Artiom Alhazov | Carlos Martin-Vide | Yurii Rogozhin

Networks of Evolutionary Processors with
Two Nodes Are Unpredictable

Turku CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 818, April 2007

1

Networks of Evolutionary Processors with
Two Nodes Are Unpredictable

Artiom Alhazov
Abo Akademi University, Department of Information Technologies,

Lemminkéaisenkatu 14, FIN-20520 Turku, Finland
aalhazov@abo.fi

Carlos Martin-Vide
Rovira i Virgili University, Research Group on Mathematical Linguistics,

Pl. Imperial Tarraco 1, 43005 Tarragona, Spain

{artiome.alhazov@estudiants., carlos.martin@}urv.cat
Yurii Rogozhin

Institute of Mathematics and Computer Science,

Academy of Sciences of Moldova,

Str. Academiei 5, Chisindu, MD-2012 Moldova

{artiom,rogozhin}@math.md

TUCS Technical Report
No 818, April 2007

Abstract

Networks of evolutionary processors are distributed communicating compu-
tational devices motivated by cell biology. It is known that every recursively
enumerable language can be generated by some network of evolutionary pro-
cessors with three nodes modulo a terminal alphabet. In this paper we
present an unexpected result that networks of evolutionary processors with
two nodes using only insertion and deletion operations are still powerful and
can generate non-recursive languages.

Keywords: Networks of evolutionary processors, Distributed parallel com-
puting, Point mutations, Filters, Universality

TUCS Laboratory
Computational Biomodelling Laboratory

1 Introduction

Starting from the premise that data can be given in the form of words,
[6] introduces a concept called network of parallel language processors in the
aim of investigating this concept in terms of formal grammars and languages.
The main idea is that one can place a language generating device (grammar,
Lindenmayer system, etc.) in any node of an underlying graph which rewrites
the words existing in the node, then the words are communicated to the other
nodes. Words can be successfully communicated if they pass some output
and input filter.

In [3, 4], this concept was modified in the following way inspired from
cell biology. Each processor placed in a node is a very simple processor, an
evolutionary processor. By an evolutionary processor we mean a processor
which is able to perform very simple operations, namely point mutations in
a DNA sequence (insertion, deletion or substitution of a pair of nucleotides).
More generally, each node may be viewed as a cell having genetic information
encoded in DNA sequences which may evolve by local evolutionary events,
that is point mutations.

More formally, a network of evolutionary processors (NEP shortly) con-
sists of a graph of nodes having operations and filters. A language is associ-
ated with a node at any moment of time. The simplest operations considered,
such as insertion, deletion and substitution of one symbol. More powerful
variants are not very interesting from the computational viewpoint: sub-
stitution of up to two symbols by up to two symbols are already universal
(type-0 grammars) (see, for example, [14]), while insertion/deletion systems
are universal with weights 2/3 and 3/2 (see [12]).

A computation consists of two kinds of steps: a derivation step and a
communication step. In a derivation step any node generate new language
from language associated with it. In a communication step a node sends
generated words to other nodes in the case if outgoing words can pass an
output filter of the node and takes words sent by the other nodes if the words
can pass an input filter of the node (input and output filters are regular sets).
The language generated by a network of evolutionary processors consist of
all (terminal) words which occur in the language associated with a given
(output) node.

In our previous work we improved the existing universality results for
NEPs with five and six nodes (see [4]) down to four nodes (three nodes, if we
consider output words only in the terminal alphabet) and considered a variant
of NEP (called mNEP) where operations of different kinds (symbol insertion,
symbol substitution and symbol deletion) are allowed in the same node. We
proved that mNEPs with two nodes are already enough for universality. This
is not true for mNEPs with one node (thus we obtain the optimal result for
mNEPs), while mNEPs with one node generate any recursively enumerable

language modulo a terminal alphabet [1].

In this paper we present an unexpected result that we can avoid sym-
bol substitution and use only symbol deletion and symbol insertion oper-
ations and obtain still powerful NEPs with two nodes (they can generate
non-recursive languages). Finally, we formulate some open problems.

2 Preliminaries

Consider a finite alphabet V. Given a word u € V*, we define the following
sets (partial prefixes, partial suffixes and non-empty suffixes of u, respec-
tively).

PPref(u) = {z|u=uzy, [y|> 1},
PSuf(u) = {ylu=uwy, [z| > 1},
NSuf(u) = {ylu=uw=y, |y|>1}.

We will use the following notations for some known language families.
REG, CS, REC, RE stand for regular, context-sensitive, recursive and re-
cursively enumerable languages, respectively.

2.1 Networks of Evolutionary Processors

Definition 1 A NEP of size n is a tuple T = (V, Ny, -+ , Ny, G), where V
is the alphabet and N; = (M;, A;, I;, O;) is the i-th node, 1 < i < n:

e M, is a finite set of evolutionary rules of a certain type, i.e.,
M; € 28e=blabeVE (oybstitution rules) or
M; € 280=Xe€VE (deletion rules) or
M; € 2D2MEVE finsertion rules).

e A; is a finite set of strings over V (the initial strings).

e [; and O; are reqular languages over V specifying conditions for a string
to enter and to erit a node, respectively (the input and the output fil-
ters).

Finally, G = ({Ny,---, Np}, E) is an undirected graph specifying the under-
lying network. Let us denote the complete graph without loops by K, and the
complete graph with loops by K.

The configuration C' = (C[1],--- ,C[n]) of the system consists of the sets
of strings appearing in each node.

e Evolution step C' = (C[1],---,C[n]) = C" = (C'[1],---,C"[n]):
C'lt] = M;(Cli]) = Urem, wecrr(w), where r(w) is the set of strings
that can be obtained by one application of rule r to a string w, if r is
applicable to w, or {w} otherwise.

e Communication step C = (C[1],---,C[n]) F C' = (C'[1],--- ,C"[n]):
C'i] = CliI\ O UU w, nper CLIINO; N .

A computation consists of a sequence of configurations C;, where Cy = (Ay,

-, Ap), Cy = Cyyq and Cyiyq F Coiyo for i > 0. The result of a (possibly
infinite) computation is a language collected in a designated node Ny, called
the output node. Thus, L;(I') = U;>oCik].

3 Main Result

Theorem 1 There exists a morphism p such that for any L € RE, L C T,
where T 1s a finite alphabet, there is a NEP I with two nodes such that

pH(Ly(TYNT*) = L.

Proof. Consider a type-0 grammar G = (N, T, P, S), where N is a non-
terminal alphabet, T" is a terminal alphabet, N NT = (3, P is a finite set of
rewriting rules v — v, v € (NUT)*N(NUT)*, v € (NUT)*, S € N and
L(G) = L.

We define a morphism p by p(a) = aa for a € NUT and plaw) =
pla)p(w), a € NUT, w e (NUT)*. Let us denote P' = {p; | p€ P, 1 <
i <4}, W = {u(w) |we (NUT)*}. We construct the following NEP with
two nodes:

T = (V,(My, AT, Ou), (Ms, Ay, I, O5), H), where
V=P UNUT, H=K),
Mi={\—p;|ppeP,1<i<4}U{N—alac NUT},
Ar={u(9)},
L =W,
O, =V \WRy W,
My={p;—=>XN|peP,1<i<4}U{a—AN|lae NUT},
Ay =10,
I, =WR, W,
Oy = V*\ W Ry, W.

We define R, i, Ri2 and Ry as follows:

3

Ry = |J pw(u), pua(u)ps, ppope(u)ps, pipapu(u)psps}

pru—veEP

U {pipaps(u) } PPref(pu(v)){pspa})
\{pipops(u)psps | p:u — X € P},
Riy = A{pipop(uv)psps | p:u — v € P},

Ry = U ({p1p2} PSuf (pu(u)){p(v)pspa}

piu—veP

U {past(v)p3pa, 2pt(v)pa, p(v)pa}).

The output and input filters are defined in order to remove the garbage
and communicate the strings that should change the type of operation, keep
only the strings that should continue to evolve by operations of the same type.
Since morphism p(a) = aa is introduced, the strings obtained by applying
rules to the left or to the right of the place of application of the current rule
no longer satisfy the parity (recall that W = {aa | « € N UT}*), so they
leave the system.

Claim: p='(Lo(T)NT*) = L.

The “correct” simulation of one production is the following.
Consider application of a production p : a;---ay — by ---b; to a sentential

form aay - - asf3; let x = p(a), y = u(B).

e In Nyi: xajay - asasy =A7P1 rpraray - - - asag5Y
=AP3 TPp1a1ay *+ * AgQsP3y =P Tp1p20a1ay -+ - AslsP3Y
=NV D paayay - - - asaspspay =70 apipaaray - - - agagbipspay
=AP0 ppipaaran - - - asasb b1 pspay =T TPLP2a1ay - - - Agagbiby - - byDspay
=270 wpipaaray - - asaghiby - - bsbspspay

o In Ny: apipeaiay - - - asa,b1by - - - bsbspspay
=Y T Paay -+ Assbiby -+ - bbspspay = TP1Paasasbiby - - - bsbspspay
=070 2p1Paasbiby - - - Dybypspay =7 xpipabiby - - - bybypspay
=PI 2pobiby - - - bybypspay =P3 7 xpabiby - - - bybypay
:>p2ﬁ/\ .'L’blbl s bsbsp4y :>p4ﬁ/\ .'L’blbl v bsbsy

Notice that if production can be applied to the same sentential form in
different ways (multiple productions and/or multiple places to apply them),
then the corresponding number of strings is produced in the first step (in-
serting marker p; associated to the production, to the left of the applica-
tion place). The rest of the simulation is “deterministic”: starting from
rpirajay - - - asagy, the result xbiby - - - bsbsy is obtained according to the the
derivations above, while all other strings are discarded.

4

The strings that leave one node and enter another one are: O; NIy = I,
and O,NI; = I;. All other strings that leave any node do not enter anywhere.

Case 1: “incorrect” insertions in node N;. Case 2: “incorrect” deletions
in node N,. The only strings that remain in the system are listed in the
tables below, 5 situations in either case.

The following tables illustrate the behaviour of a string.

N Shape in NV Aopi Aops Aops Aops AoA
1 W 2 out out out out
2 Wpip(u)W out 3 out out out
3 Wpiu(u)psW out out 4 out out
4 Wpipop(u)psW out out out 5 out
5 Wpipap(u)

‘PPref(u(v))pspsW | out out out out 5,Ny(1)
N Shape in NV, PImA p3mA paoA pamA Ao
1 WpipaNSuf(pu(u))

(V) p3spsW out out out out 1,2
2 Wpipap(v)pspsW 3 out out out out
3 Wpop(v)pspsW n/a 4 out out out
4 Wpap(v)psW n/a n/a 5 out out
5 Wu(v)psW n/a n/a n/a Ni(1) out

These tables illustrate the fact that if a symbol is inserted or deleted in
a way that does not follow the “correct” simulation, than the string leaves
the system.

Finally, consider Lo(G) U T. Tt is the set of all strings obtained in N
without non-terminal symbols and without markers. Hence, all of them are
obtained from shape 5 of N, by deleting the marker ps. This exactly corre-
sponds to the set of terminal strings produced by the underlying grammar
G, all letters being represented by a double repetition, i.e., encoded by pu.

O

Corollary 1 There exists a NEP T with two nodes such that Ly(T") ¢ REC.

Let us take L ¢ REC'. Since the family of recursive languages is closed under
intersection with regular languages, Lo(I') N T* = L implies Ly(T') ¢ REC.

4 Discussion

The computational power of networks of evolutionary processors presents a
considerable interest, so we try to characterize it, depending on the number
of nodes and operations allowed.

Below is a short summary of the best known results ([0] means this article)
and open questions we consider interesting.

All 2 REG statements are obtained from the impossibility to generate a
language (aa)*, see [1]. All REC statements are obtained by arguments
similar to that in Corollary 1. The statements C C'S are valid for networks
generating words by only insertion and verifying a regular condition: it can
easily be done with linear workspace.

Clearly, considering a more general system we can transfer the results
on the lower bounds, while considering a particular case we can transfer the
results on the upper bounds.

n | types of rules | NT™ | encoded power ref
1| all, mixed yes no RE [1]
1| all, mixed no no Z REC, 2 REG | [1]
1| all, mixed no yes Z REC,? [1]
2 | all, mixed no no RE [1]
3 all, one yes no RE [1]
3 all, one no no Z REC,? 1]
3 all, one no yes Z REC,? [1]
4 all, one no no RE [1]
n | types of rules | NT™ | encoded power ref
1 | insdel, mixed | no no 2 REG,? 0]
1 | insdel, mixed | yes no 2 REG,? 0]
1 | insdel, mixed | no yes 2 REG,? 0]
1 | insdel, mixed | yes yes 2 REG,? 0]
2 | insdel, mixed | no no ¢ REC, ? 0]
2 | insdel, mixed | yes no Z REC,? 0]
2 | insdel, mixed | no yes ¢ REC,? 0]
1 ins, one yes yes 2 REG,? 0]
1 ins, one no no 2 REG, CCS | [0]
1 ins, one yes no 2 REG, CCS | [0]
1 ins, one no yes 2 REG,? 0]
2 | insdel, one yes yes RE 0]
2 | insdel, one no no ¢ REC, ? 0]
2 | insdel, one yes no ¢ REC,? 0]
2 | insdel, one no yes ¢ REC,? 0]
3 | insdel, one no no Z REC,? 0]
Acknowledgements

The first author gratefully acknowledges the support by Academy of Finland,
project 203667. The first and the third authors acknowledge the project

6

06.411.03.04P from the Supreme Council for Science and Technological De-
velopment of the Academy of Sciences of Moldova.

References

1]

3]

4]

[5]

(6]

8]

[10]

Alhazov, A., Martin-Vide, C., Rogozhin, Yu.: On the Number of Nodes
in Universal Networks of Evolutionary Processors. Acta Informatica
43(5), Springer, 331-339 (2006)

Castellanos, J., Leupold, P., Mitrana, V.: On the size complexity of hy-
brid networks of evolutionary processors. Theoretical Computer Science
330(2), Elsevier, 205-220 (2005)

Castellanos, J., Martin-Vide, C., Mitrana, V., Sempere, J.: Solving NP-
complete problems with networks of evolutionary processors. In: Pro-
ceedings of IWANN 2001. Lecture Notes in Computer Science 2084,
Springer, 621-628 (2001)

Castellanos, J., Martin-Vide, C., Mitrana, V., Sempere, J.: Networks
of evolutionary processors. Acta Informatica 39(6-7) Springer, 517-529
(2003)

Csuhaj-Varju, E., Dassow, J., Kelemen, J., Paun, G.: Grammar sys-
tems, Gordon and Breach (1993)

Csuhaj-Varju, E., Salomaa, A.: Networks of parallel language proces-
sors. In: New Trends in Formal Languages, ed. by Gh. Paun, A. Sa-
lomaa. Lecture Notes in Computer Science 1218, Springer, 299-318
(1997)

Csuhaj-Varju, E., Martin-Vide, C., Mitrana, V., Hybrid networks of
evolutionary processors are computationaly complete. Acta Informatica
41(4-5), Springer, 257-272 (2005)

Errico, L., Jesshope, C.: Towards a new architecture for symbolic pro-
cessing. In: Artificial Intelligence and Information-Control Systems of
Robots 94, ed. by I. Plander, World Scientific, Singapore, 31-40 (1994)

Fahlman, S.E., Hinton, G.E., Seijnowski, T.J.: Massively parallel archi-
tectures for AI: NETL, THISTLE and Boltzmann machines. In: Proc.
AAAT National Conf. on AI, William Kaufman, Los Altos, 109-113
(1983)

Hillis, W.D.: The Connection Machine. MIT Press, Cambridge (1985)

7

[11]

[12]

[13]

[14]

[15]

Margenstern, M., Mitrana, V., Pérez-Jiménez, M.: Accepting hybrid
networks of evolutionary processors. In: C.Ferretti, G.Mauri, C.Zandron
(Eds.), Pre-proc. of 10th International Workshop on DNA Computing,
DNA 10, Milan, Italy, June 7-10, 2004, 107-117. Revised Selected Pa-
pers, Lecture Notes in Computer Science 3384, Springer, 235-246 (2005)

Margenstern, M., Paun, G., Rogozhin, Yu., Verlan, S.: Context-free
insertion-deletion systems. Theoretical Computer Science 330(2), Else-
vier, 339-348 (2005)

Martin-Vide, C., Mitrana, V., Pérez-Jiménez, M., Sancho-Caparrini. F.:
Hybrid networks of evolutionary processors. In: Proc. of Genetic and
Evolutionary Computation Conference (GECCO 2003), Lecture Notes
in Computer Science 2723, Springer, 401-412 (2003).

Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages,
vol.1-3. Springer, Berlin Heidelberg New York (1997)

Sankoff, D., Leduc, G., Antoine, N., Paquin, B., Lang, B.F., Cedergren,
R.: Gene order comparisons for phylogenetic inference: Evolution of the
mitochondrial genome. In: Proc. Nat. Acad. Sci. USA, 89, 65756579
(1992)

TURKU

CENTRE for

COMPUTER

SCIENCE

Lemminkaisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

\ ?A , University of Turku
§ {//_ ® Department of Information Technology
[— 4
% N e Department of Mathematics
) 6

O

Abo Akademi University
® Department of Computer Science
® |Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

e |Institute of Information Systems Sciences

ISBN 978-952-12-1879-8
ISSN 1239-1891

