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Abstract

We give two recursive expressions for both MacWilliams ariebltyyshev matri-
ces. The expressions give rise to simple recursive algositfor constructing the
matrices. In order to derive the second recursion for theb@gsteev matrices we

find out the Krawtchouk coefficients of the Discrete Chebygimynomials, a task
interesting on its own.
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1 Introduction

The Krawtchouk polynomials play an important role in theottyeof error-correct-

ing codes [2]. The importance of the Krawtchouk polynomaiserges from the
fact that the weight spectrum of the charactersrgf consists of the values of
the Krawtchouk polynomials, and consequently the weightspm of a function

and that of its Hadamard transform are connected via theesadfi Krawtchouk

polynomials (see the next section for the definitions ofarimentioned in this
section).

The Krawtchouk polynomials are also interesting from a geim viewpoint.
They are an example afrthogonal polynomialsand so are the Discrete Cheby-
shev polynomials (see [7] for a general treatise on orthabpolynomials). For the
purposes of this article it is sufficient to treat inner produwith discrete weight
functions, and hence we consider the vector sageof polynomials having de-
gree at mostV as a general reference frame when speaking about the ortalogo
polynomials. The sum and the scalar producPin are defined pointwise, and the
inner product is defined as

N
(0, @)w =D wip(i)q(i).
=0

The Krawtchouk ponnomiaIKO(N), K£N), . K](VN) (of order N) are orthogonal

with respect to weight function; = (];’ ) and the discrete Chebyshev polynomials

D(()N), D%N), e DEVN) of order V with respect to weight function; = 1 for each
i (see [7]).

As orthogonal polynomials, the Krawtchouk polynomialsdahe discrete
Chebyshev polynomials) form a basis7f;, and hence any polynomial of de-
gree at mosiV can be uniquely represented as

p:COKO(N)+ClK£N)++CNK](VN), (1)

wherec; € C, and a similar representation

p=doD{™ +d; D™ + . 4+ dyDY @)
can be found for the discrete Chebyshev polynomials. Caoafiiec; in (1) are
called theKrawtchouk coefficientsf p, and the coefficientd; are thediscrete
Chebyshev coefficientSince the discrete Chebyshev polynomials are orthogonal
with respect to constant weight function, they have theofaihg property impor-
tant in the approximation theory: With respect to ndim— ¢||* = vazo(p(z') -
q(i))?, the best approximation gfin P,; can be found by simply taking/ + 1
first summands of (2) (see [6], for instance).

For a fixedN, it is sometimes interesting and useful to include all thees
Ki(N) (7) (or DZ(N) (7)) in the same study, and this leads naturally to a matrix fbérma
ism. We call(N +1) x (N +1)-matricesM y = (KZ(N) (7)) andDy = (DZ(N) (1))
MacWilliamsandChebyshewnatrices, respectively. In this article, we give two re-
currence relations useful for computing bdhy andD . To do so, we derive



recursion formulas relating the values dfth order Krawtchouk (resp. discrete
Chebyshev) polynomials to the values(df — 1)th order Krawtchouk (resp. dis-
crete Chebyshev) polynomials. This kind of recurrencesnsieeappear very in-
frequently in the pure theoretical literature, whereasréwrrences relatinﬁn N)
(resp. D) )to K N)l andKT(lN2 (resp. D(N)1 andD ) are well-known [7].

Also, to derive the latter recurrence relation lbr , we compute the Krawt-
chouk coefficients of the discrete Chebyshev polynomialprevious occurrence
of the Krawtchouk coefficients of the discrete Chebysheymahials in the liter-
ature is not known to the authors.

2 Preliminaries

2.1 Notations and Basic Definitions

Notation1 stands for the identity matrix, an@ means the zero matrix, whereas
we use0 to denote the zero (column) vector. The dimensions,d, and0 will

be clear by the context. Biiag(cy, ..., ¢,) we understana x n diagonal matrix
with ¢1, ..., ¢, as diagonal entries. We use expressi(l)ﬁsjvvvsl(A) = B and

Rown(A) = cto define anV x N matrix A in two stages: therows, ..., N —1
of A consists of ar{/V — 1) x N-matrix B, and the last row oA consists of an
N-dimensional row vectoe.

For any matrixA, |A stands for the zero-padding af from its left and upper

sides, i.e,
— 0 of

and the notationd |, A|, |A, |A andA| have an analogous meaning.

For N > 1letFY be anN-dimensional vector space over the binary figjd=
{0,1} and letVy be the2-dimensional complex group algebra of all functions
[ : FY — C with the usually defined multiplicatiordyadic convolutioh

(fxg)@) = > fglx+y), fgeVo xzecFy 3)
YeFy
equipped with the inner product (also called the scalarymtyd
(fxg)@)= > fly )
Yery

wherec* stands for the complex conjugate€ C.
Everycharacterof algebraV,, can be written in a form

xy(@) =xz(y) = ()Y, =z yeFy, (5)
wherex -y = z1y1 + ... + xyyn. When useful, we interpret andy as subsets
of indices{1,2,..., N} in the obvious way. Interpreting so, clearly

T -y=|zNy| (6)
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where|- - - | denotes the cardinality. In accordance to this interpetatve often
use notationxz| = wt(x) for the Hamming weight [2] ofc ¢ FY if there is
no danger of confusion. Note also that in this interpretatio+ y becomes the
symmetric difference of subsetsandy. Whenz ¢ F) is interpreted as a subset
of {1,2,..., N}, we also use notatio® for the complementf «, i.e.,z;, = 1if
x; = 0 and vice versa.

It is easy to verify that

N 1 fex=y
Xz, xy) = 2" Ty(x), whereTy(x) = { 0, ifx#uy, %

and it follows that the characters form an orthogonal basigy For anyf € Vi
we define thédiscrete) Fourier transfornf (f) = f € Vi (also calledHadamard
transforn) as

FHy) =Fy) = > f(x) = (xy.[f), yeFy. ®)

TeFy

The following properties of the Hadamard transform are akethwn and easy
to check:

F=2f (B =2Vt )
F(f+g)=F(f) - Flg), F(f-g)=2""F(f)=F(g), (10)

wheref - ¢ means the usual pointwise product of two functions.

2.2 Weight Spectrum, Krawtchouk Polynomials and MacWilliams
Matrices

For anyr € [0, N] let
SWN) =8, = {x e FY | wt(x) = r} (11)

be therth Hamming spherén F2 and Ietw,(«N ) (= v,) be its characteristic function

1, zes™
() = ’ ! 12
V() {O’wmm_ (12)
Furthermore, for any functioi € Vv we define
A(f)= (b f)= > fl®), 0<r<N (13)
xes™)

and call(Ag(f), A1(f),..., An(f))T € CN*! theweight spectrunof f (cf. [2]).
According to formulas (9)

Ar(f) = <7;Z)raf> = 27N<1Zra?> = <1Zraf>’ (14)
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but on the other side, according to (8)

Ur(@) = (xa, ) = Y xyla) = KNV (@), (15)
Yyes:
wherex = |z| and

K (2) = K, (a) = 22(—1)2‘ =90 a6)

r—1 7

is therth Krawtchouk polynomial of ordeN (cf. [1], [2]).%
Now we can easily rewrite (14) to obtain the famddiacWilliams formula for
the dual spectra

N
A () =) K (i) Ai(f). (17)
i=0
We define theMlacWilliams matrixof order NV by

(My)i; = KV (j) (18)

)

for0 <i,5 < N. Then formula (17) can be rewritten in a matrix for@ + 1)-

~

dimensional column vectore; = A;(f) and My(a); = A;(f) are connected
through the matrix equality

My (a) = Mya, (19)

and this formula defines thdacWilliams transfornof order N for an arbitrary
(N + 1)-dimensional vectoa (cf. [2]).

To conclude this section we list some useful formulas foravtchouk poly-
nomials and MacWilliams matrices. All of them (except foten29)) can be
found, for example, in [1] [2], and [3]:

1. The generating function (see [2]):

1+HN 21 —t)7 = iK,gm(z)t’f. (20)

2. Explicit expressions:

S S [

1By definition K" (0) = 1.



The leading coefficient

Coeff, (KV(z)) = Z2 22)

7!

3. Orthogonality:
Let C = diag((})), (1).---, (}))- Then the following identities hold:

N

> (jj) K. (i)K4(i) = 2V (JZ) b5 i.e. MyCML =2VC. (23)
=0
N
> K (i)Ki(s) =2V6,, ie. My =2"L (24)
=0
4. Symmetry:
KM (z) = (=1)"KN)(N — z) foranyz, and

KM (z) = (-1°K{ (2) forz €{0,1,...,N}  (25)

(JD K(r) = (JD K.(s) ie. My =C'M,C

(the reciprocity formula). (26)

5. Recurrence relations (see [2], [5]):

(r+ 1)K, 11(2) = (N —22)K,.(2) = (N —r+ 1)K,_1(z2),
Ko(z) =1, Ky(2) = N — 2z. (27)

(N —=nr)Kj(r+1)=(N-=20)K(r) —rK;(r — 1),
K;(0) = <7> K(1) = (7) (1— %l). (28)

where0 <i,j5 < N, and

‘ 1, ifje{0,N}
d = e 30
0 ={ 1 11 o) 0
with the understanding tha'fi(N_l)(N) = K](VN_l)(j) =0,andK;(j) =0
fori = —1orj = —1 (or both).



Proof of formula (29).Let for a whileX = My _1, and leta andb be the first and
the last columns iV x N-matrix X, respectively, so that

X =(a|Z|b), (31)

whereN x (N — 2)-matrix Z contains all columns oK indexed froml to N — 2.
Then the system of equalities (29) can be rewritten as axnedriality

X 0 o” 0 0 X 0 of
M= ((or o)+ (% o)+ (0 o) (o0 %)) @
whereQ) = diag(1, 1,...,1,1) is a diagonal matrix.

Let's now rewrite formula (20) foj # N as follows:

N

L+ DA+ OV —1) =S kNG, (33)
1=0
which gives us a relation
ENG) = KN V0 + k5NTVG), i #N, (34)

whereas forj = N one hag1 — ) = (1 — )(1 — t)¥~!, which implies that
KMWN)y = kKON —1) = kN (Vv 1), (35)

2

if 1 <7< N — 1. Evidently one can write (34) and (35) into a matrix form:
X 0 o 0 O b 0" 0
MN_(OT 0>+( X 0>+<0T 0)_< ¢} b>' (36)
In a similar way, from trivial equalities

I+)VN 71—ty = (A +)ND=0"Da - =Ha —1)

forj # 0and(1+¢)" = (1+¢t)(1+¢)V~! for j = 0 we get an analogous formula
0 X 0 of a O 0 of
MN_(O 0T>_(0 X >+<0 0T>+(a 0 > (37)
Summing (36) to (37) and recalling decomposit®¥n= (a|Z|b) one gets
~( 2alZ]b © 0" 0
oMy = < 07 o)+<2ayzw 0)
L (0 alZ2b\ (0 o
0 of 0 alZ|2b )’
which shows thaM 5 can be obtained from
X 0 0" o 0 X 0 of
Y‘(oT 0>+( X o>+(o 0T>_<0 X) (38)
by multiplying the first and the last column by two. Hereky can be obtained

from Y by dividing the columns fron2 to N — 2 by 2, or equivalently, by multi-
plying Y (from the right) by(. O



By using the zero-padding notations, formula (32) can bé&tevrias

. N
Mpyy1 = (Mpy|+Mpy| + My — [My) - diag(1, IR E 1), (39)

which gives rise to a simple algorithm for constructing thadwilliams matrices
recursively?

Example 1.

o

= =0 oS
|

[S—y

N——
N——
/=
o O =
o= O

and so on.

3 The Discrete Chebyshev Polynomials and Chebyshev
Matrices

For any fixedy € FY we define a functioBy : F) — C by

By(x) = (|x’z’y|> xy(x), =Ty (40)

Functions By were first introduced in [1], where it was shown thag form a
basis (which we refer as to H-basis)g§ and that for any: € {0,1,..., N}, sum

Zoe-p ()OI e

depends obviously only af = |z|. Equation (41) defines theh discrete Cheby-
shev polynomial of ordeN (cf. [1], [3]):

oo =pw =Y ()(N(0) @

=0

20f course, formulas (36) and (37) would also yield such aoritlym, but (39) has a bit more
uniform appearance.



Similarly to (18), an(N + 1) x (N + 1)-matrix
(Dn)iy = DY), 0<ij<N (43)

i

is called theChebyshev matrix of orde¥.
Below we give a list of some useful formulas for the Chebysbelynomials
and matrices, most of which (except formula (55)) can beddaril], [2], and [7]:

1. Difference formula;

D@ = e (DTN ) @

whereA™ is thenth power of the difference operator definedag(z) =

flz+1) = f().

2. Explicit expressions:

oo = S0 (1) (770 ()
- e ()00

- (TT)ENC) e

1=0

3. Orthogonality:

N
. . 2r\ (N +1-+7r
> DDA = Wherefyr_<r>( S ) (45)

which means that
DNDIJ\} = diag(’YO)rYla"'vryN)’ (47)

4. Symmetry and special values:

D,(N —z)=(=1)"D,(z), (48)
oo = (). o =com(N)E @

DﬁlN)(%) - { (=)™ <n%) (%$m> , ifn=2m (50)

3 DI(0) = 1 by definition.




The leading coefficient:

Coeff, (D)) = (ZV" <2n>

n! n

N
Do(z) =1, Dy(z) = =2z + N, Dy(z) = 32° — 3Nz + (2)
5. Recurrence formulas:

n?D, = (2n —1)D1D,,_1 — (N +n)(N —n+2)D,_s,

A((z+1)(z — N)AD,(z)) = n(n+1)Dy(z + 1),

Do (0) = <Z> Dy (1) = (Nn_ 1) ‘”(Z—_11>

(Difference equation foD,,(x)).

nDM(z) = nDN Dz —1)+ (N —2)DN [V (x)
— (N+n-2)D" V@-1), N>1.

Proof of Formula (55).Forn # 0 we get:

(51)

(52)

(53)

(54)

(55)

(-1 D z)
()
_ An(<(x;1>+<zj)> ((x—Z)—N)>
(T (G
= (=1)"D _1)+An((ili_(ZM)((m;l_);N))
= ool e - Sta (e () (7, 0))
+ozar x(iib((w—Z)—N))

By using A" (z - f(z)) = (z + n)A"(f(z)) + nA" ' (f(z)), which is easy to
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prove by induction, we learn that

e (ED ()
st (E2D(00)

= DYV ) - (1 O @) - DY - )
£ ) AN @ - 1) + (-1 DY Ve - 1),

n

which gives the desired recurrent formula (fot£ 0):

(N-1)
n—1

(N-1)
n—1

nDWM(z) = nDN"Y(2—1)+(N—z)D ()= (N+n—z)D (z—1).

Evidently this formula remains valid also fer= 0, supposingD_;(x) =0. O

Similarly to the formula (39) for MacWilliams matrices, faula (55) can be
written in matrix form as

diag(0,...,N)-Dy = diag(0,...,N)Dy_1
— (|Dn—1 —Dn_1|) - diag(NV,...,0) — diag(0,...,N)[Dy_1. (56)

The first row in(|DN,1 - DN,1|) consists of zeros, whereas the first rows
of Dy andDy_; consist of ones, and the first row @ y_; consists of zero
followed by ones. Hence formula (56) can be rewritten as

Dy = (|[Dy_1 — |[Dn-1)
— diag((), 1,..., I/N)(‘DN_l — DN—lD diag(N, R ,0) + eqo, (57)

wheree is a matrix with1l as its left upper corner and zeroes in all the other en-
tries. This gives rise to a simple recurrent algorithm farstoucting the Chebyshev
matrices, illustrated in the following example.

10



Example 2.

D, = (1)
1 00
o= ((00) (01>)
(00 0 00 10
0 1 0 10 0 0
L (10 11
00 1 -1
01 1 00 0
D, = 01 -1 ]-[01 1
00 0 01 -1
00 0 00 0 0 0 0 2 00
- (o110 01 1 |]-[1 1 0 010
00 2 01 -1 1 -1 0 00 0
100 11 1
+ 000 ]|=(2 0 -2],
000 1 -2 1
and so on.

4 The Krawtchouk Coefficients of The Discrete Cheby-
shev Polynomials

The strategy is to first find the Hadamard transform of the tfancdefined by
formula (40) and then to apply the MacWilliams formula (17).

Lemma 1. Let

®y@):( m\> (58)

|z Nyl

wherez, y € FY, (y is a fixed vector). Then the Hadamard transformbef is
given as follows:

~

Oy (z) =2V VKM (|2]) - Xz(y), (59)

wherez € FY, y = |y|, and

R (60)

Proof. Let x, y, z € Fév, andx; = xNy,xo = xNY, 21 = zNy, and

11



zo = zN7y. Then adirect calculation gives

Dy(z) = Z(_l)mzl(!w'g'y\)

xev,

= Y Y (@ (z1+z2)< ly| )
T.C |z Nyl
1CY xCyY

_ |w2mz2\ |:131r1z1\ ]y!)
> > (a2
T2CY ilyY

In the inner sum, we split the bits af; into two parts: those contained 1 and
those outside of; (there ardy| — |z1| of them) to get

> 1) ||z1 |21] vz [yl — |21 ly|
_ roNz
By(z) = > (- HZ ( > Z( : >.(a+b>
(Egcy b=0
[Z1]
= > (- szzli <|z1|>(2|y|—|z1|>
ToC |y|—CL
2CY
2
= Kzl Y (-nFnzl,
T2CY

The equality between the first and the second line is due tad&@amonde’s con-
volution (see [1], for instance). The inner sum in the laselcan naturally be
interpreted as a sum over all characters fladimensional vector space oV,
and hence it equals @ if z5 # 0, and to2‘y’, if zo0 = 0. Becausezy, = 0 is
equivalent taz C y (which is equivalent ta& = z), we have

~ 2’y‘K(2|y‘ zl), z C U 2
By(z) = 202y _ olwl Kk 20(12)) . x2(w). 1)
0 zZy
as claimed. O
Lemma 2. R
By(u) = 2" VK (y — [u)) Xu(y), ueFY (62)

Proof. Since evidentlyfy = xy (see formulae (5), (7) and (8)), and due to (9)
and (10), we can easily find the Hadamard transfornBgf = @4, - x4. Since
(f *Ty)(x) = f(x +y) forany f € Vi, we first get

By(u) = 27V (Dy = 2N Ty)(u) = y(u+y),

and Lemma 1 then gives

By(u) = 2V VEP) (ju+ y) Xusy(y)

2V VR (y — Jul) Xu(y).

12



The last equality follows from the easily verifiable equally, ¢ (y) = Xu(y).
]

Proposition 1 (The Krawtchouk coefficients of the discrete Chebyshev pmtyi-
als) Foro<n<N

N .
D) = 23 () K x Y )
=0

_ g ; <N o Z) K@ ENm).  (63)

Proof. Theith coefficient of the weight spectrum ﬁy can be calculated by the
previous lemma to get

Ai(By) = Y Bylw) =) 2V VK (y— [u]) Xu(y)
ucs; ucs;
= 2Ny (i)f(;?y)(y—i). (64)
By the MacWilliams formula (17) and by (9) we get
N | N— N 2 .
5 ZK A(By) =2 yzgm ()z(; Dy — i),
(65)
and hence N
_ Ny [ Y 2 .
Am(By) =2 y%Kﬁn ><z>(i)K; Dy =), (66)
On the other side, according to formulas (41) and (42) we have
DM (z)= > By(z), z=|af (67)
YESy

and summing up left and right sides of the equality (67) oaaher ¢ FY with
= |z| and applying formula (66) we find that

<Z>Dr(m) = > D Byl@= ) An(By)

YES, TES YES,
N al T
_ —r (N) ¢ 2r)/,. =
<T)2 ZEO K, (z)<Z>KT (r —1). (68)

So we get the following expression of the discrete Chebyglodynomials by the
Krawtchouk polynomials:

N N
DN (m) = (%Z( ) ™) (n — i) KM (i). (69)

=0

13



Applying the reciprocity formula (26)
N N
KM () = KW
(V) xo = () - &
we get the claim by direct calculations. The latter form carobtained by replac-
ing the summation indexwith n — 1. O
Lemma 3.

1. For K\*™ we have

_o\yn =l z—1
ke = ST - ey = o (7). o

2. Fors € {0,1,...,2n}

0, ifs=2r+1

if s =2r. (71)

Proof. From the symmetry formula (25) we get

K@M (@2r +1) = (1) KSY (2r +1) = —K2 (2r + 1),

2n—n

soKflzn)(Qr + 1) = 0 and it is exactly the first equality of item 2.

Since K> has degree. and because we know all of its zeros by item 2, we
only need to recall formula (22) for the leading coefficiehtkoawtchouk poly-
nomials to get the first equality of item 1. The second equaitevidently just a
reformulation of the first one.

Now the claim in expression (71) fdn’f?”)(%) can be obtained straightfor-
wardly by substitutiore = 2r in formula (70). O

Remark 1. From formula (70) we get a formula for generating function of
(2n) .
Ky (2):

(1—4t)z Z K2 (72)
Recalling a formula for the generating functlon of the Catatumberg’,, (cf. [4])
1—VT—4 & n
—e— = RZ:O C, -t (73)
we find that
K@) =-2-Chy, n>1. (74)

For the next proposition, which is a matrix reformulation(®8), let now

N —
By = diag(1,27%,...,27), Ly = (< )K(2”)(n—z)> .
n—1i 0<n,i<N

14



Proposition 2.
Dy = QnyMy, (75)

whereQy = ByLy.
SinceM3; = 2V1, (75) can be also rewritten as
DyMy = 2VQy = diag(2V,2V71 ... 1) - Ly (76)
to get an expression where all the matrix entries are inseger

Example 3. For N = 4 we have

1 1 1 1 1 1 0 0 0 O
4 2 0o -2 —4 0 2 0 0 O
M, = 6 0 -2 0 6 , Ly = —-12 0 6 0 O ,
4 =2 0 2 —4 0o —-12 0 20 O
1 -1 1 -1 1 6 0 —10 0 70
and
1 1 1 1 1
111 1 4 2 0 -2 —4
dlag(17§717§7ﬁ) L4M4 - 6 -3 —6 -3 6 :D4
4 -8 0 8 —4
1 -4 6 -4 1

According to formula (71) we can conclude that also in theegaincase the
matrix Ly has an “even sub-diagonal” structure:

0, if n—1is odd
(LN)n,i = (_1)”2—1' (N—'z‘) (2n) (nz_

nmtiAnl ()

Proposition 3. For N > 1, the discrete Chebyshev polynomials satisfy the follow-
ing recurrence relation:

~—

(77)

i

if n —1is even.

(N =n)DMN (m) = (N —m)DN =Y (m) + mDN =Y (m — 1), (78)

n
where0 < m,n < N.

Proof. To obtain this recurrence relation we are going to apply &oeirence re-
lation
KM@ - KN V) =k V), 0<2<N-1 (79)

7

for Krawtchouk polynomials. The above formula follows éagiom a simple
equality(1+ )N #(1—¢)* = 1+ ) (A + )V 121 = t)*). f m < N —1, we

15



get, by using (69) and (79) that

2n@D(N)( ) ognl m ) (le) D(N—l)(m) _ (n>K(2n)(n _ N)KﬁnN)(N)

W ("))

Q) () e B Qe

- () () Ei

m!(N—m)!
(n—D)!(N—n—1)!

and multiplying both sides by~ - we get forn > 0

n(N —n)DM (m) = n(N — m)DN Y (m) + nmDN = (m — 1)

S N -2\ (2N
s cmene -n(3 70 () o (30)
The last term in (80) is equal to zero fere {0,1,..., N}, so forn > 0 and

m < N — 1 we get
(N =)D (m) = (N = m)D¥ D (m) + mDN D (m — 1).

SinceDéN) (m) = 1andDV (V) = (—1)"(Y) (see formulae (48) and (49)), this
equality holds for each < m,n < N. O

Forn = N formula (78) becomes a trivial identity = 0, and similarly to
recurrence formula (55), formula (78) gives rise to an atgor for calculating the
Chebyshev matrices. The algorithm works as follows: Givenadrix Dy_; we
first construct the “upper part” of the matrR (i.e. all its rows except thé/'th
one) by formula

1RO]‘\7>7§1(DN) - dlag(%7ﬁ771)((‘DN—1)dlag(07177N)

+ (Dn-1]) - diag(N,...,1,0)). (81)

By (49) the last row of the Chebyshev matrices consists dbitme@mial coefficients
with alternating signs, and hence we find thi¢h row of Dy as

ROWN(DN) = (ROWN_l(DN_l),O) — (O,ROWN_l(DN_l)). (82)

To getDy, we concatenateRowsl(DN) andRowy(Dy_1).
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Example 4.



5 00 01 1 1 8?88
Rows(D3)=|[ 0 3 0 02 0 -2
b 00 1 01 —2 1 0020
000 3
111 gggg 11 1 1
+ 2 0 -20 0010 =13 1 -1 -3
1 -2 1 0 00 00 3 -3 -3 3

Rowg(D3)=(1 -2 1 0)—=(0 1 -2 1)=(1 -3 3 —1),

hence
1 1 1 1
3 1 -1 -3
Di=13 3 3 3
1 -3 3 -1
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