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Abstract

We give two recursive expressions for both MacWilliams and Chebyshev matri-
ces. The expressions give rise to simple recursive algorithms for constructing the
matrices. In order to derive the second recursion for the Chebyshev matrices we
find out the Krawtchouk coefficients of the Discrete Chebyshev polynomials, a task
interesting on its own.
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1 Introduction

The Krawtchouk polynomials play an important role in the theory of error-correct-
ing codes [2]. The importance of the Krawtchouk polynomialsemerges from the
fact that the weight spectrum of the characters ofF

N
2 consists of the values of

the Krawtchouk polynomials, and consequently the weight spectrum of a function
and that of its Hadamard transform are connected via the values of Krawtchouk
polynomials (see the next section for the definitions of notions mentioned in this
section).

The Krawtchouk polynomials are also interesting from a geometric viewpoint.
They are an example oforthogonal polynomials, and so are the Discrete Cheby-
shev polynomials (see [7] for a general treatise on orthogonal polynomials). For the
purposes of this article it is sufficient to treat inner products with discrete weight
functions, and hence we consider the vector spacePN of polynomials having de-
gree at mostN as a general reference frame when speaking about the orthogonal
polynomials. The sum and the scalar product inPN are defined pointwise, and the
inner product is defined as

〈p, q〉w =
N∑

i=0

wip(i)q(i).

The Krawtchouk polynomialsK(N)
0 ,K(N)

1 , . . .,K(N)
N (of orderN ) are orthogonal

with respect to weight functionwi =
(
N
i

)
and the discrete Chebyshev polynomials

D
(N)
0 ,D(N)

1 , . . .,D(N)
N of orderN with respect to weight functionwi = 1 for each

i (see [7]).
As orthogonal polynomials, the Krawtchouk polynomials (and the discrete

Chebyshev polynomials) form a basis ofPN , and hence any polynomialp of de-
gree at mostN can be uniquely represented as

p = c0K
(N)
0 + c1K

(N)
1 + . . .+ cNK

(N)
N , (1)

whereci ∈ C, and a similar representation

p = d0D
(N)
0 + d1D

(N)
1 + . . .+ dND

(N)
N (2)

can be found for the discrete Chebyshev polynomials. Coefficients ci in (1) are
called theKrawtchouk coefficientsof p, and the coefficientsdi are thediscrete
Chebyshev coefficients. Since the discrete Chebyshev polynomials are orthogonal
with respect to constant weight function, they have the following property impor-
tant in the approximation theory: With respect to norm||p− q||2 =

∑N
i=0(p(i) −

q(i))2, the best approximation ofp in PM can be found by simply takingM + 1
first summands of (2) (see [6], for instance).

For a fixedN , it is sometimes interesting and useful to include all the values
K

(N)
i (j) (orD(N)

i (j)) in the same study, and this leads naturally to a matrix formal-

ism. We call(N+1)×(N+1)-matricesMN = (K
(N)
i (j)) andDN = (D

(N)
i (j))

MacWilliamsandChebyshevmatrices, respectively. In this article, we give two re-
currence relations useful for computing bothMN andDN . To do so, we derive
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recursion formulas relating the values ofN th order Krawtchouk (resp. discrete
Chebyshev) polynomials to the values of(N − 1)th order Krawtchouk (resp. dis-
crete Chebyshev) polynomials. This kind of recurrences seem to appear very in-
frequently in the pure theoretical literature, whereas therecurrences relatingK(N)

n

(resp.D(N)
n ) toK(N)

n−1 andK(N)
n−2 (resp.D(N)

n−1 andD(N)
n−2) are well-known [7].

Also, to derive the latter recurrence relation forDN , we compute the Krawt-
chouk coefficients of the discrete Chebyshev polynomials. Aprevious occurrence
of the Krawtchouk coefficients of the discrete Chebyshev polynomials in the liter-
ature is not known to the authors.

2 Preliminaries

2.1 Notations and Basic Definitions

Notation1 stands for the identity matrix, andO means the zero matrix, whereas
we use0 to denote the zero (column) vector. The dimensions of1, O, and0 will
be clear by the context. Bydiag(c1, . . . , cn) we understandn× n diagonal matrix
with c1, . . ., cn as diagonal entries. We use expressionsRows

1,...,N−1
(A) = B and

RowN (A) = c to define anN ×N matrixA in two stages: the rows1, . . .,N − 1
of A consists of an(N − 1) × N -matrix B, and the last row ofA consists of an
N -dimensional row vectorc.

For any matrixA, |A stands for the zero-padding ofA from its left and upper
sides, i.e,

|A =

(
0 0T

0 A

)
,

and the notationsA|, A|, |A, |A andA| have an analogous meaning.

ForN ≥ 1 let FN
2 be anN -dimensional vector space over the binary fieldF2 =

{0, 1} and letVN be the2N -dimensional complex group algebra of all functions
f : F

N
2 → C with the usually defined multiplication (dyadic convolution)

(f ∗ g)(x) =
∑

y∈F
N

2

f(y)g(x + y), f, g ∈ Vn, x ∈ F
N
2 (3)

equipped with the inner product (also called the scalar product)

(f ∗ g)(x) =
∑

y∈F
N

2

f(y)∗g(x), (4)

wherec∗ stands for the complex conjugate ofc ∈ C.
Everycharacterof algebraVn can be written in a form

χy(x) = χx(y) = (−1)x·y, x,y ∈ F
N
2 , (5)

wherex · y = x1y1 + . . .+ xNyN . When useful, we interpretx andy as subsets
of indices{1, 2, . . . , N} in the obvious way. Interpreting so, clearly

x · y = |x ∩ y| (6)
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where|· · · | denotes the cardinality. In accordance to this interpretation, we often
use notation|x| = wt(x) for the Hamming weight [2] ofx ∈ F

N
2 if there is

no danger of confusion. Note also that in this interpretation x + y becomes the
symmetric difference of subsetsx andy. Whenx ∈ F

N
2 is interpreted as a subset

of {1, 2, . . . , N}, we also use notationx for thecomplementof x, i.e.,xi = 1 if
xi = 0 and vice versa.

It is easy to verify that

〈χx, χy〉 = 2NTy(x), whereTy(x) =

{
1, if x = y

0, if x 6= y,
(7)

and it follows that the characters form an orthogonal basis of VN . For anyf ∈ VN

we define the(discrete) Fourier transformF(f) = f̂ ∈ VN (also calledHadamard
transform) as

F(f)(y) = f̂(y) =
∑

x∈F
N

2

f(x)χx(y) = 〈χy , f〉, y ∈ F
N
2 . (8)

The following properties of the Hadamard transform are well-known and easy
to check:

̂̂
f = 2Nf, 〈f̂ , ĝ〉 = 2N 〈f, g〉 (9)

F(f ∗ g) = F(f) · F(g), F(f · g) = 2−NF(f) ∗ F(g), (10)

wheref · g means the usual pointwise product of two functions.

2.2 Weight Spectrum, Krawtchouk Polynomials and MacWilliams
Matrices

For anyr ∈ [0, N ] let

S(N)
r ≡ Sr = {x ∈ F

N
2 | wt(x) = r} (11)

be therthHamming spherein F
N
2 and letψ(N)

r (≡ ψr) be its characteristic function

ψr(x) =

{
1, x ∈ S

(N)
r

0, x /∈ S
(N)
r .

(12)

Furthermore, for any functionf ∈ VN we define

Ar(f) = 〈ψr, f〉 =
∑

x∈S
(N)
r

f(x), 0 ≤ r ≤ N (13)

and call(A0(f), A1(f), . . . , AN (f))T ∈ C
N+1 theweight spectrumof f (cf. [2]).

According to formulas (9)

Ar(f̂) = 〈ψr, f̂〉 = 2−N 〈ψ̂r,
̂̂
f〉 = 〈ψ̂r, f〉, (14)
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but on the other side, according to (8)

ψ̂r(x) = 〈χx, ψr〉 =
∑

y∈Sr

χy(x) = K(N)
r (x), (15)

wherex = |x| and

K(N)
r (x) = Kr(x) =

r∑

i=0

(−1)i
(
N − x

r − i

)(
x

i

)
(16)

is therth Krawtchouk polynomial of orderN (cf. [1], [2]).1

Now we can easily rewrite (14) to obtain the famousMacWilliams formula for
the dual spectra:

Ar(f̂) =

N∑

i=0

Kr(i)Ai(f). (17)

We define theMacWilliams matrixof orderN by

(MN )ij = K
(N)
i (j) (18)

for 0 ≤ i, j ≤ N . Then formula (17) can be rewritten in a matrix form:(N + 1)-
dimensional column vectorsai = Ai(f) andMN (a)i = Ai(f̂) are connected
through the matrix equality

MN (a) = MNa, (19)

and this formula defines theMacWilliams transformof orderN for an arbitrary
(N + 1)-dimensional vectora (cf. [2]).

To conclude this section we list some useful formulas for theKrawtchouk poly-
nomials and MacWilliams matrices. All of them (except formula (29)) can be
found, for example, in [1] [2], and [3]:

1. The generating function (see [2]):

(1 + t)N−z(1 − t)z =
∞∑

k=0

K
(N)
k (z)tk. (20)

2. Explicit expressions:

K(N)
r (z) =

r∑

l=0

(−1)l
(
N − z

r − l

)(
z

l

)

=

r∑

l=0

(−1)l2r−l

(
N − r + l

l

)(
N − z

r − l

)

=

r∑

l=0

(−2)l
(
N − l

r − l

)(
z

l

)
. (21)

1By definitionK
(0)
0 (0) = 1.
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The leading coefficient

Coeffr

(
K(N)

r (z)
)

=
(−2)r

r!
. (22)

3. Orthogonality:

Let C = diag(
(
N
0

)
,
(
N
1

)
, . . . ,

(
N
N

)
). Then the following identities hold:

N∑

i=0

(
N

i

)
Kr(i)Ks(i) = 2N

(
N

r

)
δr,s i.e. MNCMT

M = 2NC. (23)

N∑

i=0

Kr(i)Ki(s) = 2Nδr,s i.e. M2
N = 2N I. (24)

4. Symmetry:

K(N)
r (z) = (−1)rK(N)

r (N − z) for anyz, and

K(N)
r (z) = (−1)zK

(N)
N−r(z) for z ∈ {0, 1, . . . , N} (25)

(
N

r

)
Ks(r) =

(
N

s

)
Kr(s) i.e. MT

N = C−1MnC

(the reciprocity formula). (26)

5. Recurrence relations (see [2], [5]):

(r + 1)Kr+1(z) = (N − 2z)Kr(z) − (N − r + 1)Kr−1(z),

K0(z) = 1, K1(z) = N − 2z. (27)

(N − r)Kl(r + 1) = (N − 2l)Kl(r) − rKl(r − 1),

Kl(0) =

(
N

l

)
, Kl(1) =

(
N

l

)(
1 − 2l

N

)
. (28)

K
(N)
i (j) = dN (j)

(
K

(N−1)
i (j) +K

(N−1)
i−1 (j)

+ K
(N−1)
i (j − 1) −K

(N−1)
i−1 (j − 1)

)
, N ≥ 1, (29)

where0 ≤ i, j ≤ N , and

dN (j) =

{
1, if j ∈ {0, N}
1
2 , if j /∈ {0, N},

(30)

with the understanding thatK(N−1)
i (N) = K

(N−1)
N (j) = 0, andKi(j) = 0

for i = −1 or j = −1 (or both).
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Proof of formula (29).Let for a whileX = MN−1, and leta andb be the first and
the last columns inN ×N -matrixX, respectively, so that

X = (a | Z | b), (31)

whereN × (N − 2)-matrixZ contains all columns ofX indexed from1 toN − 2.
Then the system of equalities (29) can be rewritten as a matrix equality

MN =

((
X 0

0T 0

)
+

(
0T 0
X 0

)
+

(
0 X

0 0T

)
−

(
0 0T

0 X

))
Ω, (32)

whereΩ = diag(1, 1
2 , . . . ,

1
2 , 1) is a diagonal matrix.

Let’s now rewrite formula (20) forj 6= N as follows:

(1 + t)
(
(1 + t)N−1−j(1 − t)j

)
=

N∑

i=0

K
(N)
i (j)ti, (33)

which gives us a relation

K
(N)
i (j) = K

(N−1)
i (j) +K

(N−1)
i−1 (j), j 6= N, (34)

whereas forj = N one has(1 − t)N = (1 − t)(1 − t)N−1, which implies that

K
(N)
i (N) = K

(N−1)
i (N − 1) −K

(N−1)
i−1 (N − 1), (35)

if 1 ≤ i ≤ N − 1. Evidently one can write (34) and (35) into a matrix form:

MN =

(
X 0

0T 0

)
+

(
0T 0
X 0

)
+

(
O b

0T 0

)
−

(
0T 0
O b

)
. (36)

In a similar way, from trivial equalities

(1 + t)N−j(1 − t)j = ((1 + t)(N−1)−(j−1)(1 − t)j−1)(1 − t)

for j 6= 0 and(1+ t)N = (1+ t)(1+ t)N−1 for j = 0 we get an analogous formula

MN =

(
0 X

0 0T

)
−

(
0 0T

0 X

)
+

(
a O

0 0T

)
+

(
0 0T

a O

)
. (37)

Summing (36) to (37) and recalling decompositionX = (a|Z|b) one gets

2MN =

(
2a|Z|b 0

0T 0

)
+

(
0T 0

2a|Z|b 0

)

+

(
0 a|Z|2b
0 0T

)
−

(
0 0T

0 a|Z|2b

)
,

which shows thatMN can be obtained from

Y =

(
X 0

0T 0

)
+

(
0T 0
X 0

)
+

(
0 X

0 0T

)
−

(
0 0T

0 X

)
(38)

by multiplying the first and the last column by two. HenceMN can be obtained
from Y by dividing the columns from2 toN − 2 by 2, or equivalently, by multi-
plying Y (from the right) byΩ.

6



By using the zero-padding notations, formula (32) can be written as

MN+1 = (MN | + MN | + |MN − |MN ) · diag(1,
1

2
, . . . ,

1

2
, 1), (39)

which gives rise to a simple algorithm for constructing the MacWilliams matrices
recursively:2

Example 1.
M0 = (1),

M1 =

((
1 0
0 0

)
+

(
0 0
1 0

)
+

(
0 1
0 0

)
−

(
0 0
0 1

))
·
(

1 0
0 1

)

=

(
1 1
1 −1

)
,

M2 =








1 1 0
1 −1 0
0 0 0



 +




0 0 0
1 1 0
1 −1 0



 +




0 1 1
0 1 −1
0 0 0





−




0 0 0
0 1 1
0 1 −1







 ·




1 0 0
0 1

2 0
0 0 1



 =




1 1 1
2 0 −2
1 −1 1



 ,

and so on.

3 The Discrete Chebyshev Polynomials and Chebyshev
Matrices

For any fixedy ∈ F
N
2 we define a functionBy : F

N
2 → C by

By(x) =

( |y|
|x ∩ y|

)
· χy(x), x ∈ F

N
2 . (40)

FunctionsBy were first introduced in [1], where it was shown thatBy form a
basis (which we refer as to H-basis) ofVN and that for anyr ∈ {0, 1, . . . , N}, sum

∑

y∈Sr

By(x) =

r∑

i=0

(−1)i
(
r

i

)(
N − |x|
r − i

)(|x|
i

)
, (41)

depends obviously only ofx = |x|. Equation (41) defines therth discrete Cheby-
shev polynomial of orderN (cf. [1], [3]):

D(N)
r (x) = Dr(x) =

r∑

i=0

(−1)i
(
r

i

)(
N − x

r − i

)(
x

i

)
. (42)

2Of course, formulas (36) and (37) would also yield such an algorithm, but (39) has a bit more
uniform appearance.
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Similarly to (18), an(N + 1) × (N + 1)-matrix

(DN )ij = D
(N)
i (j), 0 ≤ i, j ≤ N (43)

is called theChebyshev matrix of orderN .
Below we give a list of some useful formulas for the Chebyshevpolynomials

and matrices, most of which (except formula (55)) can be found in [1], [2], and [7]:

1. Difference formula;

D(N)
n (x) = (−1)n∆n

((
x

n

)(
x−N − 1

n

))
, (44)

where∆n is thenth power of the difference operator defined as∆f(x) =
f(x+ 1) − f(x).

2. Explicit expressions:

D(N)
n (x) =

n∑

i=0

(−1)i
(
n

i

)(
N − x

n− i

)(
x

i

)

=
n∑

i=0

(−1)i
(
n+ i

n

)(
N − i

n− i

)(
x

i

)

=

n∑

i=0

(
n−N − 1

i

)(
n+N + 1

n− i

)(
x+ i

n

)
. (45)

3. Orthogonality:

N∑

i=0

Dr(i)Ds(i) = γrδrs, whereγr =

(
2r

r

)(
N + 1 + r

2r + 1

)
, (46)

which means that

DNDT
N = diag(γ0, γ1, . . . , γN ). (47)

4. Symmetry and special values:

Dn(N − x) = (−1)nDn(x), (48)

D(N)
n (0) =

(
N

n

)
, D

(N)
N (m) = (−1)m

(
N

m

)
.3 (49)

For evenN :

D(N)
n (N

2 ) =

{
0, if n is odd

(−1)m
(

N

2
m

) (
N

2
+m
m

)
, if n = 2m

(50)

3
D

(0)
0 (0) = 1 by definition.
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The leading coefficient:

Coeffn(D(N)
n ) =

(−1)n

n!

(
2n

n

)
(51)

D0(x) = 1, D1(x) = −2x+N, D2(x) = 3x2 − 3Nx+

(
N

2

)
. (52)

5. Recurrence formulas:

n2Dn = (2n − 1)D1Dn−1 − (N + n)(N − n+ 2)Dn−2, (53)

∆
(
(x+ 1)(x −N)∆Dn(x)

)
= n(n+ 1)Dn(x+ 1),

Dn(0) =

(
N

n

)
, Dn(1) =

(
N − 1

n

)
− n

(
N − 1

n− 1

)

(Difference equation forDn(x)). (54)

nD(N)
n (x) = nD(N−1)

n (x− 1) + (N − x)D
(N−1)
n−1 (x)

− (N + n− x)D
(N−1)
n−1 (x− 1), N ≥ 1. (55)

Proof of Formula (55).Forn 6= 0 we get:

(−1)nD(N)
n (x)

= ∆n

((
x

n

)(
x−N − 1

n

))

= ∆n

(((
x− 1

n

)
+

(
x− 1

n− 1

))(
(x− 1) −N

n

))

= ∆n

((
x− 1

n

)(
(x− 1) −N

n

))
+ ∆n

((
x− 1

n− 1

)(
(x− 1) −N

n

))

= (−1)nD(N−1)
n (x− 1) + ∆n

((
x− 1

n− 1

)
x− (N + n)

n

(
(x− 1) −N

n− 1

))

= (−1)nD(N−1)
n (x− 1) − N + n

n
∆

(
∆n−1

((
x− 1

n− 1

)(
(x− 1) −N

n− 1

)))

+
1

n
∆n

(
x

(
x− 1

n− 1

)(
(x− 1) −N

n

))
.

By using∆n
(
x · f(x)

)
= (x + n)∆n

(
f(x)

)
+ n∆n−1

(
f(x)

)
, which is easy to

9



prove by induction, we learn that

(−1)nD(N)
n (x)

= (−1)nD(N−1)
n (x− 1) − (−1)n−1N + n

n
∆

(
D

(N−1)
n−1 (x− 1)

)

+
1

n

(
(x+ n)∆n

((
x− 1

n− 1

)(
(x− 1) −N

n− 1

))

+ n∆n−1

((
x− 1

n− 1

)(
(x− 1) −N

n− 1

)))

= (−1)nD(N−1)
n (x− 1) − (−1)n−1N + n

n

(
D

(N−1)
n−1 (x) −D

(N−1)
n−1 (x− 1)

)

+ (−1)n−1x+ n

n
∆

(
D

(N−1)
n−1 (x− 1)

)
+ (−1)n−1D

(N−1)
n−1 (x− 1),

which gives the desired recurrent formula (forn 6= 0):

nD(N)
n (x) = nD(N−1)

n (x−1)+(N−x)D(N−1)
n−1 (x)−(N+n−x)D(N−1)

n−1 (x−1).

Evidently this formula remains valid also forn = 0, supposingD−1(x) ≡ 0.

Similarly to the formula (39) for MacWilliams matrices, formula (55) can be
written in matrix form as

diag(0, . . . , N) ·DN = diag(0, . . . , N)|DN−1

−
(
|DN−1 − DN−1|

)
· diag(N, . . . , 0) − diag(0, . . . , N)|DN−1. (56)

The first row in
(
|DN−1 − DN−1|

)
consists of zeros, whereas the first rows

of DN andDN−1 consist of ones, and the first row of|DN−1 consists of zero
followed by ones. Hence formula (56) can be rewritten as

DN =
(
|DN−1 − |DN−1

)

− diag(0, 1, . . . , 1/N)
(
|DN−1 −DN−1|

)
diag(N, . . . , 0) + e00, (57)

wheree00 is a matrix with1 as its left upper corner and zeroes in all the other en-
tries. This gives rise to a simple recurrent algorithm for constructing the Chebyshev
matrices, illustrated in the following example.
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Example 2.

D0 = (1)

D1 =

((
0 1
0 0

)
−

(
0 0
0 1

))

−
(

0 0
0 1

)((
0 0
0 1

)
−

(
0 0
1 0

))(
1 0
0 0

)

+

(
1 0
0 0

)
=

(
1 1
1 −1

)

D2 =








0 1 1
0 1 −1
0 0 0



 −




0 0 0
0 1 1
0 1 −1









−




0 0 0
0 1 0
0 0 1

2












0 0 0
0 1 1
0 1 −1



 −




0 0 0
1 1 0
1 −1 0












2 0 0
0 1 0
0 0 0





+




1 0 0
0 0 0
0 0 0



 =




1 1 1
2 0 −2
1 −2 1



 ,

and so on.

4 The Krawtchouk Coefficients of The Discrete Cheby-
shev Polynomials

The strategy is to first find the Hadamard transform of the function defined by
formula (40) and then to apply the MacWilliams formula (17).

Lemma 1. Let

Φy(x) =

( |y|
|x ∩ y|

)
(58)

wherex, y ∈ F
N
2 , (y is a fixed vector). Then the Hadamard transform ofΦy is

given as follows:

Φ̂y(z) = 2N−yK(2y)
y (|z|) ·Xz(y), (59)

wherez ∈ F
N
2 , y = |y|, and

Xz(y) =

{
1, if z ⊆ y

0, if z 6⊆ y
(60)

Proof. Let x, y, z ∈ F
N
2 , andx1 = x ∩ y, x2 = x ∩ y, z1 = z ∩ y, and
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z2 = z ∩ y. Then a direct calculation gives

Φ̂y(z) =
∑

x∈Vn

(−1)|x∩z|

( |y|
|x ∩ y|

)

=
∑

x1⊆y

∑

x2⊆y

(−1)|(x1+x2)∩(z1+z2)|

( |y|
|x ∩ y|

)

=
∑

x2⊆y

(−1)|x2∩z2|
∑

x1⊆y

(−1)|x1∩z1|

( |y|
|x1|

)
.

In the inner sum, we split the bits ofx1 into two parts: those contained inz1 and
those outside ofz1 (there are|y| − |z1| of them) to get

Φ̂y(z) =
∑

x2⊆y

(−1)|x2∩z2|

|z1|∑

a=0

(−1)a
(|z1|
a

) |y|−|z1|∑

b=0

(|y| − |z1|
b

)
·
( |y|
a+ b

)

=
∑

x2⊆y

(−1)|x2∩z2|

|z1|∑

a=0

(−1)a
(|z1|
a

)(
2 |y| − |z1|
|y| − a

)

= K
(2|y|)
|y| (|z1|) ·

∑

x2⊆y

(−1)|x2∩z2|.

The equality between the first and the second line is due to Vandermonde’s con-
volution (see [1], for instance). The inner sum in the last line can naturally be
interpreted as a sum over all characters of a|y|-dimensional vector space overF2,

and hence it equals to0, if z2 6= 0, and to2|y|, if z2 = 0. Becausez2 = 0 is
equivalent toz ⊆ y (which is equivalent toz = z1), we have

Φ̂y(z) =

{
2|y|K(2|y|)

|y| (|z|), z ⊆ y

0, z 6⊆ y
= 2|y|K(2|y|)

|y| (|z|) ·Xz(y), (61)

as claimed.

Lemma 2.
B̂y(u) = 2N−yK(2y)

y (y − |u|)Xu(y), u ∈ F
N
2 (62)

Proof. Since evidentlyT̂y = χy (see formulae (5), (7) and (8)), and due to (9)
and (10), we can easily find the Hadamard transform ofBy = Φy · χy. Since
(f ∗ Ty)(x) = f(x + y) for anyf ∈ VN , we first get

B̂y(u) = 2−N (Φ̂y ∗ 2NTy)(u) = Φ̂y(u + y),

and Lemma 1 then gives

B̂y(u) = 2N−yK(2y)
y (|u + y|)Xu+y(y)

= 2N−yK(2y)
y (y − |u|)Xu(y).
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The last equality follows from the easily verifiable equality Xu+y(y) = Xu(y).

Proposition 1 (The Krawtchouk coefficients of the discrete Chebyshev polynomi-
als). For 0 ≤ n ≤ N

D(N)
n (m) = 2−n ·

N∑

i=0

(
N − i

n− i

)
K(2n)

n (n− i)K
(N)
i (m)

= 2−n ·
n∑

i=0

(
N − n+ i

i

)
K(2n)

n (i)K
(N)
n−i(m). (63)

Proof. The ith coefficient of the weight spectrum of̂By can be calculated by the
previous lemma to get

Ai(B̂y) =
∑

u∈Si

B̂y(u) =
∑

u∈Si

2N−yK(2y)
y (y − |u|)Xu(y)

= 2N−y

(
y

i

)
K(2y)

y (y − i). (64)

By the MacWilliams formula (17) and by (9) we get

2N · Am(By) =
N∑

i=0

K(N)
m (i)Ai(B̂y) = 2N−y

N∑

i=0

K(N)
m (i)

(
y

i

)
K(2y)

y (y − i),

(65)
and hence

Am(By) = 2−y

N∑

i=0

K(N)
m (i)

(
y

i

)
K(2y)

y (y − i). (66)

On the other side, according to formulas (41) and (42) we have

D(N)
r (x) =

∑

y∈Sr

By(x), x = |x| (67)

and summing up left and right sides of the equality (67) over eachx ∈ F
N
2 with

m = |x| and applying formula (66) we find that
(
N

m

)
Dr(m) =

∑

y∈Sr

∑

x∈Sm

By(x) =
∑

y∈Sr

Am(By)

=

(
N

r

)
2−r

N∑

i=0

K(N)
m (i)

(
r

i

)
K(2r)

r (r − i). (68)

So we get the following expression of the discrete Chebyshevpolynomials by the
Krawtchouk polynomials:

D(N)
n (m) = 2−n

(
N
n

)
(
N
m

)
N∑

i=0

(
n

i

)
K(2n)

n (n− i)K(N)
m (i). (69)
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Applying the reciprocity formula (26)
(
N

i

)
·K(N)

m (i) =

(
N

m

)
·K(N)

i (m)

we get the claim by direct calculations. The latter form can be obtained by replac-
ing the summation indexi with n− i.

Lemma 3.

1. ForK(2n)
n we have

K(2n)
n (z) =

(−2)n

n!

n−1∏

q=0

(z − (2q + 1)) = (−4)n
(

z−1
2

n

)
. (70)

2. For s ∈ {0, 1, . . . , 2n}

K(2n)
n (s) =






0, if s = 2r + 1

(−1)r
(2n

n

) (n

r
)

(2n

r
)
, if s = 2r.

(71)

Proof. From the symmetry formula (25) we get

K(2n)
n (2r + 1) = (−1)2r+1K

(2n)
2n−n(2r + 1) = −K(2n)

n (2r + 1),

soK(2n)
n (2r + 1) = 0 and it is exactly the first equality of item 2.

SinceK(2n)
n has degreen and because we know all of its zeros by item 2, we

only need to recall formula (22) for the leading coefficient of Krawtchouk poly-
nomials to get the first equality of item 1. The second equality is evidently just a
reformulation of the first one.

Now the claim in expression (71) forK(2n)
n (2r) can be obtained straightfor-

wardly by substitutionz = 2r in formula (70).

Remark 1. From formula (70) we get a formula for generating function of
K

(2n)
n (z):

(1 − 4t)
z−1
2 =

∞∑

n=0

K(2n)
n (z)tn. (72)

Recalling a formula for the generating function of the Catalan numbersCn (cf. [4])

1 −
√

1 − 4t

2t
=

∞∑

n=0

Cn · tn (73)

we find that
K(2n)

n (2) = −2 · Cn−1, n ≥ 1. (74)

For the next proposition, which is a matrix reformulation of(63), let now

BN = diag(1, 2−1, . . . , 2−N ), LN =

((
N − i

n− i

)
K(2n)

n (n− i)

)

0≤n,i≤N

.
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Proposition 2.

DN = QNMN , (75)

whereQN = BNLN .

SinceM2
N = 2N I, (75) can be also rewritten as

DNMN = 2NQN = diag(2N , 2N−1, . . . , 1) · LN (76)

to get an expression where all the matrix entries are integers.

Example 3. ForN = 4 we have

M4 =





1 1 1 1 1
4 2 0 −2 −4
6 0 −2 0 6
4 −2 0 2 −4
1 −1 1 −1 1




,L4 =





1 0 0 0 0
0 2 0 0 0

−12 0 6 0 0
0 −12 0 20 0
6 0 −10 0 70




,

and

diag(1,
1

2
,
1

4
,
1

8
,

1

16
) · L4M4 =





1 1 1 1 1
4 2 0 −2 −4
6 −3 −6 −3 6
4 −8 0 8 −4
1 −4 6 −4 1




= D4

According to formula (71) we can conclude that also in the general case the
matrixLN has an “even sub-diagonal” structure:

(LN )n,i =






0, if n− i is odd

(−1)
n−i

2

(
N−i
n−i

)(
2n
n

)( n
n−i

2
)

( 2n

n−i
)
, if n− i is even.

(77)

Proposition 3. For N ≥ 1, the discrete Chebyshev polynomials satisfy the follow-
ing recurrence relation:

(N − n)D(N)
n (m) = (N −m)D(N−1)

n (m) +mD(N−1)
n (m− 1), (78)

where0 ≤ m,n ≤ N .

Proof. To obtain this recurrence relation we are going to apply the recurrence re-
lation

K
(N)
i (z) −K

(N−1)
i (z) = K

(N−1)
i−1 (z), 0 ≤ z ≤ N − 1 (79)

for Krawtchouk polynomials. The above formula follows easily from a simple
equality(1 + t)N−z(1− t)z = (1 + t)

(
(1 + t)N−1−z(1− t)z

)
. If m ≤ N − 1, we
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get, by using (69) and (79) that

2n

(
N
m

)
(
N
n

)D(N)
n (m) − 2n

(
N−1

m

)
(
N−1

n

)D(N−1)
n (m) =

(
n

N

)
K(2n)

n (n−N)K(N)
m (N)

+

N−1∑

i=0

(
n

i

)
K(2n)

n (n − i)
(
K(N)

m (i) −K(N−1)
m (i)

)

= (−1)m
(
N

m

)
·
(

2N

N

)
· δN,n +

N−1∑

i=0

(
n

i

)
K(2n)

n (n− i)K
(N−1)
m−1 (i)

= (−1)m
(
N

m

)
·
(

2N

N

)
· δN,n + 2n

(
N−1
m−1

)
(
N−1

n

)D(N−1)
n (m− 1),

and multiplying both sides by2−n · m!(N−m)!
(n−1)!(N−n−1)! we get forn ≥ 0

n(N − n)D(N)
n (m) = n(N −m)D(N−1)

n (m) + nmD(N−1)
n (m− 1)

+ (−1)m2−nN(N − 1)

(
N − 2

n− 1

)
·
(

2N

N

)
· δN,n (80)

The last term in (80) is equal to zero forn ∈ {0, 1, . . . , N}, so forn ≥ 0 and
m ≤ N − 1 we get

(N − n)D(N)
n (m) = (N −m)D(N−1)

n (m) +mD(N−1)
n (m− 1).

SinceD(N)
0 (m) ≡ 1 andD(N)

n (N) = (−1)n
(
N
n

)
(see formulae (48) and (49)), this

equality holds for each0 ≤ m,n ≤ N .

For n = N formula (78) becomes a trivial identity0 = 0, and similarly to
recurrence formula (55), formula (78) gives rise to an algorithm for calculating the
Chebyshev matrices. The algorithm works as follows: Given amatrix DN−1 we
first construct the “upper part” of the matrixDN (i.e. all its rows except theN th
one) by formula

Rows
1,...,N−1

(DN ) = diag( 1
N
, 1

N−1 , . . . , 1)
(
(|DN−1) · diag(0, 1, . . . , N)

+ (DN−1|) · diag(N, . . . , 1, 0)
)
. (81)

By (49) the last row of the Chebyshev matrices consists of thebinomial coefficients
with alternating signs, and hence we find theN th row ofDN as

RowN (DN ) =
(
RowN−1(DN−1), 0

)
−

(
0,RowN−1(DN−1)

)
. (82)

To getDN , we concatenateRows
1,...,N−1

(DN ) andRowN (DN−1).

Example 4.

D2 =




1 1 1
2 0 −2
1 −2 1
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Rows
1,...,3

(D3) =




1
3 0 0
0 1

2 0
0 0 1












0 1 1 1
0 2 0 −2
0 1 −2 1









0 0 0 0
0 1 0 0
0 0 2 0
0 0 0 3





+




1 1 1 0
2 0 −2 0
1 −2 1 0









3 0 0 0
0 2 0 0
0 0 1 0
0 0 0 0







 =




1 1 1 1
3 1 −1 −3
3 −3 −3 3



 .

and

Row4(D3) = ( 1 −2 1 0 ) − ( 0 1 −2 1 ) = ( 1 −3 3 −1 ),

hence

D3 =





1 1 1 1
3 1 −1 −3
3 −3 −3 3
1 −3 3 −1



 .
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