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Abstract

The family of languages generated by Boolean grammars and usable with
the recursive descent parsing is studied. It is demonstrated that Boolean
LL languages over a unary alphabet are regular, while Boolean LL subsets
of Σ∗a∗ obey a certain periodicity property, which, in particular, makes the
language {anb2n |n > 0} nonrepresentable. It is also shown that {anbncs |n >
0, s ∈ {a, b}} is not generated by any linear conjunctive LL grammar, while
linear Boolean LL grammars cannot generate {anbnc∗ | n > 0}.
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1 Introduction

Boolean grammars [6] are an extension of the context-free grammars, in
which the rules may contain explicit Boolean operations. While context-free
grammars can combine syntactical conditions using only disjunction (effec-
tively specified by multiple rules for a single symbol), Boolean grammars
additionally allow conjunction and negation. The extended expressive power
of Boolean grammars and their intuitive clarity make them a much more
powerful tool for specifying languages than the context-free grammars. An-
other important fact is that the main context-free parsing algorithms, such as
the Cocke–Kasami–Younger, the recursive descent and the generalized LR,
can be extended to Boolean grammars without an increase in computational
complexity [6, 8, 7].

Though the practical properties of Boolean grammars seem to be as
good as in the case of the more restricted context-free grammars, theoret-
ical questions for Boolean grammars present a greater challenge. Already
a formal definition of Boolean grammars involves certain theoretical prob-
lems [3, 6]. A major gap in the knowledge on these grammars is the lack
of methods of proving nonrepresentability of languages [6]. Even though the
family generated by Boolean grammars has been proved to be contained in
DTIME(n3) ∩ DSPACE(n), there is still no proof that any context-sensitive
language lies outside of this class.

Results of the latter kind are hard to obtain for many interesting classes of
automata and grammars. Consider the family of trellis automata, also known
as one-way real-time cellular automata, which were studied since 1970s, and
which have recently been proved to be equal in power to a subclass of Boolean
grammars [5]. No methods of establishing nonrepresentability of languages in
this family were known for two decades, until the first such result by Yu [12],
who established a pumping lemma for a special case. Only a decade later
the first context-free language not recognized by these automata was found
by Terrier [11]. Another example is given by the growing context-sensitive
languages, for which a method of proving nonrepresentability was discovered
by Jurdzinski and Loryś [2].

The purpose of this paper is to establish some limitations of the expressive
power of the subcase of Boolean grammars to which the recursive descent
parsing is applicable: the LL(k) Boolean grammars [7]. Already for this class,
obtaining nonrepresentability proofs presents a challenge: consider that there
exists an LL(1) linear conjunctive grammar for the language of computations
of any Turing machine, which rules out a general pumping lemma. There
also exists an LL(1) Boolean grammar for a P-complete language [10], which
shows computational nontriviality of this class. This paper proposes several
methods for proving nonrepresentability of languages by these grammars,
which become the first results of such a kind in the field of Boolean grammars.

Following a definition of Boolean grammars in Section 2, recursive de-
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scent parsers for Boolean grammars and their simple formal properties are
described in Sections 3 and 4. In Section 5 it is proved that Boolean LL
grammars over a unary alphabet generate only regular languages. Section 6
considers subsets of Σ∗a∗ representable by Boolean LL grammars and estab-
lishes a periodicity property of such languages, which, in particular, implies
nonrepresentability of the language {anb2n | n > 0}. Stronger nonrepre-
sentability results for two subclasses of Boolean LL grammars with linear
concatenation are obtained in Sections 7 and 8. Based on these results, in
Section 9, a detailed hierarchy of language families is obtained.

2 Boolean grammars

and their non-left-recursive subset

Definition 1. [6] A Boolean grammar is a quadruple G = (Σ, N, P, S), where
Σ and N are disjoint finite nonempty sets of terminal and nonterminal sym-
bols respectively; P is a finite set of rules of the form

A → α1& . . . &αm&¬β1& . . . &¬βn, (1)

where m+n > 1, αi, βi ∈ (Σ∪N)∗; S ∈ N is the start symbol of the grammar.

Let us further assume that m > 1 and n > 0 in every rule (1). Note that if
m = 1 and n = 0 in every such rule, then a context-free grammar is obtained.
An intermediate family of conjunctive grammars [4] has m > 1 and n = 0
in every rule. Linear subclasses of Boolean, conjunctive and context-free
grammars are defined by the additional requirement that αi, βi ∈ Σ∗∪Σ∗NΣ∗.

For each rule (1), the objects A → αi and A → ¬βj (for all i, j) are
called conjuncts, positive and negative respectively, and αi and βj are their
bodies. Let conjuncts(P ) be the set of all conjuncts. The notation A → ±αi

and A → ±βj is used to refer to a positive or a negative conjunct with the
specified body.

The intuitive semantics of a Boolean grammar is fairly clear: a rule (1)
specifies that every string that satisfies each of the conditions αi and none
of the conditions βi is therefore generated by A. However, constructing a
mathematical definition of a Boolean grammar has proved to be a rather
nontrivial task. Generally, a grammar is interpreted as a system of language
equations in variables N , in which the equation for each A ∈ N is

A =
⋃

A→α1&...&αm&¬β1&...&¬βn∈P

[ m⋂
i=1

αi ∩
n⋂

j=1

βj

]
(2)

The vector (. . . , LG(A), . . .) of languages generated by the nonterminals of
the grammar is defined by a solution of this system. Since this system, in
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general, may have no solutions or multiple solutions, this definition requires
more precise conditions, which have been a subject of research [3, 6].

Fortunately, for the subclass of Boolean grammars studied in this paper,
the formal definition is much simplified. For a recursive descent parser to
work correctly, a grammar needs to satisfy the following strong requirement.

Definition 2. [7] Let G = (Σ, N, P, S) be a Boolean grammar. The relation
of context-free reachability in one step, Ã, is a binary relation on the set of
strings with a marked substring {α〈β〉γ | α, β, γ ∈ (Σ ∪N)∗}, defined as

α〈βAγ〉δ Ã αβη〈σ〉θγδ,

for all α, β, γ, δ ∈ (Σ∪N)∗, A ∈ N and for all conjuncts A → ±ησθ. Denote
its reflexive and transitive closure by Ã∗ and its transitive closure by Ã+.

Definition 3. [7] Let G = (Σ, N, P, S) be Boolean grammar, define the cor-
responding conjunctive grammar G+ = (Σ, N, P+, S) by removing all negative
conjuncts from every rule in G, that is, for every rule (1) in P , P+ contains
the rule A → α1& . . . &αm.

Then the Boolean grammar G is said to be strongly non-left-recursive if
and only if for all A ∈ N and θ, η ∈ (Σ ∪N)∗, such that ε〈A〉ε Ã+ θ〈A〉η, it
holds that ε /∈ LG+(θ),

In a strongly non-left-recursive grammar it is possible to define the height
of a nonterminal A, denoted h(A), as the greatest number of steps in a deriva-
tion ε〈A〉ε Ã∗ θ〈B〉η, where ε ∈ LG+(θ) and B ∈ N .

For every strongly non-left-recursive grammar, the corresponding system
of equations (2) has a unique solution [7]. Then, for every A ∈ N , LG(A) is
defined as the value of A in this solution. Let L(G) = LG(S).

Consider the following three simple examples of Boolean grammars:

Example 1. The following strongly non-left-recursive linear conjunctive
grammar (left column) generates the language {anbncn | n > 0}.

S → A&C
A → aA | D
D → bDc | ε
C → aCc | B
B → bB | ε

S = A ∩ C
A = aA ∪D
D = bDc ∪ ε
C = aCc ∪B
B = bB ∪ ε

LG(S) = {anbncn | n > 0}
LG(A) = {aibjck | j = k}
LG(D) = {bmcm |m > 0}
LG(C) = {aibjck | i = k}
LG(B) = b∗

The middle column contains the corresponding system of equations, and the
unique solution of this system is given in the right column.

The grammar is based upon the representation of the language
{anbncn | n > 0} as an intersection of two context-free languages:

{anbncn | n > 0}︸ ︷︷ ︸
L(S)

= {aibjck | j = k}︸ ︷︷ ︸
L(A)

∩{aibjck | i = k}︸ ︷︷ ︸
L(C)
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Example 2. [10] The following strongly non-left-recursive Boolean grammar
generates a P-complete language:

S → E&¬AbS&¬CS
A → aA | ε
C → aCAb | b
E → aE | bE | ε

The grammar specifies a variant of the circuit value problem, in which
every gate xi computes the function xi = ¬xi−1 ∧¬xj, for some j = j(i) < i.
This function is well visible in the rule for S. Note that the entire family
generated by Boolean grammars is contained in DTIME(n3) ⊂ P [6], and
hence this language is among the hardest of its kind.

Example 3. [4] The following strongly non-left-recursive conjunctive gram-
mar generates the language {wcw | w ∈ {a, b}∗}:

S → C&D
C → XCX | c
X → a | b
D → aA&aD | bB&bD | cE
A → XAX | cEa
B → XBX | cEb
E → aE | bE | ε

The essence of this grammar is in the nonterminal D, which generates the
language {uczu | u, z ∈ {a, b}∗}. The membership of each uczu in L(D) can
be shown inductively upon the length of u. The base case is given by the rule
D → cE, which generates {cz | z ∈ {a, b}∗}, while the rules D → aA&aD
and D → bB&bD are used to extend a string uczu ∈ L(D) with a and b,
respectively; the nonterminals A and B ensure that z ends with the correct
symbol. Finally,

{xcy | x, y ∈ {a, b}∗, |x| = |y|}︸ ︷︷ ︸
L(C)

∩{uczu | u, z ∈ {a, b}∗}︸ ︷︷ ︸
L(D)

= {wcw | w ∈ {a, b}∗}

3 Boolean recursive descent parser

A recursive descent parser for a Boolean grammar uses a parsing table similar
to the well-known context-free LL table. Let k > 1. For a string w, define

Firstk(w) =

{
w, if |w| 6 k
first k symbols of w, if |w| > k

This definition can be extended to languages as Firstk(L) = {Firstk(w)|w ∈
L}. Define Σ6k = {w | w ∈ Σ∗, |w| 6 k}.
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Definition 4. [7] A string v ∈ Σ∗ is said to follow σ ∈ (Σ∪N)∗ if ε〈S〉ε Ã∗

θ〈σ〉η for some θ, η ∈ (Σ ∪N)∗, such that v ∈ LG(η).

Definition 5. [7] Let G = (Σ, N, P, S) be a strongly non-left-recursive
Boolean grammar, let k > 0. An LL(k) table for G is a function Tk :
N × Σ6k → P ∪ {−}, such that for every rule A → ϕ and u, v ∈ Σ∗, for
which u ∈ LG(ϕ) and v follows A, it holds that Tk(A, F irstk(uv)) = A → ϕ.

A Boolean grammar is said to be LL(k) if such a table exists.

Both grammars in Examples 1–2 are LL(1). For the grammar in Exam-
ple 1, the smallest LL(1) table satisfying the above definition is the following
one:

ε a b c
S S → A&C S → A&C − −
A A → D A → aA − A → D
D D → ε − D → bDc −
C C → B C → aCc C → B C → B
B B → ε − B → bB B → ε

For instance, T1(B, b) = B → bB and T1(B, c) = B → ε because ε〈S〉ε Ã+

a〈B〉c and b, c ∈ Firstk(LG(Bc)). On the other hand, since no string starting
with a follows B or is generated by B, Definition 5 imposes no requirements
on T1(B, a), so it can be anything in {−, B → ε,B → bB}. Note that the
known algorithm for constructing LL(k) tables for Boolean grammars [7] will
set T1(S, b) = T1(S, c) = S → A&C, because both LG(A) and LG(C) contain
strings starting with b and c, and understanding that these are disjoint sets
of strings is much beyond the analysis done by the algorithm.

In contrast, the grammar in Example 3 is not LL(k) for any k, because
there will always be an ambiguity in the choice between E → ε and E → a
(or E → b). Suppose this grammar has an LL(k) table Tk for some k and
consider ε〈S〉ε Ã∗ aXk−1c〈E〉aXk−1. On one hand, for the rule E → ε
and the strings u = ε ∈ LG(ε) and v = ak ∈ LG(aXk−1), it follows that
E → ε ∈ Tk(A, ak). On the other hand, taking E → aE, u = a ∈ LG(aE)
and v = ak ∈ LG(aXk−1), one obtains E → aE ∈ Tk(A, ak). Since E → ε 6=
E → aE, this yields a contraction. It remains unknown whether the language
generated by this grammar, {wcw |w ∈ {a, b}∗}, is generated by any Boolean
LL(k) grammar.

Let us now define the recursive descent parser for a given Boolean LL(k)
grammar. As in the context-free case, it contains a procedure for each ter-
minal and nonterminal symbol. There are two global variables used by all
procedures: the input string w = w1w2 . . . w|w| and a positive integer p point-
ing at a position in this string. Each procedure s(), where s ∈ Σ ∪N , starts
with some initial value of this pointer, p = i, and eventually either returns,
setting the pointer to p = j (where i 6 j 6 |w|), or raises an exception, in
the sense of an exception handling model of, e.g., C++.
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The procedure corresponding to every terminal a ∈ Σ [7] is defined, as in
the context-free case, as

a()
{

if wp = a, then
p = p + 1;

else
raise exception;

}

For every nonterminal A ∈ Σ, the corresponding procedure A() [7] chooses
a rule using the parsing table and then proceeds checking the conjuncts one
by one. The code for this procedure is defined as follows:

A()
{

switch(T (A,F irstk(wpwp+1 . . .)))
{
case A → α1& . . . &αm&¬β1& . . . &¬βn:

(code for the conjunct A → α1)
...
(code for the conjunct A → αm)
(code for the conjunct A → ¬β1)
...
(code for the conjunct A → ¬βn)
return;

case A → . . .
...

default:
raise exception;

}
}

where the code for every positive conjunct A → s1 . . . s` is

let start = p;
s1();
...
s`();
let end = p;

(for the first positive conjunct)

p = start;
s1();
...
s`();
if i 6= end, then raise exception;

(for every subsequent positive conjunct)

while the code for every negative conjunct A → ¬s1 . . . s` is
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boolean failed = false;
try
{

p = start;
s1();
...
s`();
if p 6= end, then raise exception;

}
exception handler:

failed = true;
if ¬failed, then raise exception;
p = end; /* if this is the last conjunct in the rule */

The code for the first conjunct A → α1 stores the initial value of the pointer in
the variable start, and remembers the end of the substring recognized by α1 in
the variable end. Every subsequent positive conjunct A → αi is tried starting
from the same position start, and the variable end is used to check that it
consumes exactly the same substring. The code for every negative conjunct
tries to recognize a substring in the same way, but reports a successful parse
if and only if the recognition is unsuccessful, thus implementing negation.

The main procedure [7] is

try
{

int p = 1;
S();
if p 6= |w|+ 1, then raise exception;

}
exception handler:

Reject;
Accept;

The correctness of Boolean recursive descent has been established as fol-
lows:

Lemma 1. [7] Let k > 1. Let G = (Σ, N, P, S) be an LL(k) Boolean
grammar. Let T : N × Σ6k → P ∪ {−} be an LL(k) table for G, let the
set of procedures be constructed with respect to G and T . Then, for every
y, z, z̃ ∈ Σ∗ and s1, . . . , s` ∈ Σ ∪N (` > 0), such that z follows s1 . . . s` and
Firstk(z) = Firstk(z̃), the code s1(); . . . ; s`(), executed on the input yz̃,

• returns, consuming y, if y ∈ LG(s1 . . . s`);

• raises an exception, if y /∈ LG(s1 . . . s`).
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4 Simple formal properties

A few technical results need to be established for use in the subsequent
arguments.

Definition 6. An LL(k) Boolean grammar G = (Σ, N, P, S) is said to be
well-behaved, if, for every A ∈ N , (i) L(A) 6= ∅ and (ii) there exist θ, η ∈
(Σ∪N)∗, such that ε〈S〉ε Ã θ〈A〉η. The grammar G = (Σ, {S}, {S → aS}, S)
generating ∅ is also considered well-behaved.

Lemma 2. For every LL(k) Boolean grammar G = (Σ, N, P, S) there exists
an equivalent well-behaved LL(k) Boolean grammar.

The transformation is not effective, because it requires testing the empti-
ness of a language, which is undecidable already for linear conjunctive LL
grammars.

Sketch of a proof. If L(G) = ∅, such a grammar exists; assume L(G) 6= ∅.
First, construct a grammar G′ = (Σ, N ′, P ′, S), where N ′ = {A|LG(A) 6= ∅},
while P ′ contains all rules

A → α1& . . . &αm&¬β1& . . . &¬β`,

such that αi, βj ∈ (Σ ∪ N ′)∗ and there exist β`+1, . . . , βn ∈ (Σ ∪ N)∗ · (N \
N ′) · (Σ ∪N)∗, with n > `, where

A → α1& . . . &αm&¬β1& . . . &¬β`&¬β`+1& . . . &¬βn ∈ P

In other words, for every rule in P , such that its positive conjuncts contain
no references to symbols in N \N ′, all negative conjuncts with such references
are removed, while those rules in P that contain positive conjuncts referring
to symbols in N \ N ′ are not used in the construction of P ′. The grammar
G′ is also LL(k), and LG′(A) = LG(A) for every A ∈ N ′.

At the second step, construct the grammar G′′ = (Σ, N ′′, P ′′, S), in which
N ′′ = {A | ∃θ, η : ε〈S〉ε Ã∗ θ〈A〉η} and P ′′ ⊆ P ′ contains all rules for
nonterminals from N ′′. In other words, N ′′ is the smallest subset of N ′

containing S, such that all rules for nonterminals in this subset do not refer
to nonterminals outside of this subset. This grammar remains LL(k), and
for every A ∈ N ′, LG′′(A) = LG′(A). Hence, L(G′′) = L(G), and since the
grammar satisfies Definition 6 by construction, the lemma is proved.

Lemma 3. Let G = (Σ, N, P, S) be a well-behaved LL(k) Boolean grammar.
Then, for every nonterminal T ∈ N taken as a new start symbol, the gram-
mar G′ = (Σ, N, P, T ) is an LL(k) Boolean grammar with LG′(A) = LG(A)
for all A ∈ N , and there exists a well-behaved LL(k) Boolean grammar gen-
erating the same language.
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Proof. Strong non-left-recursiveness of G immediately implies strong non-
left-recursiveness of G′, since this condition is independent of the start sym-
bol. Since the systems of language equations corresponding to G and G′

are identical, the unique solution (. . . , LG(A), . . .) of the former system is
at the same time the unique solution of the latter system, which proves
LG′(A) = LG(A).

Let us prove that G′ is LL(k). Suppose it is not, that is, there exists
a pair of distinct rules A → ϕ,A → ϕ′ ∈ P and strings u, v, u′, v′ ∈ Σ∗

and θ, η, θ′, η′ ∈ (Σ ∪ N)∗, such that ε〈T 〉ε Ã∗ θ〈A〉η, ε〈T 〉ε Ã∗ θ′〈A〉η′
u ∈ Firstk(ϕ), u′ ∈ Firstk(ϕ

′), v ∈ LG(η) v′ ∈ LG(η′) and Firstk(uv) =
Firstk(u

′v′).
Since G is well-behaved, the symbol T is accessible from S as ε〈S〉ε Ã∗

µ〈T 〉ν. Combining this with the above, we obtain ε〈S〉ε Ã∗ µθ〈A〉ην and
ε〈S〉ε Ã∗ µθ′〈A〉η′ν. Let x be any string in LG(ν), which exists since G
is well-behaved. Then the entry Tk(A, F irstk(uvx)) = Tk(A,F irstk(u

′v′x))
of the LL(k) table of G should contain both A → ϕ and A → ϕ′, The
contradiction obtained proves that G′ is LL(k).

Finally, an equivalent well-behaved LL(k) Boolean grammar exists by
Lemma 2.

Lemma 4. Let G = (Σ, N, P, S) be a well-behaved LL(k) Boolean gram-
mar, let a ∈ Σ. Then there exists a well-behaved LL(k) Boolean grammar
generating L(G) ∩ a∗.

Sketch of a proof. Let us remove all conjuncts referring to symbols in Σ\{a}.
Construct a grammar G′ = (Σ, N, P ′, S), where P ′ contains all rules

A → α1& . . . &αm&¬β1& . . . &¬β`,

where αi, βj ∈ ({a}∪N)∗ and there exist β`+1, . . . , βn ∈ (Σ∪N)∗ · (Σ \ {a}) ·
(Σ ∪N)∗, with n > `, such that

A → α1& . . . &αm&¬β1& . . . &¬β`&¬β`+1& . . . &¬βn ∈ P ′

The grammar G′ is also LL(k), and LG′(A) = LG(A) for every A ∈ N ′.
Using Lemma 2, an equivalent well-behaved grammar is obtained.

Lemma 5. For every well-behaved LL(k) Boolean grammar G there exists
a well-behaved LL(k) Boolean grammar G′, such that L(G′) = L(G) and
for each nonterminal A in G′ there is either one or more rules of the form
A → B1& . . . &Bm&¬C1& . . . &¬Cn, or a single rule of the form A → BC,
A → a or A → ε.

The proof of Lemma 5 is by straightforward decomposition of complex
rules by inserting references to auxiliary nonterminals with simpler rules. It
is easy to do this decomposition without losing the LL(k) property.

9



5 Boolean LL(k) grammars

over a unary alphabet

Context-free grammars over a one-letter alphabet are known to generate only
regular languages, and linear conjunctive grammars have the same property.
In contrast, Boolean grammars can generate the following nonregular unary
language [6]:

Example 4. The following Boolean grammar generates the language
{a2n | n > 0}:

S → A&¬aA | aB&¬B | aC&¬C
A → aBB
B → ¬CC
C → ¬DD
D → ¬A

By Theorem 1, there is no equivalent LL(k) Boolean grammar.

We shall now demonstrate that Boolean LL(k) grammars over the unary
alphabet generate only regular languages, and hence are weaker in power
than Boolean grammars of the general form.

Theorem 1. Every Boolean LL(k) language over a unary alphabet is regular.

The following lemma is an essential component of the proof:

Lemma 6. Let G = (Σ, N, P, S) be a well-behaved LL(k) Boolean grammar,
let B ∈ N , a ∈ Σ and let some string in akΣ∗ follow B. Then there exists at
most one number i > 0, such that ai ∈ LG(B).

Proof. Supposing the contrary, let ai1 , ai2 ∈ L(B), where 0 6 i1 6 i2, and let
akx, where x ∈ Σ∗, be a string that follows B. Consider the string ak+(j2−j1)x,
for which we know that k + (j2 − j1) > k, and hence Firstk(a

k+(j2−j1)x) =
Firstk(a

kx) = ak. By Lemma 1, ai1 ∈ L(B) implies that B() returns on
the input w1 = ai1ak+(j2−j1)x, consuming ai1 . On the other hand, ai2 ∈ L(B)
implies that B() should return on w2 = ai2akx, consuming ai2 . Since w1 = w2,
the computations of B() on w1 and w2 are actually the same computation,
and hence i1 and i2 must coincide, proving the claim.

Proof of Theorem 1. According to Lemmata 2 and 5, there is no loss of
generality in the assumption that the given language is generated by a
well-behaved LL(k) Boolean grammar G = ({a}, N, P, S), such that for
every A ∈ N the set P contains either one or more rules of the form
A → D1& . . . &Dq&¬E1& . . . &¬Er, or a single rule of the form A → BC,
A → a or A → ε.

Let us prove that in every rule A → BC, if L(C) 6⊆ a6k−1, then L(B)
is a singleton. By assumption, there exists aj ∈ L(C), where j > k. Let a`
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be a string that follows A, then aj+` ∈ aka∗ follows B. Since we know that
L(B) ⊆ a∗ and L(B) 6= ∅, Lemma 6 states that |L(B)| = 1.

Now let us reconstruct the grammar to show that L(G) is regular. For
every rule A → BC, such that L(B) is a singleton, replace this rule with
the rule A → aiC, where L(B) = {ai}. If L(B) is not a singleton, then
L(C) ⊆ a6k by the claim above, and the rule can be equivalently replaced
with {A → aiB | ai ∈ L(C)}.

The system of language equations corresponding to the transformed gram-
mar has the same set of solutions as the original system, that is, it has a
unique solution (. . . , LG(A), . . .). Since the system uses one-sided concate-
nation, all components of this solution are regular.

Corollary 1. Let G = (Σ, N, P, S) be a well-behaved Boolean LL(k) gram-
mar. Then, for every a ∈ Σ and for every A ∈ N , the language LG(A) ∩ a∗

is regular.

Proof. Consider the grammar G′ = (Σ, N, P, A). According to Lemma 3,
G′ is a well-behaved Boolean LL(k) grammar generating LG(A). Then, by
Lemma 4, there exists a well-behaved Boolean LL(k) grammar G′′, such that
L(G′′) = LG(A) ∩ a∗. This language is regular by Theorem 1.

In particular, the aforementioned language {a2n | w ∈ {a, b}∗} is not
Boolean LL(k).

6 Nonrepresentability results

for subsets of Σ∗a∗

Let us establish a method of proving nonrepresentability of some languages
over non-unary alphabets. This method exploits long blocks of identical
letters in a certain similarity to Yu’s [12] nonrepresentability argument for
trellis automata,

Theorem 2 (Periodicity theorem). For every Boolean LL(k) language L ⊆
Σ∗ there exist constants d, d′, p > 0, such that for all w ∈ Σ∗, a ∈ Σ, n >
d · |w|+ d′ and i > 0,

wan ∈ L if and only if wan+ip ∈ L

Proof. By Lemmata 2 and 5, assume that L is generated by a well-behaved
LL(k) Boolean grammar G = (Σ, N, P, S), in which, for every A ∈ N , there
is either one or more rules of the form A → D1& . . . &Dq&¬E1& . . . &¬Er,
or a unique rule of the form A → BC, A → a or A → ε.

According to Corollary 1, for every A ∈ N and a ∈ Σ, the set LG(A)∩ a∗

is regular. Let d(A, a) > 0 and p(A, a) > 1 be numbers, such that L(A) ∩ a∗
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is ultimately periodic starting from d(A, a) and with the least period p(A, a).
Define p = lcmA,a p(A, a), d0 = maxA,a d(A, a) and d = d0 · |N |.

The first claim is that if A() returns on a string of the form wa∗ without
seeing the end of the string, then the number of a’s in the tail cannot exceed
d·(|w|+1). To prove this inductively, a more elaborate formulation is needed:

Claim 2.1. If A() returns on wanat (where w ∈ Σ∗, n > 0, t > k) consuming
wan, and any string in aka∗ follows A, then

n < d · |w|+ d0 · |X |+ 1 (3)

where X ⊆ N is the set of all nonterminals X, such that in course of the
computation of A() the procedure X() is ever called on wanat. Assume A ∈
X .

The essence of this claim is that if there are too many as, then the parser
cannot keep count. The below argument reveals that the parser must be
matching the symbols of w to the first symbols of an.

The proof of the claim is an induction on the height of the tree of recursive
calls made in this computation. The base case is when A() makes no recursive
calls. Then the rule for A is A → ε or A → b with b ∈ Σ. In either case
n 6 1 and the inequality (3) holds.

Now suppose A() makes recursive calls and consider the rule chosen in
the beginning of its computation on wanat. If this is a rule of the form
A → BC, then the execution of A() starts with calling B() on wanat, which
returns, consuming a certain prefix of this string. Depending on how much
it consumes, there are three cases to consider. The first of them is trivial:

Case I: B() consumes nothing. If B() consumes ε, then C() is executed
on wanat and consumes wan. This computation of C has a tree of re-
cursive calls of a lesser height, and any string that follows A therefore
follows C. Then, by the induction hypothesis applied to this computa-
tion of C(), n < d · |w|+ d0 · |Y|+ 1, where the set Y ⊆ N contains all
nonterminals Y , such that the procedure Y () is ever called on wanat in
course of this computation. Since, obviously, Y ⊆ X , (3) follows.

Consider the other two cases, which are illustrated in Figure 1:

Case II: B() consumes a nonempty proper prefix of w. Suppose
w = uv, where u, v ∈ Σ+, and B() is executed on uvanat, consuming
u. Then C() is executed on vanat and consumes van.

Consider the computation of C(), and let Y ⊆ N be the set of all
nonterminals Y , such that Y () is ever called on vanat in course of this
computation. By the induction hypothesis applied to this computation,

n < d · |v|+ d0 · |Y|+ 1 6 d · |v|+ d + 1 6 d · |w|+ 1,

12



Figure 1: Proof of Theorem 2, Claim 2.1, cases II and III.

where the last inequality follows from |v| 6 |w| − 1. This proves

n < d · |w|+ d0 · |X |+ 1

Case III: B() consumes the entire w and possibly some a’s. Let
B() consume wan−`, for some 0 6 ` 6 n.

Let Y be the set of nonterminals Y , such that Y () is ever called on
wanat in the computation of B(). By the induction hypothesis applied
to this computation,

n− ` < d · |w|+ d0 · |Y|+ 1 (4)

Since the computation of B() is a part of the computation of A(),
Y ⊆ X and B ∈ X . On the other hand, note that B /∈ Y , since the
computation would enter an infinite recursion otherwise. Therefore,
Y ⊆ X \ {B} and |Y| 6 |X | − 1, hence (4) can be transformed as
follows:

n < d · |w|+ d0 · |Y|+ ` + 1 6 d · |w|+ d0 · (|X | − 1) + ` + 1 (5)

Now consider the computation done by A() after B() returns. Then
C() is invoked on a`at and it returns, consuming a`. Since there is a
string in aka∗ that follows C, by Lemma 6, L(C) = {a`}, that is, the
regular set L(C) is ultimately periodic starting from ` + 1. Then, by
definition, ` < d0, and (5) can be further transformed to

n < d · |w|+ d0 · |X | − (d0 − `) + 1 6 d · |w|+ d0 · |X |+ 1, (6)

which completes the proof of this case.

It remains to consider the case of a rule A →
D1& . . . &Dq&¬E1& . . . &¬Er (q > 1, r > 0) being chosen by A().
Then the procedure D1() is called on wanat, and it returns, consuming
wan. As in Case I above, the induction hypothesis is applicable to this
computation, which proves (3) and establishes Claim 2.1.
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Claim 2.2. Let w ∈ Σ+ and 0 6 t < k and suppose at follows A. Define
n0(w, t) = d·(|w|+1)+d0+k−t+1. For every n > n0(w, t), if wan ∈ LG(A),
then wan+p ∈ LG(A); if furthermore n > n0(w, t) + p, then wan−p ∈ LG(A).

The proof of this claim analyzes the generation of wan, using Claim 2.1
to single out a nonterminal C generating a sufficiently long sequence of as.
Then the periodicity of L(C) ∩ a∗ is used to pump this sequence. The proof
is done by an induction on the lexicographically ordered pairs (|w|, h(A)).

Let |w| > 0 and wan ∈ L(A). Then there exists a rule in P , which
generates wan. This cannot be a rule of the form A → ε or A → b, since
|wan| > 2.

Suppose there is a rule A → BC, such that there exists a partition of wan

into two parts, the first being from L(B) and the second being from L(C).
Depending on the partition, there are three cases to consider:

Case I: ε ∈ L(B), wan ∈ L(C). Since h(C) 6 h(A) − 1, the induction hy-
pothesis can be applied to wan and C, which gives wan+p ∈ L(C) ⊆
L(A) (using ε ∈ L(B)), and if n > n0(w, t) + p, then similarly
wan−p ∈ L(A).

Case II: B generates a proper prefix of w. Let w = uv and assume
u ∈ L(B) and van ∈ L(C). Since at follows C (because at follows
A) and |v| < |w|, we have n > n0(w, t) > n0(v, t) (or, in the second
case, n > n0(w, t)+p > n0(v, t)+p), and hence the induction hypothe-
sis is applicable to van and C. In the first case we obtain van+p ∈ L(C),
which implies wan+p ∈ L(A); in the second case, van−p ∈ L(C) and
therefore wan−p ∈ L(A).

Case III: B generates w and 0 or more a’s, with at least k a’s left.
Suppose wan−` ∈ L(B) and a` ∈ L(C), where ` + t > k. Since a`at

follows B, by Lemma 1, B() returns on wan−`a`at, consuming wan−`.

By Claim 2.1 applied to the computation of B(), n− ` 6 d · |w|+ d0 ·
|N |+1 6 d · (|w|+1)+1, and therefore n 6 d · (|w|+1)+1+ `. On the
other hand, n > n0(w, t) = d·(|w|+1)+d0+k−t+1 by our assumption.
Combining these inequalities, we obtain d · (|w|+ 1) + d0 + k− t + 1 6
d · (|w|+ 1) + 1 + `, that is, ` > d0 + k − t > d0.

Since LG(C) ∩ a∗ is ultimately periodic starting from d0 with period
p, a` ∈ LG(C) implies a`+p ∈ LG(C). Concatenating wan−` ∈ L(B) to
this, one obtains wan−`a`+p = wan+p ∈ L(A).

In the second case we have n > n0(w, t)+p = d·(|w|+1)+d0+k−t+1+p,
and therefore d · (|w|+1)+d0 +k− t+1+p 6 d · (|w|+1)+1+ `, that
is, ` > d0 + k − t + p > d0 + p. Then, by the periodicity of LG(C) ∩ a∗

starting from d0 with period p, a` ∈ LG(C) implies a`−p ∈ LG(C).
Finally, by wan−` ∈ L(B), wan−`a`−p = wan−p ∈ L(A) is obtained.
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Case IV: B generates wan−(k−t−1) or more. Let wan−t′ ∈ L(B) and
at′ ∈ L(C), where t′ 6 k− t−1. Since n > n0(w, t) = d ·(|w|+1)+d0 +
k− t+1 by assumption, n− t′ > d · (|w|+1)+d0 +1+k− (t′+ t)+1 =
n0(w, t′ + t). Since, in addition, h(B) 6 h(A) − 1 and at′+t follows B,
the induction hypothesis is applicable to wan−t′ ∈ L(B). We obtain
wan−t′+p ∈ L(B), and therefore wan+p ∈ L(A).

In the second case, n > n0(w, t) + p by assumption, hence n − t′ >
n0(w, t′ + t) + p.

Consider the case of wan generated using a rule

A → D1& . . . &Dq&¬E1& . . . &¬Er (7)

Then wan ∈ L(Di) for all i and wan /∈ L(Ej) for all j. For every Di,
h(Di) 6 h(A)− 1 and at follows Di; and for every Ei, h(Ei) 6 h(A)− 1 and
at follows Ei.

Let us first show that wan+p ∈ L(A). For every positive conjunct A → Di,
the induction hypothesis is applicable to Di and wan, which gives wan+p ∈
L(Di). For every Ej, suppose that wan+p is in L(Ej). Since n+p > n0(w, t)+
p, by the induction hypothesis (the second case), wan+p−p = wan would be
in L(Ej), which would yield a contradiction. Therefore, wan+p /∈ L(Ei).
All conjuncts of the rule (7) have thus been satisfied, and it follows that
wan+p ∈ L(A).

Consider the second case: assuming that n > n0(w, t) + p, let us prove
that wan−p ∈ L(A). By the induction hypothesis for Di and wan (the second
case), wan−p ∈ L(Di). Consider every Ej and suppose wan−p ∈ L(Ej). Since
n − p > n0(w, t) by the assumption, by the induction hypothesis (the first
case), wan−p+p = wan would be in L(Ej), yielding a contradiction: hence,
wan−p /∈ L(Ei). Again, in this last case wan−p ∈ L(A), and the proof of
Claim 2.2 is complete.

Finally, define d′ = d+d0+p+k−t+1, and the statement of the theorem
follows from Claim 2.2.

Corollary 2. If a language of the form {anbf(n) | n > 1}, where f : N → N
is an integer function, is Boolean LL, then the function f(n) is bounded by
C · n for some constant C > 1.

Proof. By Theorem 2, there exist constants d, d′, p > 0, such that for every
string anb` ∈ L with ` > dn + d′, it holds that anb`+p ∈ L. Since, for every
an, the language L contains only one string of the form anb∗, this condition
should never hold, that is, for every anb` ∈ L we must have ` < dn + d′. In
other words, f(n) < dn + d′ 6 (d + d′)n, and setting C = d + d′ proves the
theorem.

Example 5. The linear conjunctive language {anb2n | n > 0} is not Boolean
LL(k) for any k.
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7 Linear conjunctive LL grammars

Consider the family of languages generated by linear conjunctive grammars
satisfying the definition of an LL(k) grammar. A grammar of this kind for the
non-context-free language {anbncn |n > 0} was given in Example 1 on page 3.
In addition to this simple example, it is worth note that these grammars
can specify such an important language as the language of computations of
a Turing machine [9], and hence their expressive power is far from being
trivial. However, it turns out that some very simple languages are beyond
their scope:

Theorem 3. Let Σ be an alphabet, let a, b ∈ Σ (a 6= b). Then, for every
language L ⊆ Σ∗, L·{a, b} is linear conjunctive LL if and only if L is regular.

Proof. The proof in one direction is trivial: if L is regular, then so is L·{a, b},
and a finite automaton for the latter language can be transcribed as an LL(1)
linear context-free grammar.

Let us show that an LL(k) linear conjunctive grammar for L · {a, b} can
be effectively transformed to a finite automaton for L. Let G = (Σ, N, P, S)
be an LL(k) linear conjunctive grammar for L, let T : N × Σ6k → P be a
parsing table.

The main idea of the argument is that as long as a procedure B() cannot
see the end of the input in the beginning of the computation (that is, it
is outside of the range of the lookahead), it must read the entire input.
Otherwise it would have to decide in the beginning whether the last symbol
is a or b, which cannot be done before seeing this last symbol.

Claim 3.1. Let w ∈ L and s ∈ {a, b}. If the successful computation of
the parser on ws contains a call to B() on a suffix yz, with ws = xyz and
|yz| > k, which returns, consuming y, then z = ε and ε follows B.

The proof is an induction on the length of the path in the tree of recursive
calls connecting the root to the call to B(). The induction hypothesis consists
of the statement of Claim 3.1 along with one more statement. Define a
function f : Σ∗{a, b} → Σ∗{a, b} as f(ua) = ub and f(ub) = ua for every
u ∈ Σ∗; now it is additionally claimed that the successful computation of the
parser on f(ws) ∈ L contains a call to B() on the suffix f(yz).

Basis: path of length 0. Here B = S and S() returns on ws, consuming
ws, that is, x = z = ε. Then ε follows S by definition. Obviously, the
computation of the parser on f(ws) starts with a call to S() on f(ws).

Induction step. Suppose B() returns on yz, consuming y. Consider the
procedure A() from which this call to B() is made. There are factorizations
x = x′u and z = vz′, such that A() is called on uyvz′, and it returns,
consuming uyv. Note that the path to A in the tree of recursive calls is shorter
than the path to B, and hence, by the induction hypothesis, ε follows A and
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Figure 2: Proof of Theorem 3, Claim 3.1, induction step.

z′ = ε, hence v = z. We thus obtain that A() returns on uyz, consuming
uyz. The form of the computation is illustrated in Figure 2.

Consider the rule chosen by A() in its computation on uyz, which is

Tk(A,F irstk(uyz)) = A → . . . &uBz& . . . , (8)

where the conjunct A → uBz is the conjunct corresponding to the invocation
of B(). By Lemma 1, uyz ∈ L(uBz), that is, y ∈ L(B).

On the other hand, the induction hypothesis asserts that the computation
of the parser on f(ws) contains a call to A() on the suffix f(uyz). Since
|uyz| > |yz| > k, it is known that Firstk(f(uyz)) = Firstk(uyz). Then this
computation starts with choosing the same rule (8). By assumption, this
computation is accepting as well, and this proves that it eventually reaches
the conjunct A → uBz and calls B(). After returning from this procedure,
A() reads the last |z| characters of f(uyz), which must match z. Then z
must be a suffix of f(uyz).

We have thus obtained that z is a common suffix of a string ending with
a and a string ending with b. Therefore, z = ε. Then, by the conjunct (8), ε
follows B. This completes the proof of Claim 3.1.

Let us now define a new grammar G′ = (Σ, N, P ′, S) as follows. Let m
be the greatest length of the right-hand side of a rule in P . Every rule of
the form A → u (u ∈ Σ∗) or A → u1B1& . . . &unBn in P is in P ′ as well. In
addition, for every A ∈ N and for every w ∈ LG(A), such that |w| 6 k + m,
the set P ′ contains a rule A → w. Let us prove that L(G′) = L(G).

Claim 3.2. For every A ∈ N , LG′(A) ⊆ LG(A).

This claim easily follows from the fact that every rule in P ′ \ P is of the
form A → y ∈ P ′ defined above, and y ∈ LG(A) for every such rule.

Claim 3.3. Let w ∈ L and s ∈ {a, b} and consider the recursive descent
parser for G. If its successful computation on ws contains a call to A() on
a suffix yz (with ws = xyz), which returns, consuming y, and z follows A,
then y ∈ LG′(A).
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The general reasoning for this claim can be summarized as follows: if y
is sufficiently short, it is generated by a rule A → y, and if y is long enough,
then Claim 3.1 is applicable, and it implies that y is derived using a rule of
the form A → u1B1& . . . &unBn.

Let us proceed with a proof. Let h be the height of the tree of recursive
calls in the computation of A(). The proof is an induction on the lexico-
graphically ordered pairs (|y|, h).

Basis: |y| 6 k + m. Then A → y ∈ P ′, which proves the claim.
Induction step. Let |y| > k+m and consider the call to A() on yz, which

returns, consuming y; we need to prove that y ∈ LG′(A). The computation
of A() starts with choosing a rule

Tk(A,F irstk(y)) = A → u1B1v1& . . . &unBnvn, (9)

such that y ∈ LG(uiBivi) for every i. Let y = uixivi, where xi ∈ LG(Bi).
Then A() eventually calls B() on xiviz, which returns, consuming xi.

By the definition of m, |uiBivi| 6 m, and therefore |xi| > k. Applying
Claim 3.1 to the computation of Bi(), we obtain that viz = ε. Then the rule
(9) is in fact of the form

A → u1B1& . . . &unBn, (9′)

and is therefore in P ′.
On the other hand, applying the induction hypothesis to the computation

of Bi(), we obtain xi ∈ LG′(Bi), and hence y ∈ LG′(uiBivi). From this, using
the rule (9′), we obtain y ∈ LG′(A), which completes the proof of Claim 3.3.

Claim 3.4. L(G′) = L(G).

By Claim 3.2, LG′(S) ⊆ LG(S). To establish the converse inclusion,
consider any string ws ∈ L(G). The successful computation of the parser
on ws contains a call to S() on the suffix ws, which returns, consuming ws,
and this, according to Claim 3.3, implies ws ∈ LG′(S) = L(G′). Claim 3.4 is
proved.

We have thus shown that the language L·{a, b} is generated by a conjunc-
tive grammar G′ with one-sided concatenation, and therefore it is regular.
Hence, L is regular as well, which completes the proof of the theorem.

Example 6. The context-free LL language {anbncs |n > 0, s ∈ {a, b}}, which
is at the same time linear context-free, is not linear conjunctive LL.

Theorem 4. The family of LL linear conjunctive languages is closed under
intersection. It is not closed under union, concatenation and reversal.

Proof. The closure under intersection is given by a direct application of con-
junction.

Each of the three nonclosure results is proved by representing the lan-
guage L = {anbncs | n > 0, s ∈ {a, b}} from Example 6. In the case of
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union, consider the languages {anbnca | n > 0} and {anbncb | n > 0}: each
of them is obviously LL(1) linear context-free, and their union equals L. For
concatenation, it is sufficient to represent L as {anbnc | n > 0} · {a, b}, where
each of these languages is LL(1) linear context-free. For the nonclosure un-
der reversal, consider the language {scbnan | n > 0, s ∈ {a, b}}, which is in
LinCFLL ⊂ LinConjLL, while its reversal equals L. Hence, supposing the clo-
sure of LL linear conjunctive languages under any of these three operations,
one obtains that {anbncs | n > 0, s ∈ {a, b}} is in LinConjLL, thus violating
Example 6 and yielding a contradiction.

8 Linear Boolean LL grammars

Linear Boolean grammars are known to have the same expressive power
as linear conjunctive grammars [5, 6]. In contrast, their LL subsets differ
in power, as the language from Example 6, which is not representable by
any LL(k) linear conjunctive grammar, has a simple LL(1) linear Boolean
grammar, which relies on de Morgan’s laws to specify a union of languages
via conjunction and negation:

Example 7. The following LL(1) linear Boolean grammar generates the lan-
guage {anbncs | n > 0, s ∈ {a, b}}:

S → X&¬T
T → X&¬Aca&¬Acb
A → aAb | ε
X → aX | bX | cX | ε

Note that there is no equivalent LL(k) linear conjunctive grammar, see Ex-
ample 6.

This separate class of languages thus deserves a separate study. The
following nonrepresentability result, proved by a counting argument, is useful
in assessing their expressive power.

Lemma 7. The language {anbnc` | n, ` > 0} is not LL linear Boolean.

Proof. Suppose there exists a well-behaved LL(k) linear Boolean grammar
G = (Σ, N, P, S) for this language. Assume, without loss of generality, that
every conjunct in this grammar is of the form A → ±B, A → ±sB, A →
±Ct, A → s or A → ε, where s, t ∈ Σ and B,C ∈ N .

First infer the following property from Theorem 2:

Claim 7.1. There exist numbers d, p > 0, such that for every nonterminal
B ∈ N and for all n > 1, ` > dn and i > 0,

bnc`+ip ∈ L(B) if and only if bnc` ∈ L(B).
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It will now be proved that for fixed numbers m, ` > 0 and for a nontermi-
nal A, the membership of strings of the form ambnc` (with various n > 0) in
L(A) depends upon the membership of strings bnc` in the languages L(B),
for different B ∈ N , and the dependence function is unique for all values of
n.

Claim 7.2. For every A ∈ N , for every m > 0, and for every ` > m · |N |+
h(A), there exists a Boolean function fA,m,`(. . . , xB,i, . . .), where B ∈ N
and 0 6 i 6 `, such that for every n 6 m, ambnc` ∈ L(A) if and only if
fA,m,`(. . . , σD,i, . . .), where σD,i = 1 if and only if bnci ∈ L(D).

The proof is an induction on the lexicographically ordered pairs
(m, `, h(A)).

Basis m = 0. Then fA,m,` = xA,`.

Induction step. Let m > 1 and let ` > m · |N | + h(A). In order to deter-
mine the condition of the membership of ambnc` in L(A), consider all
conjuncts of all rules in A.

A conjunct of the form A → w with |w| 6 1 cannot generate this string.

Consider a conjunct of the form A → ±B. Then h(B) < h(A),
and the induction hypothesis is applicable to B, which gives a func-
tion fB,m,`, such that, for all n > 0, ambnc` ∈ L(B) if and only if
fB,m,`(. . . , σD,i, . . .) = 1.

For a conjunct of the form A → ±aB, ambnc` ∈ L(aB) if and only if
am−1bnc` ∈ L(B). Since ` > m · |N |+h(A), we have ` > m · |N | = (m−
1)·|N |+|N | > (m−1)·|N |+h(B), which makes the induction hypothesis
applicable to B. Then there exists a function fB,m−1,`, such that, for
all n > 0, am−1bnc` ∈ L(B) if and only if fB,m−1,`(. . . , xD,i, . . .) = 1.

For a conjunct of the form A → ±Cc, ambnc` ∈ L(Cc) if and only if
ambnc`−1 ∈ L(C). Since h(B) < h(A), the inequality ` > m · |N |+h(A)
implies ` − 1 > m · |N | + h(A) − 1 > m · |N | + h(B). Then, by the
induction hypothesis, there exists a function fC,m,`−1, such that, for all
n > 0, ambnc`−1 ∈ L(C) if and only if fC,m,`−1(. . . , xD,i, . . .) = 1.

Since the rules for A constitute a Boolean formula over their conjuncts,
the function fA,m,` can be defined as a combination of the above func-
tions implementing individual conjuncts.

Let us now improve the statement of Claim 7.2, so that every func-
tion fA(. . . , xD,`, . . .) depends upon a bounded number of Boolean variables,
which does not increase with m and `.

Claim 7.3. For every A ∈ N , for every m > 0, and for every ` > m · |N |+
h(A), there exists a Boolean function fA,m,`(. . . , xB,i, . . .), where B ∈ N and
0 6 i < d + p, such that for every n 6 m, ambnc` ∈ L(A) if and only if
fA,m,`(. . . , σD,i, . . .), where σD,i = 1 if and only if bnci ∈ L(D).
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By Claim 7.2, there exists a function fA,m,`(. . . , xD,`, . . .), such that
ambnc` ∈ LG(A) if and only if fA,m(. . . , σD,i, . . .) for all n > 0, with σD,i = 1
if and only if bnci ∈ LG(D). For every number i > d, define a number
[i], such that d 6 [i] < d + p and [i] − i divides by p. According to
Claim 7.1, bnci ∈ LG(D) if and only if bnc[i] ∈ LG(D). This allows us to

define f̂A,m,`(. . . , xσD,i
, . . .) = fA,m,`(. . . , xσD,[i]

, . . .). This function satisfies
Claim 7.3.

Now define m0 = 22|N|·(d+p)
and `0 = |N | ·m0 + maxA∈N h(A). For every

m ∈ {0, . . . , m0}, denote f̂m = fS,m,`0 . Each function f̂m depends on |N | ·
(d + p) variables. There exist 22|N|·(d+p)

= m0 distinct Boolean functions over
this number of variables, and hence our set of m0 + 1 such functions must
contain a pair of duplicates:

Claim 7.4. There exist two numbers m and m̃, with 0 6 m < m̃ 6 m0, such
that f̂m = f̂m̃.

Consider strings of the form a∗bmc`0 . For all i ∈ {`0− (d + p− 1), . . . , `0}
and D ∈ N , define σD,i = 1 if bmci ∈ LG(D) and σD,i = 0 otherwise. Take a
true statement ambmc`0 ∈ L(G). By Claim 7.3, ambmc`0 ∈ L(G) if and only

if f̂m(. . . , σD,i, . . .) = 1. The latter, according to Claim 7.4, is equivalent

to f̂m̃(. . . , σD,i, . . .) = 1, which, by Claim 7.3 again, holds if and only if
am̃bmc`0 ∈ L(G), which is not true. A contradiction of the form “true if and
only if false” has thus been obtained, which proves the lemma.

Theorem 5. The family of LL linear Boolean languages is closed under all
Boolean operations. It is not closed under concatenation and reversal.

Proof. Intersection and complementation can be specified directly, the clo-
sure under union follows by de Morgan’s laws.

Suppose LinBoolLL is closed under concatenation. Then the language
{anbn | n > 0} · c∗ is in LinBoolLL, which contradicts Lemma 7.

Similarly, if LinBoolLL were closed under reversal, then ({c`bnan | n, ` >
0})R, would be in LinBoolLL, again contradicting Lemma 7.

9 Hierarchy

The results of this paper lead to a detailed comparison of different subfamilies
of LL(k) Boolean grammars with each other and with different subfamilies
of Boolean grammars. The following theorem summarizes these results.

Theorem 6.

I. LinCFLL ⊂ LinConjLL, with {anbncn | n > 0} ∈ LinConjLL \ LinCFLL.

II. LinCFLL ⊂ CFLL, with {anbnc | n > 0} · {a, b} ∈ CFLL \ LinCFLL.
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Figure 3: Expressive power of subfamilies of Boolean grammars.

III. LinConjLL ⊂ ConjLL, with {anbnc | n > 0} · {a, b} ∈ ConjLL \ LinConjLL.

IV. CFLL ⊂ ConjLL, with {anbncn | n > 0} ∈ ConjLL \ CFLL.

V. LinConjLL ⊂ LinBoolLL, with {anbnc | n > 0} · {a, b} ∈ LinBoolLL \ LinConjLL.

VI. LinBoolLL ⊂ BoolLL, with {anbnc` | n, ` > 0} ∈ BoolLL \ LinBoolLL.

VII. LinCFLL ⊂ LinCF , with {anbnc | n > 0} · {a, b} ∈ LinCF \ LinCFLL.

VIII. LinBoolLL ⊂ LinConj, with {anbnc` | n, ` > 0} ∈ LinConj \ LinConjLL.

IX. CFLL ⊂ CF , with {anibin | n > 0, i ∈ {1, 2}} ∈ CF \ CFLL.

X. ConjLL ⊂ Conj, with {anb2n | n > 1} ∈ Conj \ ConjLL.

XI. BoolLL ⊂ Bool, with {anb2n | n > 1} ∈ Bool \ BoolLL.

Proof. All eleven inclusions are immediate, so it remains to argue that in
each of these cases the given language separates the respective families.

I. The language {anbncn | n > 0} is in LinConjLL by Example 1, and it is
not in LinCFLL, because it is not context-free.

II. The language {anbnc | n > 0} · {a, b} is CFLL, because it is generated
by the following LL(1) context-free grammar:

S → AcX
A → aAb | ε
X → a | b

On the other hand, this language is not in LinConjLL according to Example 6,
and hence not in LinCFLL.

III. As shown above, {anbnc | n > 0} · {a, b} is in CFLL and hence in
ConjLL. Example 6 states that it is not in LinConjLL.
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IV. The non-context-free language {anbncn | n > 0} cannot be in CFLL,
but, on the other hand, it is in ConjLL due to Example 1.

V. As shown in Example 7, the language {anbncn | n > 0} belongs to
LinBoolLL. However, it is not in LinConjLL by Example 6,

VI. The language {anbnc` | n, ` > 0} is in CFLL, and hence in BoolLL,
because of the following LL(1) context-free grammar:

S → AC
A → aAb | ε
C → cC | ε

On the other hand, as stated in Lemma 7, it is not in LinBoolLL.
VII. The language {anbnc |n > 0}·{a, b} is in LinCF as a concatenation of

a linear context-free language {anbn |n > 0} and a regular language {ca, cb}.
It lies outside of LinCFLL due to Example 6.

VIII. The language {anbnc` | n, ` > 0} is linear context-free as a concate-
nation of a linear context-free language {anbn |n > 0} and a regular language
c∗, and therefore it belongs to the larger family LinConj . It is not in LinBoolLL

by Lemma 7.
IX. The language {anibin |n > 0, i ∈ {1, 2}} is in CF , since it is generated

by the following context-free grammar:

S → A | B
A → aAb | 1
B → aBbb | 2

This grammar is not LL(k) for any k, and it is well-known that no LL(k)
context-free grammar generates this language [1].

X. The language {anb2n | n > 1} is generated by a linear conjunctive
grammar [5], hence it is in Conj . On the other hand, as stated in Example 5,
it is not in ConjLL.

XI. As in the previous case, {anb2n | n > 1} is in Bool , but, due to
Example 5, is not in BoolLL.

The resulting inclusion diagram is given in Figure 3, in which arrows with
a question mark denote inclusions not known to be proper, the rest being
proper.

Let us note some open problems. It remains to determine whether the
families ConjLL and BoolLL are different. For some useful abstract languages
generated by Boolean grammars, most notably for {wcw | w ∈ {a, b}∗}, it is
important to know whether they are Boolean LL(k). Finally, while this paper
establishes the first negative results for Boolean LL(k) grammars, it remains
to invent a method of proving languages to be nonrepresentable by Boolean
grammars of the general form. The lack of such a method is a significant gap
in our knowledge on Boolean grammars.
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