
Artur Jeż | Alexander Okhotin

Language equations
with addition in positional notation

TUCS Technical Report
No 824, August 2007

Language equations
with addition in positional notation

Artur Jeż
Institute of Computer Science, University of WrocÃlaw
ul. Joliot-Curie 15, 50–383 WrocÃlaw, Poland
aje@ii.uni.wroc.pl

Alexander Okhotin
Academy of Finland, and
Department of Mathematics, University of Turku, and
Turku Centre for Computer Science
Turku FIN–20014, Finland
alexander.okhotin@utu.fi

TUCS Technical Report

No 824, August 2007

Abstract

Language equations with an operation of adding numbers written in a posi-
tional notation are considered. It is shown that this operation together with
union and intersection invests equations with a sufficient expressive power
to simulate every trellis automaton, as well as to specify some languages not
accepted by any trellis automaton. The results have applications to conjunc-
tive grammars over a unary alphabet and to language equations of a general
form.

Keywords: language equations, conjunctive grammars, unary languages

TUCS Laboratory
Discrete Mathematics for Information Technology

1 Introduction

Resolved systems of language equations of the general form




X1 = ϕ1(X1, . . . , Xn)
...

Xn = ϕn(X1, . . . , Xn)

(*)

with different operations allowed in their right-hand sides are the oldest and
likely the most studied type of language equations.

As established by Ginsburg and Rice [3], if the allowed operations in
(*) are concatenation and union, then least solutions of such systems pro-
vide semantics to the context-free grammars. If in addition the intersection
operation may be used, the resulting systems define the class of conjunc-
tive grammars introduced by Okhotin [8, 9]; these grammars have attractive
practical properties, such as efficient parsing algorithms, and are surveyed
in a recent article [15]. The case of systems (*) using negation but neither
union nor intersection was first considered by Leiss [7] and recently studied
by Okhotin and Yakimova [14]; by their expressive power, these systems are
incomparable with the context-free grammars.

An important case of such equations is the case of a unary alpha-
bet. In the case of union and concatenation, it is well-known that the
unary context-free languages are regular. In contrast, equations with
concatenation and complementation can specify the nonregular language
{an | the octal notation of n starts with 1, 2 or 3}, see Leiss [7]. As for equa-
tions with union, intersection and complementation, their expressive power
over a unary alphabet (or, equivalently, the expressive power of unary con-
junctive grammars) was one of the long-standing open problems in the area
[8, 15], and it was conjectured that only regular languages can be obtained.

This conjecture has recently been disproved by Jeż [6] by constructing a
conjunctive grammar for the language {a4n | n ∈ N}. This grammar, written
in the form of a system of language equations, is as follows:





X1 = (X2X2 ∩X1X3) ∪ a
X2 = (X12X2 ∩X1X1) ∪ aa
X3 = (X12X12 ∩X1X2) ∪ aaa

X12 = (X3X3 ∩X1X2)

(1)

Its least solution is Xi = {a` | base-4 notation of ` is i0 . . . 0}, for i =
1, 2, 3, 12.

The system (1) effectively encodes manipulations with the positional no-
tation of numbers. In order to continue the study of unary language equa-
tions, it would be convenient to deal explicitly with numbers written in posi-
tional notation. The subject of the present paper are equations on languages
over alphabets Σk = {0, 1, . . . , k − 1}, in which every word is interpreted

1

as k-ary notation of a number. Instead of the concatenation operation we
shall use addition of numbers written in k-ary notation. Our goal is to estab-
lish the expressive power of such equations and apply these results to unary
language equations.

2 Languages of numbers written in positional

notation

Fix a number k > 2 and consider the alphabet Σk = {0, 1, 2, . . . , k − 1}
of k-ary digits. Words over this alphabet represent non-negative integers
written in k-ary notation. Let the empty word ε ∈ Σ∗

k denote the number
0. No representation of a number shall begin with 0, that is, the set of valid
representations of numbers is Σ∗

k \ 0Σ∗
k. We shall consider formal languages

over this alphabet, such as the following language of binary notations of all
powers of two: 10∗ ⊆ Σ∗

2.
Define a word operation ¢k : Σ∗

k × Σ∗
k → Σ∗

k, which represents addition
of numbers in k-ary notation:

u ¢k v = {the k-ary notation of i + j | u is the k-ary notation of i,

v is the k-ary notation of j}

The notation ¢ will be used when the alphabet is clear from the context.
We shall use this operation in the language-theoretic rather than arithmeti-
cal context. Then it can be said that u ¢ v combines the corresponding
symbols of u and v and thus computes a certain word of length max(|u|, |v|)
or max(|u|, |v|) + 1. This, in particular, can be used to modify individual
symbols of a word:

Example 2.1 (Modifying a digit). Let uiv ∈ Σ∗
k \ 0Σ∗

k, let i 6= k − 1. Then
uiv ¢ 10|v| = u(i + 1)v, that is, one symbol has been modified.

Note that such a modification is irreversible: there is no w ∈ Σ∗
k, such

that u(i + 1)v ¢k w = uiv. Define its inverse, w ¯k u, as such a word v that
u ¢ v = w.

Let us extend the operation of k-ary addition to languages in the standard
way as K ¢ L = {u ¢ v | u ∈ K, v ∈ L}. Then, for instance, for k = 10 it can
be said that 9+ ¢ 2 = 10∗1.

By definition, this operation on languages is monotone with respect to
the partial ordering of languages by inclusion, that is, whenever K ⊆ K ′ and
L ⊆ L′, it holds that K ¢K ′ ⊆ L¢L′. It is also continuous, in the sense that
for every two increasing sequences of languages {Kn}∞n=1 and {Ln}∞n=1, the
sequence {Kn¢Ln}∞n=1 has the least upper bound

⊔
n>0 Kn¢Ln =

⊔
n>0 Kn¢⊔

n>0 Ln. These properties are essential for considering language equations
with this operator. By the basic results on fixed points, every resolved system

2

of equations Xi = ϕi(X1, . . . , Xn) (i = 1, . . . , n) using only monotone and
continuous operations (in particular ¢, ∪ and ∩) has a least solution given
by

⊔
n>0 ϕn(∅, . . . ,∅), where ϕ is a vector notation for (ϕ1, . . . , ϕn).

Our primary motivation for studying these equations is their correspon-
dence to language equations over an alphabet {a}. Define the bijection
fk : Σ∗

k \ 0Σ∗
k → a∗ as

fk(w) = an, where w read as k-ary notation represents n.

This mapping is an isomorphism, since fk(u ¢k v) = fk(u) · fk(v) and
f−1

k (am · an) = f−1
k (am) ¢ f−1

k (an). Extend it to languages in a usual way as
fk(L) = {fk(w) |w ∈ L}, obtaining an isomorphism between unary languages
and subsets of Σ∗

k \ 0Σ∗
k. This isomorphism extends to systems of language

equations over Σk using Boolean operations and ¢, and language equations
over {a} using Boolean operations and concatenation: ¢ is replaced with ·,
constants are mapped by fk, Boolean operations are preserved, and then the
solutions of equations correspond as follows:

Proposition 2.1. Let ϕi(X1, . . . , Xn) = ψi(X1, . . . , Xm) be a system of lan-

guage equations over the alphabet {a} and let ϕ̃i(Y1, . . . , Yn) = ψ̃i(Y1, . . . , Ym)
be the corresponding language equations over Σk. Then a vector of languages
(fk(L1), . . . , fk(Ln)) is a solution of the former system if and only if the vec-
tor of languages (L1, . . . , Ln) is a solution of the latter system. In particular,
least solutions are mapped to least solutions and greatest solutions are mapped
to greatest solutions.

The proof is by a straightforward structural induction.

This bijection can be applied to convert between different bases of po-
sitional notation. Let k, ` > 2. For any system of equations over Σk the
corresponding system of equations over Σ` is defined by mapping the given
base-k system into a unary system and then mapping it back to a base-` sys-
tem. The transformation preserves the structure of the equations: Boolean
operations remain, ¢k is replaced with ¢`, constants are mapped by the
composition of functions f−1

` ◦ fk : Σ∗
k \ 0Σ∗

k → Σ∗
` \ 0Σ∗

` , and the following
result easily follows:

Proposition 2.2. Let ϕi(X1, . . . , Xn) = ψi(X1, . . . , Xm) be a system of lan-

guage equations over the alphabet Σk and let ϕ̃i(Y1, . . . , Yn) = ψ̃i(Y1, . . . , Ym)
be the corresponding language equations over Σ`. Then a vector of languages
(L1, . . . , Ln) is a solution of the former system if and only if the vector of lan-
guages

(
f−1

` (fk(L1)), . . . , f
−1
` (fk(Ln))

)
is a solution of the latter system. In

particular, least solutions are mapped to least solutions and greatest solutions
are mapped to greatest solutions.

3

3 Known representations

Denote by Lk
∪,∩,¢ the family of languages that occur in least solutions of

systems of equations Yi = ψi(Y1, . . . , Yn) over Σk, with union, intersection
and ¢k. Clearly, for every ultimately periodic set of numbers X, f−1(X) is
in Lk

∪,∩,¢. By Proposition 2.1, the system (1) with a nonperiodic solution
translates to the following:

Example 3.1. The following system of language equations over Σ4 =
{0, 1, 2, 3} 




X1 = (X2¢X2 ∩ X1¢X3) ∪ {1}
X2 = (X12¢X2 ∩ X1¢X1) ∪ {2}
X3 = (X12¢X12 ∩ X1¢X2) ∪ {3}

X12 = X3¢X3 ∩ X1¢X2

has the least solution (10∗, 20∗, 30∗, 120∗).

Consider the equation for X1 under this substitution: X2 ¢ X2 = 20∗ ¢
20∗ = 10+ ∪ 20∗20∗ and X1 ¢ X3 = 10∗ ¢ 30∗ = 10+ ∪ 10∗30∗ ∪ 30∗10∗, and
clearly their intersection is 10+.

The construction of Example 3.1 generalizes to w0∗, for any w ∈ ΣkΣk \
0Σk [6, Thm. 3]. These results have the following important generalization:

Theorem 3.1 (Jeż [6, Thm. 4]). Every regular language L ⊆ Σ∗
k \ 0Σ∗

k is in
Lk
∪,∩,¢.

We include this system for completeness; for the proof the reader is re-
ferred to the cited paper. Let M = (Σk, Q, q0, δ, F) be an NFA recognizing
LR. We use variables

{Ai,j,q, Ai,j : 1 6 i < k, 0 6 j < k, q ∈ Q} ∪ {S},
with the goal that their least solution is

L(Ai,j) = ij0∗, L(Ai,j,q) = ijLM(q), L(S) = L.

As mentioned above, Ai,j can be defined by this type of language equa-
tions, and so we focus only on equations for Ai,j,q:

Ai,j,q =
(3⋂

n=0

Ai,n¢Aj−n,x,q′

)
∪ {k · i + j : if q = q0}

for j > 3, every i, and every x, q′ such that q ∈ δ(q′, x),

Ai,j,q =
(4⋂

n=1

Ai−1,j+n¢Ak−n,x,q′

)
∪ {k · i + j : if q = q0}

for j < 4 and i 6= 1 and every x, q′ such that q ∈ δ(q′, x),

A1,j,q =
(4⋂

n=1

Ak−n,0¢Aj+n,x,q′

)
∪ {k + j : if q = q0}

4

for j < 4, every x, q′ such that q ∈ δ(q′, x),

S = (L ∩ Σk) ∪
⋃

i,j,q: δ(q,ji)∩F 6=∅
Ai,j,q.

Theorem 3.1 implies that regular constants in such systems of language
equations can be effectively expressed via singleton constants. We shall use
regular constants below, assuming that they are expressed according to The-
orem 3.1.

4 Representing linear conjunctive languages

Let us improve the above result by representing a larger class of formal
languages. Linear conjunctive languages are defined by linear conjunctive
grammars [8], or, in other words, by systems of language equations with ∪,
∩ and linear concatenation. This family of languages can be equivalently
defined by one of the simplest types of cellular automata [11]. These are
trellis automata, also known as one-way real-time cellular automata, which
were studied by Culik, Gruska and Salomaa [2], Ibarra and Kim [5], and
others. Our argument will proceed by simulating the computation of such
automata.

Let us define and explain trellis automata following Culik et al. [2]. A
trellis automaton (TA), defined as a quintuple (Σ, Q, I, δ, F), processes an
input string of length n > 1 using a uniform array of n(n + 1)/2 nodes
presented in Figure 1. Each node computes a value from a fixed finite set
Q. The nodes in the bottom row obtain their values directly from the input
symbols using a function I : Σ → Q. The rest of the nodes compute the
function δ : Q × Q → Q on the values in their predecessors. The string is
accepted if and only if the value computed by the top node belongs to the
set of accepting states F ⊆ Q.

Figure 1: Computation of a trellis automaton.

Definition 4.1. A trellis automaton is a quintuple M = (Σ, Q, I, δ, F),
where:

• Σ is the input alphabet,

5

• Q is a finite non-empty set of states,

• I : Σ → Q is a function that sets the initial states,

• δ : Q×Q → Q is the transition function, and

• F ⊂ Q is the set of final states.

Extend δ to a function δ : Q+ → Q by δ(q) = q and

δ(q1, . . . , qn) = δ(δ(q1, . . . , qn−1), δ(q2, . . . , qn)),

while I is extended to a homomorphism I : Σ∗ → Q∗. Let LM(q) =
{w | δ(I(w)) = q} and define L(M) =

⋃
q∈F LM(q).

Theorem 4.1 ([11]). A language L ⊆ Σ+ is generated by a linear conjunctive
grammar if and only if L is recognized by a trellis automaton.

Linear conjunctive languages are known to be closed under all Boolean
operations, concatenation with regular languages and quotient with single-
tons, but under neither concatenation nor star [2, 11]. In addition, it is
known that linear conjunctive languages over a one-letter alphabet generate
only regular languages. From this, the following simple result used in the
following can be inferred:

Lemma 4.1. Let L be a linear conjunctive language over an alphabet Σ, let
u, v ∈ Σ∗ and a ∈ Σ∗. Then the language K = L ∩ ua∗v is regular.

Proof. The language K̃ = {u}−1 · K · {v}−1 is linear conjunctive by the

closure of this family under quotient with singletons. Since K̃ is a unary
linear conjunctive language, it is regular. Then K = uK̃v is regular as
well.

Another simple property of trellis automata relevant to our equations
with ¢ is given in the following lemma:

Lemma 4.2. Let ` = kn for some natural n > 0. Then for every languages
L, L′ such that fk(L) = f`(L

′), L is linear conjunctive if and only if L′ is
linear conjunctive. Given a trellis automaton for either of the languages, a
trellis automaton for the other language can be effectively constructed.

The proof is by a straightforward grouping of digits, and it is omitted.
Let us now prove that the language recognized by any trellis automaton

is in Lk
∪,∩,¢. The basis of the argument is the following simulation of the

computation of a trellis automaton by a system of language equations.

Lemma 4.3. For every k > 4 and for every trellis automaton M over Σk,
such that L(M) ∩ 0∗ = ∅, there exists and can be effectively constructed a
resolved system of language equations over the alphabet Σk using operations
∪, ∩ and ¢ and regular constants, such that the least solution of this system
contains a component ((1 · L(M)) ¯ 1) · 10∗.

6

Proof. In this proof we abuse the notation of ¢ and ¯ by allowing their
arguments and the result to have leading zeroes. We shall do this only for
the second argument equal to 1. Under these conditions we define the result
to have the same length as the first argument, e.g., 0100¯ 1 is deemed to be
0099. We shall never use this notation in a context where these requirements
cannot be fulfilled, that is, for (k−1)+¢1 and for 0∗¯1. This abused notation
is used only in the text of the proof, while language equations strictly adhere
to the definition.

For a given trellis automaton M = (Σk, Q, I, δ, F) we define language
equations with the set of variables Xq for q ∈ Q, and with an additional
variable Y . We will prove that their least solution is Xq = Lq, Y = L, where

Lq = 1((LM(q) \ 0∗) ¯ 1)10∗ = {1w10` | ` > 0, w /∈ (k − 1)∗, w ¢ 1 ∈ LM(q)}

and

L = 1((L(M) \ 0∗) ¯ 1)10∗ = {1w10` | ` > 0, w /∈ (k − 1)∗, w ¢ 1 ∈ L(M)}.
Let us define expressions λi and ρj, for i, j ∈ Σk, which depend upon the

variables Xq, and which we use as building blocks for constructing equations
for Xq. Let us also define constants Rq, which are regular by Lemma 4.1.

Rq = 1
((

(0∗(Σk \ 0) ∪ (Σk \ 0)0∗) ∩ LM(q)
)

¯ 1
)
10∗

λi(X) = 1iΣ∗
k ∩

⋃

i′

(
(X ∩ 1i′Σ∗) ¢ 10∗ ∩ 2i′Σ∗

k

)
¢ (k + i− 2)0∗,

for i = 0, 1

λi(X) = 1iΣ∗
k ∩

⋃

i′

(
(X ∩ 1i′Σ∗) ¢ 10∗ ∩ 2i′Σ∗

k

)
¢ 1(i− 2)0∗, for i > 2

ρj(X) =
⋃

j′

((
(X ∩ 1Σ∗

kj
′10∗) ¢ 10∗ ∩ 1Σ∗

kj
′20∗

)
¢ (k + j − 2)10∗

)
∩

∩ 1Σ∗
kj10∗, for j = 0, 1 (2)

ρj(X) =
⋃

j′

((
(X ∩ 1Σ∗

kj
′10∗) ¢ 10∗ ∩ 1Σ∗

kj
′20∗

)
¢ 1(j − 2)10∗

)
∩

∩ 1Σ∗
kj10∗, for 2 6 j 6 k − 2 (3)

ρk−1(X) =
⋃

j′

((
(X ∩ 1Σ∗

kj
′10∗) ¢ 10∗ ∩ 1Σ∗

kj
′20∗

)
¢ (k − 3)10∗

)
∩

∩ 1Σ∗
k(k − 1)10∗ (4)

Using this notation, the system of language equations is constructed as fol-
lows:





Xq = Rq ∪
⋃

q,q′:δ(q′,q′′)=q
i,j∈Σk

λi(Xq′′) ∩ ρj(Xq′) (for all q ∈ Q)

Y =
⋃

q∈F Xq

7

The construction works as follows: the sets Rq represent the starting part of
Xq that we use to compose longer words. A word w ∈ Σ>2 belongs to LM(q)
iff there are states q′, q′′ such that δ(q′, q′′) = q and Σ−1

k w ∈ LM(q′′) and
wΣ−1

k ∈ LM(q′). And so a word 1(w ¯ 1)10∗ should belong to Xq if and only
if there are two witnesses belonging to Xq′′ and Xq′ (with some additional
constraints). This is specified in ρ and λ, respectively. These expressions
represent adding digits at some specific positions, so that selected digits in
the original word could be modified in the resulting word, while the rest
of the digits remain the same. The main technical difficulty is to force the
addition of digits at proper positions. This is achieved by adding the digits
in two phases, and by checking the form of intermediate and final results
using intersection with regular constants.

Main Claim. The least solution of the system is (. . . , Lq, . . . , L).

Claim 1. For every word u ∈ 1Σ+
k 10∗ \ 1(k − 1)∗10∗,

λi({u}) =

{
{1iw10m}, if u = 1w10m,

∅, otherwise.

Proof. Consider the expression λi for any i. Let u = 1i′w′10m. In the
subexpression corresponding to i′, we add u′ = 10` for any ` > 0 and require
that the result has 2i′ as its first two digits. If the leading 1s in u and u′ are
in the same position, that is, if |i′w′10m| = `, then the sum is 2i′w′10m ∈
2i′Σ∗

k. If the 1 in u′ is to the left of the leading 1 from u then u ¢ u′ begins
with 1. If the leading 1 of u′ lands to the right of the leading 1 of u, then
either the result does not begin with 2 (if there is no carrying into the first
position), or the second digit is not i′ (if there is such a carrying). These
wrong combinations are filtered out by intersection with 2i′Σ∗

k. Altogether
we obtain ({1i′w′10m}¢ 10∗) ∩ 2i′Σ∗

k = {2i′w′10m}.
The second addition in λi follows the same principle. Our analysis splits

depending on the value of i. Consider first i ∈ {0, 1}. We start with u′′ =
2i′w′10m, add u′′′ = (k + i − 2)0` to it and require that the result begins
with 1i. Since u′′ has 2 as the leading symbol, we must modify it to obtain a
result of this form. If the positions of 2 and (k + i− 2) are the same, that is,
|i′w′10m| = `, then the result u′′ ¢ u′′′ = 1ii′w′10m is as intended. If we add
k + i− 2 left of 2 in u′′, then the leading digit is k + i− 2 ∈ {k − 2, k − 1},
which is not 1, since k > 4. If we add to the right, then the leading digit is
2 or 3. Therefore, ({2i′w′10m}¢ (k + i− 2)0∗) ∩ 1i′Σ∗

k = {1ii′w′10m}.
Consider now i > 2. If i − 2 is at the same position as the leading 2 in

u′′, then we obtain 1iw10m, as intended. If we add i − 2 to the left of the
leading 2 in u′′, then the second digit from the left in the result is i − 2.
If the leading 1 is right of 2, then the leading digit in u ¢ u′ ¢ u′′ is not
1, (since k > 4). If the leading 1 hits the leading 2, then if we get 1 as a
leading symbol, the second symbol is 0 6= i. Thus all unintended results are

8

filtered by intersection with 1i′Σ∗
k, and, as in the previous case, the result is

{1ii′w′10m}.
Claim 2. For every word u ∈ 1Σ+

k 10∗ \ 1(k − 1)∗10∗,

ρj({u}) =





{1wj10m}, if u = 1w10m+1 and j = k − 1,

{1wj10m}, if u = 1(w ¯ 1)10m+1 and j 6= k − 1,

∅, otherwise.

Proof. Consider the definition of ρj for any j and let u = 1w′j′10m, where
w′ ∈ Σ∗

k and j′ ∈ Σk. As in Lemma 1, we add any u′ = 10` and use
intersection with 1Σ∗

kj
′20∗ to require that u ¢ u′ has j′2 as last non-zero

digits. This can be achieved only for m = `, and so u ¢ u′ = 1iw′j′20m for
u′ = 10m. The analysis splits depending on value of j.

Consider first j 6 1 and (2). We add u′′ = (k + j − 2)10t and require
that u ¢ u′ ¢ u′′ has j1 as last non-zero digits. If t = m− 1, then we obtain
1(w ¢ 1)j10m−1 as intended. Suppose t 6= m− 1 and that we obtain a word
with j1 as last non-zero digits. The ending 1 comes from u′′, since k > 4.
Hence m > 0. To obtain j as the second from the last non-zero digit we have
to sum up 2 and k + j − 2, otherwise it would be k + j − 2 (again we use
k > 4). And so we obtain 1(w′j′ ¢ 1)j10m−1.

Consider now 2 6 j 6 k−2 and (3). We add u′′ = 1(j−2)10t and require
that u ¢ u′ ¢ u′′ has j1 as last non-zero digits. Again for t = m we obtain
1(w ¢ 1)j10m−1, as desired. Suppose m − 1 6= t and we obtain word with
j1 as last non-zero digits. Then the ending 1 must clearly come from u′′.
hence m > 0. To get j as the second digit from the last non-zero digit we
have to sum up 2 and j − 2, otherwise it would be j − 2. And so we obtain
1(w′j′ ¢ 1)j10m−1.

Note that this means that for j 6= k − 1 (despite of the value of j′) ρj

transforms 1w10m into 1(w ¢ 1)j0m−1, or equivalently, 1wj10m is obtained
from 1(w ¯ 1)10m−1.

Consider the case j = k − 1. We add u′′ = (k − 3)10t and require that
u ¢ u′ ¢ u′′ has (k − 1)1 as last non-zero digits. If t = m− 1 then we obtain
1wj10m−1, as desired. Suppose t 6= m − 1 and we obtain word with j1 as
last non-zero digits. Then the ending 1 must come from u′′. In particular,
m > 0. To obtain k − 1 as the second digit from the last non-zero digit we
have to sum up 2 and k − 3, otherwise it would be k − 3. And so we obtain
1(w′j′)(k − 1)10m−1.

Note, that this means that ρk−1 transforms 1w10m into 1w(k − 1)10m−1.

Claim 3. λi(Lq) = 1(i(LM(q) \ 0∗) ¯ 1)10∗.

Proof. Since λj is a superposition of ∪, ∩ and ¢, λi(Lq) =
⋃

w∈Lq
λi({w}).

Then, substituting elements of Lq into Claim 1, we obtain that λi(Lq) con-

9

tains all words 1iw10m, such that w ∈ (LM(q) \ 0∗) ¯ 1, which gives the
requested expression.

Claim 4. ρj(Lq) = 1((LM(q) \ 0∗)(j + 1 mod k) ¯ 1)10∗.

Proof. As in the previous proof, we use the property that ρj(K) =⋃
w∈K ρj({w}) for any K. For j = k − 1, by the definition of Lq and by

Claim 2, ρk−1(Lq) = {1w(k − 1)10m | 1w10m+1 ∈ Lq} = 1((LM(q) \ 0∗) ¯
1)(k − 1)10∗ = 1((LM(q) \ 0∗)0 ¯ 1)10∗.

For j 6= k − 1, ρj(Lq) = {1wj10m | 1(w ¯ 1)10m+1 ∈ Lq} = 1(LM(q) \
0∗)j10∗ = 1(((LM(q)\0∗)(j+1))¯1)10∗, by definition of Lq and Claim 2.

Claim 5. For the least solution (. . . , Sq, . . .) of the system and for every
q ∈ Q, Lq ⊆ Sq.

Proof. Let 1w10n ∈ Lq, that is, w ¢ 1 ∈ LM(q), where w ∈ Σ+
k \ k − 1+.

Using induction on the length of w, let us show that 1w10n ∈ Sq.
If w ¢ 1 ∈ LM(q) has at most one non-zero digit, which is the first one or

the last one, then 1w10n ∈ Rq ⊆ Sq by the equation for Xq.
Otherwise, let w ¢ 1 = iuj, where i, j ∈ Σk, u ∈ Σ∗

k. Since iuj ∈ LM(q),
there exist states q′, q′′ ∈ Q, such that iu ∈ LM(q′), uj ∈ LM(q′′) and
δ(q′, q′′) = q. Since iu, uj /∈ 0∗, we can define w′′ = uj ¯ 1 and w′ =
iu¯ 1. Then, according to the definition of (. . . , Lq, . . .), 1w′10n+1 ∈ Lq′ and
1w′′10n ∈ Lq′′ . By the induction assumption, 1w′10n+1 ∈ Sq′ and 1w′′10n ∈
Sq′′ . We will prove that

λi

({1w′′10n}) ∩ ρj−1 mod k

({1w′10n+1}) = {1w10n}.

First consider λi(1w
′′10n). By Claim 1, λi(1w

′′10n) = {1iw′′10n}. To see that
1iw′′10n = 1w10n, consider that w /∈ (k − 1)∗, and hence the first symbol of
w and of w ¢ 1 are the same. Then w = iuj ¯ 1 = i(uj ¯ 1) = iw′′, which
proves that λi(1w

′′10n) = {1w10n}.
Consider now ρj−1(1w

′10n+1) in the case j 6= 0. By Claim 2, it equals
{1(w′¢1)(j−1)10n}. Now note that (w′¢1)(j−1) = (iu)(j−1) = iuj¯1 = w,
and hence ρj−1(1w

′10n+1) = {1w10n}.
In the case j = 0, ρk−1(1w

′10n+1) = {1w′(k − 1)10n} by Claim 2. To see
that w′(k− 1) = w, consider that w = iu0 ¯ 1 = (iu ¯ 1)(k− 1) = w′(k− 1).
Thus ρj−1 mod k({1w′10n+1}) = {1w10n} for each j.

The claim follows by the equation for Xq.

Claim 6. For every q ∈ Q, Lq ⊇ ϕq(. . . , Lq̃, . . .).

Proof. Consider any word 1w10n obtained by intersection of λi(Lq′′) and
ρj(Lq′) for some q′, q′′ such that δ(q′, q′′) = q. Then w /∈ (k − 1)∗. By Claim
4, (w ¢ 1)Σ−1

k ∈ LM(q′) and by Claim 3, Σ−1
k (w ¢ 1) ∈ LM(q′′). Hence,

w ¢ 1 ∈ LM(q), and this yields the claim.

10

The proof of the main claim proceeds as follows: By Claim 5,

(. . . ,∅, . . .) v (. . . , Lq, . . .) v (. . . , Sq, . . .)

Since ϕ is monotone,

⊔
n>0

ϕn(. . . ,∅, . . .) v
⊔
n>0

ϕn(. . . , Lq, . . .) v
⊔
n>0

ϕn(. . . , Sq, . . .)

Since (. . . , Sq, . . .) is a least solution,

(. . . , Sq, . . .) = ϕ(. . . , Sq, . . .) =
⊔
n>0

ϕn(. . . ,∅, . . .).

Also, by Claim 6, ϕ(. . . , Lq, . . .) v (. . . , Lq, . . .), and hence

(. . . , Sq, . . .) v (. . . , Lq, . . .) v (. . . , Sq, . . .)

This concludes the proof of Lemma 4.3.

Lemma 4.4. For every k > 4 and for every trellis automaton M over Σk

there exists and can be effectively constructed a resolved system of language
equations over the alphabet Σk using the operations ∪, ∩ and ¢ and regular
constants, such that its least solution contains a component 1 · L(M).

Proof. For every j ∈ Σk, consider the language L(M) · {j}−1. By the closure
properties of trellis automata, this language is generated by a trellis automa-
ton Mj. Then, by Lemma 4.3, there exists a system of language equations,
such that one of its variables, Yj, represents the language (L(M) · {j}−1)¯1.

Let us combine these equations for all j into a single system, and add a
new equation

Z =
k−1⋃
j=0

(Yj ∩ 1Σ∗1) ¢ (1j ¯ 1).

This equation uses the same technique as in Lemma 4.3. The value of Z is
L(M).

Theorem 4.2. For every k > 2 and for every trellis automaton M over Σk,
such that L(M) ∩ 0Σ∗

k = ∅, there exists and can be effectively constructed a
resolved system of language equations over the alphabet Σk using the opera-
tions ∪, ∩ and ¢ and singleton constants, such that its least solution contains
a component L(M).

Proof. For every i ∈ Σk \ {0}, the language {i}−1 · L(M) is generated by
a certain trellis automaton. By Lemma 4.4, there is a system of language
equations, such that one of its variables, Zi, represents the language 1·({i}−1 ·
L(M)).

11

Combine these systems and add a new variable T with the following
equation:

T = (L(M) ∩ Σk) ∪ Z1 ∪
⋃

i∈Σk\{0,1}
i′∈Σk

(
(Zi ∩ 1i′Σ∗

k) ¢ (i− 1)0∗ ∩ ii′Σ∗
k

)

Consider any Zi for i > 2. Substituting the value of Zi into the expression,
one first obtains

Zi ∩ 1i′Σ∗
k = 1(i−1 · L(M)) ∩ 1i′Σ∗

k = {1i′w | ii′w ∈ L(M)}.

The next operations in the expression are the addition of (i − 1)0∗ and the
intersection with ii′Σ∗. Let us establish the following fact:

Claim. For all i ∈ Σk \ {0, 1} i′ ∈ Σk and w ∈ Σ∗
k,

{1i′w}¢ (i− 1)0∗ ∩ ii′Σ∗
k = {ii′w}.

Consider 1i′w¢ (i−1)0`. If ` = |i′w|, then the sum equals ii′w ∈ ii′Σ∗
k. If

` > |i′w|, the result is in (i− 1)0∗1i′w, and hence its intersection with ii′Σ∗
k

equals ∅.

Suppose ` = |w|, then (i − 1)0` ¢ 1i′w = i′′i′′′w, and the second digit i′′′

equals (i − 1) + i′ modulo k. Since i′ < i′ + i − 1 < i′ + k, i′′′ 6= i′, and
therefore i′′i′′′w is not in ii′Σ∗

k because of a mismatched second digit.

If ` < |w|, there are two subcases. If the addition of (i−1)0` to i′w results
in a carry, then 1i′w ¢ (i − 1)0` = 2(i′ + 1 mod k)w, If there is no carry,
then 1i′w ¢ (i− 1)0` is in 1Σ∗

k and again cannot be in ii′Σ∗
k. This concludes

the case study necessary to establish the claim, from which there follows

({1i′w | ii′w ∈ L(M)}¢ (i− 1)0∗
) ∩ ii′Σ∗ = L(M) ∩ ii′Σ∗ (5)

Summing this up over i′, we obtain L(M) ∩ iΣ+, and summing up the
latter over i and adding Z1, we obtain L(M)∩ (Σ>2 \ 0Σ∗

k). One-letter words
are given separately. Hence, the T -component of the least solution of the
system is L(M).

The transition from regular to singleton constants is by Theorem 3.1.

In the cases k = 2, 3, consider the language L′ = f−1
k2 (fk(L)), which is a

translation of L from k-ary to k2-ary notation. By Lemma 4.2, this language
is generated by a trellis automaton, and hence can be represented by a system
of language equations over Σk2 with union, intersection and ¢k2 . Then, by
Lemma 2.2, this system can be converted to a system over Σk with union,
intersection and ¢k, representing f−1

k (fk2(L′)) = L. This completes the proof
for this remaining case.

12

5 Separation from linear conjunctive lan-

guages

We have shown that every linear conjunctive language over a k-ary alphabet
is in Lk

∪,∩,¢. We shall now establish that Lk
∪,∩,¢ is a proper superset of

the linear conjunctive languages. This is done by specifying the language

{1n+1022n
+2n+1 | n > 0}, which is not linear conjunctive, as follows from

Buchholz and Kutrib [1, Thms. 4.1, 5.5].

Proposition 5.1. The language L = {1n02n
1022n | n > 0} is linear conjunc-

tive.

To see this, consider the well-known fact that the language L1 =
{1n02n | n > 0} is recognized by a trellis automaton [5], that is, it is lin-
ear conjunctive. The language L2 = {0m102m |m > 0} is linear conjunctive
by the same construction. Then L = L110∗ ∩ 1∗L2 is a linear conjunctive
language by their closure properties.

Lemma 5.1. Consider Σ4 = {0, 1, 2, 3}. The language L′ =

{1n+1022n
+2n | n > 0} ⊆ Σ∗

4 is in L4
∪,∩,¢.

Proof. Consider the above language L over Σ4. It is in L4
∪,∩,¢ by Theorem 4.2.

Since L′ = (L ¢4 3
+0∗) ∩ 1+0∗, the language L′ is in L4

∪,∩,¢ as well.

This is sufficient to separate Lk
∪,∩,¢ from linear conjunctive languages.

Let us now consider the complexity of languages in Lk
∪,∩,¢.

Lemma 5.2. The family Lk
∪,∩,¢ contains an NP-complete language.

Proof. Consider the alphabet Σ7. It is known that the following language of
Boolean circuits evaluating to true on given values is linear conjunctive [10]:

L = {ασ1 . . . σn | α ∈ {4, 5}∗, σi ∈ {1, 2}∗, α is a description of a circuit

with inputs x1, . . . , xn, which computes true on values xi = true iff σi = 2}
The exact form of description α is irrelevant here; what is important that L
is in L7

∪,∩,¢. Next, consider the language K = (L¢{1, 2}∗)∩{4, 5}∗3∗, which
is in L7

∪,∩,¢ as well. It is easy to see that the language K equals

{α3n | α ∈ {4, 5}∗, α is a description of a circuit with inputs x1, . . . , xn,

which evaluates to true on some input values},
and its NP-completeness is obvious.

Theorem 5.1. The family of languages Lk
∪,∩,¢ properly includes the family

of linear conjunctive languages. It is contained in EXPTIME and contains
an NP-complete language.

The EXPTIME upper bound follows from the P upper bound for con-
junctive grammars [8, 9] by the means of Proposition 2.1. The rest is given
in Lemmata 5.1 and 5.2.

13

6 Implications on unary conjunctive gram-

mars

Conjunctive grammars were the starting point of our study of language equa-
tions with ¢, and now we shall use our results to establish some unexpected
properties of these grammars.

Definition 6.1. A conjunctive grammar [8] is a quadruple G = (Σ, N, P, S),
in which Σ and N are disjoint finite nonempty sets of terminal and nonter-
minal symbols respectively; P is a finite set of grammar rules, each of the
form

A → α1& . . . &αn (where A ∈ N , n > 1 and α1, . . . , αn ∈ (Σ ∪N)∗)

while S ∈ N is a nonterminal designated as the start symbol.

The semantics of conjunctive grammars is defined by the least solution
of the following system of language equations [9]:

A =
⋃

A→α1&...&αm∈P

m⋂
i=1

αi (for all A ∈ N) (6)

The component corresponding to each A is then denoted by LG(A), and
L(G) is defined as LG(S). An equivalent definition can be given using term
rewriting [8] generalizing Chomsky’s work rewriting.

Owing to the correspondence between equations over Σk with the ¢ op-
eration and equations of the form (6) over an alphabet {a}, we can infer the
following consequence of Theorem 4.2:

Theorem 6.1. For every k > 2 and for every linear conjunctive language L
and for every trellis automaton M over Σk = {0, 1, . . . , k − 1}, such that no
strings in L(M) start with 0, there exists and can be effectively constructed
a conjunctive grammar generating fk(L(M)).

Consider the language of computation histories of a Turing machine,
VALC(T), which is known to be linear conjunctive [5, 11]. For a TM T over
an input alphabet Ω, this language is defined over an alphabet Ω ∪ Γ ∪ {\}
as

VALC(T) = {w\CT (w)|w ∈ Ω∗ and CT (w) ∈ Γ∗ is an accepting computation},
where CT (w) encodes the accepting computation of T on any w ∈ L(T). The
details of encoding are irrelevant here. Let us further assume that VALC(T)
is defined over an alphabet Σk = {0, . . . , k − 1} = Ω ∪ Γ ∪ {\}, with 0 ∈ Γ,
so that no string in VALC(T) has a leading zero.

Combining the known linear conjunctive grammar for VALC(T) [11] with
our Theorem 4.2, we obtain that for every Turing machine T one can con-
struct a conjunctive grammar for the language fk(VALC(T)) ⊆ a∗. This
leads to unexpected undecidability results for unary conjunctive grammars:

14

Theorem 6.2. For every unary conjunctive language L0 ⊆ a∗ the problem
of whether a given conjunctive grammar over {a} generates the language L0

is co-RE-complete.

Proof. The containment of the problem in co-RE is evident, since the equiv-
alence problem of two given recursive languages is in co-RE. It is the co-RE-
hardness that has to be established.

Let G0 = (Σ, N0, P0, S0) be a fixed conjunctive grammar generating L0.
Suppose there is an algorithm to check whether L(G) = L0 for any given
conjunctive grammar G over {a}. Let us show that this algorithm could be
used to solve the emptiness problem for Turing machines. Depending on the
form of L0, let us consider two cases.

Case I: L0 contains no subset of the form a`(ap)∗, where ` > 0 and
p > 1. Given a Turing machine T , construct a conjunctive grammar GT =
({a}, NT , PT , ST) for fk(VALC(T)). On the basis of GT and G0, construct a
new conjunctive grammar G = ({a}, NT ∪N0∪{S, A}, PT ∪P0∪P, S), where
P contains the following four new rules: S → S0, S → ST A, A → aA and
A → ε.

Now, if L(T) = ∅, then L(GT) = ∅, the rule S → ST A in G generates
nothing, and therefore L(G) = L(G0) = L0. If L(T) 6= ∅, then there exists
w\CT (w) ∈ VALC(T), and hence there exists an ∈ L(GT). Then the rule
S → ST A in G can be used to generate all strings in ana∗, and therefore
L(G) contains the subset a`(ap)∗ for ` = n and p = 1. As L0 contains no
such subset by assumption, L(G) 6= L0. This proves the undecidability of
this case.

Case II: L0 contains a subset a`(ap)∗, where ` > 0 and p > 1. Assume
that p is larger than the least cardinality of the alphabet used for INVALC(T)
(if p is too small, any of its multiples can be taken). Define INVALC(T) over
a p-letter alphabet and consider the language fp(INVALC(T) · 0), which is
generated by some conjunctive grammar G′

T = ({a}, N ′
T , P ′

T , S ′T). Using G0

and G′
T , construct a new grammar G = ({a}, N ′

T ∪N0 ∪{S,B,C}, PT ∪P0 ∪
P, S), where the new rules in P are as follows: S → S0&B, S → a`S ′T ,
B → ai (for all 0 6 i < `), B → a`+iC (for all 1 6 i < p), C → apC and
C → ε.

Note that LG(B) = a∗ \ a`(ap)∗. If L(T) = ∅, then INVALC(T) =
Σ∗

p \ 0Σ∗
p, and hence fp(INVALC(T) · 0) = (ap)∗. Then the rule S → a`S ′T

generates the language a`(ap)∗ ⊆ L0, while the rule S → S0&B generates
L0 \ a`(ap)∗. Therefore, L(G) = L0.

Otherwise, if L(T) 6= ∅, then there exists w /∈ INVALC(T), which implies
fp(w0) /∈ L(G′

T) Let fp(w0) = aip, for i > 0. Then the string aip+` ∈ L0 is not
generated by the rule S → a`S ′T , and it is also not generated by S → S0&B,
because it is not in LG(B). Therefore, aip+` /∈ L(G) and L(G) 6= L0.

If L0 is not generated by a conjunctive grammar, then the answer to the
question of equality of L(G) and L0 is always negative, which makes the

15

problem trivial. Hence, the following characterization is obtained:

Corollary 6.1. For different constant languages L0 ⊆ a∗, the problem of
testing whether a given conjunctive grammar over {a} generates L0 is either
co-RE-complete or trivial.

Theorem 6.3. For conjunctive grammars over a unary alphabet there exist
no algorithm to decide whether a given grammar generates a finite language
(a regular language).

Proof. Given a Turing machine T , construct another TM T ′ that recognizes
{ε} if L(T) 6= ∅, and ∅ otherwise. Construct a conjunctive grammar G for
fk(VALC(T ′)) · {akn | n > 0}. Then L(G) is either nonregular (if L(T) 6= ∅)
or empty.

Another consequence is related to the growth rate of unary conjunctive
languages, Every infinite unary language L = {a`1 , a`2 , . . . , a`n , . . .} where
0 6 `1 < `2 < . . . < `n < . . ., can be regarded as an increasing integer
sequence, and it is natural to consider the growth rate of such sequences.
Obviously, the growth of every regular language is bounded by a linear func-
tion. The example of a conjunctive grammar for the language {a4n | n > 0}
[6], see Example 3.1, shows that the growth of unary conjunctive languages
can be at least exponential, which raises the question of whether there exists
any upper bound for the growth of conjunctive languages in the unary case.

The following theorem gives the strongest possible answer to this question:

Theorem 6.4. For every recursively enumerable set of natural numbers X
there exists a conjunctive grammar G over an alphabet {a}, such that the
growth function of L(G) is greater than that of X at any point.

Proof. Let T be a Turing machine, which recognizes the set X = {i1, i2, . . . ,
ij, . . .}, where 0 6 i1 < i2 < . . . < ij < . . ., and the numbers are given to it in
a binary notation. Consider the language VALC(T), which contains strings
wn = f−1

2 (an)#CT (n). By the above arguments, there exists a conjunctive
grammar G over an alphabet {a} that generates L = fk(VALC(T)) for some
k > 2.

Let g(n) be the growth function of L. It is sufficient to show that g(j) > ij
for each j > 1. To see this, consider the values g(1), g(2), . . . , g(j). At least
one of them describes a computation wj′ for j′ > j. Since g is an increasing
function, we obtain g(j) > fk(wj′) > j′ > j.

Note that this quick-growing language is bound to be computationally
very easy, as the upper bound of parsing complexity for conjunctive grammars
is DTIME(n3) ∩DSPACE(n) [8, 15].

The next example gives a unary conjunctive language of a polynomial
growth.

16

Proposition 6.1. There exists a conjunctive grammar G over an alphabet
{a}, such that the growth function of L(G) satisfies g(n) = Θ(n2).

Proof. Consider the set of numbers X = {(2m + 3i) · 2m | m > 0, 2m 6
2m + 3i < 2m+2}. Let g(n) denote the n-th largest element of X; this is the
growth function of the corresponding unary language L = {an |n ∈ X}. The
set of binary notations of the numbers in X is

f−1
2 (L) =

{
1w0m

∣∣ |w| = m− 1 or |w| = m, and f2(w) divides by 3
}
.

This is clearly a linear context-free language, hence L is conjunctive by The-
orem 6.1. Let us prove that n2 6 g(n) 6 4n2.

Let us prove that for any number n = 2m + j, where 0 6 j < 2m, it
holds that g(2m + j) = (2m + 3j)2m. We first show that g(2m) = 22m, that
is, (2m + 3j)2m for j = 0. Consider interval [22m, 22m+2). We know that
2m 6 (2m + 3j) < 2m+2, which gives j > 0 and 3j 6 2m+2 − 2m = 3 · 2m,
hence 0 6 j < 2m and therefore we have exactly 2m values from this interval
in X. Hence in interval [0, 22m) there were 1 + 2 + 4 + . . . + 2m−1 = 2m − 1
values from X, as [0, 22m) = [0, 4) ∪ [4, 16) ∪ . . . ∪ [22m−2, 22m). Therefore,
g(2m + j) = (2m + 3j)2m by the definition of X and by the fact that j can
take up to 2m values.

Then, to see that g(n) > n2, consider g(2m + j) for 0 6 j < 2m. We have

g(2m + j) = (2m + 3j)2m = 22m + 3j · 2m > 22m + 2j · 2m + j2 = (2m + j)2,

where the inequality is due to j · 2m > j2. On the other hand,

g(2m + j) 6 g(2m+1) = 22m+2 6 4(2m + j)2,

which proves the upper bound g(n) 6 4n2.

This construction can be generalized to obtain the following result:

Theorem 6.5. For every rational number p/q > 1 there exists a conjunctive
grammar G over an alphabet {a}, such that the growth function of L(G) is
g(n) = Θ(np/q).

Sketch of a proof. The proof follows the same steps as in the case of p/q = 2
treated above. Following is the set of numbers to be represented:

X =
{

2pk + bC · ic · 2(p−q)k
∣∣ i, k > 0, 2pk 6 2pk + C · i · 2(p−q)k < 2p(k+1)

}
,

where C = (2p − 1)/(2q − 1).

17

7 Implications on unary language equations

Language equations with all Boolean operations and concatenation over a
multiple-letter alphabet are known to be computationally complete [12]: their
unique solutions represent exactly the recursive languages, least solutions
represent the recursively enumerable (RE) languages, while greatest solu-
tions represent the co-RE languages. The same results hold for unresolved
equations of the form

ϕi(X1, . . . , Xn) = ψi(X1, . . . , Xn)

with union, intersection and concatenation [13]. On the other hand, no
analogous results are known for a unary alphabet, and as the methods used
to establish the existing results essentially use structure in strings [12], one
would conjecture that the unary case must be much simpler.

However, using our new methods, the following entirely unexpected result
can be established:

Theorem 7.1. The family of languages representable by unique (least, great-
est) solutions of system of language equations of the form ϕi(X1, . . . , Xn) =
ψi(X1, . . . , Xn) over the alphabet {a}, with union, intersection and con-
catenation, is exactly the family of recursive (recursively enumerable, co-
recursively enumerable, respectively) languages.

Let us first establish a weaker statement on least solutions, which contains
the main idea of the proof of Theorem 7.1 in a technically simple form:

Proposition 7.1. There exists a system of language equations of the form
ϕi(X1, . . . , Xn) = ψi(X1, . . . , Xn) over the alphabet {a}, with union, inter-
section and concatenation, such that the first component of its least solution
is r.e.-complete.

Proof. Consider a universal Turing machine T , that is, L(T) is r.e.-complete.
Assume that the input alphabet of T is {1, 2}. For each w ∈ L(T), let the
computation of T on w, CT (w), be defined over the alphabet {3, 4}. Define
the following language over the alphabet Σ7 = {0, 1, 2, 3, 4, 5, 6}:

VALC(T) = {CT (w)w | CT (w) ∈ {3, 4}∗, w ∈ {1, 2}∗, w ∈ L(T) and

CT (w) encodes the accepting computation of T on w}
Under a proper encoding CT , this variant of VALC(T) is linear conjunctive,
hence f7(VALC(T)) ⊆ a∗ is conjunctive by Theorem 4.2, that is, it can be
represented by a unique solution of a resolved system of language equations
with union, intersection and ¢.

Consider a variable Y , which assumes a value of a language over a, and
construct the following two inequalities

Y ⊆ f7({1, 2}∗)
f7(VALC(T)) ⊆ f7({3, 4}∗0∗) · Y

18

The language f7(L(T)) is a solution. On the other hand, according to the
second inequality, for every string w ∈ L(T), the number f7(CT (w)w) is in
f7({3, 4}∗0∗) · Y , which implies f7(w) ∈ Y . This makes Y = f7(L(T)) the
least solution.

The full system is obtained by expressing the constant languages
f7(VALC(T)), f7({1, 2}∗) and f7({3, 4}∗0∗) using conjunctive grammars.

Let us now proceed with the proof of the more general Theorem 7.1.
The correspoding upper bounds for unique, least and greatest solutions are
known for all alphabets [12]. It is thus sufficient to represent every recursive
(recursively enumerable, co-recursively enumerable) subset of Σ∗

6 \ 0Σ∗
6 for

any single value of k > 0 by a unique (least, greatest, respectively) solution
of a system over Σk with ¢, which will extend to unary languages according
to Proposition 2.1.

First, redefine the language of computations of a Turing machine as fol-
lows:

Definition 7.1. Let T be a Turing machine recognizing a language L(T) ⊆
Σ∗

6 \ 0Σ∗
6. For each i ∈ {1, 2, 3, 4, 5}, the computation of T on on a string

iw ∈ L(T) of length at least 2 starting from the digit i is encoded as a string
Ci

T (iw) ∈ {30, 300}∗300. The language VALCi(T) representing all such valid
accepting computations is

VALCi(T) = {Ci
T (iw)1w | iw ∈ iΣ+

6 , iw ∈ L(T)},

The computations of T on ε and on one-symbol strings, provided that they
are accepting, are encoded as strings C0

T (w) ∈ 1Σ∗
60, and the corresponding

language of computations is

VALC0(T) = {C0
T (w) ¢ w | w ∈ {ε, 1, 2, 3, 4, 5} and w ∈ L(T)}

Denote the complements of these languages by

INVALCi(T) = (Σ∗
k \ 0Σ∗

k) \ INVALCi(T) and

INVALC0(T) = (Σ∗
k \ 0Σ∗

k) \ INVALC0(T).

Lemma 7.1. For every L ⊆ 1Σ+
6 , for every x ∈ {30, 300}∗300 and for every

u ∈ Σ∗
6, if x1u ∈ {30, 300}∗3000∗ ¢ L, then 1u ∈ L.

Proof. Let x1u = y0` ¢1v, where y ∈ {30, 300}∗300 and 1v ∈ L. Depending
on the length of |1v|, consider the following cases:

1. |1v| < `. Then y0` ¢ 1v = y0`−|1v|1v, which is a string containing
at least three consecutive zeroes to the left of the leftmost instance of
1. Since the string x1u does not have this property, it follows that
y0` ¢ 1v 6= x1u, which makes this case impossible.

19

2. |1v| = `. Then y0` ¢ 1v = y1v, and thus y1v = x1u. The leftmost
instance of 1 in y1v and x1u is at the first position of 1v and 1u,
respectively. Therefore, y = x and 1v = 1u.

3. ` 6 |1v| 6 |y| + `. Let y = y1iy2, where |iy2| + ` = |1v|. The digit i is
either 0 or 3.

• If i = 0, then y1 ends with 3 or 30. The sum y1iy20
` ¢ 1v is

thus of the form y1i
′z, where i′ ∈ {1, 2}, and the prefix y1i

′ is
in {30, 300}∗{31, 32, 301, 302}. On the other hand, in x1u, the
leftmost occurence of digits outside of {3, 0} must be of the form
3001.

• If i = 3, then the sum y1iy20
` ¢ 1v is of the form y1i

′z, where
i′ ∈ {4, 5} and |z| = |v|. Then the leftmost digit of y1i

′z not in
{3, 0} is not 1, while for x1u it is 1.

In both cases it follows that y1iy20
` ¢ 1v and x1u must be different,

and the case is impossible.

4. |1v| > |y|+ `. Then the leading digit of y0` ¢ 1v is 1 or 2, hence again
y0` ¢ 1v 6= x1u, which rules out this case.

It has thus been established that y = x and 1v = 1u in the only possible
case, which yields the claim.

The first case to be established is the case of least solutions and recursively
enumerable languages.

Lemma 7.2. For every recursively enumerable language L0 ⊆ Σ∗
6 \0Σ∗

6 there
exists a system of language equations of the form

ϕj(Y, X1, . . . , Xn) = ψj(Y, X1, . . . , Xn)

with union, intersection and ¢, which has the set of solutions

{
(L, f1(L), . . . , fn(L))

∣∣ L0 ⊆ L
}

where f1, . . . , fn : 2Σ∗6\0Σ∗6 → 2Σ∗6\0Σ∗6 are some monotone language functions
defined with respect to L0. In particular, there is a least solution with Y = L0.

Proof. Consider any Turing machine T over the input alphabet Σ6 =
{0, 1, 2, 3, 4, 5}. A system in variables (Y, Y1, . . . , Y5, Y0, X7, . . . , Xn) will be
constructed, where the number n will be determined below, and the set of
solutions of this system will be defined precisely by the following conditions,

20

which ensure that the statement of the lemma is fulfilled:

L(T) ∩ {ε, 1, 2, 3, 4, 5} ⊆ Y0 ⊆ {ε, 1, 2, 3, 4, 5}, (7a)

{1w | w ∈ Σ+
6 , iw ∈ L(T)} ⊆ Yi ⊆ 1Σ+

6 (1 6 i 6 5), (7b)

Y = Y0 ∪
5⋃

i=1

{iw | 1w ∈ Yi} (7c)

Xj = Kj (7 6 j 6 n) (7d)

The languages K7, . . . , Kn will be determined below.
For each i = 1, 2, 3, 4, 5, consider the above definition of VALCi(T) and

define a variable Yi with the equations

Yi ⊆ 1Σ+
6 (8a)

VALCi(T) ⊆ {30, 300}∗3000∗ ¢ Yi, (8b)

It is claimed that this system is equivalent to (7b).
Suppose (7b) holds for Yi. Then (8a) is obviously true. To check (8b),

consider any Ci
T (iw)1w ∈ VALCi(T). Since this string represents the com-

putation of T on iw, this implies iw ∈ L(T), and hence 1w ∈ Yi by (7b).
Then Ci

T (iw)1w ∈ {30, 300}∗3000|1w| ¢ 1w ⊆ {30, 300}∗3000 ¢ Yi, which
proves the inclusion (8b).

Conversely, assuming (8), it has to be proved that for every iw ∈ L(T),
where w ∈ Σ+

6 , the string 1w must be in Yi. Since iw ∈ L(T), there exists an
accepting computation of T : Ci

T (iw)1w ∈ VALCi(T). Hence, Ci
T (iw)1w ∈

{30, 300}∗3000∗ ¢ Yi due to the inclusion (8b), and therefore 1w ∈ Yi by
Lemma 7.1.

Define one more variable Y0 with the equations

Y0 ⊆ {ε, 1, 2, 3, 4, 5} (9a)

VALC0(T) ⊆ 1Σ∗
60 ¢ Y0, (9b)

The claim is that (9) holds if and only if (7a).
Assume (7a) and consider any string C0

T (w) ¢ w ∈ VALC0(T), where
w ∈ {ε, 1, 2, 3, 4, 5} by definition. Then w is accepted by T , and, by (7a),
w ∈ Y0. Since C0

T (w) ∈ 1Σ∗
60, addition of w affects only the last digit, and

C0
T (w) ¢ w ∈ 1Σ∗

60 ¢ w ⊆ 1Σ∗
60 ¢ Y0, which proves (9b).

The converse claim is that (9) implies that every w ∈ L(T) ∩
{ε, 1, 2, 3, 4, 5} must be in Y0, The corresponding C0

T (w) ¢ w ∈ VALC0(T)
is in 1Σ∗

60 ¢ w by (9b). The string C0
T (w) ¢ w ends with 0 if w = ε, and if

w is a single digit, the string ends with this digit. The language 1Σ∗
60 ¢ Y0

contains a string of such a form only if w ∈ Y0.
Next, combine the above six systems together and add a new variable Y

with the following equation:

Y = Y0 ∪ Y1 ∪
⋃

i∈{2,3,4,5}
i′∈Σk

(
(Yi ∩ 1i′Σ∗

k) ¢ (i− 1)0∗ ∩ ii′Σ∗
k

)

21

This equation has been borrowed from the proof of Theorem 4.2, where it
was established that it is equivalent to Y = Y0 ∪ {iw | 1w ∈ Yi}, that is, to
(7c).

The final step of the construction is to express regular and linear conjunc-
tive languages used in the above systems through singleton constants, which
can be done according to Theorem 4.2. The variables needed to specify these
languages are denoted (X7, . . . , Xn), and the equations for these variables
have a unique solution Xj = Kj for all j.

This completes the description of the set of solutions of the system. It
is easy to see that there is a least solution in this set, with Y = L(T),
Y0 = L(T)∩{ε, 1, 2, 3, 4, 5}, Yi = {1w|w ∈ Σ+

6 , iw ∈ L(T)} and Xj = Kj.

The representation of co-recursively enumerable languages by greatest
solutions is dual to the case of least solutions and can be established by an
analogous argument, which will now be presented. Directly inferring this
result from the previous lemma would likely be harder than giving a new
proof.

Lemma 7.3. For every co-recursively enumerable language L0 ⊆ Σ∗
6 \ 0Σ∗

6

there exists a system of language equations of the form

ϕj(Z, X1, . . . , Xn) = ψj(Z, X1, . . . , Xn)

with union, intersection and ¢, which has the set of solutions
{

(L, f1(L), . . . , fn(L))
∣∣ L ⊆ L0

}

where f1, . . . , fn : 2Σ∗6\0Σ∗6 → 2Σ∗6\0Σ∗6 are some monotone language functions
defined with respect to L0. In particular, there is a greatest solution with
Z = L0.

Proof. Let T be a Turing machine over Σ6 = {0, 1, 2, 3, 4, 5}. The system in
variables (Z, Z1, . . . , Z5, X0, X7, . . . , Xn) to be constructed will have a set of
solutions satisfying the following properties:

Z0 ⊆ L(T) ∩ {ε, 1, 2, 3, 4, 5} (10a)

Zi ⊆ {1w | w ∈ Σ+
6 , iw /∈ L(T)} (1 6 i 6 5), (10b)

Z = Z0 ∪
5⋃

i=1

{iw | 1w ∈ Zi} (10c)

Xj = Kj (7 6 j 6 n) (10d)

The number n and the vector of languages (K7, . . . , Kn) will be determined
below. This set of solution satisfies the statement of the lemma.

The equations defining the value of each Zi (1 6 i 6 5) are as follows:

Zi ⊆ 1Σ+
6 (11a)

{30, 300}∗3000∗ ¢ Zi ⊆ INVALCi(T), (11b)

22

It is claimed that (11) holds if and only if (10b).
If Zi satisfies (10b), then (11a) follows immediately, and in order to prove

(11b), one has to consider any string not in INVALCi(T) and show that it
is not in {30, 300}∗3000∗ ¢ Zi. By definition, a string is not in INVALCi(T)
if it is in VALCi(T), so take any Ci

T (iw)1w ∈ VALCi(T), where Ci
T (iw) ∈

{30, 300}∗300 and iw ∈ L(T). Suppose Ci
T (iw)1w ∈ {30, 300}∗3000∗ ¢ Zi.

Then, by Lemma 7.1, 1w ∈ Zi, hence iw /∈ L(T) by (10b), which yields a
contradiction.

The converse is established as follows. Assuming (11), consider any iw ∈
L(T), where w ∈ Σ+

6 . It is sufficient to prove that 1w /∈ Zi. Suppose
1w ∈ Zi, then Ci

T (iw)w ∈ {30, 300}∗3000∗ ¢ Zi ⊆ INVALCi(T) by (11b).
However, Ci

T (iw)w is in VALCi(T) and thus cannot be in INVALCi(T). The
contradiction obtained proves this case.

Define the following equations for the variable Z0:

Z0 ⊆ {ε, 1, 2, 3, 4, 5} (12a)

1Σ∗
60 ¢ Z0 ⊆ INVALC0(T) (12b)

Again, the claim is that these equations are equivalent to (10a).
Let Z0 be a subset of {ε, 1, 2, 3, 4, 5} \ L(T), as stated in (10a). This

immediately implies (12a). Consider any string not in INVALC0(T); proving
that it is not in 1Σ∗

60¢Z0 will establish (12b). A string not in INVALC0(T) is
in VALC0(T), so let C0

T (w)¢w ∈ VALC0(T) for any w ∈ {ε, 1, 2, 3, 4, 5}, and
suppose C0

T (w) ¢ w ∈ 1Σ∗
60¢ Z0. If w = ε, then the last digit of C0

T (w) ¢ w
is 0, and hence ε ∈ Z0. If w = i ∈ {1, 2, 3, 4, 5}, the last digit of C0

T (w) ¢ w
is i and therefore i ∈ Z0. In either case it follows that w ∈ Z0, hence, by
(10a), w /∈ L(T), which contradicts the accepting computation C0

T (w).
Conversely, assume (12) and suppose there exists w ∈ {ε, 1, 2, 3, 4, 5},

which is at the same time in L(T) and in Z0. Then there exists an accepting
computation C0

T (w) ¢ w ∈ VALC(0)T , that is, C0
T (w) ¢ w /∈ INVALC(0)T .

However, C0
T (w) ¢ w ∈ 1Σ∗

60 ¢ Z0, because C0
T (w) ∈ 1Σ∗

60 and w ∈ Z0 by
assumption, which contradicts (12b). The contradiction obtained proves that
no such w exists, which establishes (10a).

The equation for Z is the same as in Theorem 4.2 and in Lemma 7.2:

Z = Z0 ∪ Z1 ∪
⋃

i∈{2,3,4,5}
i′∈Σk

(
(Zi ∩ 1i′Σ∗

k) ¢ (i− 1)0∗ ∩ ii′Σ∗
k

)

As in the previous cases, it is equivalent to (10c).
Linear conjunctive constants are expressed as in Theorem 4.2, using extra

variables (X7, . . . , Xn).
The set of solutions has been described, and, clearly, the greatest of them

is Z0 = L(T) ∩ {ε, 1, 2, 3, 4, 5}, Zi = {1w | w ∈ Σ+
6 , iw /∈ L(T)}, Z = L(T),

where the latter can be a complement of any given recursively enumerable
set.

23

Finally, the case of recursive languages and unique solutions can be es-
tablished by combining the constructions of Lemmata 7.2 and 7.3.

Lemma 7.4. For every recursive language L ⊆ Σ∗
6\0Σ∗

6 there exists a system
of language equations of the form ϕi(Y, Z,X1, . . . , Xn) = ψi(Y, Z, X1, . . . , Xn)
with union, intersection and ¢, such that its unique solution is Y = Z = L,
Xi = Ki, where (K1, . . . , Kn) is some vector of languages.

Proof. As a recursive language, L is both recursively enumerable and co-
recursively enumerable, hence both Lemmata 7.2 and 7.3 apply. Consider
both systems of language equations given by these lemmata, let Y be the
variable from Lemma 7.2 let Z be the variable from Lemma 7.3, and let
X1, . . . , Xn be the rest of the variables in these systems combined. The set
of solutions of the systems obtained is

{
(Y, Z, f1(Y, Z), . . . , fn(Y, Z))

∣∣ Z ⊆ L ⊆ Y
}

Add one more equation to the system:

Y = Z

This condition collapses the bounds Z ⊆ L ⊆ Y to Z = L = Y , and the
resulting system has the unique solution

{
(L,L, f1(L,L), . . . , fn(L,L))

}
,

which completes the proof.

This construction yields further results on unary language equations over
a unary alphabet by the same technique as in the multiple-letter case [13].
For instance, the solution existence problem is co-r.e.-complete, while the
solution uniqueness problem is Π2-complete. These results will be established
in detail in a paper in progress.

8 Conclusions

We have considered the expressive power of language equations over sets of
positional notations of numbers. If the allowed operations are union, intersec-
tion and addition in positional notation, the family of languages represented
by solutions of such equations was shown to be a proper superset of linear
conjunctive languages. It is contained in EXPTIME and includes some NP-
complete languages. Our motivation for the study of these equations came
from the study of conjunctive grammars over a unary alphabet, and our
results have strong implications on these grammars.

If the complementation is further allowed, then the resulting equations
turn out to be computationally universal. This result has immediate strong
implications on language equations over a unary alphabet, on which we elab-
orate in an upcoming paper.

24

Acknowledgements

Research of the first author supported by MNiSW grant number N206 024
31/3826, 2006–2008, part of the research was done during the visit to Turku
supported by the European Science Foundation short visit grant as part of the
project “Automata: from Mathematics to Applications”, reference number
1763. Research of the second author supported by the Academy of Finland
under grant 118540.

References

[1] T. Buchholz, M. Kutrib, “On time computability of functions in one-way
cellular automata”, Acta Informatica, 35:4 (1998), 329–352.

[2] K. Culik II, J. Gruska, A. Salomaa, “Systolic trellis automata”, I and
II, International Journal of Computer Mathematics, 15 (1984), 195–212,
and 16 (1984), 3–22.

[3] S. Ginsburg, H. G. Rice, “Two families of languages related to ALGOL”,
Journal of the ACM, 9 (1962), 350–371.

[4] J. Hartmanis, “Context-free languages and Turing machine computa-
tions”, Proceedings of Symposia in Applied Mathematics, Vol. 19, AMS,
1967, 42–51.

[5] O. H. Ibarra, S. M. Kim, “Characterizations and computational com-
plexity of systolic trellis automata”, Theoretical Computer Science, 29
(1984), 123–153.

[6] A. Jeż, “Conjunctive grammars can generate non-regular unary lan-
guages”, Developments in Language Theory (DLT 2007, Turku, Finland,
July 3–6, 2007), LNCS 4588, 242–253.

[7] E. L. Leiss, “Unrestricted complementation in language equations over a
one-letter alphabet”, Theoretical Computer Science, 132 (1994), 71–93.

[8] A. Okhotin, “Conjunctive grammars”, Journal of Automata, Languages
and Combinatorics, 6:4 (2001), 519–535.

[9] A. Okhotin, “Conjunctive grammars and systems of language equa-
tions”, Programming and Computer Software, 28 (2002), 243–249.

[10] A. Okhotin, “The hardest linear conjunctive language”, Information
Processing Letters, 86:5 (2003), 247–253.

[11] A. Okhotin, “On the equivalence of linear conjunctive grammars to trel-
lis automata”, Informatique Théorique et Applications, 38:1 (2004), 69–
88.

25

http://dx.doi.org/10.1007/s002360050123�
http://dx.doi.org/10.1007/s002360050123�
http://dx.doi.org/10.1145/321127.321132�
http://dx.doi.org/10.1016/0304-3975(84)90015-X�
http://dx.doi.org/10.1016/0304-3975(84)90015-X�
http://dx.doi.org/10.1007/978-3-540-73208-2_24�
http://dx.doi.org/10.1007/978-3-540-73208-2_24�
http://dx.doi.org/10.1016/0304-3975(94)90227-5�
http://dx.doi.org/10.1016/0304-3975(94)90227-5�
http://dx.doi.org/10.1023/A:1020213411126�
http://dx.doi.org/10.1023/A:1020213411126�
http://dx.doi.org/10.1016/S0020-0190(02)00511-2�
http://www.elsevier.com/locate/ipl�
http://www.elsevier.com/locate/ipl�
http://dx.doi.org/10.1051/ita:2004004�
http://dx.doi.org/10.1051/ita:2004004�

[12] A. Okhotin, “Decision problems for language equations with Boolean op-
erations”, Automata, Languages and Programming (ICALP 2003, Eind-
hoven, The Netherlands, June 30–July 4, 2003), LNCS 2719, 239–251.

[13] A. Okhotin, “Unresolved systems of language equations: expressive
power and decision problems”, Theoretical Computer Science, 349:3
(2005), 283–308.

[14] A. Okhotin, O. Yakimova, “On language equations with complementa-
tion”, Developments in Language Theory (DLT 2006, Santa Barbara,
USA, June 26–29, 2006), LNCS 4036, 420–432.

[15] A. Okhotin, “Nine open problems for conjunctive and Boolean gram-
mars”, Bulletin of the EATCS, 91 (2007), 96–119.

26

http://dx.doi.org/10.1016/j.tcs.2005.07.037�
http://dx.doi.org/10.1016/j.tcs.2005.07.037�
http://dx.doi.org/10.1007/11779148_38�
http://dx.doi.org/10.1007/11779148_38�

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematical Sciences

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN 978–952–12–1913–9
ISSN 1239-1891

