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Abstract

The process of gene assembly in ciliates, an ancient group oforganisms, is one of
the most complex instances of DNA manipulation known in any organism. Three
molecular operations (ld, hi, anddlad) have been postulated for the gene assembly
process, [3], [1]. We propose in this paper a mathematical model for contextual
variants ofld and dlad on strings: recombinations can be done only if certain
contexts are present. We prove that the proposed model is Turing-universal.
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1 Introduction

Ciliates are an ancient group of eukariotes (about 2.5 billion years old). They
are known to be the most complex unicellular organisms on theEarth. Their
main special feature which differs them from other eukariotes is nuclear duality:
ciliates have two types of nuclei (micronucleus and macronucleus) performing
completely different functions. Micronuclei are used mainly to store genetical
information for future generations, while macronuclei contain genes used to pro-
duce proteins during the life-time of a cell. Genomes are stored in these two types
of nuclei in two completely different ways: micronuclear genes are highly frag-
mented and shuffled, fragments (coding blocks) are separated from each other by
non-coding blocks, while in macronuclei each DNA-moleculecontains usually
one gene stored in assembled (non-fragmented) way. During sexual reproduc-
tion coding blocks from micronuclei get assembled into macronuclear genes. For
details related to ciliates and the gene assembly process werefer to [6], [14], [15].

Two models were proposed for the gene assembly process in ciliates: the in-
termolecular model in [7], [9], [10] and the intramolecularmodel in [3] and [16].
They both are based on so called “pointers” - short nucleotide sequences (about
20 bp) lying on the borders between coding and non-coding blocks. Each coding
block E starts with a pointer-sequence repeating exactly the pointer-sequence in
the end of that coding block precedingE in the assembled gene. It is currently
believed that the pointers guide the alignment of coding blocks during the gene
assembly process.

The bulk of the research on the intermolecular model concentrates on the com-
putational power of the model, in various formulations. E.g., in [7], the so-called
guided recombination systems were introduced, defining a context-based applica-
bility of the model. The authors proved that this intermolecular guided recombi-
nation system withinsertion/deletionoperations is computationally universal. For
this, they constructed for each Turing machine a guided recombination system, so
as for each computation of the Turing machine, there is a corresponding sequence
of recombinations in the guided recombination system. Crucially, the input of the
recombination system has to be given in a large enough numberof copies.

Most of the research on the intramolecular model concentrates on the combi-
national properties of the gene assembly process, including the number and the
type of operations used in the assembly, parallelism, or invariants.

In this paper we initiate a study of the intramolecular modelfrom the per-
spective of the computability theory. Using a similar approach as in [7], we in-
troduce a context-based version of the intramolecular model and prove that it is
Turing universal. We prove that any Turing machine may be simulated through
intramolecular recombination systems: for any Turing machine M there exists
a recombination systemG such that for any wordw, w is accepted byM , if and
only if ϕ(w) is accepted byG, for a suitable encodingϕ. Unlike in the intramolec-
ular case, no multiplicities are needed in this case, since the intramolecular model
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conjectures that all useful (genetic) information is preserved on a single molecule
throughout the assembly.

2 Preliminaries

We assume the reader to be familiar with the basic elements offormal languages
and Turing computability [17], DNA computing, [13]. We present here only some
of the necessary notions and notation.

An alphabetis a finite set of symbols (letters), and a word (string) over an
alphabetΣ is a finite sequence of letters fromΣ; the empty word we denote byλ.
The set of all words over an alphabetΣ is denoted byΣ∗. The set of all non-empty
words overΣ is denoted asΣ+, i.e.,Σ+ = Σ∗ \ {λ}.

The length|x| of a wordx is the number of symbols thatx contains. The
empty word has length 0. Given two wordsx andy, the concatenation ofx andy
(denoted asxy) is defined as the wordz consisting of all symbols ofx followed
by all symbols ofy, thus|z| = |x|+ |y|. The concatenation of a wordx with itself
k times is denoted asxk, andx0 = λ.

We denote by|x|S the number of letters from the subsetS ⊆ Σ occurring in
the wordx and by|x|a the number of lettersa in x.

If w = xy, for somex, y ∈ Σ∗, thenx is called aprefixof w andy is called a
suffixof w; if w = xyz for somex, y, z ∈ Σ∗, theny is called asubstringof w.

A rewriting systemM = (S, Σ ∪ {#}, P ) is called aTuring machine(we use
also abbreviation TM), [17], where:

(i) S andΣ ∪ {#}, where# /∈ Σ andΣ 6= ∅, are two disjoint sets referred to
as thestateand thetapealphabets; we fix a symbol fromΣ, denote it as⊔
and call it “blank symbol”.

(ii) Elementss0 andsf of S are theinitial and thefinal states respectively.

(iii) The productions (rewriting rules) ofP are of the forms

(1) sia −→ sjb

(2) siac −→ asjc

(3) sia# −→ asj ⊔ #

(4) csia −→ sjca

(5) #sia −→ #sj ⊔ a

(6) sfa −→ sf

(7) asf −→ sf

wheresi andsj are states inS, si 6= sf , anda, b, c are inΣ.
A Turing machineM is calleddeterministicif:
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• each wordsia from the left side of the rule (1) is not a subword of the left
sides from rules (2)–(5), and

• each subwordsia from the left side of rules (2) and (3) is not subword from
the left side of rules (4) and (5), and viceversa, each subword sia from the
left side of rules (4) and (5) is not subword of the left side ofrules (2) and
(3), and

• for each left sideui of the rules (1)–(5) it corresponds exactly one right side
vi.

A configuration of the Turing machineM is presented as a word#w1siw2#
over Σ ∪ {#} ∪ S, wherew1w2 ∈ Σ∗ represents the contents of the tape,#-s
are the boundary markers, and the position of the state symbol si indicates the
position of the read/write head on the tape: ifsi is positioned at the left of a
lettera, this indicates that the read/write head is placed over the cell containing
a. The TM M changes from one configuration to another one according to its
set of rulesP . We say that the Turing machineM halts with a wordw if there
exists a computation such that, when started with the read/write head positioned
at the beginning ofw, the TM eventually reaches the final state, i.e., if#s0w#
derives#sf# by successive applications of the rewriting rules (1)–(7) from P .
The languageL(M) acceptedby the TMM is the set of words on whichM halts.
If TM is deterministic, then there is the only computation possible for each word.
The family of languages accepted by Turing machines is equivalent to the family
of languages accepted by deterministic Turing machines.

Using an approach developed in a series of works (see [11], [12], [4], and [8])
we usecontextsto restrict the application of molecular recombination operations,
[13], [1].

First, we give the formal definition of splicing rules. Consider an alphabetΣ
and two special symbols,#, $, not inΣ. A splicing rule(overΣ) is a string of the
form

r = u1#u2$u3#u4,

whereu1, u2, u3, u4 ∈ Σ∗. (For a maximal generality, we place no restriction on
the stringsu1, u2, u3, u4. The cases whenu1u2 = λ or u3u4 = λ could be ruled
out as unrealistic.)

For a splicing ruler = u1#u2$u3#u4 and stringsx, y, z ∈ Σ∗ we write
(x, y) ⊢r z if and only if x = x1u1u2x2, y = y1u3u4y2, z = x1u1u4y2, for some
x1, x2, y1, y2 ∈ Σ∗. We say that wesplicex, y at thesitesu1u2, u3u4, respectively,
and the result isz. This is the basic operation of DNA molecule recombination.

A splicing scheme [5] is a pairR = (Σ,∼), whereΣ is the alphabet and
∼, the pairing relation of the scheme,∼⊆ (Σ+)3 × (Σ+)3. Assume we have
two stringsx, y and a binary relation between two triples of nonempty words
(α, p, β) ∼ (α′, p, β ′), such thatx = x′αpβx′′ andy = y′α′pβ ′y′′; then, the strings
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obtained by the recombination in the context from above arez1 = x′αpβ ′y′′ and
z2 = y′α′pβx′′.

When having a pair(α, p, β) ∼ (α′, p, β ′) and two stringsx andy as above,
x = x′αpβx′′ andy = y′α′pβ ′y′′, we consider just the stringz1 = x′αpβ ′y′′ as
the result of the recombination (we call it one-output-recombination), because the
stringz2 = y′α′pβx′′, we consider as the result of the one-output-recombination
with the respect to the symmetric pair(α′, p, β ′) ∼ (α, p, β).

2.1 Intramolecular Gene Assembly Operations

The intramolecular operations excise non-coding blocks from the micronuclear
DNA-molecule, interchange positions of some portions of the molecule or invert
them, so as to obtain after some rearrangements the DNA-molecule containing a
continuous succession of coding blocks, i.e., the assembled gene. Contrary to the
intermolecular model, all the molecular operations in the intramolecular model
are performed within a single molecule.

We recall bellow the three intramolecular operations conjectured in [3] and [16]
for the gene assembly, which were proved to be complete [2], i.e., any sequence
of coding and non-coding blocks can be assembled to the macronuclear gene by
means of these operations (for details related to the intramolecular model we refer
to [1]):

– ld excises a non-coding block flanked by the two occurrences of asame
pointer in the form of a circular molecule, as shown in Figure1.

– hi inverts part of the molecule flanked by the two occurrences ofa
same pointer, where one pointer is the inversion of the other, as shown
in Figure 2.

– dlad swaps two parts of the molecule delimited by the same pair of
pointers, as shown in Figure 3.

ld(i) ld(ii) ld(iii)
Figure 1: Loop Recombination: (i) the molecule folds on itself
aligning pointers in the direct repeat to form the loop, (ii)en-
zymes cut on the pointer sites, (iii) hybridization happens. As
the result, a portion of the molecule in the loop is excised inthe
form of a circular molecule.
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hi(i) hi(ii) hi(iii)
Figure 2: Hairpin Recombination: (i) the molecule folds on it-
self aligning pointers in the inverted repeat to form the hairpin,
(ii) enzymes cut on the pointer sites, (iii) hybridization happens.
As the result, a portion of the molecule in the hairpin is inverted.

dlad(i) dlad(ii) dlad(iii)
Figure 3: Double-Loop Recombination: (i) the molecule folds
on itself aligning equal pointers from the repeated pair to form a
double loop, (ii) enzymes cut on the pointer sites, (iii) hybridiza-
tion happens. As the result, portions of the molecule in the loops
interchange their places.

3 The Contextual Intramolecular Operations

We define the contextual intramoleculartranslocationanddeletionoperations as
the generalization ofdlad andld operations, respectively. We follow here the style
of contextual intermolecular recombination operations used in [7].

We consider a splicing schemeR = (Σ,∼).

Definition 1 The contextual intramolecular translocation operation with respect
to R is defined astrlp,q(xpuqypvqz) = xpvqypuqz, where there are such relations
(α, p, β) ∼ (α′, p, β ′) and(γ, q, δ) ∼ (γ′, q, δ′) in R, thatx = x′α, uqy = βu′ =
u′′α′, vqz = β ′v′, xpu = x′′γ, ypv = δy′ = y′′γ′ andz = δ′z′.

We say that operationtrl p, q is applicable, if the contexts of the two occur-
rences ofp as well as the contexts of the two occurrences ofq are in the relation
∼. Substringsp andq we callpointers. In the result of application oftrl p, q strings
u andv, each flanked by pointersp andq, are swapped. If from the non-empty
word u we get bytrlp,q operation wordv, we writeu ⇒trl p,q v and say thatu is
recombined tov by trlp,q operation.

Definition 2 The contextual intramolecular deletion operation with respect toR
is defined asdelp(xpupy) = xpy, where there is a relation(α, p, β) ∼ (α′, p, β ′)
in R thatx = x′α, u = βu′ = u′′α′, andy = β ′y′.
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In the result of applyingdelp, the stringu flanked by two occurrences ofp is
removed, provided that the contexts of those occurrences ofp are in the relation
∼. If from the non-empty wordu we get bydelp word v, we writeu ⇒delp v and
say that the wordu is recombined tov by delp operation.

We define the set of all contextual intramolecular operations under the guiding
of ∼ as follows:

R̃ = {trlp,q, delp | (α, p, β) ∼ (α′, p, β ′), (γ, q, δ) ∼ (γ′, q, δ′)

for someα, α′, β, β ′, γ, γ′, δ, δ′, p, q ∈ Σ+}.

Now, we define an intramolecular recombination (AIR) systemas thelanguage
accepting devicethat captures series of dispersed homologous recombination events
on a single micronuclear molecule with a scrambled gene.

Definition 3 An accepting intramolecular recombination system is a quadruple
G = (Σ,∼, α0, wt), whereR = (Σ,∼) is the splicing scheme,α0 ∈ Σ∗ is the
start word, andwt ∈ Σ+ is the target word.

The language accepted byG is defined asL(G) = {w ∈ Σ∗ | α0w ⇒∗
R̃

wt}.

To illustrate the definitions above we give the following examples.
Here we show some examples of application of contexts and of the recombi-

nation operationstrl anddel.

(i) Consider the wordw1 = abccbccba and the context(a, b, c) ∼ (c, b, a). The
context is applicable tow1 only in the following way:ab̂ccbcĉba, where by
underlinewe marked the context and byhat we marked the pointers. Dele-
tion delb is applicable tow1 in the context from above, i.e.,ab̂ccbccb̂a ⇒delb

aba.

(ii) Consider the wordw2 = abcabccba and the context(a, b, c) ∼ (c, b, a).
This context we can apply tow2 in two different ways: eitherab̂cabccb̂a,
or abcab̂c ĉba. In this waydelb being applied tow2 produces two differ-
ent results in the context(a, b, c) ∼ (c, b, a): ab̂cabccb̂a ⇒delb

aba and
abcab̂c ĉba ⇒delb

abcaba.

(iii) Here we show that contexts and pointers can have lengthgreater than one.
Consider the stringw3 = babababaaaabaa and the context(b, aba, ba) ∼
(aaa, aba, a). The context is applicable tow3 in the following two ways: ei-
therbâbababaaaâbaa or babâbabaaaâbaa. In this way by applyingdelaba to
the stringw3 in the context(b, aba, ba) ∼ (aaa, aba, a) we get the following
two results:bâbababaaaâbaa ⇒delaba

babaa andbabâbabaaaâbaa ⇒delaba

bababaa.
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(iv) Consider the stringw4 = abcaabcabcbabcaab and the contextsσ1 = (a, b, c)
∼ (c, b, a) andσ2 = (bc, a, abc) ∼ (c, a, a). Contextσ1 is applicable tow4

in three different ways: eitherab̂caabcabcb̂abcaab or abcaab̂cabcb̂abcaab
or abcaabcab̂ĉbabcaab. Contextσ2 can be applied tow4 only in one way
abcâabcabcbabcâab. In this way, we can apply tow4 reductiondelb either
in one of the three different ways or reductiondela or trlb,a reduction in the
contexts bothσ1 andσ2. One can see, thattrla,b is applicable tow4 in the

contextsσ1 andσ2 only in a single way:ab̂
︷︸︸︷

c âabcabcb̂
︷︸︸︷
abc âab ⇒trlb,a

ab̂
︷︸︸︷
abc âabcabĉb

︷︸︸︷
c âab. By underline we marked the context for the

pointerb and by overline we marked the context for the pointera.

As the summary of the example from above, to the same string the same con-
text can be applied in many different ways and as the result, different words can
be obtained from the same word by applications of the same operations.

In the next example we illustrate a recombination system.
We define an intramolecular recombination system acceptingwords of the

form anbn, wheren ≥ 2. G = ({$, #, 0, 1},∼, $1#0#1, $10##). We will
define the splicing schemeR = (Σ,∼) so as for each word of the form0n1n0##
we would obtain the targetwt = $10##:

α00
n1n0## = $1#0#10n1n0## = $1#0#1̂00̂00n−31n−311̂10̂## ⇒trl1,0

$1#0#11̂00̂00n−41n−411̂10̂0## ⇒trl1,0
. . . . . . ⇒trl1,0

$1#0#11k−11̂00̂00n−k−3

1n−k−311̂10̂0k−10## ⇒trl1,0
. . . . . . ⇒trl1,0

$1̂#0̂#11n−31̂00110̂0n−30## ⇒trl1,0

$100110#̂1n−1#̂0n−10## ⇒del#
$100110#̂0n−1#̂# ⇒del#

$10̂0110̂## ⇒del0

$10## = wt.
In this way, we need the following contexts in our splicing scheme:

(a) (#, 1, 0) ∼ (1, 1, 10) (f) (1#, 0, #) ∼ (10011, 0, 0)
(b) (1, 1, 0) ∼ (1, 1, 10) (g) (0, #, 1) ∼ (1, #, 0)
(c) (10, 0, 0) ∼ (1, 0, #) (h) (0, #, 0) ∼ (0, #, #)
(d) (10, 0, 0) ∼ (1, 0, 0) (i) ($, 10, 0) ∼ (1, 0, ##)
(e) ($, 1, #0) ∼ (1, 1, 00110)

In these contexts the recombination steps from the word$1#0#10000n−31n−3

1110## is looking like this (for each linei the first column from the left contains
notation of the wordwi, in the second column there are shown applicable contexts,
the third column contains the wordwi, the forth column from the left contains con-
texts of the recombination operation, the fifth column contains the recombination
operation of the string, context of the left pointer of thetrl0 operation in the string
is marked byunderline, context of the right pointer is marked byoverline, context
for thedel0 operation is marked byunderline, pointers are marked by thehat).
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w1 (a)(c) $1#0#1̂00̂00n−31n−311̂10̂## (a)(c) trl1,0

w2 (b)(d) $1#0#11̂00̂00n−41n−411̂10̂0## (b)(d) trl1,0

. . . . . . . . . . . . . . .

wk (b)(d) $1#0#11k−211̂00̂00n−k−31n−k−3

11̂10̂00k−20## (b)(d) trl1,0

. . . . . . . . . . . . . . .

wn−2 (e)(f) $1̂#0̂#11n−411̂00110̂00n−40## (e)(f) trl1,0

wn−1 (g) $100110#̂11n−31#̂00n−10## (g) del#

wn (h) $100110#̂00n−30#̂# (h) del#

wn+1 (i) $10̂0110̂## (i) del0

wn+2 $10##

In this way, each word of the form0n1n0## is accepted by our recombination
systemG. Words of the form0n1m0##, wheren 6= m are not accepted.

Indeed, assumem < n. To the wordw1 from the table above only the con-
texts (a) and (c) are applicable and so, we can use onlytrl1,0 operation which
can produce only the single result. After application of either del1 or del0 to
w1 it is not possible to reach the target. Only the contexts (b) and (d) are ap-
plicable to the wordswi with 2 ≤ i ≤ m − 2. Operationtrl1,0 applied towi,
2 ≤ i ≤ m− 2 can produce only the single result. After application of eitherdel1

or del0 to those words we cannot reach the target. In this way we get the string
wm−2 = $1#0#11m−4110000n−m−111000m−40##. Only the context (d) is ap-
plicable towm−2 and in this way, onlydel0 is applicable, but after that we cannot
reach the target. The case whenm > n is proved in the same way.

4 The Computational Power of Intramolecular Con-
textual Recombinations

Here we show, that by using intramolecular contextual operations one can express
any deterministic Turing machine. We prove that for any Turing machineM over
an alphabetΣ, we associate a recombination systemR over an alphabetΣ′. Also,
for anyw ∈ Σ∗, we associate a wordw′ ∈ Σ′∗ such thatw ∈ L(M) iff w′ ∈ L(R).
Intuitively, R simulatesM in the following way:w′ encodes both the wordw, as
well as all rules ofM in a large enough number of copies. It is important to have
a large number of copies because in every step of the simulation,R “consumes”
one rule ofM , which is then never “recovered”.

Theorem 1 For any deterministic Turing machineM = (S, Σ ∪ {#}, P ) there
exists an intramolecular recombination systemGM = (Σ′,∼, α0, wt) and a string
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πM ∈ Σ′∗ such that for any wordw overΣ∗ there existskw ≥ 1 such thatw ∈
L(M) if and only ifw#5πkw

M #2 ∈ L(GM).

Proof. Consider a deterministic Turing machineM = (S, Σ∪{#}, P ) containing
m rewriting rules inP . Each rule ofP we identify uniquely by an integer1 ≤
i ≤ m, and a rule identified asi we represent asi : ui → vi. The configuration of
the Turing machine can be represented by the string# wlsqawr#, wherea ∈ Σ,
sq ∈ S andwl, wr ∈ Σ∗.

We define a recombination system

GM = (Σ′,∼, α0, wt)

and a stringπM for the Turing machineM in the following way:

Σ′ = S ∪ Σ ∪ {#} ∪ {$i | 0 ≤ i ≤ m + 1},

α0 = #4s0,

wt = #4sf#
3,

πM = $0(
∏

1≤i≤m

p,q∈Σ∪{#}

$ipviq$i)$m+1.

For a rewriting rulei : ui → vi of the Turing machineM and allc1, c2, d1, d2, d3, p,
q ∈ Σ ∪ {#} we define the relations:

(i) (c1c2, p, uiqd1d2d3) ∼ ($i, p, viq$i) and

(ii) (c1c2pui, q, d1d2d3) ∼ ($ipvi, q, $i).

Also we define the relation

(iii) (###sf#, #, ###$0) ∼ ($m+1, #, #).

We have to prove the following claim: a wordw ∈ Σ∗ is accepted byM if and
only if there is suchkw, that wordw#####πkw

M ## is accepted byGM .
Let a wordw be accepted by the givenTuring machineM , by the derivations

#s0w# ⇒i1 #wl1sj1wr1
# ⇒i2 #wl2sj2wr2

# ⇒i3 . . . ⇒k #wlksjk
wrk

# ⇒k+1

. . . ⇒n #sf#. We prove that there is an integerkw big enough such that the word
w#5πkw

M ## is accepted by the recombinationsα0w#5πkw

M ## = ####s0w##
###πkw

M ## ⇒trlp1,q1
####wl1sj1wr1

#####π1## ⇒trlp2,q2
####wl2sj2

wr2
#####π2## ⇒trlp3,q3

. . . ⇒trlpk,qk
####wlksjk

wrk
#####πk##

⇒trlpk+1,qk+1
. . . ⇒trlpn,qn

####sf#####πn##, wherewli, wri
∈ Σ∗, sji

∈

S andπi ∈ Σ′∗ for all 1 ≤ i ≤ n andπi+1 differs fromπi only by a substringui

which replaces substringvi in πi.
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Since for eachk < n there is a ruleik applicable to#wlksjk
wrk

#, then
#wlksjk

wrk
# = w′

lk
puikqw

′
rk

, wheresjk
is in uik , p, q ∈ Σ ∪ {#} andw′

lk
, w′

rk
∈

(Σ ∪ {#})∗. We suppose, that the stringπk contains at least one copy of the sub-
stringpvikq, i.e.,πk = $0$1ω

′$ikpvikq$ikω
′′$m$m+1. Then there are two relations

in our recombination system such astrlp,q operation is applicable to the string
###w′

lk
puikqw

′
rk

####πk##.
Indeed, these relations are(i) (c1c2, p, uikqd1d2d3) ∼ ($ik , p, vikq$ik) and

(ii) (c1c2puik , q, d1d2d3) ∼ ($ikpvik , q, $ik). In this way, we can obtain the string
w′′

lk
pvikqw

′′
rk

$0$1ω
′$ikpuikq$ikω

′′$m+1## = #4wlk+1
sjk+1

wrk+1
#5πk+1#

2 from
the string of###w′

lk
puikqw

′
rk

####πk## = w′′
lk
puikqw

′′
rk

$0$1ω
′$ikpvikq$ikω

′′

$m+1##, wherew′′
lk

= ###w′
lk

= w′′′
lk
c1c2 andw′′

rk
= w′

rk
#### = d1d2d3w

′′′
rk

.
In this way, for each derivation step#wk# ⇒ik #wk+1# from the Turing ma-

chineM we have the corresponded recombination step####wk#####πk#
# ⇒trlpk,qk

####wk+1#####πk+1##, in the recombination systemGM .
Now, we have to provide the numberkw of copies of theπM big enough, so

as for each derivation#wk# ⇒ik #wk+1# we would have at least a copy of the
substringvik in the substringπk. Such numberkw exists and it is Turing com-
putable. Indeed, this can be for instancekw ≥ n, i.e., the number of derivations
of M in order to accept the wordw.

In this way, ifw is accepted byM by the derivations#s0w# ⇒ . . . ⇒ #sf#,
then we can have recombination of####s0w#####πkw

M ## to ####sf#
####πn## by trl operations inGM . In order to acceptw#####πkw

M ##
in GM , we have to recombine####sf#####πn## to the targetwt =
####sf###. This can be done by the deletion operation in the relation(iii):
####sf# ####πn## ⇒del#

####sf###.
Now, we prove, that for each word####s0w#####πkw

M ## accepted by
the recombination systemGM , Turing machineM accepts wordw too.

Assume, that there is suchw ∈ Σ, that####s0w#####πkw

M ## is ac-
cepted byGM for somekw > 0, but it is not accepted byM . That means, there are
recombination operations possible which do not correspondto the derivation rules
fromM , i.e., there are possible recombinations of the form####w′#####π′

## ⇒R̃ w′′, wherew′ ∈ (Σ ∪ S)∗, |w′|S = 1, π′, w′′ ∈ Σ′∗ and the re-
combination is not of the form###ω′′′puiqω

iv####ωv$ipviq$iω
vi## ⇒trlp,q

###ω′′′pviqω
iv####ωv$ipuiq$iω

vi##, whereω′′′, ωiv ∈ (Σ∪{#})∗, ωv, ωvi

∈ Σ′∗ andp, q ∈ Σ ∪ {#}. Such recombinations exist.
Assume, relation of the form(i) or (ii) is applicable to the string#ωviic1c2puiq

d1d2d3ω
viii#$0ω

ix$ipviq$iω
x$m+1##, whereωvii, ωviii ∈ (Σ∪{#})∗, ωix, ωx ∈

Σ′∗ andc1, c2, d1, d2, d3, p, q ∈ Σ∪{#}, which is obtained from####s0w###
##$0π

kw

M ## only by translocations corresponding to the rules fromP . Relation
(ii) is not applicable to the string because we do not have substring###sf# in
#ωviic1c2puiqd1d2d3ω

viii#$0ω
ix$ipviq$iω

x$m+1##. Here we may have either:

Casedel: ̟ = #ωviic1c2puiqd1d2d3ω
viii#$0ω

ix$ipviq$iω
x$m+1## ⇒delp #
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ωviic1c2pviq$iω
x$m+1## = ̟′ in the relation of the type(i), or #ωviic1c2

puiqd1d2d3ω
viii#$0ω

ix$ipviq$iω
x$m+1## ⇒delq #ωviic1c2puiq$iω

x$m+1

## = ̟′′ in the relation of the type(ii). Since relations of types(i) and
(ii) both consider pair of pointers, one of which is from the left side and
another one is from the right side of the substring#####$0 of string
̟, substring#####$0 is deleted, we obtain either̟ ′ or ̟′′ and after
that it is not possible to reach by the recombination the string where the
relation(iii) is applicable. Moreover, after the deletion operation either in
the relation(i) or relation(ii), it is not possible to remove from the string
symbol$m+1 in the relations(i) and(ii). Indeed, in any recombination in
the relations(i) and (ii) of strings̟′ and̟′′ the suffix$m+1## is not
affected.

Casetrl: ̟ = #ωviic1c2puiqd1d2d3ω
viii#$0ω

xi$ipviq$iω
xii$ipviq$iω

xiii$m+1#
# ⇒trlp,q

#ωviic1c2pviq$iω
xii$ipviqd1d2d3ω

viii#$0ω
xi$ipuiq$iω

xiii$m+1#
# = ̟′′′ in the relations(i) and(ii), whereωxi, ωxii, ωxiii ∈ Σ′∗. Assume
uj is the substring ofpviq. There is no context applicable to the string̟′′′.
Indeed, according to the definition of the Turing machine from above, the
maximal length of the suffix containingS-symbol as the prefix in the right
side of a derivation rule is3 (type (3) vi = aisji

⊔ # or type (5)vi =
#sji

⊔ai, we representvi asvi = a′
isija

′′
i a

′′′
i , wherea′

i, a
′′
i , a

′′′
i ∈ (Σ∪{#}))

and in the rule of the type (7) (asf → sf ) S-symbol is the rightmost-symbol
in the left side of the rule. There are no other types of rules whereS-symbol
is the rightmost in the left side of the rule. In this way, we consider that
sji

= sf . I.e., we have substringpviq$i = pa′
isfa

′′
i a

′′′
i q$i. Relations(i) and

(ii) are not applicable. Indeed, to the right fromS-symbol we need to have
at least4 symbols not equal to$i in order to satisfy the left condition of(i)
and (ii) (i.e., (c1c2, p, uiqd1d2d3) and (c1c2pui, q, d1d2d3)). Similarly, we
can show that to the left fromS-symbol we need to have at least3 symbols
not $i in order to satisfy the left conditions of the relations(i) and (ii).
There are no other places in the string̟′′′ where left conditions of(i) and
(ii) are satisfied, i.e., relations(i) and(ii) are not applicable as soon as the
translocation involving symbols$i is used.

There are no other recombinations possible in the relations(i), (ii) and(iii).
It follows then, that as soon as we have recombination not corresponding to a rule
fromP , the targetwt cannot be reached, i.e., wordw#####πkw

M ## is accepted
by GM if and only if w is accepted byM . 2

5 Final Remarks

In [7] the equivalence between a Turing machine language anda set of multisets
of words was explored. Since we are working with the intramolecular model, we

11



can prove here a universality result in a standard way, showing the equivalence of
two families of languages.
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Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi



University of Turku
• Department of Information Technology

• Department of Mathematics
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