
Pontus Boström | Lionel Morel | Marina Waldén

Stepwise development of Simulink models
using the refinement calculus framework

TUCS Technical Report

No 821, 2007

Stepwise development of Simulink models
using the refinement calculus framework

Pontus Boström
Åbo Akademi University, Department of Information Technologies
Turku Centre for Computer Science
Joukahaisenkatu 3-5, 20520 Turku, Finland
pontus.bostrom@abo.fi

Lionel Morel
project ESPRESSO
INRIA/IRISA - Campus universitaire de Beaulieu
35042 Rennes Cedex, France
lionel.morel@inria.fr

Marina Waldén
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5, 20520 Turku, Finland
marina.walden@abo.fi

TUCS Technical Report

No 821, 2007

Abstract

Simulink is a popular tool for model-based development of control systems.
However, due to the complexity caused by the increasing demand for so-
phisticated controllers, validation of Simulink models is becoming a more
difficult task. To ensure correctness and reliability of large models, it is
important to be able to reason about model parts and their interactions.
This paper provides a definition of contracts and refinement using the ac-
tion systems formalism. Contracts enable abstract specifications of model
parts, while refinement offers a framework to reason about correctness of
implementation of contracts, as well as composition of model parts. An
example is provided to illustrate system development using contracts and
refinement.

Keywords: Simulink, Design by Contract, Refinement, Action Systems

TUCS Laboratory
Distributed Systems Design Laboratory

1 Introduction

Simulink / Stateflow [23] is a domain specific programming and simulation
language that has become popular for development of control- and signal-
processing systems. It enables model-based design of control systems, where
a (continuous) model of the plant can be constructed together with the (dis-
crete) controller. Simulink offers a wide range of simulation tools, which
enables simulation and evaluation of the performance of the controller. How-
ever, it lacks good tools and development methodologies for reasoning about
correctness of models. In particular, it fails to enforce a structured stepwise
development method that becomes necessary when developing large control
systems.

A general goal of our work (see [8, 9, 10]) is to establish such a devel-
opment method by 1) proposing a model architecture [10] and 2) study the
application of formal analysis techniques to help validate models. The work
is based on the use of assume-guarantee (called pre-post in this paper) con-
tracts as a form of local specifications. Analysis techniques rely on a notion
of refinement of Simulink/Stateflow models. The present paper focuses on
defining this refinement for Simulink alone, while letting the extension to
Stateflow for further investigation.

The refinement calculus [6] gives a good theoretical framework for devel-
oping formal stepwise design methodologies in which abstract specifications
are refined into detailed ones. The advantage with refinement is that it al-
lows for a seamless design flow where every step in the development process
can be formally validated by comparing the refined model to the more ab-
stract one. The final implementation is then formally guaranteed to exhibit
the behaviour described by the original specification.

1.1 Design-by-contract for embedded controllers

Contract-based design [6, 11, 25] is a popular software design technique in
object-oriented programming. It is based on the idea that every method in
each object is accompanied by (executable) pre- and post- conditions. The
approach has been successfully applied to reactive programs in [20]. There,
a contract is described as a pair of monitors (A,G) and is associated to each
component. The meaning of such a contract is that ”as long as input values
satisfy A, the outputs should satisfy G”.

Contracts in Simulink consist of such pre- and post-conditions for model
fragments [8]. To get a formal semantics of contracts we translate the
Simulink models to action systems. Action systems [4, 5] is a formalism
based on the refinement calculus [6] for reasoning about reactive systems.
Contracts are here viewed as non-deterministic abstract specifications. They
cannot be simulated in Simulink, but they can be analysed by other tools
e.g. theorem provers. Conformance of an implementation to a specification
can be validated by model checking or testing. Contracts together with the
refinement definition also enable compositional reasoning [1] about correct-
ness of models. Here the aim is to provide an easy to use and lightweight

1

reasoning framework for correctness of Simulink models.

Other formalisations of Simulink diagrams exist [3, 12, 13, 33, 34]. Each
one of these take into account different subsets of Simulink. Refinement
of Simulink diagrams has also been considered by Cavalcanti et al. [12].
However, they deal mostly with refinement of models into code. We are
interested in refinement and stepwise development of models from abstract
specifications, which is not the concern of any of the works above. Instead
of action systems, a definition of refinement [26] for Lustre [16] could also be
used in conjunction with the translation from Simulink to Lustre [34]. This
formalisation can only accommodate discrete models. Treating continuous
models using refinement of continuous action systems [24, 29] is a rather
natural extension of our formalisation. Furthermore, Simulink diagrams are
similar to process networks, which has been investigated in detail before.
Assume-guarantee reasoning in process networks is discussed in [27, 32].
General formal description and refinement rules for process nets using pred-
icate transformers has also been investigated by Mahony [19]. However, we
focus specifically on rules for Simulink. Control engineers usually rely on
control theory [31] to analyse systems. This theory concerns mainly the dy-
namics of systems, such as stability, performance and robustness. Contracts
in our approach concerns static properties of the system and, hence, they
are used to verify different properties.

Here we only consider Simulink models that are discrete and use only
one single sampling time. We do not consider all types of blocks, e.g.,
non-virtual subsystems or Stateflow. The action systems formalism and
refinement calculus is, however, very versatile [6] and can accommodate
these features as well.

1.2 Structure of the paper

Section 2 presents action systems as a way to describe reactive systems.
Section 3 shows how we encode the Simulink block diagrams in the refine-
ment calculus. Section 4 describes formal contract-based system design in
Simulink and section 5 defines a refinement relation as well as a correct-
ness criterion for it. Section 6 discuss system development using refinement,
while Section 7 illustrates our propositions with a simple example. Finally,
section 8 concludes and gives directions for further work.

2 Action Systems

Action systems [4, 5, 7] are used for describing reactive and distributed
systems. The formalism was invented Back and Kurki-Sounio and inspired
by Dijkstras guarded command language [14].

Before introducing action systems, a short introduction to the refine-
ment calculus [6] is needed. The refinement calculus is based on Higher
Order Logic (HOL) and lattice theory. The statespace of a program in
the refinement calculus is assumed to be of type Σ. Predicates are func-

2

〈f〉.q.σ = q.f.σ (Functional update)
{p}.q = p ∧ q (Assertion)
[p].q = p ⇒ q (Assumption)
(S1;S2).q = S1.(S2.q) (Sequential composition)
[R].q.σ = ∀σ′ · R.σ.σ′ ⇒ q.σ′ (Demonic relational update)
(S1 ⊓ S2).q = S1.q ∧ S2.q (Demonic choice)
skip.q = q (Skip)
abort.q = false (Aborted execution)
magic.q = true (Miraculous execution)

Table 1: Program statements with their predicate transformer semantics

tions from the statespace to the type boolean, p : Σ → bool. A pred-
icate corresponds to the subset of Σ where p evaluates to true. Rela-
tions can be thought of as functions from elements to set of elements,
R : Σ → (Σ → bool). A program statement is a predicate transformer from
predicates on the output statespace Σ to predicates on the input statespace
Γ, S : (Σ → bool) → (Γ → bool). Here we will only consider conjunctive
predicate transformers [6, 7]. Note also that conjunctivity implies mono-
tonicity. A list of conjunctive predicate transformers are given in Table 1
[6]. The functional update consists of assignments of the type (〈f〉 =̂ x := e),
where the value of variable x in statespace σ is replaced by e. The relational
update R is given in the form R =̂ (x := x′|P.x.x′). The predicate P gives
the relation between the old values of variable x in σ and the new values
x′ in σ′. Values of other variables than x in σ remains unchanged in the
updated statespace σ′.

An action system consists of a set of variables, an initialisation and
actions. An example of an action system A is shown below:

A =̂ |[var x; init A0; do A od]| : 〈z〉

Here x denotes the local variables and z global variables. The initialisation
action is given as a predicate A0. All actions consists of conjunctive predicate
transformers and they can be written together as one single action A without
loss of generality [7].

2.1 Trace Semantics

The execution of an action system gives rise to a sequence of states, called
behaviours [5, 7]. Behaviours can be finite and infinite. Finite behaviours
can be aborted or miraculous, since we do not consider action systems that
can terminate normally here. In order to only consider infinite behaviours,
terminated behaviours are extended with infinite sequences of ⊥ or ⊤ de-
pending on if the behaviour was aborted or miraculous. These states are
referred to as improper states.

3

Assume that the action A can be written as {tA}; [nA], where tA is a
predicate and nA is a relation that relates the old and new state-spaces.
This can be done without loss of generality [7]. Then σ = σ0, σ1, . . . is a
possible behaviour of A, if the following conditions hold [5, 7]:

• The initial state satisfies the initialisation predicate, A0.σ0

• if σi is improper then σi+1 is improper
• if σi is proper then either:

– the action system aborts, ¬tA.σi and σi+1 = ⊥, or
– it behaves miraculously, tA.σi ∧ (nA.σi = ∅) and σi+1 = ⊤, or
– it executes normally, tA.σi ∧ nA.σi.σi+1

Behaviours contain local variables that cannot be observed. What can be
observed is a trace of a behaviour where the global variables z have been
extracted to get (z.σ0, z.σ1, . . .). Furthermore, all finite stuttering has been
removed from the result and finally all infinite stuttering (internal diver-
gence) has been replaced with an infinite sequence of ⊥. Stuttering refers
to steps where the global variables remains unchanged. The semantics of
action system A is now a set of observable traces of behaviours [5, 7].

2.2 Refinement

Refinement of an action system A means replacing it by another system
that is indistinguishable from A by the environment [5, 7]. On the extended
statespace Σ∪ {⊥,⊤} we define a ordering σ ≤ τ . The ordering is given as:

(σ0, σ1, . . .) ≤ (τ0, τ1, . . .) =̂ (∀i · σi = ⊥ ∨ σi = τi ∨ τi = ⊤)

Consider two action systems A and A′. Refinement is then defined as:

A ⊑ A′ =̂ (∀σ′ · σ′ ∈ tr(A′) ⇒ (∃σ · σ ∈ tr(A) ∧ σ ≤ σ′))

This means that for each trace in the refined system A′ there exists a cor-
responding trace in the abstract system A.

This definition of refinement is not practical for use in proofs [5, 7].
Instead refinement can be proved using the standard notion of (forward)
data refinement. Consider again two action systems A and A′. Assume we
have a abstraction relation R relating the statespaces of A and A′. Then A
is data refined A′ under relation R, if the following conditions hold [5, 7]:

A′

0 ⊆ {R}.A0

{R};A ⊑ A′; {R}

The first condition concerns correct refinement of the initialisation. For each
possible initialisation in the concrete system, there must exist a correspond-
ing initialisation in the abstract system. The second condition concerns
refinement of the action. For each action step in the concrete system there
must exist a corresponding step in the abstract system. Refinement in Lus-
tre [26] has also been defined in a similar manner.

4

p^o_so

p^i p^o

p^i_si
p^i p^o

SubSys

c

Source

result

Sink

(a)

p^o_pi

p^i_g p^o_g

p^i_po
1

p^o

K

Gain

1

p^i

(b)

Figure 1: Example of a Simulink model. The diagram (b) shows the content
of the subsystem SubSys in (a)

3 Encoding Simulink block diagrams as Action sys-

tems

The structure of a Simulink block diagram can be described as a set of blocks
containing ports, where the ports are related by signals. Simulink has a large
library of different blocks for mathematical and logical functions, blocks for
modelling discrete and continuous systems, as well as blocks for structuring
diagrams. Simulink diagrams can be hierarchical, where subsystem blocks
are used for structuring. An example of a Simulink diagram is shown in
Figure 1. The diagram contains one source block giving a value c to a
signal connected to the subsystem SubSys. The subsystem have in- and
out-blocks pi and po to communicate with blocks higher in the hierarchy.
The functionality of the subsystem is given by a gain block, Gain, that
multiplies the input by a constant K. The output from the subsystem is
then delivered to a sink block that consumes the given value. This diagram,
hence, computes result = Kc.

3.1 Translating Simulink Model Elements

A Simulink model is defined as a tuple M = (B, root, subh, P, blk, sig, subi,
subo, C).

• B is the set of blocks in the model. We can distinguish between the
following types of blocks; subsystem blocks Bs, in-blocks in subsys-
tems Bi, out-blocks in subsystems Bo and blocks with memory Bmem.
When referring to other types of ”basic” blocks, Bb is used in this pa-
per. Furthermore, subsystems can be partitioned into virtual (normal)
subsystems Bvs and non-virtual subsystems Bns, Bns ∪ Bvs = Bs.

• root ∈ Bvs is the root subsystem.

• subh : B → Bs is a function that describes the subsystem hierarchy.
For every block b, subh.b gives the subsystem b is in;

• P is the set of ports for input and output of data to and from blocks.
The ports P i is the set of in-ports and P o is the set of out-ports,
P = P i ∪ P o;

5

• blk : P → B is a relation that maps every port to the block it belongs
to;

• sig : P i 7→ P o maps each in-port to the out-port it is connected to by
a signal. Since we need to be able to analyse model fragments, all
in-ports are not necessarily connected.

• subi : Bs → (P o 7→P i) is a partial function that describes the mapping
between the out-ports of the in-blocks in a subsystem and the in-ports
of that subsystem.

• subo : Bs → (P o 7→P i) is a partial function that describes the mapping
between the out-ports of a subsystem and the in-ports of the out-blocks
in that subsystem.

• C is the set of block parameters of the model. The block parameters
are a set of constants defined in the Matlab workspace of the model.
Note that Simulink does not assume that these parameters are con-
stants and they can be modified during simulation. However, this is
contrary to the dataflow philosophy of Simulink and it is not allowed
here.

There are several constraints concerning these functions and relations in or-
der to only consider valid Simulink models. These constraints involve e.g.
valid hierarchy of subsystems and correct definition of connections over sub-
system boundaries. In this paper we assume we only deal with syntactically
correct Simulink models (ones that can be drawn).

To illustrate this description, consider the Simulink block diagram given
in Figure 1. The blocks are defined by B =̂ {Source , SubSys , pi, Gain,
po, Sink , root}. The subsystems are given as Bs =̂ {SubSys , root} and the
hierarchy as subh =̂ {(Gain , SubSys), (SubSys , root), . . .}. The subsystems
are all virtual subsystems, Bvs = Bs. Names of ports are usually not shown
in diagrams. Here we have the following ports, P = {po

so, p
i, po, pi

si, . . .}.
The function describing to which block each port belongs to is then given as
blk =̂ {(po

so,Source), (pi
g, Gain), (po

g, Gain), (pi, SubSys), . . .}. The connec-
tions between the ports is defined as sig =̂ {(pi, po

so), (pi
g, po

pi), . . .}. The re-
lations describing how ports in in/out-blocks corresponds to ports of subsys-
tems are given by the partial functions subi and subo. The in-port of the sub-
system is related to the out-port of the in-block, subi =̂ { (SubSys, po

pi, {p
i}),

(SubSys, po
so, ∅), . . . , (root, po

pi, ∅), (root, po
so, ∅), . . .}. The definition of the

relation between out-ports in subsystems and in-ports in out-blocks is sim-
ilar, subo =̂ {(SubSys, po, {pi

po}), (SubSys, po
so, ∅), . . .}. The block parame-

ters are here C =̂ {c,K}.

To reason about blocks, we need to express which ports depends on each
other. We give a single relation for this purpose, which describes how ports

6

are connected to each other by signals and over subsystem boundaries.

dep =̂ λp1 : P · {p2 ∈ P |p1 6= p2∧
(p1 ∈ (P i) ⇒ p2 = sig.p1)∧
(p1 ∈ P o ⇒ (∃b · b ∈ Bs ∧ (subi.b.p1 = p2 ∨ subo.b.p1 = p2)))}

If p1 is an in-port then the dependency is given by the signals in the model.
For subsystems the relation shows how out-ports are related to in-ports over
the subsystem boundary. Consider the example in Figure 1. The relation
dep would here be given as dep =̂ sig ∪ {(po

pi, p
i), (po, pi

po)}.
The most common structuring mechanism in Simulink is the virtual sub-

system (from here on referred to as only subsystem). These subsystems do
not affect the semantics of models and they are used purely for structuring.
This means that they can be removed or introduced without changing the
semantics of the models as long as the connections are preserved. We like to
consider only ports in blocks that actually are significant for the behaviour
of a Simulink model. The function ndep then gives the connected ports,
taking into account connection over the virtual subsystem hierarchy.

ndep =̂ λp1 : P · {p2 ∈ P o|
blk.p1 /∈ (Bi ∪ Bo ∪ Bvs) ∧ blk.p2 /∈ (Bi ∪ Bo ∪ Bvs)∧
p2 ∈ dep+.p1∧

(∀p · p ∈ P ∧ p ∈ (dep+.p1 ∩ (dep−1)+.p2)
⇒ blk.p ∈ (Bi ∪ Bo ∪ Bvs))}

This relation states that two ports are connected, if they are in blocks sig-
nificant for the behaviour of the model and there is a sequence of signals,
ports in virtual subsystems, in-blocks or out-blocks connecting them. In the
model in Figure 1 the relation ndep is given as ndep =̂ {(pi

si, p
o
g), (p

i
g, p

o
so)}.

It relates the ports in blocks Source, Gain and Sink. These blocks are the
only blocks needed to describe the behaviour of the model, since the subsys-
tem is only used for structuring. This provides a way to give the semantics
of a Simulink diagram in a hierarchy independent way. Note that we will
not consider semantics non-virtual subsystems in this paper, but they are
present in the formalisation to ensure that it can be used in future work.

To reason about Simulink models in the refinement calculus framework,
all Simulink constructs are mapped to their corresponding constructs in the
refinement calculus. The translation of the different constructs is shown
in Table 2. The column requirements gives the required condition for a
construct to be translated, while the the column translation gives the actual
translation to the refinement calculus.

Variables in the refinement calculus framework correspond to ports in
Simulink. The function ν describes this mapping:

ν : P 7→ V

where V is a set of variable names. Only necessary ports are translated
to variables, i.e., ports that are or can be in (dom .ndep ∪ ran .ndep). The

7

Table 2: Overview of the translation from Simulink to refinement calculus
Simulink construct Requirements Translation

Port, p: p ∈ P∧
blk.p /∈ (Bi ∧ Bo ∧ Bvs)

ν.p

Constant, c: true c

Dependency, ndep: p1 = ndep.p2 ν.p2 := ν.p1

Normal block, b: b ∈ Bb ∧ blk.po = b∧
po ∈ P o∧
blk.pi = b ∧ pi ∈ P i

ν.po := fb.(ν.pi).cb

Memory block, b: b ∈ Bmem∧
blk.po = b ∧ po ∈ P o∧
blk.pi

f = b ∧ pi
f ∈ P i∧

blk.pi
g = b ∧ pi

g ∈ P i

ν.po := fb.(ν.pi
f).xb.cb ,

xb := gb.(ν.pi
g).xb.cb

constant block parameters are translated directly to variables c. The connec-
tions between ports, p1 = ndep.p2, are modelled as assignments. A normal
block can contain in-ports, out-ports, and block parameters. Each block
b ∈ Bb is associated to a function fb that updates its out-ports based on the
value of the in-ports pj and the parameters of the block cb. In blocks that
contain memory b ∈ Bmem, the value on the out-ports depends also on the
memory in the block xb. The memory is updated (using function gb). These
functions do not need to depend on all in-ports.

3.2 Ordering the Assignments Obtained from Simulink

Simulink has an interleaving semantics for parallel blocks. Hence, we need to
find in which order blocks can be executed to give the semantics of Simulink
in the refinement calculus framework. To do this, we first need to determine
the dependency between all the ports in the Simulink model. We define a
relation totdep to describe this.

totdep =̂ λp1 : P · {p2 ∈ P |p1 6= p2∧
((p1 ∈ P i ⇒ p2 ∈ ndep.p1)∧
(p2 ∈ P o ⇒ p2 ∈ fdep.p1))}

The relation totdep considers both the relation between ports as given by
the signals and subsystem hierarchy (ndep), as well as the relations between
out-ports and in-ports inside blocks (fdep). The relation fdep, fdep : P o →
P(P i), cannot often be determined syntactically on the graphical part of the
Simulink diagram. Often block parameters can affect this, e.g. the parame-
ter D in the State-space model block in Figure 2. If D = 0 then the value of
the out-port is not directly dependent on the in-port, fdep.y = ∅. The data

8

yu
y(n)=Cx(n)+Du(n)

x(n+1)=Ax(n)+Bu(n)

Discrete State−Space

(a)

y(k) = Cx(k) + Du(k)
x(k + 1) = Ax(k) + Bu(k)

(b)

Figure 2: Example of a model where the data dependency is dependent of
block parameter values. The diagram (a) shows the model, while (b) shows
the function computed by the block

dependency for different blocks is documented in the Simulink documenta-
tion [23]. For deterministic models, the relation totdep need to be a partial
order that forms a directed acyclic graph for deterministic models. Hence,
we can always find an order in which to update the ports in the model and
ensure predictable behaviour and execution time. Simulink automatically
checks that the graph is acyclic, if the option to check for algebraic loops
is activated. We can now define the order in which the translated Simulink
model elements can be executed.

Definition 1 (Ordering of assignments) Consider two ports p1 and p2

such that p1 depends on p2, p2 ∈ totdep∗.p1. In the refinement calculus rep-
resentation ν.p1 is updated in the substitution S1 and ν.p2 in S2. Then there
exists a (possibly empty) sequence of substitutions S such that S2;S;S1. 2

The ordering given in Definition 1 can be achieved by topologically sorting
the assignments to ports. Note that this ensures that a port is never read
before it has been updated.

Consider again the model in Figure 1. The data dependency inside
blocks fdep is given by fdep =̂ {(po

g, p
i
g)}, since the gain block is the only

block where the out-port depends on the in-port. The complete ordering of
ports totdep can then be given as totdep =̂ {(pi

si, p
o
g), (p

o
g, p

i
g), (p

i
g, p

o
so)}. The

refinement calculus representation of M is then denoted by refCalc.M :

refCalc.M =̂ ν.po
so := c;

ν.pi
g := ν.po

so; ν.po
g := K(ν.pi

g);

ν.pi
si := ν.po

g

Hence, refCalc.M returns the sequential composition of a permutation sat-
isfying the ordering rules of the individual translated statements, as well as
the memory updates. However, this simple diagram does not have memory.

4 Specification of Simulink models

When developing Simulink models, we would like to start with an abstract
overview of the system that is then refined in a stepwise manner. We use
contracts to give an abstract description of the system. A contract consists
of a pre-condition and a post-condition that state properties about a part

9

Contract condition Refinement calculus semantics
Qparam(c) Qparam(c)

Qpre(pi, c) {Qpre(ν.pi, c)}

Qpost(po, pi, c) [ν.po := v|Qpost(v, ν.pi, c)]

Table 3: Refinement calculus semantics of contract conditions.

of a Simulink model. The structure of the model can be outlined by giving
the main subsystems in the model as abstract specifications described by
contracts. Abstract specifications are then refined individually to model
fragments satisfying their contracts.

4.1 Specification of Block Parameters

The blocks in a model usually use parameters from the Matlab workspace.
These parameters are often required to have certain properties. To describe
these properties we give a predicate describing the valid parameter values
Qparam. In the refinement calculus the parameters are considered normal
local variables that are only assigned in the initialisation. The valid param-
eter assignments are modelled as a initialisation predicate Qparam(c) in the
action systems formalism as shown in Table 3. The parameter assignments
in the implementation should refine this condition.

4.2 Specification of models

A contract for a Simulink model fragment consists of a pre-condition and
a post-condition that state properties about its inputs and outputs. In
practise this means that we give a specification block that can be refined to
a desired implementation. A specification block, Ms, contains in-ports pi,
out-ports po, pre-condition Qpre and post-condition Qpost. The semantics
of the specification Ms is given by its translation to the refinement calculus
shown in Table 3. Statements with this semantics cannot be simulated
by the solvers in Simulink. However, other tools can be used to analyse
these abstract specifications. The fact that an implementation satisfies its
specification can be tested also in Simulink.

Since the ordering rules for statements in Definition 1 only concerns
statements that updates variables, the assert statement needs a separate
rule.

Definition 2 (Ordering of assert statements) Consider an arbitrary as-
sert statement {Q(p1, . . . , pn)}. The assert statement is evaluated as soon
as possible. This means that all statements Sj that updates ν.pj, where pj ∈
{p1, . . . , pn}, have already been evaluated. Furthermore, the last such up-
date statement S is directly followed by the assert statement, S; {Q(p1, . . . ,
pn)}. 2

10

p^o_so

p^i_s p^o_s

p^i_si
p^i_s p^o_s

SubSysSpec

c

Source

result

Sink

Figure 3: Example of a specification of a subsystem in Simulink. The dia-
gram has one specification block SubSysSpec.

Consider the specification SubSysSpec in Figure 3. The specification block
is here given by a subsystem with only the desired in-ports pi

s and out-ports
po

s. The subsystem is identified as a specification in order to ensure that
its ports are translated to the refinement calculus representation. It would
also be possible to create specialised blocks for the purpose of specification.
Currently, tool support is being developed for a convenient and easy to use
implementation of contracts. A contract for the specification block in Figure
3 is for example

Qpre =̂ pi
s ≥ 0

Qpost =̂ po
s ≥ pi

s

This model is not executable, but it can be analysed in other ways. The
refinement calculus translation of the model is then:

ν.po
so := c;

ν.pi
s := ν.po

so; {p
i
s ≥ 0}; [ν.po

s := v|v ≥ pi
s];

ν.pi
si := ν.po

s

The specifcation SubSysSpec is translated to an assert statement and a non-
deterministic update according to the contract. Other parts of the model
are translated as in Figure 1.

In order for specification blocks to be versatile enough, the connections
involving these blocks should be allowed to form cycles, i.e., use feedback.
Consider the Simulink model in Figure 4 consisting of specification block Ms

with pre-condition Qpre and post-condition Qpost. A cycle can be treated
as the fix-point [19], where po = pi. This is modelled as the program
S =̂ [pi := v|true]; [ν.po := v|Qpost]; [pi = po]; {Qpre}. The idea is to force
the input and output to have the same value, by adding this constraint as
an assumption. Note that we need to show that the this program is feasible
to avoid miraculous behaviour.

Definition 3 (Cyclic dependencies) Assume that Ms is any specifica-
tion block in a cycle. Let the in-port pi

s of Ms be connected to the out-port

M_s

p^i p^o

Figure 4: Example of a specification block Ms with feedback.

11

po of another block in the same cycle. In order to be able to use the or-
dering rules in Definitions 1 and 2, this connection is considered broken
when ordering statements. The refinement calculus translation of Ms gives
the statements ([ν.pi

s := v|true], [ν.po
s := v|Qpost]). The rest of the con-

structs in the cycle are translated as in Tables 2 and 3. These statements
are then followed by the assumption that the value of pi

s and the value of
po are equal and by the translated pre-condition Qpre of the specification,
[ν.pi

s = ν.po]; {Qpre}. 2

This enables us to prove certain properties about cyclic specifications. In
particular it will be useful for refinement. Cycles are not allowed in the im-
plementation, due to unpredictability of computational time and the built
in non-determinism of the results [19]. Therefore, the final implementation
must be shown to be without cycles. When the model is acyclic the as-
sumption [pi = po] will become trivially true and can be removed, since
[true] = skip.

4.3 Models of physical systems

Model-based design is a popular method for designing control systems using
Simulink. This means that the physical system to be controlled is also mod-
elled. The performance of the controller can then be evaluated by simulating
the complete system using the simulation tools in Simulink. The model of
the physical system or environment is usually continuous and described us-
ing a system of differential equations. However, continuous or multi-rate
models are not considered here. We assume that the controller samples the
sensor values and we only consider what can be observed from the controller.
The controller reads the sensors ps

1, . . . , p
s
n, where each sensor is an in-port,

ps
j ∈ P i. Actuators pa

1, . . . , p
a
m are used by the controller to direct the plant.

Each actuator pa
k is a out-port, pa

k ∈ P o . The specification of the plant can
then again be given as pre-condition Qpre(pa

1, . . . , p
a
m, c) on the actuators and

a post-condition Qpost(ps
1, . . . , p

s
n, pa

1, . . . , p
a
m, c) on the sensors. This models

what can be observed of the environment in the controller. The conformance
of the plant model to the specification can be validated by simulation. How-
ever, care should be taken not to make too many assumptions about the
behaviour of the environment, since its behaviour is outside the control of
the software implementation. Creation of formal specifications for control
systems is discussed in detail by Hayes et al. [18].

4.4 Action System Semantics of Simulink Models

Above we have given the semantics of all the needed parts of Simulink in
the refinement calculus framework. The behaviour of the complete diagram
is now given as an action system.

The ordering of statements is not unique and the order is significant.
Assume that the constructs in the Simulink model is translated to the refine-
ment calculus statements (S1, . . . , Sn). This involves both standard Simulink

12

constructs and contract statements. However, the execution order of these
statements given in Definitions 1-3 is not unique. Consider two arbitrar-
ily chosen execution orders Sk; . . . ;Sl and Sr; . . . ;Ss satisfying the ordering
constraints. The following results are then possible:

1. ∃σ · (Sk; . . . ; Sl).false.σ ∧ ¬(Sr; . . . ; Ss).true.σ

2. ∃σ · ¬(Sk; . . . ; Sl).true.σ ∧ (Sr; . . . ; Ss).false.σ

3. ∀q · (Sk; . . . ; Sl).q = (Sr; . . . ; Ss).q

Due to the different order of statements, one sequence of statements might
execute a miraculous statement before an abort statement or vice versa
(cases 1 and 2). Otherwise, the result is the same for both sequences of
statements (case 3).

Since a model should be non-terminating we can consider both miracu-
lous and aborting behaviour as erroneous behaviour that should be avoided.
Hence, we need to consider only one ordering. The action system is then:

M =̂ |[var x1, . . . , xm, c;
init Qparam(c) ∧ Init(x1, . . . , xm);
do

Sk; . . . ; Sl; R1; . . . ; Rm; t := t + ts
od

]| : 〈ν.p1, . . . , ν.pn, t〉

The global variables giving the observable behaviour are given by the ports,
p1, . . . , pn of the initial specification. This way it is possible to track that the
behaviour of the initial model is preserved. The time t is considered to be a
global variable, to ensure that we have no infinite stuttering. The memory
of the blocks, x1, . . . , xm, and constant block parameters c are local vari-
ables to the action system. The action consists of a sequence of statements
Sk; . . . ;Sl updating ports, which satisfy the ordering rules in Definitions 1-3.
This sequence is followed by statements R1; . . . ;Rm updating the memory
x1, . . . , xm. The order is not important, since these statements are deter-
ministic and independent of each other. The system is correct, if all pre-
and post-conditions are satisfied at all times. Correctness can be verified by
checking that the system is non-terminating.

∀t · t ∈ tr(MV) ⇒ t /∈ {⊥,⊤}

4.5 Correctness of Simulink models

The aim of this paper is to define and to show how to verify correctness
properties of Simulink models. Furthermore, since proofs might not al-
ways be feasible, we like to be able to have correctness criteria that can be
model checked or tested. Assume that we have a Simulink model M with
a pre-condition Qpre that should maintain a condition Qpost. Assume here
that pi

f denotes in-ports that are free and pi
b denotes in-ports in Qpre that

13

are already connected. The translation of constructs of M with the pre-
condition Qpre and post-condition Qpost is given by the refinement calculus
statements (S1, . . . , Sn, {Qpre}, {Qpost}, R1, . . . , Rm). These statements are
then ordered according to the rules in Definitions 1-3. This is illustrated by
the possible refinement calculus translation refCalc.M of M below:

refCalc.M = Sk; . . . ; Sj; . . . ; {Q
post}; . . . ; Sl; R1; . . . ; Rm

The assert statement formed from the pre-condition Qpre cannot be included,
since not all in-ports are connected. Model M is therefore a partial model.
However, below we show how to verify the model in the environment where
it is used, i.e., for inputs where the pre-condition holds. We create a valida-
tion model for obtaining a complete model that provides the most general
environment of such type.

Definition 4 (Validation model) A validation model is created by adding
a non-deterministic assignment to the model that assigns the free in-ports pi

f

in M values satisfying the precondition. The model contains the refinement
calculus statements: (S1, . . . , Sn, {Qpre}, {Qpost}, [ν.pi

f := v|Qpre], R1, . . . ,
Rm). The validation model for M is given as:

refCalc.MV =̂
Sk; . . . ; [ν.pi

f := v|Qpre]; . . . ; {Qpre}; . . . ; Sj ; . . . ; {Q
post}; . . . ; Sl;

R1; . . . ; Rm 2

Note that since some ports of the pre-condition is already connected, parts
of the model is executed before the pre-condition. The behaviour of the
validation model refCalc.MV is given as an action system. The model M is
correct, if the action system MV has no aborted or miraculous traces. The
correctness of the validation model can be checked using model checking,
other verification tools or testing. A test case is a model where the statement
[ν.pi

f := v|Qpre(v, ν.pi
b)] has been refined to a deterministic statement. Note

that we need to show that there is always a test case in order to ensure that
the model does not behave miraculously.

If the model M is given as a set of specification blocks M1, . . . ,Mm,
where all the models Mj consists of a pre-condition Qpre

j and post-condition

Qpost
j , the correctness constraints can be simplified. There is no need to it-

erate the system over time, since the model does not contain memory blocks
and the execution of the graph is independent of the number of times it
has been executed before (see Definitions 1-3). This lead to compositional
reasoning about correctness for different model fragments similar to compo-
sition of specifications in [1], i.e., we do not have to know anything about
the implementation of the model fragments to prove that the connections
between them are correct. We need to verify that:

1. The assert conditions are not violated, MV .true = true.

2. The validation model does not behave miraculously, MV .false =
false.

14

We can then derive a condition of the following type for checking pre-
conditions in the model MV using the refinement calculus:

([Qparam(c)]; [ν.pi
f := v|Qpre]; {Qpre

1
}; [ν.po

1
:= v|Qpost

1
]; . . . ;

{Qpre
m }; [ν.po

m := v|Qpost
m]; {Qpost}).true

Hence, the post-conditions of the predecessors have to imply the pre-condition
of the successors and the final post-condition Qpost. By using weakest pre-
condition calculations, simple conditions can be derived. The procedure to
show absence of miraculous behaviour is similar to the above.

5 Refinement

We would like to develop systems using Simulink and stepwise refinement.
In order to get a definition of refinement, we use the translation of Simulink
to the Action Systems formalism. The most important type of refinement is
the refinement of abstract specifications given as pre- and post-conditions.
However, we can also use superposition refinement to add features, while
preserving old features. Since virtual subsystems do not have any seman-
tics, refactoring of the model hierarchy can also be considered to be a re-
finement. The properties of the block parameters of the model was given
using an initialisation condition. Block parameters can be added during the
refinement, since parameters are treated as local variables only modified in
the initialisation. The initialisation condition can also be strengthened.

5.1 Refinement of Block Parameters

We start with the description of refinement of block parameters. New pa-
rameters can be added in the refined model M ′ and the initialisation of the
parameters can be refined. Let b be the new block parameters in the refined
model M ′ and Qparam′(a′, b′) be the initialisation predicate for the parame-
ters in the new model. For the initialisation to be valid, we need to ensure
that the assignment is still feasible ∃a, b · Qparam′(a, b) and that the new
assignment refines the old. The rule for refinement of initialisation is given
in Subsection 2.2. Here the abstraction relation is given as R =̂ (a′ = a).

Qparam′(a′, b′) ⇒ ∃a · a′ = a ∧ Qparam(a)

If the condition is of the form Qparam′(a′, b′) =̂ Qparam(a′) ∧ Qparam
b (a′, b′),

the condition is a refinement by construction. When the parameters are
given concrete values in the implementation, it is sufficient to check that
these values satisfy the initialisation condition.

5.2 Refinement of Abstract Specifications

An abstract specification is given as a block containing only ports associated
with a pre-condition and a post-condition. In the refinement the abstract
specification is replaced with a new model fragment. This model fragment

15

M:

M':

v

p^i_n1

p^i_n2

p^o_n1

p^o_n2

M_n

p^i_1

p^i_2

M_2

p^o_1

p^o_2

M_1

p^i_s1

p^i_s2

p^o_s1

p^o_s2

M_s

p^i_1

p^i_2

M_2

p^o_1

p^o_2

M_1

Figure 5: Illustration of refinement of abstract specification M into refine-
ment M ′.

should then be shown to be a refinement of the specification. First we need
to determine how blocks and ports in the abstract diagram M relates to the
to ports in the refined diagram M ′. Two blocks are equal in the two models,
if they have the same name and type. Two ports are equal, if their parent
blocks are equal and they have the same names.

5.2.1 Construction of the refined model.

Consider a specification block Ms with in-ports P i
s , out-ports P o

s , pre-
condition Qpre and post-condition Qpost in a model M = (B, root, subh, P,
blk, sig, subi, subo, C). This specification is refined by the model fragment
Mn = (Bn, rootn, subhn, Pn, blkn, sign, subin, subon, Cn) with pre-condition
Qpre

n . The refinement is illustrated in Figure 5. The specification Ms is re-
placed by Mn, while the ports P i

s and P o
s of Ms are replaced by ports from

Mn. The new Simulink model M ′ that we obtain is given as follows:

• B′ = (B − (|subh|−1)∗.Ms) ∪ (Bn − {rootn}) is the blocks in the new
model. Bn gives the new blocks that replace blocks from Ms.

• P ′ ⊆ P ∪ Pn. The ports from both models are preserved except for
the ports in the subsystem that is refined. If a port is in a block that
is present in both M and M ′, the port is also present in both models,
∀p · p ∈ P ∧ blk.p ∈ B ∩B′ ⇒ p ∈ P ′. On the other hand, if the port is
in a block in M that is no longer present in M ′, the port is not present
in M ′ either, ∀p · p ∈ P ∧ blk.p /∈ (B − B′) ⇒ p /∈ P ′. The ports from
the new model Mn are all included in M ′, ∀p · p ∈ Pn ⇒ p ∈ P ′.

• sig′ : P i′ → P o′. The new parent relation sig′ is the same as sig

except for connections that involves ports that are not included in M ′,
p ∈ (P − P ′) (see Figure 5),

∀p · p ∈ (P i′ ∩ P i) ∧ sig.p ∈ (P o′ ∩ P o) ⇒ sig′.p = sig.p

16

Whenever sign is defined in Mn it should be preserved,

∀p · p ∈ P i
n ∧ p ∈ dom .sign ⇒ sig′.p = sign.p

Connections involving the specification Ms are replaced by connections
involving the new ports from Mn (see Figure 5). The first requirement
on the connections is that they are not allowed to introduce more
unconnected ports, ∀p · p ∈ P i ∧ p ∈ dom .sig ⇒ p ∈ dom .sig′. We
also have that every in-port connected to an out-port of the abstract
specification Ms in M is connected to an out-port from the new model
Mn in M ′. There should be as many out-ports connected from Mn to
the rest of M ′ as there were out-ports in Ms connected to M . This is
needed to obtain a refinement relation.

∀pi · pi ∈ P i ∧ sig.pi ∈ P o
s ⇒ ∃po · po ∈ P o

n ∧ po = sig′.pi ,

card .P o
s = card .{p ∈ P o

n |∃pi · pi ∈ P i ∧ p = sig′.pi}

Each in-port from the specification p ∈ P i
s has to have a corresponding

port from P i
n (see Figure 5). Hence, we have that every out-port

connected to Ms is connected to a port in Mn in the refined model.

∀pi · pi ∈ P i ∧ pi ∈ P i
s

⇒ ∃pi
n · pi

n ∈ P i
n ∧ pi

n /∈ dom .sign ∧ sig.pi = sig′.pi
n

• blk′ : P ′ → B′. The ports in the new model M ′ are either in the
unchanged blocks as given by M or in the blocks given by Mn. We
have the following restrictions on blk′:

∀p · p ∈ (P ′ ∩ P) ⇒ blk′.p = blk.p ,

∀p · p ∈ Pn ⇒ blk′.p = blkn.p

• subh′ : B′ → Bs′. We have that the hierarchy is preserved and that
the specification Ms is replaced by the model fragment Mn.

∀b · b ∈ B − {Ms} ⇒ subh′.b = subh.b ,
∀b · b ∈ (Bn − {rootn}) ⇒ subh′.b = subhn.b ,
∀b · b ∈ Bn ∧ b 6= rootn ∧ subhn.b = rootn ⇒ subh′.b = subh.Ms

The specification Ms is replaced by new blocks that are at the top
level in Mn, subhn.b = rootn.

• subi and subo have the same restrictions as blk. The relation fdep

describing how out-ports depends on in-ports inside basic blocks also
has the same restrictions as blk.

• C ′ = C ∪ Cn, where initialisation condition for the block parameters
becomes Qparam′ = Qparam ∧ Qparam

n .

17

ndep′ ndep

pi

po

refport

refport

=

=po′

pi′

(a)

ndep′ ndep

pi′ pi

po

refport

refport

=
po′

(b)

po′ po

ndepndep′

pi′ pi

refport

refport

=

(c)

Figure 6: Relations between ports in the refined and abstract diagrams.

5.2.2 Verifying the correctness of the refined model.

Above we described how the refinement M ′ is constructed from the abstract
model M and model fragment Mn. The refined model M ′ is then mapped
to constructs in the refinement calculus as previously to give the refinement
definition. The refinement M ′ contains more ports and therefore more vari-
ables than M . However, global variables cannot be added in the refinement
and new ports are instead translated to local variables. In the refinement
we now have two functions ν ′ and ν ′

loc that maps ports to variables. The
function ν ′ maps ports corresponding to ports in the initial specification to
global variables and the function ν ′

loc maps new ports to local variables.

First we derive a refinement relation refport : P ′ 7→ P between ports.
This is a partial bijective function, which has the following restrictions:

∀p′ · p′ ∈ P ′ ∧ p′ ∈ P ∧ ndep′.p′ ∈ P ⇒ p′ = refport.p′ ,
∀p′ · p′ ∈ P i′ ∧ p′ /∈ P ∧ ndep′.p′ ∈ P

⇒ ∃p · p ∈ P ∧ ndep′.p′ = ndep.p ∧ p = refport.p′ ,
∀p′ · p′ ∈ P i′ ∧ p′ ∈ P ∧ ndep.p′ /∈ P ⇒ refport.ndep′.p′ = ndep.p′

The first case handles preservation of the graph in the refinement. This is
illustrated in figure 6 (a). The second case concerns the refinement of the in-
ports of the abstract specification block in the diagram M . Here two ports
corresponds to each other if they have the same predecessor, ndep′.p′ =
ndep.p (see figure 6 (b)). Note that this relation is not unique, but the
requirement that refport should be bijective ensures that there is a one-to-
one mapping. The last case concerns refinement of the out-ports of the
abstract specification block. Two ports are the same if they have a common
successor, refport.ndep′.p′ = ndep.p′ (see figure 6 (c)).

Each port in M that is translated to a variable has a corresponding port
in M ′. Either the ports are the same in both models or if the port belonged
to block Ms, ports from Mn are used instead. The mapping of variables ν ′

in the refinement is defined as follows:

∀p′ · p′ ∈ P ′ ∧ p′ ∈ dom .refport ⇒ ν ′.p′ = ν.refport.p′

Ports related via refport maps to the same global variables, as shown in
figure 7

18

v

pp′ refport

ν ′ ν

Figure 7: The figure in shows how ports are mapped to variables.

Ports in the refinement that cannot be mapped to global variables from
the abstract specification are mapped to local variables. This mapping
is denoted by ν ′

loc : P ′ 7→ V ′. The domain of this function is given as,
(dom.ν ′

loc = {p ∈ P ′|blk.p /∈ (Bi′∪Bo′∪Bvs′}−dom.refport), since ν ′

loc maps
all remaining ports in M ′ to variables.

We need to show that the replacement of Ms with pre-condition Qpre
n and

model fragment Mn is a correct refinement. To verify that the refinement
is correct, we check it in an environment where Qpre holds. This context
information [6] can be used, since other components are guaranteed to main-
tain it. First we note that we can add an assert statement {Qpost} after the
statement [ν.po

s1, . . . , ν.po
sn := v|Qpost] in the abstract specification, without

changing its behaviour. In the refinement, the contract statements ({Qpre},
[ν.po

s1, . . . , ν.po
sn := v|Qpost]) are replaced by the translated Simulink model

constructs ({Qpre
n }, S1, . . . , Sm, R1, . . . , Rt) obtained from Mn. We use a

validation model to check the correctness of this refinement. This vali-
dation model uses the refinement calculus statements ([ν.pi

s1, . . . , ν.pi
sm :=

v|Qpre], {Qpost}, {Qpre
n }, S1, . . . , Sm, R1, . . . , Rt). This model, refCalc.MV

n ,
is constructed from statements above ordered according to the rules in Def-
initions 1-3. Note that statement [ν ′.pi

s1, . . . , ν
′.pi

sm := v|Qpre] assign the
in-ports and, hence, appears in the beginning of the translation. The assert
statement {Qpost} that depends on the out-ports is placed towards the end.

refCalc.MV
n =̂ Sk; [ν′.pi

s1, . . . , ν
′.pi

sm := v|Qpre]; . . . ;
{Qpre

n }; . . . ; Sl; {Q
post};

R1; . . . ; Rt

Theorem 1 (Correctness of refinement) The model Mn refines Ms, Ms ⊑
Mn, if ∀t · t ∈ tr(MV

n) ⇒ t 6= ⊥ and Mn does not behave miraculously. 2

Proof There are two constructs to consider {Qpre} ⊑ {Qpre
n } and

[ν.po
s1, . . . , ν.po

sn := v|Qpost] ⊑ refCalc.Mn.
• If {Qpre} ⊑ {Qpre

n } does not hold {Qpre
n } will contribute with aborted

traces, due to the assignment to in-ports, [ν ′.pi
s1, . . . , ν

′.pi
sm := v|Qpre].

• If [ν.po
s1, . . . , ν.po

sn := v|Qpost] ⊑ refCalc.Mn does not hold, then either,
– the model fragment refCalc.Mn aborts, or
– the output from refCalc.Mn does not satisfy Qpost.

Both cases contribute with aborted traces.
Since MV

n does not abort we can conclude that {Qpre} ⊑ {Qpre
n } and

[ν.po
s1, . . . , ν.po

sn := v|Qpost] ⊑ refCalc.Mn must hold. �

19

p^o_so

p^i p^o

p^i_si
p^i p^o

SubSys

c

Source

result

Sink

(a)

p^o_pi

p^i_g p^o_g

p^i_po
1

p^o

K

Gain

1

p^i

(b)

Figure 8: Example of a Simulink model that refines the model in Figure 3.
The model is identical to the one in Figure 1.

Due to monotonicity we have Ms ⊑ Mn ⇒ M ⊑ M ′.
As an example, consider refinement of the Simulink model in Figure

3 with an abstract specification SubSysSpec. One possible refinement of
this model is the model in Figure 8. There the specification SubSysSpec is
replaced by the implementation Subsys. The function mapping old ports
to new ports is given as refport = {(po

so, p
o
so), (p

i
g, p

i
s), (p

o
g, p

o
s), (p

i
si, p

i
si)}. The

ports are mapped to variables using the functions ν ′ and νloc, which are
partial functions with the following domains; dom .ν ′ =̂ {po

so, p
i
g, p

o
g, p

i
si} and

dom .νloc =̂ ∅. This means that in this case there are no local variables
obtained from the ports.

5.3 Superposition refinement

Superposition refinement is a convenient refinement method where new fea-
tures are added to the model, while old features remain unchanged. We can
derive superposition rules involving only syntactic constraints for Simulink
models. The main idea is to preserve all the behaviour of the old model,
while adding new blocks and connection between them. Consider again a
model M where features Mn are added to obtain a refined model M ′. We
have the following requirements on Mn.

• Unconnected ports of Mn should have no pre-condition.

• Mn should be correct, i.e., the validation model MV
n should not have

any improper traces.

The refinement model M ′ can then be constructed as follows.

• Basic blocks, merge blocks, memory blocks and non-virtual subsystems
from M are preserved and new blocks from Mn are only added in the
refinement M ′, (Bb′ = Bb ∪ Bb

n) ∧ (Bm′ = Bm ∪ Bm
n) ∧ (Bmem′ =

Bmem ∪ Bmem
n) ∧ (Bns′ = Bns ∪ Bns

n). New virtual subsystems Bvs,
in-blocks Bi and out-blocks Bo can be introduced and removed.

• P ′ and blk′. The ports in the blocks from the old model M and the
new model fragment Mn remains in the same blocks, except for ports
in subsystems, in-blocks and out-blocks.

∀p · p ∈ P ∧ blk.p /∈ (Bi ∪ Bo ∪ Bvs) ⇒ blk′.p = blk.p ,
∀p · p ∈ Pn ∧ blkn.p /∈ (Bi

n ∪ Bo
n ∪ Bvs

n) ⇒ blk′.p = blkn.p

20

p^o_so

p^i
p^o_1

p^i_si

p^o_2
p^i_si1

p^i

p^o_1

p^o_2

SubSys

c

Source

result1

Sink1

result

Sink

(a)

p^o_pi

p^i_g p^o_g

p^i_po

p^i_g1 p^o_g1
2

p^o_2

1

p^o_1

L

Gain1

K

Gain

1

p^i

(b)

Figure 9: Example of superposition refinement of the model from Figure 1.
Again, the content of the subsystem in (a) is shown in (b)

• sig′, subh′, subi′ and subo′ are chosen in such a manner that the graph
formed by the ports in the old model and the new model are preserved.
Furthermore, there can be no data flowing from ports in Mn to ports
in M . This means that if a port p from M is connected in M ′, then it
was already connected in M . This gives the following conditions for
ndep:

∀p · p ∈ P ∧ p ∈ dom .ndep ⇒ ndep′.p = ndep.p ,
∀p · p ∈ Pn ∧ p ∈ dom .ndepn ⇒ ndep′n.p = ndep.p ,
∀p · p ∈ P ∩ P ′ ∧ p ∈ dom .ndep′ ⇒ p ∈ dom .ndep

• ν ′ = ν, since all old ports are still present

• C ′ = C ∪ Cn, where initialisation condition for the block parameters
becomes Qparam′ = Qparam ∧ Qparam

n .

Theorem 2 (Correctness of superposition refinement) The model M ′

is a correct refinement of M , M ⊑ M ′

2

Proof Since the new parts from Mn do not abort and have no pre-conditions,
the new parts from Mn will not contribute with any aborted traces. The
behaviour of the old model M is preserved in M ′, since all non-virtual blocks
are preserved and ndep is also preserved. If M is partial, there are no con-
nections from the new parts Mn to the old parts M in M ′. This means that
the new parts do not affect the old behaviour. �

Note that the refinement constraints only concern the graph formed by the
Simulink model. Correctness of superposition refinement can, hence, be
verified by checking only syntactic constraints.

An example of superposition refinement of the Simulink model in Figure
1 is given in Figure 9. A new gain block Gain1 and a new sink block Sink1
are added. To connect the new blocks with the old model a new port need to
be added to the subsystem SubSys. We have that the mapping from ports
to global variables is preserved, ν ′ = ν, and that all new ports are mapped
to local variables, dom .ν ′

loc = {pi
g1, p

o
g1, p

i
si1}.

21

5.4 Subsystem introduction and removal

We first note that as long as the refinement calculus translation of the model
remains the same, the model can be rewritten. We can thus introduce or
remove subsystem blocks in M to obtain a model M ′ as long as the following
properties holds.

• Basic blocks, merge blocks, memory blocks and non-virtual subsystems
from M are preserved in M ′, (Bb′ = Bb) ∧ (Bm′ = Bm) ∧ (Bmem′ =
Bmem)∧(Bns′ = Bns). Only virtual subsystems Bvs, in-blocks Bi and
out-blocks Bo can be added or removed.

• P ′. Every port not in a subsystem, in-block or out-block remains in
the same block after the refactoring,

∀p · p ∈ P ∧ blk.p /∈ (Bi ∪ Bo ∪ Bvs) ⇒ blk.p = blk′.p

• ndep′ = ndep, the connections between ports that are translated to
variables in the refinement calculus are preserved.

Theorem 3 (Correctness of refactoring) The model M and M ′ are equiv-
alent, M ⊑ M ′ and M ′ ⊑ M . 2

Proof All non-virtual blocks are preserved and the connections between
them are also preserved. Hence, the refinement calculus translation of the
two models are functionally equivalent. �

This means that the same ports are connected in the new model, but
via possibly different in- and out-ports of virtual subsystems. This type
of refinement can also be checked by examining the graph formed by the
Simulink models. This is a special form of superposition refinement with
empty Mn.

6 Development process

Above we have given a definition of refinement and a way to create contracts
for Simulink models. To fully use these features a good development process
is needed. The idea of refinement is to first create an abstract specification
using contracts that captures the most essential properties of the system.
This specification is then refined to eventually obtain an implementation
that can be executed.

Contracts in the form given in this paper are not without problems. This
framework can only express safety properties easily. However, control perfor-
mance and real-time properties are often important in control applications.
These properties cannot usually be analysed using the contracts described
here. This can lead to underspecified systems, where some properties are
not captured by the specification. On the other hand, verification of prop-
erties that are stated is significantly simplified due to the simple form of the

22

Mr1

Mr2

Mtest2

⊑

Mtest1

Ms

⊑

⊑

⊑

⊑

Mimpl

Figure 10: Overview of the development process for developing applications
using refinement

contracts. We have to take into account these limitations when developing
systems using refinement. We propose the following method, illustrated in
Figure 10:

1. Start with an abstract specification (Ms) outlining the most important
parts of the system. Contracts are used to abstractly describe the be-
haviour and responsibilities of the different parts. Both the controller
and its environment should be taken into account.

2. The system is refined in a stepwise manner. Specifications are decom-
posed into more detailed models using refinement of specifications. It
is also desirable to check that partially finished models (Mr1 and Mr2)
conforms to requirements not expressed in the contracts, e.g. perfor-
mance requirements. To do this, it is possible to create test models
(Mtest1 and Mtest2) that can be simulated (executed) and, hence, used
to investigate such properties. These models are refinements of the
system developed so far, but they are not necessarily refined further.
They are only used to get an idea of how the properties not expressed
by contracts will work in the final complete system.

3. Step 2 is repeated until all specifications have an implementation
(Mimpl). The system should then satisfy all the properties stated in
the contracts.

A good way to implement contracts is to use empty subsystems as place-
holders. These subsystems are associated with a contract and represents
the abstract specification. During the refinement process content is added
to the subsystems. Each level in the subsystem hierarchy, hence becomes a
new refinement step.

23

7 Example of System Development Using Refine-

ment

To illustrate the development process for construction of Simulink models
using refinement, we here develop a simplified version of the classical Steam
boiler system [2]. The system in the example consists of a boiler for produc-
ing steam. Water is delivered to the system using a pump that can either
be switched on or off. Steam is taken from the boiler using a valve that
is either fully opened or fully closed. The objective of the controller is to
keep the water level between the lower limit L1 and upper limit L2. The
controller can read the current water level using the sensor w level and it
can control if the pump and the out-valve of the boiler. This is modelled
by the actuators pump on and out open, respectively. The following safety
requirements are given for the water level in the controller:

• When it is above L2 the pump is switched off and the valve is opened.

• When it is below L1 the pump is switched on and the valve is closed.

An overview of the complete system involving both controller and plant is
given in Figure 11 (a). This model consist of a specification of the controller,
Controller, and a specification of the plant, Steam boiler. The model has
block parameters giving the maximum and minimum water level L1 and L2.
The parameter condition is given by:

Qparam =̂ L1 > 0 ∧ L2 > L1

Water levels are positive and the upper level L2 is higher than the lower
level L1. The contract of the controller is given from the safety requirements
above.

Qpre
c =̂ true

Qpost
c =̂ w level > L2 ⇒ ¬pump on ∧ out open∧

w level < L1 ⇒ pump on ∧ ¬out open

The plant has no pre-condition, Qpre
p =̂ true, and it can assign any value

greater than or equal to zero to the current water level, Qpost
p =̂ w level ≥ 0.

The complete diagram in Figure 11 (a) form a cycle of specifications. The
following program in the refinement calculus is then a possible translation:

refCalc.System =̂

[pump on′, out open′ := vp, vo|true]; [w level := v|Qpost
p];

w level′ := w level; {Qpre
c }; [pump on, out open := vp, vo|Q

post
c];

[pump on′ = pump on ∧ out open′ = out open]; {Qpre
p }

The pump and valve status (pump on′ and out open′) that the plant uses
need to be the same as the ones computed by the controller, pump on and
out open. To illustrate how a system can be refined, consider the refinement
of the plant into deterministic difference equation that updates w level′

according to w level′ = f.x and the internal memory x according to x′ =

24

pump_on

out_open
w_level

Steam boiler

w_level

pump_on

out_open

Controller

(a)

2
out_open

1
pump_on

too_high

ok

too_low

pump_on

Pump controller

too_high

ok

too_low

out_open

Out controller

w_level

too_high

ok

too_low

Decision

1
w_level

(b)

Figure 11: Simulink diagrams for the steam boiler example. An overview of
the complete steam boiler system is shown in (a), while the refinement of
the controller is shown in (b).

g.x.pump on.out open. The program obtained for the complete diagram is
now:

refCalc.System′ =̂
w level = f.x;

w level′ := w level; {Qpre
c }; [pump on, out open := vp, vo|Q

post
c];

pump on′ := pump on; out open′ := out open; {Qpre
p };

x := g.x.pump on′.out open′

Note that we usually do not write out assignments corresponding to signals
(e.g. w level′ := w level above) and usually w level′ is substituted with
w level directly. It is easy to see that if the abstract plant specification
[w level′ := v|Qpost

p] is correctly refined, then System will be refined by
System′. The assumption [pump on′ = pump on ∧ out open′ = out open]
can now also be removed, since it is trivially true. Note that the cycle cannot
be broken in a arbitrary place, if the intention is to refine the diagram into a
acyclic implementation. The cycle need to be broken before the specification
that introduces the acyclic behaviour, as done in the example.

The controller is refined in a stepwise manner to obtain an implementa-
tion. Here we do the development in one single model. Each subsystem is
associated with a contract. When the system is refined, the details of the
subsystem are added. First we refine the specification of the controller into
three different subsystem as shown in Figure 11 (b). The first subsystem,
Decision, decides if the water level is too high (too high), suitable (ok) or
too low (too low). The second subsystem, Pump Controller, computes if
the pump should be on, while the third one, Out Controller, computes if
the out valve should be opened. The contract for the specification Decision
states that the water level should be between L1 and L2 to be acceptable.
Otherwise it is too high or too low.

Qpre
d =̂ true

Qpost
d =̂ (w level > L2 ⇒ too high ∧ ¬ok ∧ ¬too low)∧

(w level < L1 ⇒ ¬too high ∧ ¬ok ∧ too low)∧
(w level ≥ L1 ∧ w level ≤ L2 ⇒ ¬too low ∧ ok ∧ ¬too high)

25

The contract for the specification block Pump Controller states that the
block assumes that the water level is either too low, acceptable or too high.
It guarantees that the pump is switched on if the water level is too low and
switched off if the water level is too high.

Qpre
pump =̂ too high ∨ ok ∨ too low

Qpost
pump =̂ (too high ⇒ ¬pump on)∧

(too low ⇒ pump on)

The contract for the last specification, Out Controller, is defined similarly:

Qpre
out =̂ too high ∨ ok ∨ too low

Qpost
out =̂ too high ⇒ out open

too low ⇒ ¬out open

Note that we do not say anything about the situation when the level is
between L1 and L2. The implementation can choose the best alternative in
that case.

To validate that the system in Figure 11 (b) refines the specification
Controller we create a validation model as in Subsection 4.5.

refCalc.Controller =̂ [too high, ok, too low := vh, vo, vl|Q
post
d];

{Qpre
pump}; [pump on := v|Qpost

pump];

{Qpre
out}; [out open := v|Qpost

out];

The definition of refinement then gives the validation model that need to be
verified.

refCalc.ControllerV =̂

[w level := v|Qpre
c (v)]; {Qpre

d }; refCalc.Controller; {Qpost
c }

We first need to show that the validation model does not behave miracu-
lously, (refCalc.ControllerV).false = false. It is easy to see that values can
always be given to the in-ports and that the post-conditions are feasible. The
refinement is then correct if the validation model does not abort. By sys-
tematically computing the weakest precondition (refCalc.ControllerV).true
from this program we get the following conditions:

Qparam ∧ Qpre
c ⇒ Qpre

d

Qparam ∧ Qpre
c ∧ Qpost

d ⇒ Qpre
pump

Qparam ∧ Qpre
c ∧ Qpost

d ⇒ Qpre
out

Qparam ∧ Qpre
c ∧ Qpost

d ∧ Qpost
pump ∧ Qpost

out ⇒ Qpost
c

This refinement of the specification Controller is still abstract and not
executable. To illustrate the final implementation consider the implemen-
tation of the specification Pump Controller in Figure 12. The requirements
did not state what the behaviour of the pump should be when the water
level w level is between L1 and L2. Here we have taken the approach to
only switch on or off the pump when a water level limit is reached. Other

26

1
pump_on

z
1

pump_already_on

1

Switch on

0

Switch off

3
too_low

2
ok

1
too_high

Figure 12: Implementation of the pump controller in the steam boiler system

approaches such as e.g. keeping the level as high or low as possible are
also possible. The implementation of Pump Controller uses memory and we
have to validate its behaviour over time to ensure correct behaviour. This is
again done by creating a validation model. Note that the pump controller
only uses booleans and is now suitable to be verified using model checkers.

8 Conclusions and Future Work

In this paper we have given a definition of refinement of Simulink diagrams
using an action systems semantics. First we defined a translation from
Simulink to action systems. Then we provided a definition of contracts for
Simulink model fragments using pre- and post-conditions. The action sys-
tems formalism provided semantics to these contracts. Using the action
systems semantics, rules for composing Simulink models based on the con-
tracts were given. We then showed how an abstract specification given as
a contract could be refined into an implementation satisfying the contract.
Validation of the refinement could be performed by model checking or test-
ing a validation model. We also provided superposition refinement rules and
refactoring rules that could be verified using only syntactic constraints. Fi-
nally we discussed a development process and provided a small example to
illustrate how a system can be developed using refinement.

All features of Simulink are not supported here. As future work we plan
to add support for non-virtual subsystems and Stateflow. Stateflow is an
implementation of Statecharts [17] in Simulink. To create simple reasoning
rules, a mode-automata [21, 22] like structure of the diagrams will be used
[8, 10]. Contracts for continuous and multi-rate systems would also be of
interest.

We believe this refinement-based development provides a convenient de-
sign method even for developers not familiar with formal methods. These
methods are not limited to Simulink: they can be applied to other similar
languages like SCADE [15], Ptolemy II [28] and Scicos [30] as well.

27

Acknowledgement

This work is carried out in the context of the project ITCEE (Improving
Transient Control and Energy Efficiency by Digital Hydraulics) funded by
TEKES (Finnish Funding Agency for Technology and Innovation)

References

[1] M. Abadi and L. Lamport. Conjoining specifications. ACM Transac-
tions on Programming Languages and Systems, 17(3):507–534, 1995.

[2] J.-R. Abrial, E. Börger, and H. Langmaack. The steam boiler case
study: Competition of formal program specification and development
methods. In Formal Methods for Industrial Applications - Specifying
and Programming the Steam Boiler Control, volume 1165 of LNCS,
pages 1–12. Springer, 1996.

[3] R. Arthan, P. Caseley, C. O’Halloran, and A. Smith. ClawZ: Control
laws in Z. In Proceedings of ICFEM 2000, pages 169–176. IEEE Press,
2000. http://www.lemma-one.com/clawz docs/clawz docs.html.

[4] R.-J. R. Back and R. Kurki-Suonio. Decentralization of process nets
with centralized control. In Proceedings of the 2nd ACM SIGACT-
SIGOPS Symposium of Principles of Distributed Computing, pages
131–142, 1983.

[5] R.-J. R. Back and J. von Wright. Trace refinement of action systems.
In B. Jonsson and J. Parrow, editors, Proc. of the 5th International
Conference on Concurrency Theory, CONCUR’94, pages 367–384, Up-
psala, Sweden, 1994. Springer-Verlag.

[6] R.-J. R. Back and J. von Wright. Refinement Calculus: A Systematic
Introduction. Graduate Texts in Computer Science. Springer-Verlag,
1998.

[7] R.-J. R. Back and J. von Wright. Compositional action system refine-
ment. Formal Aspects of Computing, 15:103–117, 2003.

[8] P. Boström, M. Linjama, L. Morel, L. Siivonen, and M. Waldén. Design
and validation of digital controllers for hydraulics systems. In The
10th Scandinavian International Conference on Fluid Power, volume 1,
pages 227–241, Tampere, Finland, 2007.

[9] P. Boström, M. Linjama, L. Morel, L. Siivonen, and M. Waldén. Design
and validation of digital controllers for hydraulics systems. Technical
Report 800, Turku Centre for Computer Science, 2007.

[10] P. Boström and L. Morel. Mode-automata in Simulink/Stateflow. Tech-
nical Report 772, Turku Centre for Computer Science, 2006.

28

[11] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens,
K. R. M. Leino, and E. Poll. An overview of JML tools and applica-
tions. International Journal on Software Tools for Technology Transfer,
7(3):212–232, 2005. http://www.cs.iastate.edu/∼leavens/JML/.

[12] A. Cavalcanti, P. Clayton, and C. O’Halloran. Control law diagrams in
Circus. In J. S. Fitzgerald, I. J. Hayes, and A. Tarlecki, editors, Pro-
ceedings of FM 2005, volume 3582 of LNCS, pages 253–268. Springer-
Verlag, 2005.

[13] C. Chen and J. S. Dong. Applying timed interval calculus to Simulink
diagrams. In Eight International Conference on Formal Engineering
Methods, ICFEM 2006, volume 4260 of LNCS, pages 74–93, Macao,
China, 2006. Springer-Verlag.

[14] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Engle-
wood Cliffs, NJ, 1976.

[15] Esterel Technologies. SCADE. http://www.esterel-technologies.

com/products/scade-suite/, 2006.

[16] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
dataflow programming language Lustre. Proceedings of the IEEE,
79(9):1305–1320, 1991.

[17] D. Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, 8(3):231–274, 1987.

[18] I. J. Hayes, M. A. Jackson, and C. B. Jones. Determining the specifi-
cation of a control system from that of its environment. In K. Araki,
S. Gnesi, and D. Mandrioli, editors, Proceedings of FME 2003: Formal
methods, volume 2805 of LNCS, pages 154–169. Springer-Verlag, 2003.

[19] B. Mahony. The DOVE approach to design of complex dynamic pro-
cesses. In V. A. Carreño, C. A. Muñoz, and S. Tahar, editors, Theorem
Proving in Higher Order Logic, volume CP-2002-211736 of NASA con-
ference publication. NASA, 2002.

[20] F. Maraninchi and L. Morel. Logical-time contracts for reactive em-
bedded components. In 30th EUROMICRO Conference on Component-
Based Software Engineering Track, ECBSE’04, Rennes, France, August
2004.

[21] F. Maraninchi and Y. Rémond. Mode-automata: About modes and
states for reactive systems. In European Symposium on Programming,
volume 1381 of LNCS. Springer Verlag, 1998.

[22] F. Maraninchi and Y. Rémond. Mode-automata: a new domain-specific
construct for the development of safe critical systems. Science of Com-
puter Programming, 46(3):219–254, 2003.

29

[23] Mathworks Inc. Simulink. http://www.mathworks.com/products/

simulink, 2006.

[24] L. Meinicke and I. Hayes. Continuous action system refinement. In
T. Uustalo, editor, Proceedings of MPC 2006, volume 4014 of LNCS,
pages 316–337. Springer-Verlag, 2006.

[25] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 2
edition, 1997.

[26] J. Mikáč and P. Caspi. Temporal refinement for Lustre. In Proceed-
ings of Synchronous Languages, Applications and Programming, SLAP
2005, ENTCS, Edinburgh, Scotland, 2005. Elsevier.

[27] J. Misra and K. M. Chandy. Proofs of networks of processes. IEEE
Transactions on Software Engineering, 7(4):417–426, 1981.

[28] Ptolemy Project. Ptolemy II. http://ptolemy.berkeley.edu/

ptolemyII/, 2005.

[29] M. Rönkkö, A. Ravn, and K. Sere. Refinement and continuous be-
haviour. In J. H. van Schuppen and F. W. Vaandrager, editors, Hybrid
Systems: Computation and Control, Second International Workshop
HSCC’99, volume 1569 of LNCS, pages 223–237. Springer-Verlag, 1999.

[30] Scilab Consortium. Scilab/Scicos. http://www.scilab.org, 2006.

[31] S. Skogestad and I. Postlethwaite. Multivariable Feedback Control:
Analysis and Design. Wiley, 2 edition, 2005.

[32] K. Stølen. Assumption/commitment rules for dataflow networks - with
emphasis on completeness. In H. Riis Nielson, editor, Programming
Languages and Systems - ESOP’96, 6th European Symposium on Pro-
gramming, volume 1058 of LNCS, pages 356–372. Springer, 1996.

[33] A. Tiwari, N. Shankar, and J. Rushby. Invisible formal methods for em-
bedded control systems. Proceedings of the IEEE, 91(1):29–39, January
2003.

[34] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic. Translating discrete-
time Simulink to Lustre. ACM Transactions on Embedded Computing
Systems (TECS), 4(4):779–818, 2005.

30

Joukahaisenkatu 3-5, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematics

Åbo Akademi University

• Department of Information Technologies

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN 978-952-12-1905-4

ISSN 1239-1891

