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Abstract

The state complexity of the star of union of an m-state DFA language and
an n-state DFA language is proved to be 2m+n−1 − 2m−1 − 2n−1 + 1 for
every alphabet of at least two letters. The state complexity of the star
of intersection is established as 3

4
· 2mn for every alphabet of six or more

letters. This improves the recent results of A. Salomaa, K. Salomaa and Yu
(“State complexity of combined operations”, Theoret. Comput. Sci., 2007,
to appear).
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1 Introduction

One of the main subjects in the descriptional complexity of regular lan-
guages is the state complexity of operations on deterministic finite automata
(DFAs). The state complexity of basic operations, such as union, intersec-
tion, concatenation and star, is known from Maslov [7], who used DFAs with
a partially defined transition function. Similar results for complete DFAs
were given by Yu, Zhuang and K. Salomaa [9]. These results were improved
by Jirásková [4] by using smaller alphabets for witness languages in the lower
bound arguments.

The study of the state complexity of further operations preserving reg-
ularity has led to a number of interesting results. Already Maslov [7] has
found and investigated several operations with a nontrivial state complex-
ity. Of the recent work, let us mention the state complexity of proportional
removals shown to be O(ne

√
n log n) by Domaratzki [2], the 2mn−1 state com-

plexity of shuffle determined by Câmpeanu, K. Salomaa and Yu [1], and the
2n2+n log n−O(n) state complexity of the cyclic shift obtained by the authors [5].

A recent direction of research on the state complexity, initiated by A. Salo-
maa, K. Salomaa and Yu [8], concerns with combinations of basic operations
regarded as separate operations. A. Salomaa, K. Salomaa and Yu [8] inves-
tigated the state complexity of the star of union of two languages given by
DFAs, as well as of the star of intersection of two languages. Their work was
followed by Gao, K. Salomaa and Yu [3], who similarly studied the star of
concatenation and the star of reversal, and by a paper by Liu, Mart́ın-Vide,
A. Salomaa and Yu [6] dealing with the reversal of union and the reversal of
concatenation.

This paper aims to refine two results by A. Salomaa, K. Salomaa and Yu
[8]. For star of union, the known tight lower bound of 2m+n−1−2m−1−2n−1+
1 states is improved by using witness languages over the smallest possible
alphabet {a, b}, cf. a 3-letter alphabet used by A. Salomaa, K. Salomaa
and Yu [8]. For star of intersection we establish the first tight lower bound:
the state complexity of this operation is proved to be exactly 3

4
· 2mn, which

improves over the asymptotic estimation of 2O(mn) due to A. Salomaa, K.
Salomaa and Yu [8]. Our lower bound construction uses a 6-letter alphabet.

2 Basic definitions

A deterministic finite automaton (DFA) is a quintuple (Q, Σ, δ, q0, F ), in
which Q is a finite set of states, Σ is an input alphabet, δ : Q × Σ → Q is
the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of
accepting states. We consider only complete DFAs, that is, the transition
function is total.

Nondeterministic finite automata (NFA) of the most general kind are
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defined as quintuples (Q, Σ, δ, Q0, F ) with a set of initial states Q0 ⊆ Q and
with a nondeterministic transition function δ : Q × (Σ ∪ {ε}) → 2Q. Any
NFA can be converted to an equivalent DFA with the set of states 2Q; this
transformation is known as the subset construction.

The state complexity of a regular language L, denoted sc(L), is the least
number of states in any DFA accepting L.

Consider a k-ary operation on languages f : (2Σ∗)k → 2Σ∗ that pre-
serves regularity in the sense that for all regular L1, . . . , Lk the language
f(L1, . . . , Lk) is regular as well. Define the state complexity function of
f as scf : Nk → N, so that scf (n1, . . . , nk) equals the greatest value of
sc(f(L1, . . . , Lk)) over all vectors of languages (L1, . . . , Lk) with sc(Li) = ni

for all i.

3 Star of union

Star of union is a binary operation on languages defined as (K ∪ L)∗, where
K, L ⊆ Σ∗ are its arguments. The state complexity of this operation over a
k-letter alphabet is fk(m,n) = maxsc(K)=m,sc(L)=n sc

(
(K ∪ L)∗

)
.

A straightforward upper bound for this function is 2m+n+1, which is given
by the subset construction applied an (m + n + 1)-state NFA for (K ∪ L)∗.
A. Salomaa, K. Salomaa and Yu [8] did a further analysis of this subset
construction, showing that at most 2m+n−1 − 2m−1 − 2n−1 + 1 states are
reachable. At the same time, they established a matching lower bound over
the alphabet {a, b, c} by proving that f3(m,n) > 2m+n−1 − 2m−1 − 2n−1 + 1
for all m,n > 3. For m = 2 or n = 2, A. Salomaa, K. Salomaa and Yu [8]
have established the same precise lower bound using a different set of witness
automata over the alphabet {a, b, c, d}. This settled the state complexity of
this operation for alphabet of 4 letters and more (3 in the most interesting
cases), while the state complexity over {a, b} remained open.

The following stronger theorem, which uses witness automata of a very
simple form, fills this gap.

Theorem 1. For all integers m > 2 and n > 2, there exist binary DFAs A
and B of m and n states, respectively, such that the state complexity of the
language (L(A) ∪ L(B))∗ is 2m+n−1 − 2m−1 − 2n−1 + 1.

Proof. Fix m > 2 and n > 2 and let Σ = {a, b}.
Define an m-state DFA A = (Q, Σ, q0, δA, {q0}), where Q = {q0, . . . , qm−1}

and for each i in {0, 1, . . . ,m− 1},

δA(qi, a) =

{
qi+1, if i < m− 1,
q0, if i = m− 1,

δA(qi, b) =

{
qi+1, if i < m− 1,
q1, if i = m− 1.
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Define an n-state DFA B = (R, Σ, r0, δA, {r0}), where R = {r0, . . . , rn−1}
and for each j in {0, 1, . . . , n− 1},

δB(rj, a) =

{
r1, if j = 0,
rj, if j > 0,

δB(rj, b) =

{
rj+1, if j < n− 1,
r0, if j = n− 1.

Automata A and B are shown in Figure 1.

Figure 1: Witness DFAs Am and Bn for the star of union.

Construct an NFA C = (Q∪R, Σ, δC , {q0, r0}, {q0, r0}) from the DFAs A
and B by adding a transition on a from state qm−1 to state r0 and a transition
on b from state rn−1 to state q0, as shown in Figure 2. The NFA C recognizes
the language (L(A) ∪ L(B))∗.

Figure 2: The nondeterministic finite automaton C.

Let C ′ = (2Q∪R, Σ, δ, {q0, r0}, F ) be the DFA obtained from the NFA C
by the subset construction. We are going to prove that the DFA C ′ has
2m+n−1 − 2m−1 − 2n−1 + 1 reachable states that are pairwise inequivalent.
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Let R be the following system of sets:

R = {S ∪ T | S ⊆ {q1, . . . , qm−1}, T ⊆ {r1, . . . , rn−1}, S 6= ∅, T 6= ∅}∪

∪{{q0, r0} ∪R | R ⊆ {q1, . . . , qm−1} ∪ {r1, . . . , rn−1}}.
Notice that each set in R either contains both q0 and r0 or neither of them.
The system R has

(2m−1 − 1)(2n−1 − 1) + 2m+n−2 = 2m+n−1 − 2m−1 − 2n−1 + 1

sets, and we will show that each of them is a reachable state of the DFA C ′.
The proof is by induction on the size of sets.

Basis: Let us prove that each set in R of size two is reachable. It is
claimed that

{qi, rj} = δ
({q0, r0}, (bam−2)j−1bai−1

)
(1)

for all i = 1, 2, . . . , m − 1 and j = 1, 2, . . . , n − 1. First consider that
both q0 and qm−1 go to qm−1 by bam−2, and, more generally, both q0 and
qm−1 go to qt by bat−1 for any t ∈ {1, . . . , m − 1}. This means that
δ
({q0}, (bam−2)j−1bai−1

)
= {qi}. As for the second component, each state

rk, with 0 6 k < n − 1, goes to rk+1 by any string in ba∗, and therefore
δ
({r0}, (bam−2)j−1bai−1

)
= {rj}, which completes the proof of reachability of

two-element subsets (1).
Induction step. Now, assume that 2 6 t 6 m+n− 1 and that each set

in the system R of size t is reachable. Let

{qi1 , qi2 , . . . , qik} ∪ {rj1 , rj2 , . . . , rj`
},

where 0 6 i1 < i2 < · · · < ik 6 m− 1 and 0 6 j1 < j2 < · · · < j` 6 n− 1 be
a set in R of size t + 1, i.e., k + ` = t + 1. We will consider four cases:

(i) Let i1 = j1 = 0, and i2 > 1 (or k = 1). Then

{q0, qi2 , . . . , qik} ∪ {r0, rj2 , . . . , rj`
} =

= δ({qm−1, qi2−1, . . . , qik−1} ∪ {rj2 , . . . , rj`
}, a),

where the latter set of size t is in R (as it contains neither q0 nor r0),
and hence is reachable by induction.

Figure 3(i) illustrates this transition from a set of size t (represented by
the upper diagram) to the set of size t + 1 (lower diagram) by symbol
a. Grey circles refer to the states qi2 , . . . , qik and rj2 , . . . , rj`

and to the
corresponding states in the upper diagram. Crossed out squares refer
to states known not to be in the corresponding sets.

The subsequent cases are similarly illustrated in the rest of Figure 3.
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Figure 3: Five cases in the proof of reachability.

(ii) Let i1 = j1 = 0, i2 = 1, and j2 > 1 (or ` = 1). Then

{q0, q1, qi3 , . . . , qik} ∪ {r0, rj2 , . . . , rj`
} =

= δ
({qm−1, qi3−1, . . . , qik−1} ∪ {rj2−1, . . . , rj`−1, rn−1}, b

)
.

The latter set of size t is in R, and by the induction hypothesis it is
reachable.

(iii) Let i1 = j1 = 0, i2 = 1, and j2 = 1. Then

{q0, q1, qi3 , . . . , qik} ∪ {r0, r1, rj3 , . . . , rj`
} =

= δ
({q0, qi3−1, . . . , qik−1} ∪ {r0, rj3−1, . . . , rj`−1, rn−1}, b

)
,

where the latter set of size t containing both q0 and r0 is reachable by
induction.

(iv) Let i1 > 1 and j1 = 1. Then

{qi1 , qi2 , . . . , qik} ∪ {r1, rj2 , . . . , rj`
} =

= δ
({q0, qi2−i1 , . . . , qik−i1} ∪ {r0, rj2 , . . . , rj`

}, ai1
)
,

where the latter set of size t + 1 containing both q0 and r0 is reachable
as shown in cases (i)-(iii).

(v) Let i1 > 1 and j1 > 1. Our construction uses subtraction modulo m−1,
and it is convenient to assume that subtraction of identical numbers
equals m − 1. Denote this modified operation by ª, and let i ª j be
the unique number in {1, . . . , m− 1} equal to i− j modulo m− 1.
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Then

{qi1 , qi2 , . . . , qik} ∪ {rj1 , rj2 , . . . , rj`
} =

= δ
({qi1ª(j1−1), . . . , qikª(j1−1)} ∪ {r1, rj2−j1+1, . . . , rj`−j1+1}, bj1−1

)
,

where the latter set is considered in case (iv).

This completes the proof of reachability of states in R. It remains to
prove that every two states are inequivalent. Let us show that for every state
s of the NFA C, there is a string w(s) that is accepted by C starting in
this state s, but is not accepted by C starting in any other state. Then, the
inequivalence of states of the DFA C ′ follows immediately since two distinct
subsets of Q ∪R must differ in some state s of the NFA C and so the string
w(s) distinguishes them.

Let s be a state of the NFA C. Let w(s) = am−i if s = qi for some i in
{0, 1, . . . , m−1}, and let w(s) = bn−j if s = rj for some j in {0, 1, . . . , n−1}.
Then for every state s, the string w(s) is accepted by the NFA C starting in
state s since states qi and pj go to the accepting states q0, r0 by strings am−i

and bn−j, respectively.

On the other hand, by the string am−i, each state in R goes to a state in
{r1, r2, . . . , rn−1}, and if k 6= i, then state qk goes to state q(k+m−i) mod m and
also to r1 if k > i. Next, by the string bn−j, each state in Q goes to a state in
{q1, q2, . . . , qm−1}, and if ` 6= j, then state p` goes to state pk+n−j (mod n) and
also to a state in {q1, q2, . . . , qm−1} if ` > j. This means that the string am−1

is accepted by the NFA C only from state qi and the string bn−j is accepted
only from state pj.

Thus it was shown that all states in R are reachable and pairwise in-
equivalent, and hence the state complexity of (L(A) ∪ L(B))∗ is |R|, which
establishes the theorem.

The above theorem applies to m,n > 2, and it remains to consider the
case of m = 1. There exist only two 1-state DFAs, one recognizing ∅ and
the other recognizing Σ∗. In the former case star of union degenerates to star
of the second argument, an operation of state complexity 3

4
· 2n for n > 2,

as shown by Maslov [7] and by Yu, Zhuang and K. Salomaa [9] using binary
witness languages. Star of union with Σ∗ always equals Σ∗ and thus has state
complexity of 1. In the case of m = n = 1 the state complexity is 2, reached
by (∅ ∪∅)∗ = {ε}.

Thus we have established the following result:

Corollary 1. For every alphabet Σ, such that |Σ| > 2, the state complexity
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of the star of union over Σ is:

f(m, n) =





2m+n−1 − 2m−1 − 2n−1 + 1, if m,n > 2,
3
4
· 2m, if m > 2, n = 1,

3
4
· 2n, if m = 1, n > 2,

2, if m = n = 1.

4 Star of intersection

The state complexity of the star of intersection can be upper-estimated by
combining the known state complexities of intersection and star, which gives
an upper bound of 3

4
· 2mn.

Having stated this upper bound, A. Salomaa, K. Salomaa and Yu [8] have
established two relatively close lower bounds: 2m(n−2) over a 5-letter alphabet
and 2m(n−2) +2n(m−2)−2mn−2(m+n+1) over an 8-letter alphabet. This gives an
asymptotic expression of 2mn−O(m+n) for the state complexity function, but
leaves the exact state complexity open.

We determine the state complexity of star of intersection precisely by
showing that the straightforward upper bound 3

4
· 2mn is in fact tight, using

witness languages over a 6-letter alphabet.

Theorem 2. For all integers m > 2 and n > 2, there exist DFAs A and B
of m and n states, respectively, defined over a six-letter input alphabet and
such that the state complexity of the language (L(A) ∩ L(B))∗ is 3

4
· 2mn.

Proof. Let Σ = {a, b, c, d, e, f} and fix arbitrary m,n > 2.
Define an m-state DFA A = Am = (Qm, Σ, δA, 0, {m − 1}), where Qm =

{0, 1, . . . , m− 1}, and an n-state DFA B = Bn = (Qn, Σ, δB, 0, {n− 1}) with
Qn = {0, 1, . . . , n− 1}, where the transition functions δA and δB are defined
as follows: for each i ∈ Qm and j ∈ Qn,

δA(i, a) = (i + 1) mod m, δB(j, a) = (j + 1) mod n,
δA(i, b) = i, δB(j, b) = (j + 1) mod n,

δA(i, c) =





0, if i = 0,
i + 1, if 1 6 i < m− 1,

1, if i = m− 1,
δB(j, c) = j,

δA(i, d) = i, δB(j, d) =





0, if j = 0,
j + 1, if 1 6 j < n− 1,

1, if j = n− 1,

δA(i, e) =

{
0, if i = 1,
i, otherwise,

δB(j, e) = j,

δA(i, f) = i, δB(j, f) =

{
0, if j = 1,
j, otherwise.

The following table gives a succinct semiformal explanation of these tran-
sitions. A graphic representation of these DFAs is given in Figure 4.
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Figure 4: Witness DFAs Am and Bn for the star of intersection.

Am Bn

a circle(0..m− 1) circle(0..n− 1)
b i to i circle(0..n− 1)
c 0 to 0, circle(1..m− 1) j to j
d i to i 0 to 0, circle(1..n− 1)
e 1 to 0, i 6= 1 to i j to j
f i to i 1 to 0, j 6= 1 to j

First construct the standard mn-state DFA for L(Am) ∩ L(Bn), which is
obtained as a direct product of Am and Bn:

C = (Qm ×Qn, Σ, δC , (0, 0), {(m− 1, n− 1)}),

where δC((i, j), X) = (δA(i,X), δB(j, X)) for each (i, j) in Qm×Qn and each
X in Σ. The transitions of C by each symbol are given in Figure 5.

Next, construct an (mn + 1)-state NFA D from the DFA C by adding a
new initial and accepting state q0 that goes to (0, 0) by ε, and add another
epsilon transition from (m − 1, n − 1) to (0, 0). The NFA D accepts the
language (L(Am) ∩ L(Bn))∗.

Now, let D′ be the DFA obtained from the NFA D by the subset con-
struction. We will show that the DFA D′ has 2mn−1 +2mn−2 reachable states
that are pairwise inequivalent.

Let R be the following system of sets:

R = {q0}∪
{
S ⊆ Qm×Qn | S 6= ∅ and if (m−1, n−1) ∈ S then (0, 0) ∈ S

}
.

The system R consists of 2mn−2 sets containing both (0, 0) and (m−1, n−1),
2mn−1− 1 nonempty sets containing neither (0, 0) nor (m− 1, n− 1), and the
state q0, that is, there are 2mn−1 + 2mn−2 sets in R. We will show that each
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Figure 5: Transitions of DFA C (direct product of Am and Bn).
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of them is a reachable state of the DFA D′. The proof is by induction on the
size of sets.

Basis. The subset {q0} is trivially reachable. Each one-element set{
(i, j)

}
in R is reachable, since q0 goes to (0, 0) by ε and (0, 0) goes to

(i, j) by b(j−i) mod nai for all (i, j) in Qm ×Qn \
{
(m− 1, n− 1)

}
.

Induction step. Let 2 6 k 6 mn and assume that all sets in R of size
k − 1 are reachable. Let S be a set in R of size k. Consider the following
three possible cases:

(a) S contains both states (0, 0) and (m− 1, n− 1);

(b) S contains state (0, 0), but not state (m− 1, n− 1);

(c) S contains neither state (0, 0) nor state (m− 1, n− 1).

In each case, we show that the set S is reachable.
(a) Let S = {(0, 0), (m− 1, n− 1), (i3, j3), . . . , (ik, jk)} be a set of size k

containing both states (0, 0) and (m− 1, n− 1). Let

S ′ =
{
(m− 2, n− 2), (i3 − 1, j3 − 1), . . . , (ik − 1, jk − 1)

}
,

where subtraction is modulo m in first components and modulo n in second
components of all pairs. The set S ′ does not contain state (m − 1, n − 1)
and is therefore in R. Then, since S ′ is of size k − 1, it is reachable by the
induction hypothesis. And since S ′ goes to S by a, the set S is also reachable.

Figure 6: Proof of Theorem 2, reachability, case (a).

(b) Let S = {(0, 0), (i2, j2), . . . , (ik, jk)} be a set of size k that contains
state (0, 0) but not state (m− 1, n− 1). Let us write S as

S =
{
(0, 0)

} ∪ U ∪ V ∪W,

where

U =
{
(0, j2), (0, j3), . . . , (0, jr−1)

}
(1 6 j2 < j3 < · · · < jr−1 6 n− 1)

V =
{
(ir, 0), (ir+1, 0), . . . , (is−1, 0)

}
(1 6 ir < · · · < is−1 6 m− 1)

W =
{
(is, js), . . . , (ik, jk)

}
(1 6 i` 6 m− 1; 1 6 j` 6 n− 1),

that is, the set U contains the states in S from the top row, the set V contains
states from the leftmost column, and the set W contains the other states of
S.

There are four subcases to consider:
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(i) W is nonempty. Let (is, js) be a state in S that is in W .

Define subsets U ′, V ′, W ′ as follows, using the notation ª for subtrac-
tion modulo `− 1 with the result defined to be in {1, . . . , `− 1} (as in
the proof of Theorem 1):

U ′ =
{
(0, j2 ª js), (0, j3 ª js), . . . , (0, jr−1 ª js)

}
,

V ′ =
{
(ir ª is, 0), (ir+1 ª is, 0), . . . , (is−1 ª is, 0)

}
,

W ′ =
{
(is+1 ª is, js+1 ª js), . . . , (ik ª is, jk ª js)

}
.

In each pair, the subtraction in its first component is modulo m − 1,
while the subtraction in second components is modulo n− 1. Let

S ′ =
{
(0, 0), (m− 1, n− 1)

} ∪ U ′ ∪ V ′ ∪W ′.

Then, S ′ is a set of size k that contains (0, 0) and (m− 1, n− 1), and
such sets have been shown to be reachable in case (a).

Consider the state δ(S ′, cisdjs), which equals

δ
({(0, 0), (m−1, n−1)}, cisdjs

)∪δ(U ′, cisdjs)∪δ(V ′, cisdjs)∪δ(W ′, cisdjs).

Let us compute each of the four parts of this expression:

• From state
{
(0, 0), (m − 1, n − 1)

}
, the automaton goes to state{

(0, 0), (is, n − 1)
}

upon reading cis , and then to
{
(0, 0), (is, js)

}
by djs .

• Having started in U ′ = {(0, jt ª js) | 2 6 t < r}, the automaton
remains in U ′ upon reading cis and then proceeds by djs either to
{(0, jt) | 2 6 t < r} = U or to U ∪ {(0, 0)}.

• Similarly, from V ′ the automaton goes by cisdjs either to V or
V ∪ {(0, 0)}.

• Finally, the automaton goes from W ′ = {(itªis, jtªjs)|s < t 6 k}
first to {(it, jt ª js) | s < t 6 k} or to {(it, jt ª js) | s < t 6
k} ∪ {(0, 0)} by cis , and then either to {(it, jt) | s < t 6 k} = W
or to W ∪ {(0, 0)} by djs .

The union of the above sets is
{
0, 0

} ∪ U ∪ V ∪W = S. We have thus
shown that the set S ′ goes to S by cisdjs , and so the set S is reachable.

(ii) W and V are empty, that is, S =
{
(0, 0), (0, j2), . . . , (0, jk)

}
. Let

S ′ =
{
(0, 0), (1, j2), . . . , (1, jk)

}
.

The set S ′ is reachable as in case (b-i) and it goes to S by e. Thus, the
set S is reachable.
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Figure 7: Proof of Theorem 2, reachability, case (b).

(iii) W and U are empty, that is, S =
{
(0, 0), (i2, 0), . . . , (ik, 0)

}
. The set

S can be reached by f from the set
{
(0, 0), (i2, 1), . . . , (ik, 1)

}
, which is

reachable as in case (b-i).

(iv) W is empty and U and V are not, that is,

S =
{
(0, 0)

} ∪ {
(0, j2), . . . (0, jr−1)

} ∪ {
(ir, 0), . . . , (ik, 0)

}
,

where 1 6 j2 < · · · < jr−1 6 n− 1 and 1 6 ir < · · · < ik 6 m− 1. Let

S ′ =
{
(0, n−1), (0, 0), (0, j3−j2), . . . , (0, jr−1−j2), (ir, n−1), . . . , (ik, n−1)

}
,

where the subtraction is modulo n. The set S ′ is reachable as in case
(b-i), and it goes to S by bdj2−1. This proves the reachability of S and
concludes case (b).

(c) Let S =
{
(i1, j1), (i2, j2), . . . , (ik, jk)

}
, where the pairs are sorted lex-

icographically as (0, 0) < (i1, j1) < (i2, j2) < · · · < (ik, jk) < (m − 1, n − 1),
be a set of size k that contains neither (0, 0) nor (m − 1, n − 1). Consider
three subcases:

(1) Let i1 > 1, that is, the set S contains no states from the top row. Take

S ′ =
{
(i− i1, j − j1) | (i, j) ∈ S

}
,

where subtraction in the second component is modulo n, while subtrac-
tion in the first component always produces a nonnegative number. The
set S ′ is a subset of size k that contains (0, 0), and so it is reachable as

12



in case (b). Consider the computation of D′ by the string bj1−i1 mod nai1

starting from S ′. Since ik − i1 6 m − 2, the set S ′ contains no states
from the bottom row, and therefore

δ(S ′, bj1−i1 mod n) =
{
(i− i1, j − j1 + j1 − i1) | (i, j) ∈ S

}
=

=
{
(i− i1, j − i1) | (i, j) ∈ S

}
,

where subtraction in the second component is again modulo n.

Denote the latter set by S ′′, and let us see that it goes to S by ai1 . In
the case of i1 = 1, since the set S does not contain state (m− 1, n− 1),
S ′′ does not contain state (m − 2, n − 2), and so it goes to S by a. If
i1 > 2, then we have ik − i1 < ik − i1 + 1 < · · · < ik − 2 < m − 2,
which implies that S ′′ goes to

{
(i−1, j−1) | (i, j) ∈ S

}
by ai1−1, since

none of the intermediate subsets contains state (m − 2, n − 2). From{
(i− 1, j − 1) | (i, j) ∈ S

}
it proceeds to S by a.

Thus we have shown that the set S can be reached from the set S ′ by
the string bj1−i1 mod nai1 .

Figure 8: Proof of Theorem 2, reachability, case (c).

(2) Let i1 = 0 (and so j1 > 0) and ik < m − 1, that is, the set S contains
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some states from the top row but no states from the bottom row. Take

S ′ =
{
(i, j − j1) | (i, j) ∈ S

}

where subtraction is modulo n. The set S ′ is a subset of size k that
contains state (0, 0), and so is reachable as in case (b). Since the bottom
row of S ′ is empty, the set S ′ goes to S by bj1 , which proves case (c-2).

(3) Let i1 = 0 and ik = m − 1, that is, the set S contains some states
from the top row and some states from the bottom row (but does not
contain (0, 0) and (m − 1, n − 1)). Consider the leftmost state in the
bottom row and denote its second component by

minm−1(S) = min{j | (m− 1, j) ∈ S}.

The reachability of such states is proved by an induction on minm−1(S).

Basis: minm−1(S) = n − 2, which is the greatest possible value of
minm−1(S), because (m − 1, n − 1) /∈ S. Then S ′ =

{
(i, j − j1) |

(i, j) ∈ S
}

is a subset of size k that contains state (0, 0), and so it
is reachable as in case (b). The bottom row of S ′ contains one state,
(m − 1, n − 2 − j1). This means that the set S ′ goes to S by bj1 , and
thus S is reachable.

Induction step. Let minm−1(S) < n − 2 and assume that every
subset S0 of size k with nonempty top and bottom rows and with
minm−1(S0) > minm−1(S) is reachable. Let us prove that the set S is
also reachable.

If j1 6 minm−1(S) + 1, consider the set S ′ =
{
(i, j − j1) | (i, j) ∈ S

}
of size k, which contains (0, 0), and hence is reachable as in case (b).
Since (m− 1, j′) /∈ S for all j′ 6 j1 − 2, it follows that the bottom row
of S ′ does not contain states (m−1, n+ j′− j1) for all such j′. That is,
(m−1, j′′) /∈ S ′ for all n−j1 6 j′′ 6 n−2, while state (m−1, n−1−j1)
is not in S ′ because (m− 1, n− 1) /∈ S. The absence of these states is
sufficient to ensure that S ′ goes to S by bj1 .

Assume j1 > minm−1(S) + 1 and consider the subset

S ′ =
{
(i− 1, j − 1) | (i, j) ∈ S

}
,

where subtraction in the first (second) component is modulo m (modulo
n, respectively). This set of size k does not contain states (m−2, n−2)
and (m−1, n−1), since S does not contain states (0, 0) and (m−1, n−1).
Therefore, the set S1 goes to S by a. If the set S ′ contains state (0, 0),
then it is reachable as in case (b) and we are done. If S ′ contains no
state from the top row, then, as in case (c-1), it can be reached from a
subset of size k containing state (0, 0). Otherwise, the set S ′ contains
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some states from the top row (but not (0, 0)), and since the bottom
row in S ′ is obtained from the top row in S, we have

minm−1(S
′) = j1 − 1 > minm−1(S).

Then the induction hypothesis is applicable to S ′, and hence it is reach-
able. Since S ′ goes to S by a, the state S is reachable as well.

This concludes the proof of reachability of all subsets in R.
It remains to demonstrate that all subsets in R are pairwise inequivalent.

The initial state q0 is an accepting state and cannot be equivalent to any
state of the DFA D′ that does not contain (m − 1, n − 1). However, the
string bn is accepted by the NFA D from (m− 1, n− 1) and is not accepted
from q0. To prove that no two different subsets of Qm ×Qn are equivalent it
is sufficient to show that for all (i, j) in Qm ×Qn, the string

wij = bn−j−m+i (mod n)am−i−1

is accepted by the NFA D only from state (i, j).
Indeed, the string wij is accepted by the NFA D from state (i, j), since

this state goes to the accepting state (m−1, n−1) by wij. On the other hand,
the length of this string is at most m + n− 2. So if the computation of the
DFA from another state (i′, j′) on this string passes through (m− 1, n− 1),
then the newly added state (0,0) has no chance to reach (m − 1, n − 1)
and lead to acceptance. And the direct path from (i′, j′) leads to the state
(i′ + m − i − 1, j′ + n − j − 1), which is accepting if and only if i′ = i and
j′ = j.

Altogether it has been established that the constructed DFA for (L(Am)∩
L(Bn))∗ contains 3

4
· 2mn reachable and pairwise inequivalent subsets, and

therefore every DFA for this language must contain at least as many states.
Together with the matching upper bound on the state complexity of star of
intersection, this establishes it precisely.

Corollary 2. For every alphabet Σ, such that |Σ| > 6, the state complexity
of the star of intersection over Σ is:

f(m,n) =

{
3
4
· 2mn, if m,n > 1, m + n > 2,

2, if m = n = 1.

5 Calculations

Our lower bound for star of union uses the smallest possible alphabet {a, b}.
On the other hand, for star of intersection we had to use an alphabet of as

many as six letters to establish the precise lower bound 3
4
· 2mn. It is natural

to ask how many symbols are actually needed to reach this upper bound.
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Exhaustive computations of star of intersection for all small DFAs over the
alphabets {a, b} and {a, b, c} show that the upper bound cannot be reached.
The computed values of the state complexity function for small m,n are
given in Table 1(left, centre), and in each case they are less than 3

4
· 2mn.

{a, b} {a, b, c} {a, b, c, d}
2 3 4

2 7
3 41 304
4 165

2 3 4
2 11
3 46 375
4

2 3 4
2 12
3 48 384
4 3072
5 24576 786432

Table 1: State complexity of star of intersection for small alphabets and for
small m, n.

On the other hand, our computations determined some pairs of automata
over the alphabet {a, b, c, d} that reach the 3

4
· 2mn upper bound. These

reached values are shown in Table 1(right), and following are some witness
pairs of automata (quite many such pairs were found):




a b c d
0 0 0 0 1
1 1 0 1 0

⋂ a b c d
0 0 0 1 1
1 0 1 0 0




*
: 12 states




a b c d
0 0 0 0 1
1 0 1 1 0

⋂
a b c d

0 0 0 1 1
1 1 2 0 2
2 2 0 2 0




*

: 48 states




a b c d
0 0 0 0 1
1 0 1 2 0
2 1 2 1 2

⋂
a b c d

0 0 1 1 2
1 1 0 2 0
2 2 0 0 1




*

: 384 states




a b c d
0 0 0 0 1
1 0 1 2 2
2 0 2 3 0
3 1 3 1 3

⋂
a b c d

0 1 0 2 1
1 2 0 0 0
2 0 1 1 2




*

: 3072 states
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a b c d
0 0 0 0 1
1 0 1 2 2
2 0 2 3 3
3 0 3 4 0
4 1 4 1 4

⋂
a b c d

0 0 0 0 1
1 1 0 2 0
2 2 1 1 2




*

: 24576 states




a b c d
0 0 0 0 1
1 0 1 2 2
2 0 2 3 3
3 0 3 4 0
4 1 4 1 4

⋂
a b c d

0 0 0 0 1
1 1 0 2 2
2 2 0 3 0
3 3 1 1 3




*

: 786432 states

In all cases 0 is the initial state and the accepting states are given in bold.
We could not obtain any general form of such automata.
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