
Kristoffer Osowski | Jan Westerholm | Mats Aspnäs

Two Cases of Data Overflow in
the Protein Sequencing Program
BLASTPGP

TUCS Technical Report
No 813, January 2007

Two Cases of Data Overflow in
the Protein Sequencing Program
BLASTPGP

Kristoffer Osowski
Jan Westerholm
Mats Aspnäs

Åbo Akademi University
Department of Information Technologies
Joukohainengatan 3–5
20520 Åbo, Finland
[kristoffer.osowski | jan.westerholm | mats.aspnas]@abo.fi

TUCS Technical Report

No 813, January 2007

Abstract

For some input sequences, the NCBI BLASTPGP program for gapped basic local
alignment search fails, because of errors in the program implementation. One error
causes the blastpgp program to crash for certain input sequences, failing to pro-
duce any valid results. An other error causes a large number of warning messages
”ObjMgrNextAvailEntityID failed with idx 2048” to be output, and the program
produces incorrect and incomplete search results. This report describes our inves-
tigation of the causes of these errors and a correction to both errors.

Keywords: BLAST, BLASTPGP

TUCS Laboratory
High Performance Computing Laboratory

1 Introduction

The High Performance Computing laboratory at Åbo Akademi University is since
the year 2005 involved in a three-year project together with CSC, the Finnish IT
center for science1 with the goal of improving the performance of some of the
codes that are used on CSC:s supercomputer systems. Within this project, a num-
ber of different computer programs in various disciplines of science, like fluid dy-
namics, plasma fusion, modeling of nuclear cascades, density functional theory and
protein sequence matching, have been investigated and optimized for performance.

The BLAST and BLASTPGP [1, 2] programs are extensively used in bioinfor-
matics research all over the world to carry out gapped basic local alignment search
of nucleotide or protein sequences. In the autumn 2006, BLASTPGP was selected
as one of the programs to be investigated and possibly performance optimized,
since it is one of the heaviest used codes on CSC:s supercomputers, and its use is
also steadily increasing.

The users of the BLAST software reported that the program fails to produce
valid output for some input sequences, crashing the program in some cases and
producing large amounts of warning messages in other cases. Before any code
optimization efforts were started, it was decided that the bugs first should be cor-
rected. This report describes the causes of these two bugs, and presents solutions
to remove them.

This work applies to version 2.2.15 of the BLAST software from NCBI and the
swissprot database, downloaded on the 17:th of November 2006. The BLAST
software is available from http://www.ncbi.nlm.nih.gov/blast.

1http://www.csc.fi

1

2 The segmentation fault bug

For some query sequences, the blastpgp program crashes and reports a segmenta-
tion fault. An example of such a query sequence is:

>779261
MKVAVNTFLLFLCSTSSIYAAFALNSDGAALLSLTRHWTSIPSDITQSWNASDSTPCSWL
GVECDRRQFVDTLNLSSYGISGEFGPEISHLKHLKKVVLSGNGFFGSIPSQLGNCSLLEH
IDLSSNSFTGNIPDTLGALQNLRNLSLFFNSLIGPFPESLLSIPHLETVYFTGNGLNGSI
PSNIGNMSELTTLWLDDNQFSGPVPSSLGNITTLQELYLNDNNLVGTLPVTLNNLENLVY
LDVRNNSLVGAIPLDFVSCKQIDTISLSNNQFTGGLPPGLGNCTSLREFGAFSCALSGPI
PSCFGQLTKLDTLYLAGNHFSGRIPPELGKCKSMIDLQLQQNQLEGEIPGELGMLSQLQY
LHLYTNNLSGEVPLSIWKIQSLQSLQLYQNNLSGELPVDMTELKQLVSLALYENHFTGVI
PQDLGANSSLEVLDLTRNMFTGHIPPNLCSQKKLKRLLLGYNYLEGSVPSDLGGCSTLER
LILEENNLRGGLPDFVEKQNLLFFDLSGNNFTGPIPPSLGNLKNVTAIYLSSNQLSGSIP
PELGSLVKLEHLNLSHNILKGILPSELSNCHKLSELDASHNLLNGSIPSTLGSLTELTKL
SLGENSFSGGIPTSLFQSNKLLNLQLGGNLLAGDIPPVGALQALRSLNLSSNKLNGQLPI
DLGKLKMLEELDVSHNNLSGTLRVLSTIQSLTFINISHNLFSGPVPPSLTKFLNSSPTSF
SGNSDLCINCPADGLACPESSILRPCNMQSNTGKGGLSTLGIAMIVLGALLFIICLFLFS
AFLFLHCKKSVQEIAISAQEGDGSLLNKVLEATENLNDKYVIGKGAHGTIYKATLSPDKV
YAVKKLVFTGIKNGSVSMVREIETIGKVRHRNLIKLEEFWLRKEYGLILYTYMENGSLHD
ILHETNPPKPLDWSTRHNIAVGTAHGLAYLHFDCDPAIVHRDIKPMNILLDSDLEPHISD
FGIAKLLDQSATSIPSNTVQGTIGYMAPENAFTTVKSRESDVYSYGVVLLELITRKKALD
PSFNGETDIVGWVRSVWTQTGEIQKIVDPSLLDELIDSSVMEQVTEALSLALRCAEKEVD
KRPTMRDVVKQLTRWSIRSYSSSVRNKSK

If this sequence is stored for instance in a file named segfault.chunk and the
blastpgp program is executed for instance with the command

blastpgp -j 10 -e 1 -h 0.001 -a 1 -b 100000 -v 100000 -F F
-i segfault.chunk -d swissprot -o SegfaultResult.txt

a segmentation fault will occur and the program execution is aborted. The rea-
son the program crashes is an index that exceeds the boundary of an array. The
crash occurs in posit.c:posDemographics() (posit.c version 6.80) in
the following lines:

//SOME CODE
if (!posSearch->posDescMatrix[seqIndex+1][qplace].used)
{
posSearch->posDescMatrix[seqIndex + 1][qplace].used = TRUE;
posSearch->posDescMatrix[seqIndex + 1][qplace].letter = GAP_CHAR;
posSearch->posDescMatrix[seqIndex + 1][qplace].e_value = 1.0;
}

}
}
else { /*no gap*/

for(c = 0, qplace=queryOffset, splace=subjectOffset;
c < matchLength;c++, qplace++, splace++)

{
if (!posSearch->posDescMatrix[seqIndex+1][qplace].used) {

posSearch->posDescMatrix[seqIndex+1][qplace].letter = (Int1)s[splace];
posSearch->posDescMatrix[seqIndex+1][qplace].used = TRUE;
posSearch->posDescMatrix[seqIndex+1][qplace].e_value= thisEvalue;
}

}
}
//SOME CODE

2

The program crashes because the value of the index variable seqIndex+1 ex-
ceeds the memory area allocated for PosDesc **posSearch->posDescMatrix.
We first investigate how and where memory is allocated for posSearch->posDescMatrix.
It all starts in posit.c:CposComputation():

Int4 numalign, numseq; /*nr of alignments and matches in previous round*/
numalign = countSeqAligns(listOfSeqAligns, &numseq, FALSE, 0.0);
posAllocateMemory(posSearch, compactSearch->alphabetSize,

compactSearch->qlength, numseq);
if (!patternSearchStart)

findThreshSequences(posSearch, search, listOfSeqAligns, numalign,
numseq);

posDemographics(posSearch, compactSearch, listOfSeqAligns);
//SOME CODE

The memory for posSearch->posDescMatrix is allocated by the func-
tion posit.c:posAllocateMemory(),where the value of the variable numseq
defines the size of posSearch->posDescMatrix. The variable also defines
the size of other structures in posAllocateMemory():
posSearch->posDescMatrixLength, posSearch->posA , and
posSearch->posRowSigma.

The value of numseq is computed by the function posit.c:countSeqAligns(),
where numseq gets the value of numSequences, in the following way:

static Int4 countSeqAligns(SeqAlignPtr listOfSeqAligns, Int4 * numSequences,
Boolean useThreshold,Nlm_FloatHi threshold)

{
SeqAlignPtr curSeqAlign, prevSeqAlign;
Int4 seqAlignCounter;
DenseSegPtr curSegs;
SeqIdPtr curId, prevId; /* Ids of target sequences in current and */
seqAlignCounter = 0; /* previous SeqAlign */

*numSequences = 0;
curSeqAlign = listOfSeqAligns;
prevSeqAlign = NULL;
while (NULL != curSeqAlign) {
curSegs = (DenseSegPtr) curSeqAlign->segs;
if(curSegs->ids == NULL)

break;
curId = curSegs->ids->next;
seqAlignCounter++;
if ((NULL == prevSeqAlign) || (!(SeqIdMatch(curId, prevId))))

if (!useThreshold || (threshold >
minEvalueForSequence(curSeqAlign, listOfSeqAligns)))

(*numSequences)++;
prevSeqAlign = curSeqAlign;
prevId = curId;
curSeqAlign = curSeqAlign->next;

}
return(seqAlignCounter);

}

3

The basic question is: Why is the value of numseq less than the value of
seqIndex? To answer this question we must look in posDemographics()
and see how the variable seqIndex is computed:

//SOME CODE
numSeqAligns = countSeqAligns(listOfSeqAligns, &numseq,

!compactSearch->use_best_align,
compactSearch->ethresh);

posSearch->posNumSequences = numseq;
/*use only those sequences below e-value threshold*/
seqIndex = 0;
curSeqAlign = listOfSeqAligns;
prevSeqAlign = NULL;
for(curSeqAlign = listOfSeqAligns; curSeqAlign != NULL;

curSeqAlign = curSeqAlign->next) {
is_new_id = FALSE;
thisEvalue = getEvalueFromSeqAlign(curSeqAlign);
curSegs = (DenseSegPtr) curSeqAlign->segs;
if (NULL != prevSeqAlign) {

prevSegs = (DenseSegPtr) prevSeqAlign->segs;
if(curSegs->ids == NULL)

break;
curId = curSegs->ids->next;
prevId = prevSegs->ids->next;
if (!(SeqIdMatch(curId, prevId))) is_new_id = TRUE;

}
if(!(compactSearch->use_best_align && is_new_id)) {
if (thisEvalue >= compactSearch->ethresh)

continue;
}
if(is_new_id == TRUE) seqIndex++;
s = GetSequenceWithDenseSeg(curSegs, FALSE, &retrievalOffset,

&subjectLength);
if (s == NULL) {

//SOME CODE
continue;

}
// SOME CODE
prevSeqAlign = curSeqAlign;
s = MemFree(s);

} /*closes the for loop over seqAligns*/
//SOME CODE

We note that seqIndex is computed in almost the same way as numSequences
in countSeqAligns(). The significant differences are the two if-statements in
posDemographics():

if(!(compactSearch->use_best_align && is_new_id)) {
if (thisEvalue >= compactSearch->ethresh)

continue;
}

if (s == NULL) {
//SOME CODE
continue;

}

4

If the conditions are met for any of the two if-statements, a continue state-
ment is executed and the assignment prevSeqAlign = curSeqAlign will
not be executed for that iteration. This means that prevSeqAlign will not
be updated, while in countSeqAligns() the pointer prevSeqAlign will
be updated for every iteration. The result is that the SeqIdMatch(curId,
prevId) function will operate on different Id inputs, and thus the values of
seqIndex and numSequences can differ.

Here is a short sequence of Ids, given by their addresses, matched by
SeqIdMatch(curId, prevId):

countSeqAligns(): posDemographics():
Num. CurId PrevId CurId PrevId
50 11631680 11632464 11631680 11632464
51 11630864 11631680 11630864 11631680
52 11630048 11630864 11630048 11630864
53 11629248 11630048 11629248 11630048
54 11628448 11629248 11628448 11629248
55 11574080 11628448 <------> 11574080 11629248
56 11587696 11574080 <------> 11587696 11629248
57 11605600 11587696 <------> 11605600 11629248
58 11609296 11605600 <------> 11609296 11629248
59 11610640 11609296 <------> 11610640 11629248
60 11609456 11610640 <------> 11609456 11629248
61 11623568 11609456 11623568 11609456
62 11622496 11623568 11622496 11623568
63 11621728 11622496 11621728 11622496
64 11620912 11621728 11620912 11621728

Notice the differences starting at number 55.
In the current implementation it is assumed that the value of numseq will

always be greater than the value of seqIndex, and that therefore enough memory
will be allocated for posSearch-> posDescMatrix. This is not necessarily
true because the values are calculated in two different ways and it’s not always the
case, like for the given query sequence, that numseq will have a greater value.

The solution to this problem is to make sure that enough memory will be al-
located for posSearch->posDescMatrix for all query sequences. This can
be implemented in several ways. It’s important that the implementation doesn’t
reduce the readability of the code, complicate the program, or in any way affect the
result, apart from eliminating the segmentation fault.

5

First we must have a look at how the function posit.c:CposComputation()
is implemented:

Int4Ptr * LIBCALL CposComputation(posSearchItems *posSearch,
BlastSearchBlkPtr search, compactSearchItems * compactSearch,
SeqAlignPtr listOfSeqAligns, Char *ckptFileName,
Boolean patternSearchStart, Int4 scorematOutput, Bioseq *query_bsp,
Int4 gap_open, Int4 gap_extend, ValNodePtr * error_return,
Nlm_FloatHi weightExponent)
{

/*number of alignments and matches in previous round*/
Int4 numalign, numseq;
search->posConverged = FALSE;
numalign = countSeqAligns(listOfSeqAligns,&numseq,FALSE,0.0);
posAllocateMemory(posSearch, compactSearch->alphabetSize,

compactSearch->qlength, numseq);
if (!patternSearchStart)

findThreshSequences(posSearch, search, listOfSeqAligns,
numalign, numseq);

posDemographics(posSearch, compactSearch, listOfSeqAligns);
posPurgeMatches(posSearch, compactSearch);
posComputeExtents(posSearch, compactSearch);
posComputeSequenceWeights(posSearch, compactSearch,

weightExponent);
posCheckWeights(posSearch, compactSearch);
posSearch->posFreqs = posComputePseudoFreqs(posSearch,

compactSearch, TRUE);
if (NULL == search->sbp->posFreqs)

search->sbp->posFreqs=allocatePosFreqs(compactSearch->qlength,
compactSearch->alphabetSize);

copyPosFreqs(posSearch->posFreqs,search->sbp->posFreqs,
compactSearch->qlength, compactSearch->alphabetSize);

if (NULL != ckptFileName) {
if (scorematOutput == NO_SCOREMAT_IO)
posTakeCheckpoint(posSearch, compactSearch,

ckptFileName, error_return);
else
posTakeScoremat(posSearch, compactSearch, ckptFileName,

scorematOutput, query_bsp, gap_open,
gap_extend, error_return);

}
posFreqsToMatrix(posSearch,compactSearch);
posScaling(posSearch, compactSearch);
return posSearch->posMatrix;

}

6

The variable numseq is used in posAllocateMemory()and findThreshSequences(),
both functions located in posit.c. From earlier we know that numseq defines
how much memory will be allocated for several data structures in posAllocateMemory().
It also defines the size of another data structure in findThreshSequences(),
named posSearch->posResultSequences[].

A solution is to make a new function that computes the value of numseq in the
same way as seqIndex and then update the value of numseq if the new value is
higher that the value computed in countSeqAligns()

The implementation of the new function looks like this:

static void countNumSeq(posSearchItems *posSearch,
compactSearchItems * compactSearch,SeqAlignPtr listOfSeqAligns,
Int4 *prevNumSeq)

{
Uint1Ptr s; /*pointer into a matching string */
Int4 subjectLength; /*length of subject*/
Int4 retrievalOffset; /*retrieval offset */
/*pointers into listOfSeqAligns*/
SeqAlignPtr curSeqAlign, prevSeqAlign;
/*used to extract alignments from curSeqAlign*/
DenseSegPtr curSegs, prevSegs;
/*Used to compare sequences that come from different SeqAligns*/
SeqIdPtr curId, prevId;
Nlm_FloatHi thisEvalue; /*evalue of current partial alignment*/
Int4 newNumSeq; /* numseq computed in another way */
Boolean is_new_id = FALSE;
newNumSeq=0;
/*use only those sequences below e-value threshold*/
curSeqAlign = listOfSeqAligns;
prevSeqAlign = NULL;
for(curSeqAlign = listOfSeqAligns; curSeqAlign != NULL;

curSeqAlign = curSeqAlign->next) {
is_new_id = FALSE;
thisEvalue = getEvalueFromSeqAlign(curSeqAlign);
curSegs = (DenseSegPtr) curSeqAlign->segs;
if (NULL != prevSeqAlign) {

prevSegs = (DenseSegPtr) prevSeqAlign->segs;
if(curSegs->ids == NULL)

break;
curId = curSegs->ids->next;
prevId = prevSegs->ids->next;

if (!(SeqIdMatch(curId, prevId)))
is_new_id = TRUE;

}
if(!(compactSearch->use_best_align && is_new_id)) {

if (thisEvalue >= compactSearch->ethresh)
continue;

}
if(is_new_id == TRUE)

newNumSeq++;

s = GetSequenceWithDenseSeg(curSegs, FALSE,
&retrievalOffset, &subjectLength);

7

SeqMgrFreeCache();
if (s == NULL)
{

continue;
}
s = MemFree(s);
prevSeqAlign = curSeqAlign;

}
newNumSeq++;
/* numseq gets the highest number computed by both methods */
if (newNumSeq > *prevNumSeq)

*prevNumSeq = newNumSeq;
}

The new function, countNumSeq() in posit.c, takes the same arguments
as posDemographics() plus the pointer to the previously computed numseq.
If the new value is higher than the previous value of numseq, then numseq is
updated with the new value.

The new function is called from CposComputation() between the calls of
countSeqAligns() and posAllocateMemory():

numalign = countSeqAligns(listOfSeqAligns, &numseq, FALSE, 0.0);
countNumSeq(posSearch, compactSearch, listOfSeqAligns, &numseq);
posAllocateMemory(posSearch, compactSearch->alphabetSize,

compactSearch->qlength, numseq);

A call should also be inserted in WposComputation() between the calls of
countSeqAligns() and posAllocateMemory():

numSeqAligns = countSeqAligns(listOfSeqAligns, &numseq, FALSE, 0.0);
countNumSeq(posSearch, compactSearch, listOfSeqAligns, &numseq);
posAllocateMemory(posSearch, alphabetSize, qlength, numseq);

These are the changes needed for the implementation of the bug fix. Here is a
short summary:
posit.c:

- created a new function countNumSeq()
- added a call to countNumSeq() in CposComputation()
- added a call to countNumSeq() in WposComputation()

8

The following is the result of a test run for the query sequence that previously
resulted in a segmentation fault:

Iter. numseq numseq numseq
method1 method2 final

2 2436 2075 2436
3 3150 3278 3278
4 3179 3342 3342
5 3157 3301 3301
6 3153 3262 3262
7 3157 3263 3263
8 3148 3253 3253
9 3157 3255 3255
10 3164 3257 3257

The first column indicates which iteration is being run and the following ones
indicate the value of numseq: computed in countSeqAligns(), computed in
countNumSeq(), used in posAllocateMemory().

We can see that the value of numseq computed in countSeqAligns()was
updated by the value computed in the new function countNumSeq() in 8 out of
9 iterations. As a result of the update of numseq enough memory was allocated,
preventing the crash of the program.

The implemented solution removed the problem of an index exceeding the
boundary of an array, making the program work without crashing. The results
for any query sequence are exactly the same as before and the execution speed and
memory usage aren’t noticeably affected. The solution does not make the program
more complicated and the readability of the code remains clean.

9

3 The warning messages

Sometimes during the execution of blastpgp the following warning message is
printed on the screen: "ObjMgrNextAvailEntityID failed with idx 2048” . The
problem occurs mostly when the input file contains several query sequences, but
can also occur for a single query sequence. As a result of the problem the blastpgp
program can write incorrect and incomplete output, which is not desirable . The
warning is generated in the function ObjMgrNextAvailEntityID() in the
file objmgr.c:

static Uint2 ObjMgrNextAvailEntityID (ObjMgrPtr omp)
{

Uint2 entityID;
Int2 idx, jdx;
Uint4 val;

if (! assignedIDsInited) {
ObjMgrInitAssignedIDArray ();

}
/* find first 32 bit word with an available entityID */
idx = assignedIDStackPt;
while (idx < 2048 && assignedIDsArray [idx] == 0xFFFFFFFF) {
idx++;

}
if (idx >= 2048) {
ErrPostEx (SEV_ERROR, 0, 0,

"ObjMgrNextAvailEntityID failed with idx %d", (int) idx);
return 0;

}
/* reset starting point, everything below should be in use */
assignedIDStackPt = idx;
/* find first empty bit in array element */

val = assignedIDsArray [idx];
jdx = 0;
while (jdx < 32 && (val & assignedIDsBitIdx [jdx]) != 0) {
jdx++;

}
if (jdx >= 32) {
ErrPostEx (SEV_ERROR, 0, 0,

"ObjMgrNextAvailEntityID failed with jdx %d", (int) jdx);
return 0;

}
/* set bit to mark new entityID as in use */
assignedIDsArray [idx] |= assignedIDsBitIdx [jdx];
/* calculate entityID */
entityID = (Uint2) (((Int4) idx) * 32L + (Int4) jdx);

if (omp != NULL && omp->HighestEntityID < entityID) {
omp->HighestEntityID = entityID;

}

return entityID;
}

10

When the value of the variable idx is equal to or higher than 2048 then the
function prints the warning and returns 0, otherwise the program returns entityID
which is a Uint2 variable. We notice that idx is used as an index in the array
assignedIDsArray, so lets look closer at the array . The definition of the array
can be found further up in the code, just before the function
ObjMgrInitAssignedIDArray():

static Uint4 assignedIDsArray [2050];
static Int2 assignedIDStackPt = 0;
static Boolean assignedIDsInited = FALSE;
static Uint4 assignedIDsBitIdx [32];

The assignedIDsArray is an Uint4 array with 2050 elements, which is
not enough for all cases. Before we try to take any measures, we should understand
what the assignedIDsArray represents and how it is used.

To make things more simple we will assume that the assignedIDsArray
has 2048 elements instead of 2050, the two elements are only a safety marginal.
The IDs are represented by the array in the following way. We have 2048 elements
, each of them with the size of 32 bits (Uint4) that makes the total number of
bits to 65536, which is the maximum number of IDs. Every single bit in the array
indicates if the current ID is used or not, where a bit set to 1 indicates an used ID
and a bit set to 0 indicates an unused ID.

The entityID, a 16 bits unsigned integer, can have a maximum value of
65535 which is enough to indicate all the bits in the array (the array starts from 0)
and is computed in the following way:

entityID = (Uint2) (((Int4) idx) * 32L + (Int4) jdx);

idx is the index of the current element in the array assignedIDsArray,
while jdx is the index of the bit in the current element. We can see that the five
first bits represent jdx and the following eleven bits represent idx.

Now that we know what the array assignedIDsArray represents then we should
look up how the IDs are used. The IDs are used by a couple of structures in
the program which are declared in objmgr.h and only used by the functions
in objmgr.c. The following function explains the use of the IDs:

NLM_EXTERN void LIBCALL
ObjMgrAddIndexOnEntityID(ObjMgrPtr omp,Uint2 entityID,ObjMgrDataPtr omdp)
{

Uint1 h,l;
h=entityID >> 8;
l=entityID & 0xff;
if(omp==NULL) omp=ObjMgrGet();
if(omp){
if(!omp->entityID_index){

omp->entityID_index=MemNew(256*sizeof(*omp->entityID_index));
}
if(!omp->entityID_index[h]){

omp->entityID_index[h]=MemNew(256*sizeof(**omp->entityID_index));
}
omp->entityID_index[h][l]=omdp;

11

}
}

The IDs are used to indicate the elements in entityID index which is a
two dimensional array of size 256x256 elements, totally 655536 elements.

The problem with this implementation is that the array assignedIDsArray
is never reset after an iteration of PSI-BLAST or after each query sequence, which
results in lack of available IDs needed by the structures as the number of IDs grows
for every iteration. When there are no more available IDs, then the requests are
ignored and important data is lost.

The solution to this problem is to reset the array assignedIDsArray every
iteration to prevent all IDs from being used. This can be easily accomplished by
setting the boolean variable assignedIDsInited to false, which will make
the program reset the array. Every time a next available IDs is assigned a check is
made if the array is initiated, if not then the function ObjMgrInitAssignedIDArray()
is called where the array is reset if assignedIDsInited is false.

The definition of assignedIDsInited is found in the same place as the
definition of assignedIDsArray, which was previously described. The fol-
lowing is the function ObjMgrInitAssignedIDArray(), that resets the ar-
ray assignedIDsArray:

static void ObjMgrInitAssignedIDArray (void)
{

Uint4 bit;
Int2 jdx;
if (! assignedIDsInited) {
MemSet ((Pointer) &assignedIDsArray, 0, sizeof assignedIDsArray);
MemSet ((Pointer) &assignedIDsBitIdx, 0, sizeof (assignedIDsBitIdx));
/* initialize bit index array */
bit = 1;
for (jdx = 0; jdx < 32; jdx++) {

assignedIDsBitIdx [jdx] = bit;
bit = bit << 1;

}
/* entityID 0 is not available for use */
assignedIDsArray [0] = assignedIDsBitIdx [0];
assignedIDStackPt = 0;
assignedIDsInited = TRUE;

}
}

If the boolean assignedIDsInited is false then the array assignedIDsArray
is reset by zeroing all the bits, assignedIDstackPt is set to 0 and assignedIDsInited
set back to true.

12

We will create a new function that will set assignedIDsInited to false.
Here is the implementation of the function:

NLM_EXTERN void LIBCALL ObjMgrResetAssignedIDArray (void)
{
assignedIDsInited = FALSE;
}

A declaration should also be added in objmgr.h:

NLM_EXTERN void LIBCALL ObjMgrResetAssignedIDArray PROTO((void));

Finally a call to ObjMgrResetAssignedIDArray() should be made at
the end of every iteration. The call is inserted in the main function of blastpgp.c
at the end of the iteration loop:

/* Reset the AssignedIDArray , this is a bugfix */
ObjMgrResetAssignedIDArray ();

} while ((0 == search->pbp->maxNumPasses ||
thisPassNum < (search->pbp->maxNumPasses))
&& (!(search->posConverged)));

The implemented solution removed the "ObjMgrNextAvailEntityID failed with
idx 2048” problem , resulting in correct output for all the input queries. The ex-
ecution speed and memory usage aren’t noticeably affected. The solution works
fine at this moment, however, in the future the max number of IDs (65536) may
not be enough. If the amount of IDs is expanded, along with the size of the
entityID index array, then the variable entityID should be changed
from an 16 bits unsigned integer to an 32 bits unsigned integer to be able to in-
dicate all IDs, but this is beyond the scope of this bug fix.

Here is a short summary of changes made in the code by the implementation
of the bug fix :

objmgr.c: created a new function ObjMgrResetAssignedIDArray()

objmgr.h: added the declaration of ObjMgrResetAssignedIDArray()

blastpgp.c: added a call to ObjMgrResetAssignedIDArray() in Main()

13

4 Conclusions and further work

We have presented corrections for two bugs in the BLASTPGP program for gapped
basic local alignment search. The corrected version of the code has been in test
use since mid January 2007 at the Finnish IT center for science, CSC, where it
has been tested with 120 sequences which previously caused the program to fail.
No more reports of crashes due to segmentation faults of the kind presented here
nor any warnings of insufficient space in the object manager have been reported
during this time. Therefore, we feel confident in the corrected version and want
to make this available to all users of the BLASTPGP program. The modified code
and instructions for installing this can be found at http://www.it.abo.fi/
finhpc/blastpgp.

The next step in our work with the BLAST and BLASTPGP programs will be
to optimize the code to perform better on modern processors. A preliminary study
has showed that a speedup of 1.2 (measured as the runtime of the original program
divided by the runtime of the optimized program) can immediately be achieved by
changing the representation of one of the central data structures to a more cache-
friendly structure. We are also currently investigating other possibilities to speed
up the code.

14

References

[1] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and
David J. Lippman. Basic local alignment search tool. Journal of Molecular
Biology, 215(3):403–410, 1990.

[2] Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schäffer, Jinghui
Zhang, Zheng Zhang, Webb Miller, and David J. Lippman. Gapped BLAST
and PSI-BLAST: a new generation of protein database search programs. Nu-
cleic Acids Research, 25(17):3389–3402, 1997.

15

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology
• Department of Mathematics

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 978-952-12-1891-0
ISSN 1239-1891

