
the channel the OFDM symbols are received and the transmission process is 
reversed at the terminal side.       

Multicasting IP data to endpoints utilize protocols from the standard 
Internet Protocol Suite (IPS). The IPv6/IPv4 encapsulates UDP datagrams. 
These protocols enable multicast data to be received by specific endpoints, 
defined by a combination of an IP address and a UDP port. The choice of 
using IP datagrams is mainly justified by the vast adoption of the IPS in 
networking.  
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Figure 5 . Data layers in DVB-H.  

Figure 5 shows the different data layers in a DVB-H transmitter. In the 
measurement system described in this report a proprietary Object Delivery 
Protocol (ODP) is included above the UPD layer. The purpose of this protocol 
is merely to assist in the delivery of larger files over the multicast network. 
The file to be transmitted is split into fragments, which together with the 
ODP header fit into a single UDP datagram. The ODP header contains 
metadata about the payload. In a data carousel application, these object 
delivery fragments may be transmitted and received in an arbitrary order. 
The ODP header contains information about which object and which part of 
the object the payload belongs to, how large the object is and what kind of 
application layer coding is used. The object fragments are encapsulated into 
UDP datagrams and further into IP packets. The optional MPE-FEC sections, 
containing the Reed-Solomon parity bytes, are concatenated to a group of 
MPE sections, which contain the source IP packets. This ensemble is called 
an MPE frame. These sections are then mapped into MPEG-2 compliant TS 
packets, each 188 bytes long. The TS packets are then routed to the DVB-
T/H physical layer.   

6.1 The application layer  

In mobile field measurements, the terminal experiences a great variety of 
reception conditions. Particularly when measurements occur in an 
environment where direct line-of-sight to the radio transmitter is not 
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available (e.g. in urban areas) and the measurement terminal is moving 
arbitrarily. Even if the actual distance from the transmitter is relatively 
constant, the quality of reception is constantly affected by building 
obstacles, multi-path reflections, Doppler phenomena, etc. The affect of 
these are constantly changing since the terminal is moving, which is not the 
case for DVB-T designed for fixed rooftop antenna reception. Mobile 
broadcast systems must be more robust in terms of criteria for antenna 
placement and size. The encoding of the data should consider the various 
reception environments that might be encountered. In order to account for 
all of this with technology designed for fixed rooftop reception the 
parameters of the transmission should be optimized and possibly the 
effective data rate decreased.   

The measurement system presented in this report focuses on buffered 
services, i.e. for instance, an object download service. Typically, a binary 
object is a movie clip, application program, system software patch, 
document, or a music file. In many of these cases the criterion for the 
object downloading system is that the file must be delivered to the terminal 
without any errors. Since requested retransmission is generally not 
available in broadcast networks, the possibilities of recovering lost or 
erroneous packets are to incorporate forward error correcting (FEC) codes 
and/or to simply wait for the recurring transmission from the data carousel.  

When measuring the quality of the application layer at least the following 
aspects may be taken into consideration:   

1. The IP error rate (IP PER) 
2. The time it takes to download a certain object 
3. The overall efficiency of the encoding scheme. This can be calculated 

by energy per bit, i.e. how much energy is used for error free 
delivery of an object compared to the size of the actual source file. 
Naturally, the total amount of redundancy in the system affects this 
energy.    

4. The number of data carousel rounds for successful decoding. How 
many times an object must be transmitted before an object can be 
completely received 

5. The IP burst error length distribution. This may also include the 
length distribution of the burst lengths of correct packets       
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Figure 6 . DVB-H field receiver block diagram.    

Figure 6 shows a block diagram over the Åbo Akademi University DVB-H 
measurement receiver. The system consists on two parts: the object 
download application (to the left) and the reception condition recorder. In 
addition, this system builds complete IP reception log files. The ODP is 
designed to contain one extra field, which is used for acquiring precise 
information about which packets are lost during transmission. A simple two 
tuple IP packet/carousel round counter at the transmitter side assists the 
receiver in calculating the actual number of lost IP packets. This information 
is used for building simple reception success/failure maps on transmitted IP 
packets. A similar error map is output also from the reception condition 
receiver but for TS packets. The main difference is that the TS error map is 
based on the transport_error_indicatior flag embedded into the TS packet 
header. The flag is computed by the physical layer RS decoder. If the RS 
decoder is not capable of correcting the errors in a TS packet it will label 
that packet as erroneous. This implies that when a simple success/failure 
map is output, the TS packets that are lost during the time that the receiver 
is out of sync, i.e. outside the radio coverage area, will not show at all in 
the map. Therefore, the IP reception log is the best source for packet burst 
length analysis.     
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7 Application layer coding  

Application layer coding (ALC) provides DVB-H networks with additional 
protection against data corruption. Desirable properties of application layer 
codes are long code lengths, efficient encoding, and decoding algorithms 
and large symbol sizes. When the target is file delivery, there is no 
tolerance for errors in the delivered objects. Therefore, the encoding of 
objects should include a sufficient amount of redundant data in order for the 
decoder to be able to reproduce the transmitted objects.   

Recently, there have been several breakthroughs in the development of 
codes suitable for the application layer, such as Tornado codes, LT-codes 
[4] and Raptor codes [5]. Both the LT-code and the Raptor code are 
rateless codes that can potentially produce infinite streams of encoding 
packets, giving each receiver the possibility to wait for enough packets to 
arrive and then reproduce the original object, regardless of the IP packet 
error rate (IP PER) in the channel. Because file deliveries require successful 
decoding, what remains to be analyzed is suitable code rates for fixed-rate 
codes, guaranteeing this criterion and the average amount of carousel 
rounds required for error free delivery of objects. Because the reception 
conditions vary greatly in mobile networks, finding a suitable code rate for 
fixed-rate codes is a complex issue. Since LT-codes and Raptor codes can 
produce an infinite number of encoding symbols, these codes are not 
directly subject to this problem. On the other hand, producing greater 
numbers of encoding symbols than there are message symbols results in 
overhead, which is the same as reducing the code rate. The difference is 
that rateless codes gives the sender the possibility to produce as many 
encoding symbols as required for error free delivery on the fly while fixed-
rate codes requires that the number of redundant symbols is determined in 
advance. In multicast networks, however, the receiver is likely not able to 
inform the sender that the entire object has been received and therefore, 
even when using rateless codes, some upper number of encoding symbols 
must be determined in advance. In this report, the focus is on the fixed-rate 
Tornado code, which has been slightly modified so that the probability of 
successful decoding is improved.  

7.1 Tornado Codes  

Tornado codes [6-8] are fixed rate, near optimal erasure correcting codes, 
suitable for multicasting of bulk data. The Tornado code consists of several 
sparse bipartite graphs in a cascading manner, as illustrated in figure 7. The 
rightmost graph can be replaced by some other forward error correcting 
code (FEC). The nodes in the graphs correspond to message symbols or 
check symbols. The size of the symbols can be chosen arbitrarily. Typically, 
they are chosen to equal the IP packet payload. A criterion is that all the 
symbols in a block are of equal length. The error correcting performance of 
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the code is critically dependent on the dependencies between the nodes. In 
[7] an analysis of the Tornado code structure is given.   

Figure 7 . The structure of a Tornado code.  

Tornado codes have the property that they require only a small fraction of 
the check symbols in order to successfully reconstruct the message 
symbols. The code is, however, quite vulnerable to burst errors and without 
interleaving mechanisms, the decoding process is prone to fail for higher 
error rates. When designed as a hyper code [9], the Tornado code has 
several dimensions, where each dimension is a high code rate Tornado code 
with the check symbols calculated on permutations of the message 
symbols. This design methodology results in a better resistance against 
burst errors, compared to standard Tornado codes. Tornado codes have the 
property that they can detect when enough data has arrived in order to 
reconstruct the entire object.   

Encoding Tornado codes consists of calculating the check symbols in every 
bipartite graph as the exclusive-OR of all the other symbols with which the 
check symbol shares edges. Decoding Tornado codes consists of finding 
check symbols that know all their neighbors but one, where a neighbor is a 
symbol that is connected to the given check symbol, and then calculating 
that missing symbol as the exclusive-OR of the check symbol and all of the 
check symbols known neighbors.   

From the algorithms for encoding and decoding Tornado codes, it can be 
seen that the time required for encoding and decoding is proportional to the 
symbol size, the code length and to the number of edges in the bipartite 
graphs. Because the Tornado codes are built up by sparse bipartite graphs, 
both the encoding and decoding speeds are very fast. 
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8 Analyzing the application layer test data   

For field testing a 4,2 MB file was encoded with the Tornado code utilizing a 
code rate of 3/4 (4000,3000) and then encapsulated into IP packets. It 
should be noted that in this report the notion of a file is associated with the 
actual source data file and that the notion of an object is associated with 
the encoded source file including source data fragments, check data 
fragments, and ODP fragment headers. One fragment contains exactly one 
code symbol. The final IP packet size is in this case fixed to 1500 bytes. The 
encoded 6 MB object was transmitted using two transmitters, also shown in 
figure 3. The transmission was performed using QPSK modulation, 8 MHz 
bandwidth, 8k-mode, convolutional code rate 1/2, and guard interval 1/8.   

An overview of the application layer system is given in the block diagram in 
figure 8. Since the ODP fragments can be received in arbitrary order, a 
block interleaver was used for reorganizing the IP packets belonging to a 
single object before transmission. The interleaving protects an object 
against longer burst errors. At the receiver terminal, the reception software 
extracts object fragments from IP packets destined to a specific object. 
Simultaneously, the application layer Tornado code corrects and re-
constructs missing fragments. If errors occur to such an extent that the 
Tornado code is not able to correct all the errors which occurred during the 
reception of the object, the only alternative is to wait for the next 
transmission of that particular object from the data carousel. During empiric 
tests, the (4000,3000) Tornado code showed to correct up to approximately 
19 % of randomly distributed packet erasures, and up to approximately 16 
% of non-randomly distributed erasures (i.e. contains bursts of errors).       

Figure 8 . Block diagram of the file delivery system. 

The route displayed in figure 3 was subject to measurement during the field 
tests. The measurement was performed by the receiver equipment in a car. 
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In figure 9, the measurement is represented as a sequence of completely 
received objects along the route. For each object, the number of carousel 
rounds required to receive the object completely is shown. One carousel 
round is here equal to the transmission of the entire object. Certainly, 
during the following carousel round the receiver must wait for exactly the 
missing fragments, which might be found at an arbitrary position in the file. 
This appears in the results as a fraction of complete carousel rounds. For 
instance, object number 31 required approximately 1,4 carousel rounds of 
data to be transmitted before the object was completely received.  
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Figure 9 . Num ber of carousel rounds needed for successful object delivery 
of a 4,2 MB source file, utilizing a Tornado 3/4.     

If the reception conditions are very good and almost all transmitted packets 
are received, the object is complete when slightly more than 3/4 of the 
object fragments have arrived. However, if the fragments would be 
transmitted without interleaving, i.e. all the source symbols followed by the 
check symbols, the redundant check symbols would not be used and the 
object would be complete when exactly 3/4 of the data is received. Most of 
the objects in this measurement required approximately 0,8 carousel 
rounds of transmission to be completely received. This means that 
downloading a 4,2 MB file encoded with a (4000,3000) Tornado code, 
approximately 3200 (0,8*4000) interleaved object fragments (IP packets) 
must be received before the file is completely available at the terminal. The 
source data consists of 3000 fragments, which mean that there is an 
approximate 200-fragment overhead, in error-free delivery conditions, for 
the IP interleaver and the structure of the Tornado code. The justification 
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for including the interleaver is its ability to protect the system against 
longer burst errors.        
       
Figure 10 shows an excerpt from the outdoor field measurement data. On 
average, 37,7 IP packets were transmitted per second. The curve shows the 
received IP packets per second during a period of 1500 seconds. The circles 
denote the points in time when the file download completed. The 
transmission of the object is constantly recurring. Figure 10 shows a typical 
situation when reception is almost impossible for long periods of time during 
a file download. Unsurprisingly, the downloading time increases when the 
reception is poor. However, this picture also illustrates that the FEC code 
recovers missing packets and that a second transmission is not always 
needed even if portions of the initial transmission were missed. The three 
first and the three last circles in the figure gives an impression of the error-
free object reception pace.      
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Figure 10. Average received I P packets per second and com pleted file 
downloads.     

The measurement equipment also logs the C/N values read in one-second 
intervals from the frontend hardware. In figure 11, average C/N values 
have been calculated for the same download measurement as displayed in 
figure 9. The number of data points is too low for further statistical analysis, 
but it is clear that lower C/N values result in more reception errors 
increasing the downloading time.   
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Figure 11. Outdoor m easurem ent plot of the average C/ N value and the 
num ber of carousel rounds needed for com plete recept ion of the 4 ,2 MB 
file.   

8.1 Analyzing ALC performance  

Figure 12 shows how the application layer codes performed in terms of 
reconstructing received objects when the receiving terminal was indoors. 
The ideal code would successfully reconstruct every transmitted object in 
every carousel round and, hence, produce 18 objects in this time span. 
Because the Tornado code managed to reconstruct 14 of the 18 transmitted 
objects, one can see that the code is close to the ideal code. This implies 
that for good code performance, the curve for the code should be parallel to 
the ideal code. This was clearly not the case for the MPE-FEC. 
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Figure 12. Exam ple of an indoor m easurem ent . Com parison betw een ideal, 
Tornado- based, and MPE- FEC recept ion of a 4 ,2 MB object . The code rate is 
3/4 for both Tornado and MPE-FEC.    
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Figure 13. Exam ple of an outdoor m easurem ent . Com parison betw een 
ideal, Tornado- based, and MPE- FEC recept ion of a 4 ,2 MB object . The code 
rate is 3/4 for both Tornado and MPE- FEC.   

When the receiving terminal was outdoors, the difference between 
performances of the MPE-FEC and the Tornado code was quite small. The 
outdoor measurement is shown in figure 13 and the figure reveals that both 
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of the codes reconstructed close to 90% of the transmitted objects. These 
results do not give much information about the performances of the codes 
since the IP PERs were very low, but rather proved that the system works 
quite well.   

Figure 12 and figure 13 show the benefit of using application layer coding 
instead of the MPE-FEC, used in DVB-H, when delivering files over the 
network. In this scenario, the Tornado code is clearly more reliable than the 
MPE-FEC, since the transmitted object was successfully downloaded more 
often than with the MPE-FEC. This difference in efficiency comes from the 
longer code length of the Tornado code.   

8.2 Burst length analysis  

A tool for analyzing the burst length profiles provides live graphs such as 
seen in figure 14. The y-axis on the histogram represents the number of 
consecutive bad/good packets. The four histograms can be dimensioned 
individually, but in the case of figure 14 the graph in the upper left corner 
shows a 43 packet (typically the number of packets in an 256 row MPE-FEC 
frame) burst profile. The y-axis tick marks are positioned in 20 packet 
intervals in all histograms but in the lower right corner, where this interval 
equals 100. The x-axis shows the occurrence count of bad (red) and good 
(green) packet bursts of certain lengths. The window to the left displays 
data for a mobile indoor measurement  and the window to the right for the 
outdoor measurement.     

 

Figure 14. Plot of the I P error m ap as a burst length histogram . I ndoor 
(left) and outdoor (right). 
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Another way of representing the results from such an analysis is to pair a 
consecutive bad and good burst, analyze their lengths, and combine these 
in a logarithmic scatter plot. In figure 15, the y-axis represents the length 
of a good burst and the x-axis the length of a bad burst. Data for an indoor 
measurement (to the left) and an outdoor measurement (to the right) are 
plotted in the figure. The area of the circle is proportional to the occurrence 
count of a particular bad/good burst pair. It can be seen that indoors 
contain pairs of long bad burst and long good bursts. This may be explained 
by the varying reception conditions, when for instance entering and exiting 
an elevator, resulting in a long bad burst followed buy a long good burst. 
The measurement is not in anyway comprehensive. It is included here for 
demonstration only.    
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Figure 15. Bad/good burst pair plot.     

9 Summary  

This report presents a measurement system for DVB-H systems. The 
system is built using standard consumer equipment, i.e. normal PC 
hardware, DVB-T receiver using USB interface and GPS receiver. The 
measurement system was mainly built to collect Transport Stream (TS) 
error traces in normal field conditions, but can also be used as an online 
system evaluation tool.  
As the system is built from consumer quality equipment, there is a certain 
uncertainty about how given signal strength indicators correspond to actual 
value. For this particular equipment, the system was calibrated using 
laboratory test equipment. 
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The data acquired using this system was used for several analyses after the 
actual measurement session. The recorded TS error traces was used as 
input in DVB-H system simulation models, implementing the higher layers 
of the DVB-H system. By using TS error trace, the upper layers can be 
simulating with different parameters, such as coding rates, block sizes etc. 
Even if the simulations do not exactly correspond to the actual system, the 
simulations give a good picture of final system performance. 
The report shows how the recorded TS error traces can be used. An 
application layer coding system is evaluated using the system, showing 
improving the data transmission for file delivery systems, which require 
error free transmissions.  In parallel a system simple implementation of a 
file delivery protocol is shown, which cooperates with the ALC system. 
Using an analysis of the relative lengths of TS packet error bursts versus TS 
packet correct burst, a classification of the reception conditions can be 
made. Using this classification, the required strength of the error correction 
system can be made. 
As conclusions, the report shows how standard equipment can be utilized to 
build a measurement system that can be used for rigorous assessment of 
DVB-H system performance. As many part of the communication system is 
digital, i.e. has deterministic properties, these parts can be modeled in 
software. However, the probabilistic properties given by antenna and 
receiver chip implementation varies from hardware instance to hardware 
instance, and should be subject to critical review before stating performance 
of measured system.    
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