
Tero Harju | Chang Li | Ion Petre

Examples on the parallel complexity of
signed graphs

TUCS Technical Report
No 811, January 2007

Examples on the parallel complexity of
signed graphs

Tero Harju
Department of Mathematics, University of Turku
FIN-20014 Turku, Finland
harju@utu.fi

Chang Li
Turku Center for Computer Science
Department of Information Technologies, Åbo Akademi University
FIN-20520 Turku, Finland
lchang@abo.fi

Ion Petre
Academy of Finland and
Turku Center for computer Science
Department of Information Technologies, Åbo Akademi University
FIN-20520 Turku, Finland
ipetre@abo.fi

TUCS Technical Report

No 811, January 2007

Abstract

We consider a graph-based model for the study of parallelism in ciliate gene as-
sembly,where a signed graph is associated to each micronuclear gene and the gene
assembly is modeled as a graph rewriting process. We show that the complexity
measure counting the number of steps needed to fully reduce a graph in parallel
varies greatly. The general problem of whether there exists a finite upper bound
for the graph parallel complexity remains open.

TUCS Laboratory
Computational Biomodelling Laboratory

1 Introduction

Ciliates emerged as an evolutionary group more than 109 years ago [5], and through
evolution they diverged into a rich eukaryotic group containing many thousand of
species [14]. A unique feature among these species is that they contain two types
of functionally different nuclei in the same cell - a micronucleus and a macronu-
cleus. Depending on species multiple copies of each type of nuclei may be present
in the same cell, e.g. U.grandis (a stichotrich) has 5 to 20 micronuclei and hun-
dreds of macronuclei [14].

During sexual reproduction, ciliates destroy all macronuclei and transform one
haploid micronucleus into a macronucleus. The process is especially interesting
in a species of ciliates called stichotrichs, where the difference between the mi-
cronuclear and macronuclear genomes is striking. The macronuclear genes form
the functional genome of the ciliate, and the same genes appear on the micronu-
clear chromosomes as sequences of DNA, called MDS (macronuclear destined
sequences), separated by non-coding blocks called IESs (internally eliminated se-
quences). The process is being driven by the special structure of the MDSs: each
MDS M ends with a specific sequence of nucleotides that is repeated in the begin-
ning of the MDS that should follow M in the assembled macronuclear gene. These
sequences are called pointers using the terminology of computer science. It is cur-
rently believed that ciliates splice on the common pointers to assemble the MDSs
together. There are two main models for ciliates gene assembly, see [11, 12]
and [4, 16], that both agree on this generic mechanism. For more details on how
macronuclear genes are assembled, we refer to [10, 14, 18].

In this paper we consider the intramolecular model for gene assembly intro-
duced in [4, 16]. In this model, three molecular operations were conjectured :
loop recombination (ld), hairpin recombination (hi) and double-loop recombina-
tion (dlad), shown in Figure 1. In each of them, the micronuclear chromosome is
folded in such a way that specific folds are formed and recombination takes place
on aligned positions. For a detailed discussion on each of the operations we refer
to the book [2].

The intramolecular model may be formalized on three levels of abstraction [2]:
signed permutations (denoting the sequence and the orientation of the MDSs),
signed double occurrence strings (denoting the sequence and the orientation of
the pointers), and signed graphs (denoting the overlap structure of the pointers).
Correspondingly, the gene assembly is modeled as the processes of sorting per-
mutations, of reducing strings, and of reducing graphs.

A systematic study of parallelism in gene assembly has been initiated in [7].
Regarding the parallel complexity of graphs, we conjectured there that there is no
graph with parallel complexity greater than four, see [7, 8]. Based on the recent
research [6] and a newly available gene assembly simulator [19], we present in
this paper new examples of graphs with higher complexity. The techniques used
in several of our examples extend readily to larger sets of graphs.

1

ld(i) ld(ii) ld(iii)

hi(i) hi(ii) hi(iii)

dlad(i) dlad(ii) dlad(iii)

Figure 1: Illustration of the ld, hi, dlad molecular operation showing in each case:
(i) the folding, (ii) the recombination, and (iii) the result.

2 Definitions

In this section we give some basic notions concerning signed graphs, the reduction
operations for signed graphs, and the parallel application of those operations.

A signed graphG is a structureG = (V,E, σ), where V a finite set of vertices,
(V,E) is a undirected graph and σ : V → {+,−} is a vertex-labeling function.
We say that a vertex v ∈ V is positive (negative, resp.) if σ(v) = + (σ(v) = −,
resp.). In the pictures, we denote v+ or v−, if σ(v) = + or σ(v) = −, resp. We
say that a signed graph is (all-)negative ((all-)positive, resp.) if all its vertices
are negative (positive, resp.). The neighborhood of a vertex v ∈ V is denoted by
NG(v). We call G discrete if all its vertices are isolated, i.e., there are no edges in
G.

For all p ∈ V let G − p be the graph induced by the set of vertices V \ {p}.
We also denote by locp(G) the local complement of G at p: locp(G) = (V,E′, σ′),
where {x, y} ∈ E ′ if and only if either {x, y} �∈ E for x, y ∈ NG(p) or {x, y} ∈ E
for x /∈ NG(p) or y /∈ NG(p). Also, σ′(x) = + if and only if σ(x) = −, for all x ∈
NG(p) and σ′(x) = σ(x), otherwise. For an example of local complementation,
see Figure 2.

p
+

+

−

+

−

p
+

−

+

+

+

Figure 2: The local complement locp(G) of the graph on the left is given on the
right. The signs of the vertices, other than p, are given inside the circles.

2

The square C4 is the negative signed graph C4 = (V4, E4, σ4), where V4 =
{1, 2, 3, 4}, E4 =

{
{1, 2}, {2, 3}, {3, 4}, {1, 4}

}
, and σ4(i) = −, for all i ∈ V4.

The diamond D4 is the negative signed graph D4 = (V4, E
′

4, σ4), where E ′

4 =
E4 ∪

{
{1, 3}

}
.

The molecular operations ld, hi, and dlad may be formalized for signed graphs
as follows. Let G = (V,E, σ) be a signed graph.

1. For all p ∈ V , ldp is applicable to G if and only if p is an isolated negative
vertex in G. In this case, ldp(G) = G− p. The domain of ldp is dom(ldp) =
{p}. The set of all ld-operations is denoted by Ld.

2. For all p ∈ V , hip is applicable to G if and only if p is an positive vertex in
G. In this case, hip(G) = locp(G)−p. The domain of hip is dom(hip) = {p}.
The set of all hi-operations is denoted by Hi.

3. For all p, q ∈ V , dladp,q is applicable to G if and only if p and q are adjacent
negative vertices in G. Then dladp,q(G) = (V \ {p, q}, E ′), where E ′ is
obtained from E by complementing the edges that join vertices in NG(p)
with vertices in NG(q). This means that (x, y) ∈ (E ′ \E)∪ (E \E ′) if and
only if

x ∈ NG(p) \NG(q) and y ∈ NG(q), or

x ∈ NG(q) ∪NG(q) and y ∈ (NG(p) \NG(q)) ∪ (NG(q) \NG(p)), or

x ∈ NG(q) \NG(p) and y ∈ NG(p).

The domain of dladp,q is dom(dladp,q) = {p, q}. The set of all dlad-operations
is denoted by Dlad.

Let
LHD = Ld ∪ Hi ∪ Dlad

be the set of all graph operations corresponding to the three types of molecular
operations.

Let ϕ = ϕkϕk−1 . . . ϕ1 be a composition of operations ϕi ∈ LHD. Then
dom(ϕ) = ∪k

i=1 dom(ϕi), and we say that ϕ is applicable to a signed graph G, if
ϕ1 is applicable to G and ϕi is applicable to ϕi−1 . . . ϕ1(G) for each i = 2, . . . , k.
We say ϕ is a reduction strategy for graphG if it is applicable toG and ϕ(G) = ∅.

Intuitively, a set of operations can be applied in parallel to a gene pattern if
and only if each operation’s applicability is independent of the other’s. In other
words, a number of operations can be applied in parallel to a gene pattern if they
can be (sequentially) applied in any order to that gene pattern. Note that this is
consistent with how parallelism and concurrency are defined in Computer Science.
The following gives the definition of parallel application of the three operations
on a signed graph.

3

Definition 1 ([7]). Let S ⊆ LHD be a set of k operations and let G = (V,E, σ)
be a signed graph. We say that the operations in S can be applied in parallel to G
if for any ordering ϕ1, ϕ2, . . . , ϕk of S, the composition ϕk . . . ϕ1 is applicable to
G.

The following result provides a simple criterium for two operations to be ap-
plicable in parallel. For the proof we refer to [7].

Theorem 1 ([7]). Let G = (V,E, σ) be a signed graph and let ϕ, ψ ∈ LHD be
two operations applicable to G with dom(ϕ) ∩ dom(ψ) = ∅.

(i) If ϕ ∈ Ld, then ϕ and ψ can be applied in parallel to G.

(ii) If ϕ ∈ Hi, say ϕ = hip with p ∈ V , then ϕ and ψ can be applied in parallel
to G if and only if NG(p) ∩ dom(ψ) = ∅.

(iii) If ϕ, ψ ∈ Dlad, then ϕ and ψ can be applied in parallel to G if and only if
the subgraph of G induced by dom(ϕ)∪ dom(ψ) is not isomorphic to C4 or
D4.

In addition to Definition 1, it was shown in [7] that the result of applying
different compositions of operations is the same.

Theorem 2 ([7]). LetG be a signed graph and let S ⊆ LHD be a set of operations
applicable in parallel to G. Then for any two compositions ϕ, ψ of the operations
of S, ϕ(G) = ψ(G).

Based on Theorem 2, we can write S(G) = ϕ(G) for any set S of operations
applicable in parallel to G and any composition ϕ of these operation. Parallel
complexity is defined as follows.

Definition 2 ([9]). Let G be a signed graph, and let S1, . . . , Sk ⊆ LHD be a set of
k operations applicable in parallel toG. If (Sk ◦ . . .◦S1)(G) = ∅, then we say that
S = Sk ◦ . . . ◦ S1 is a parallel reduction strategy for G. In this case the parallel
complexity of S is C(S) = k. The parallel complexity of the graph G is defined as
follows:

C(G) = min{C(S) | S is a parallel reduction strategy for G}.

3 Parallel complexity of trees

In this section we investigate the parallel complexity of signed trees. While the
general problem of whether the complexity is bounded remains open even in this
special case, we give here several examples of trees with complexity up to five.

4

3.1 Uniformly signed trees have bounded complexity

In the following, we consider the cases of negative and positive trees. It was
proved in [6] that these types of signed trees have low parallel complexity, indeed,
the parallel complexity is at most three. We give several examples of such trees.

Theorem 3 ([6]). Negative trees have parallel complexity at most two.

Example 1. LetG be the negative tree shown in Figure 3. Here the set dlad1,2 and
dlad3,4 can be applied parallel to G, and therefore a reduction of G in two steps is
{ld5} ◦ {dlad1,2, dlad3,4}.

Figure 3: A negative tree.

Theorem 4 ([6]). Positive trees have parallel complexity at most three.

(a) (b)

Figure 4: (a) A positive tree; (b) a negative clique connecting to a negative tree.

Example 2. The positive G be the positive tree shown in Figure 4(a). Then a 3-
step parallel reduction forG is {ld8}◦{dlad2,3, dlad6,7}◦{hi1, hi4, hi5, hi9, hi10, hi11}.
The result of reducing G after the first parallel step is shown in Figure 4(b).

We may have trees of complexity up to three even by considering only uni-
formly signed paths:

Lemma 5. Any negative path with 2n vertices, n ≥ 1, has complexity one. Any
negative path with 2n+ 1 vertices, n ≥ 1, has complexity two.

5

Proof. Let G be the path of negative 2n vertices with the edges {pi, pi+1} for
i = 1, 2, . . . , 2n − 1. Then S = {dladp2i−1,p2i

| i = 1, . . . , n} can be applied in
parallel to G resulting in the empty graph S(G). On the other hand, if the length
of the path is odd, the above choices leave one isolated negative vertex p2n+1,
which is then destroyed in the second step by an application of ldp2n+1

. Finally, it
is obvious that these bounds are optimal.

The same idea can be used to prove the following lemma.

Lemma 6. Let n ≥ 1. Any positive path with 3n or 3n + 1 vertices has parallel
complexity two. Any positive path with 3n + 2 vertices has parallel complexity
three.

Proof. LetG have the edges {pi, pi+1} for i = 1, 2, . . . , k. Fist of all, by Lemma 1(ii),
we have C(G) ≥ 2. If k = 3n, then S = {hi3i+2 | i = 0, 1, . . . , n − 1} can be
applied in parallel to G, and S(G) is a negative path of 2n vertices. This path has
complexity one by Lemma 5, and hence C(G) = 2.

If k = 3n + 1, then S = {hi3i+1 | i = 0, 1, . . . , n − 1} can be applied in
parallel to G, and S(G) is again a negative path of 2n vertices. Hence Lemma 5
guarantees that C(G) = 2.

Finally, if k = 3n+ 2, then S = {hi3i+1 | i = 0, 1, . . . , n− 1} can be applied
in parallel to G, and S(G) is a negative path of 2n + 1 vertices. By Lemma 5,
C(G) ≤ 3. It can be seen that, in this case, there is no strategy reducing G in
two steps: indeed, any positive vertex remains in G after the first step should be
isolated. Hence C(G) = 3.

3.2 Arbitrary signed trees

In the following we give examples of signed trees with complexity up to five.
Some of these examples have been found through an automated search based on
the gene assembly simulator [19].

Example 3. The following are examples of signed trees with parallel complexity
two to three.

(a) Let G1 be the graph in Figure 5(a). Clearly, C(G1) = 2.

(b) Let G2 be the graph in Figure 5(b). Obviously, only hi1 is applicable in the
first step, which leads to a tree of complexity two. Thus, C(G2) = 3

(c) Let G3 be the graph in Figure 5(c). We see either {dlad1,2, hi4} or {hi3} is
applicable to G3. Applying {dlad1,2, hi4} on G3 reduces the graph to an
isolated negative vertex, in this case, G3 is reduced in two steps. Otherwise,
hi3 reduces G3 to a signed tree as in Figure 5(b), which requires three more
reduction steps. Thus, C(G3) = 2.

6

(a) (b)

(c) (d)

Figure 5: The graphs of Example 3: (a) the smallest signed tree with parallel
complexity two; (b) the smallest signed tree with parallel complexity three; (c) a
signed path with parallel complexity two; (d) a signed path with parallel complex-
ity three.

(d) LetG4 be the graph in Figure 5(d). Either {dlad1,2} or {hi3, hi4} is applicable
to G4. Applying dlad1,2 creates an edge {3, 4} between positive vertices,
in this case, G4 is reduced in three steps. Otherwise, applying {hi3, hi4}
changes vertices {1, 2} to positive, then it requires two more steps. Ap-
plying either hi3 or hi4 to G4, also leads to strategies in three steps. Thus,
C(G4) = 3.

Example 4. The smallest example of a signed tree with C(G) = 4 is shown in
Figure 6(a). Let G be that graph. Then it is possible to apply hi4, dlad1,3 or dlad2,3

to G, but not in parallel. If dlad1,3 (the case dlad2,3 is symmetric) is applied,
then we obtain an isolated vertex and a tree isomorphic to the one in Figure 5(b),
which requires three more reduction steps. Otherwise, G′ = hi4(G) is shown in
Figure 6(b). It has been proved that C(G′) = 3, see [6]. Thus, C(G) = 4.

(a) (b)

Figure 6: (a) A signed tree G has parallel complexity four; (b) the reduced graph
G′ = hi4(G).

Example 5. The smallest example of a signed treeGwith parallel complexity five
is shown in Figure 7(a).

7

(a) (b)

(c) (d)

Figure 7: (a) A signed tree G with parallel complexity five; (b) a reduced graph
G′ = {hi2, hi3, dlad4,9}(G); (c) a reduction G′′ = {hi2, dlad4,9}(G); (d) a reduc-
tion G′′′ = hi1(G).

Note that hi1 , hi2, hi3, dlad4,9 (or dlad4,12) are applicable to G, and hi1 is
applicable in parallel with none of other operations.

For S = {hi2, hi3, dlad4,9}, the graph G′ = S(G) is shown in Figure 7(b).
Apart from symmetric cases, the only operations applicable to G′ are hi1, hi5 and
{hi5, hi8}. According to our previous examples, it is straightforward to see that all
the resulting graphs have complexity at least three.

Let then S = {hi2, dlad4,9}. The graph G′′ = S(G) is shown in Figure 7(c)
(replacing hi2 with hi3 and/or dlad4,9 with dlad4,12 leads to isomorphic graphs).
Clearly, {ld9, dlad1,6} and {ld9, hi3, hi5}, and their subsets, are applicable to G′′,
which leads to graphs having complexity at least three.

Finally, let G′′′ = hi1(G) be the graph shown in Figure 7(d). Apart from
symmetric cases, only hi4, hi6 and {dlad2,5, dlad3,8}, and its subsets, are applicable
to G′′′, leading in all cases to graphs of complexity at least three.

4 Parallel complexity of arbitrary graphs

In this section we present some examples of general signed graphs with parallel
complexity up to six.

4.1 Graphs with parallel complexity three

In the following, we present a smallest example of a negative graph having parallel
complexity three. Note that it has been conjecture in [8] that negative graphs have

8

parallel complexity bounded by three.

Example 6. An example of a negative graph having parallel complexity three
is shown in Figure 8. It is easy to see that modulo symmetry, the only two
possible edge selections for the first step are {dlad1,2, dlad3,4}, {dlad1,2, dlad4,5},
{dlad1,2, dlad4,7}, or their subsets. All these choices lead to strategies that re-
quire at least three steps. A three-step reduction strategy is the following: {ld5} ◦
{dlad6,7} ◦ {dlad1,2, dlad3,4}.

Figure 8: A negative graph with parallel complexity three.

Note that the graph in Figure 8 is in fact a tripartite graph, with partitions A =
{7}, B = {1, 3, 5}, C = {2, 4, 6}. The upper bound of the parallel complexity
of negative tripartite graphs is discussed in [6]. The following result is about the
simpler case of complete bipartite and tripartite positive graphs.

Theorem 7. The complete bipartite and tripartite positive graphs have parallel
complexity at most three.

Proof. Let G be a complete bipartite or tripartite positive graph. Then hi is appli-
cable in parallel to all vertices in any partition ofG. Let P be an arbitrary partition
of G. If G is bipartite, then hip(G) is either a discrete graph, or a negative clique,
i.e., C(G) ≤ 2. Assume that G is tripartite, then hip(G) is either discrete or a
complete positive bipartite graph, i.e., C(G) ≤ 3.

4.2 Graphs with parallel complexity at least four

The following examples are positive graphs of parallel complexity four: one tri-
partite positive graph and one arbitrary positive graph. Moreover, as shown by an
automated search based on [19], these are the smallest such graphs.

Example 7. The smallest example of a tripartite positive graph G with parallel
complexity four is shown in Figure 9. In G, three partitions are: A = {1, 4}, B =
{2, 3}, C = {5, 6}. Note that hiA(G), hiB(G), hiC(G) are all isomorphic to the
graph G′ shown in Figure 9(b). It is easy to check that C(G′) = 3. Consequently,
C(G) = 4.

9

(a) (b)

Figure 9: (a) A positive tripartite graph with parallel complexity four; (b) a non-
maximum reduction: hi3(G).

Example 8. The graphs in the following have similar structure, yet they have
different complexities.

The graph G1 in Figure 10(a) has complexity four, indeed G′

1 = hi1(G1) is
shown in Figure 10(a’), then {dlad2,8, dlad3,6}(G

′

1), reducing to a graph isomor-
phic to that in Figure 5(a), which requires no more than 2 reduction steps. Thus,
whole reduction is in 4 steps.

The graph G2 in Figure 10(b) has complexity five, in this case, it is possible to
apply hi on two positive vertices in diagonal, e.g. {hi1, hi3}, then the neighbors of
reduced vertices (by hi) forms new edges (eventually cliques), see in Figure 10(b’),
to reduce these cliques by applying i.e., {hi5, hi9}, remaining the graph containing
some 3-step signed trees and some discrete vertices.

The graph G3 in Figure 10(c) has complexity five, one reduction is applying
hi1 in the first step, G′

3 = hi1(G3) is shown in Figure 10(c’). Then {hi3, hi7}
reduces G′

3 to 3-step signed tree, negative trees, etc, thus the whole reduction is in
5 steps.

A different 5-step strategy for reducing G3 is obtained by applying {hi1, hi4},
after which the remaining positive vertex 5 forms two positive cliques with {6, 7}
and {12, 13}. Reducing both cliques by {hi6, hi12}, there remains some 3-step
signed trees, thus the whole reduction is in 5 steps.

We can generalize Example 8 as follows.

Theorem 8. Let G = (V,E, σ) be a signed graph such that V = V1 ∪ V2, with
V1 = {x1, . . . , xn}, V2 = {y1, z1, y2, z2, . . . , yn, zn}, and E =

{
{xi, yi}, {xi, zi},

{xj , xj+1}, {x1, xn} | 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1
}

, σ(xi) = +, σ(yi) = −,
σ(zi) = −, for all 1 ≤ i ≤ n. If n = 3k, for some k ≥ 1, then C(G) ≤ 4.
Otherwise, C(G) ≤ 5.

Proof. Consider first the case when n = 3k, for some k ≥ 1. Denote S1 =
{x1, x4, . . . , x3k−2} and note that hiS1

is applicable to G. Let G′ = hiS1
(G):

10

(a) (a’)

(b) (b’)

(c) (c’)

Figure 10: (a) A graph G1 with a positive circle of 3n vertices; (a’) hi1(G1); (b) a
graph G2 with a positive circle of 3n+1 vertices; (b’) hi1(G2); (c) a graph G3 with
a positive circle of 3n+2 vertices; (c’)hi1(G3).

G′ = (V ′, E ′, σ′), where V ′ = V − S1,

E ′ =
{
{x3i−1, y3i−1}, {x3i−1, z3i−1}, {x3i, y3i}, {x3i, z3i}, {x3i−1, y3i−2},

{x3i−1, z3i−2}, {x3i−3, y3i−2}, {x3i−3, z3i−2}, {y3i−2, z3i−2},

{x3i−3, x3i−1}, {x3i−1, x3i}, {x2, xn} | 1 ≤ i ≤ k
}

and σ′(z) = + if and only if z ∈ {y3i−2, z3i−2 | 1 ≤ i ≤ k}.
Denote S2 =

{
{x3i−1, y3i−1}, {x3i, y3i}

}
and note that dladS2

is applicable
to G′. Then G′′ = dladS2

(G′) consists of k isolated negative vertices and k graphs
isomorphic to the graph in Figure 5(a), having complexity two. Consequently
C(G) ≤ 4.

The case n = 3k + 1 is similar, with one exception: the graph corresponding
to G′′ as above also has a subgraph isomorphic to the graph in Figure 5(b). Thus,
C(G) ≤ 5.

11

In the case n = 3k+2, consider in the first step hiS′

1
, where S ′

1 = {x1, x4, . . . ,
x3k−2, x3k+1}. In the second step consider

S ′

2 = S2 −
{
{x2, y2}, {x3k, y3k}, {x3k+2, y3k+2}

}
and T2 = {y1, y3k+1},

and apply in parallel dladS′

2
and hiT2

. The resulting graph H consists of a num-
ber of isolated negative vertices, a number of graphs isomorphic to the graph
in Figure 5(a), and three graphs isomorphic to the graph in Figure 5(b). Thus,
C(G) ≤ 5.

Example 9. A more involved graph with parallel complexity six is shown in Fig-
ure 11(a). Modulo isomorphism, only {hi1, hi3}, {hi1, hi7}, {hi1} and {hi7} are
applicable to G. Applying {hi1, hi3} in the first step, and followed by {dlad5,17,
dlad6,19, dlad7,21, dlad8,23}, G is reduced to a graph isomorphic to that in Fig-
ure 10(b’), which takes 4 reduction steps. Thus, G has a reduction in six steps.
Otherwise, if {hi1, hi7} is applied in the first step, and {dlad5,17, dlad4,16, dlad8,24,
dlad3,13} in the second step, thenG is reduced to a graph as in Figure 11(b) having
parallel complexity four, since two 3-step trees have an edge in between, refer the
proof in [6]. An automated search using the gene assembly simulator [19] sug-
gests that no reduction in fewer than six steps exists. The computer search takes
several tens of hours for on a “standard” computer.

(a) (b)

Figure 11: (a)A graph with complexity six, (b) a reduced graph with complexity
four.

5 Discussion

The intriguing problem, whether the parallel complexity of signed graphs is bounded
by a constant, remains open, even for “simple” graphs such as the trees. We state
here the problem in several setups.

Problem 1. Are the parallel complexity of a) trees; b) negative graphs; c) arbi-
trary signed graphs finitely bounded?

12

Acknowledgment The authors gratefully acknowledge support by Academy of
Finland (TH – project 39802, CL – project 203667, IP – project 108421).

References
[1] Chang, W.J., Bryson, P.D., Liang, H., Shin, M.K., Landweber, L., The evolutionary origin

of a complex scrambled gene. Proceedings of the National Academy of Sciences of the US
102(42) (2005) 15149–15154

[2] Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D. M., and Rozenberg, G. (2004) Computation
in Living Cells: Gene Assembly in Ciliates, Springer

[3] Ehrenfeucht, A., Petre, I., Prescott, D. M., and Rozenberg, G., Universal and simple op-
erations for gene assembly in ciliates. In: V. Mitrana and C. Martin-Vide (eds.) Words,
Sequences, Languages: Where Computer Science, Biology and Linguistics Meet, Kluwer
Academic, Dortrecht, (2001) pp. 329–342

[4] Ehrenfeucht, A., Prescott, D. M., and Rozenberg, G., Computational aspects of gene
(un)scrambling in ciliates. In: L. F. Landweber, E. Winfree (eds.) Evolution as Computa-
tion, Springer, Berlin, Heidelberg, New York (2001) pp. 216–256

[5] Fleury, A., Delgado, F., Adoutte, A.(1992) Molecular phylogeny of ciliates: what does it tell
us about the evolution of the cytoskeleton and of developmental strategies? Dev. Genet.13
pp 247-254

[6] Harju, T., Li, C., and Petre, I., Results on parallel reductions of signed overlap graphs,
manuscript (2006)

[7] Harju, T., Li, C., Petre, I., and Rozenberg, G., Parallelism in gene assemby, In: Proceedings
of the 10th International Meeting on DNA-based computers DNA 10, Milan, Italy, Lecture
Notes in Computer Science 3384 (2005) 140–150

[8] Harju, T., Li, C., Petre, I. and Rozenberg, G., Parallelism in gene assembly, Natural Com-
puting, 5 (2006) 203–223.

[9] Harju, T., Li, C., Petre, I., Rozenberg, G., Comlexity measures for gene assembly. Lecture
Notes in Bioinformatics (LNBI) Volume number 4366, Springer, 2007

[10] Jahn, C. L., and Klobutcher, L. A., Genome remodeling in ciliated protozoa. Ann. Rev. Mi-
crobiol. 56 (2000), 489–520.

[11] Landweber, L. F., and Kari, L., The evolution of cellular computing: Nature’s solution to a
computational problem. In: Proceedings of the 4th DIMACS Meeting on DNA-Based Com-
puters, Philadelphia, PA (1998) pp. 3–15

[12] Landweber, L. F., and Kari, L., Universal molecular computation in ciliates. In:
L. F. Landweber and E. Winfree (eds.) Evolution as Computation, Springer, Berlin Hei-
delberg New York (2002)

[13] Mayo, K.A., Orias, E. (1981) Further evidence for lack of gene expression in the Tetrahy-
mena thermophila. Nucleic Acids Res.16 pp 2189-2201

[14] Prescott, D. M., The DNA of ciliated protozoa. Microbiol. Rev. 58(2) (1994) 233–267

[15] Prescott, D. M., DNA manipulations in ciliates. In: W.Brauer, H.Ehrig, J.Jarhumäki,
A.Salomaa (eds.) Formal and Natural Computing: essays dedicated to Grzegorz Rozenberg,
LNCS 2300, Springer (2002) 394–417

13

[16] Prescott, D. M., Ehrenfeucht, A., and Rozenberg, G., Molecular operations for DNA pro-
cessing in hypotrichous ciliates. Europ. J. Protistology 37 (2001) 241–260

[17] West, D. B. (1996) Introduction to Graph Theory, Prentice Hall, Upper Saddle River, NJ

[18] Yao, M.C., Fuller, P., Xi, X., Programmed DNA Deletion As an RNA-Guided System of
Genome Defense, Science 300 (2003) 1581–1584

[19] Gene assembly simulator (2006). http://combio.abo.fi/simulator/
simulator.php

14

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology
• Department of Mathematics

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 978-952-12-1889-7
ISSN 1239-1891

