Teemu Rajala | Mikko-Jussi Laakso | ErkKki
Kaila | Tapio Salakoski

VILLE - Multilanguage Tool
for Teaching Novice

Programming

Turku CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 827, June 2007

-y
>
¥ rucs

VILLE - Multilanguage Tool for Teaching
Novice Programming

Teemu Rajala
University of Turku, Department of Information Technology

Mikko-Jussi Laakso
University of Turku, Department of Information Technology

Erkki Kaila

University of Turku, Department of Information Technology

Tapio Salakoski

University of Turku, Department of Information Technology

TUCS Technical Report
No 827, Month 2007

Abstract

Visualization tools have proven to be useful for enhancing novice programming
learning. However, those tools are typically tide to a certain programming language and
focus to low level aspect of programming such as changing value of variables during
code execution. In this paper, we present a new program visualization tool which
provides a language independency view of learning programming and supporting
learning process by integrating role and call stack information. Moreover, two different
languages can be viewed in parallel and role information can be inserted to support
learning process in more abstract level. In addition, VILLE can emphasize that the
syntax and definitions of basic programming concepts are very similar in every
imperative programming language.

Keywords: Program Visualization, Novice Programming, Language Independence,
Multilanguage, Pseudo language

TUCS Laboratory
Learning and Reasoning Laboratory

1. Introduction

Teaching programming have been challenging and interesting field in computer science
for many decades. Many computer based systems have been developed for novice
programmers to aid their learning process at early steps of learning to program. Those
systems use different kinds of visualization and animation techniques to give more
concrete model and to show what actually takes place during program code execution.
Usually, the goal of such systems is to enhance students understanding of program
execution [10]. Moreover, Lister et al [15] and McCracken et al [17] have showed that
novice programmers have difficulties to read and understand a given program code and
create their own programs.

In general, the most of visualization and animation based system are heavily program
language dependant and those systems can only visualize or animate the execution of
program code in just one programming language. However, the syntax and definitions
of basic programming concepts are very similar in all imperative programming
language. Those basic concepts include the control structures (consecution, selection
and loops), statements, expressions, tables, method and their definition.

From student’s point of view it is not that important to learn how loops are defined and
executed in Java —programming language. Far more important aspect is to conquer what
are the basic principles behind loop-structure regardless of selected programming
language.

More over, Grandell et al [7] have argued that for novice programmer courses the
programming language’s syntax should be as simple as possible and this way more
focus and time can be placed on studying more important and relevant aspect of basic
programming. Defining a pseudo language can be one really good alternative and it
should be used for teaching programming at early steps. While using pseudo language
the algorithm or program code can be represented in higher abstraction level as Boada et
al [4] and Stern et al [24] have reported. Pseudo language is often perceived as language
without possibility to execute or interpret as Garner [6] have noted. More over, another
higher abstraction tool for teaching is the concept of roles of variables which Sajaniemi
[21] have defined a taxonomy which is based on variable’s behaviour during the
execution of a program. With this concept a student can interpret program code in more
abstract way regardless of programming language or even programming paradigm.
Sajaniemi and Kuittinen [22] have noticed that using role information in basic
programming courses aided the learning process of the students, because the role
concepts can enhance student’s understanding about the program.

These are examples of aspects which should be taken into consideration during the
definition and design of visualization or animation based application targeted for basic
programming courses to aid the learning process of individual student.

VILLE is a visual tool, which can be used both in lecture and for self-learning. The tool
supports Java, C++ and pseudo —programming languages. The pseudo programming
language can be self defined and its’ execution can be traced as well as the other
languages. Programming examples can be presented in parallel view side by side in two
different languages and by doing that the language independency view of basic
programming concepts can be emphasized. VILLE can also trace step by step (or row
by row as we define it) the execution of program code and its’ effects to values of
variable and program outputs. More over, every executed code line is connected and
explained with textual description of its’ meaning and actions. Role information is also
integrated to make visualization more effective and easy to interpret. In addition,
VILLE’s predefined or self-defined examples can be published in the web for 24/7
availability for students a possibility to engage the learning session at any time and
place.

The structure of this article is following. Section 2 presents related work, previous
studies and related systems. VILLE-application and its’ features is shown in section 3.
Section 4 presents the discussion and section 5 describes the future work. At the end,
section 6 presents the conclusions in brief.

2. Related work

With program visualization students are able to reduce the effort of the thinking process
which aim is to construct the mental model of program execution process, its’ actions
and events which takes place in it [25]. In addition, the existence of graphical elements
is not solely enough to describe important aspects of visualization in adequate level of
detail. Petre [20] have noticed:”The question is not ’Is a picture worth a thousand
words?’, but ‘Does a given picture convey the same thousand words to all viewers?’
More over, a secondary cues or notations are required to aid the interpretation of
graphical visualizations. [20]. Ben-Ari [1] claimed that graphical and textual
descriptions have to be heavily synchronized, because a major problem of novice
programmers is to choose important aspects and issues which are relevant and which are
not relevant to a problem. Also, Naps [18] presents that visualization is proven to be
useful only if we can engage the learner into learning session. For example,
visualization and animation based system have been used successfully in teaching data
structures and algorithms [8] [13] [14].

Jeliot 3 (Figure 1) is developed in University of Joensuu and it’s a tool which can trace
the execution of Java program language. As the execution goes forward step by step the
evaluation of expressions are visualized with graphical symbols. Jeliot3 is mainly
designed to support the learning process of novice programmers.

Tiedosto h

.2 Hallinta fAnimaatio Asetukset Ohje]

; i i:[Teatteri | Kutsupuu | Historia |

i : Metodi ~alue ekkeiden evaluointi -alue
4 MergeSortdlgorichm |

5

& tatic woid maini) {

7 [] data = mew int [5];

8 (int i=0; i < data.lengch; i++) {

9 datali] = (int) (20 * Math,random(]);

11 (data, 0, data.length - 1);

15 Latic woid sort(int a[], int lo, int

16 lo >= hi) |{ Olio ja taulukko -alue
17 return; 2

18 aid = (lo + hi) / 2;

2l (a, lo, mid):

o . wid + 1, hij: Vakio -~alue’ " 1]

(=R =Ni=N}=]

24 =nd lo = mid;
25 start hi = mid + 1;

27 2 [Ilo <= end lo) && (start hi <= hi)
28 LE (a[lo] < a[start hil) { z
I | D]
Tuloste

e

7 ol 4
Muokkaa | Kaannd Askella Toista Pysiyta Kelaa

= i 1

| JekloT

Figure 1: User interface of Jeliot 3

Kannusmaéki et al. [11] evaluated Jeliot 3 with qualitative methods and pointed out, that
only less talented students were willing to use jeliot3. The results showed also that
Jeliot3 aided students’ skills of perceiving if-statements and loops, understanding
objects and tracing errors from program code.

In addition, BlueJ is an example about a static program visualization tool, which is
developed at University of Monash in Australia. This tool is also meant to be used to
teach teaching basic programming concepts. [12].

Over the past few decades many visualization and animation based applications have
been developed such as JavaVis [19] which uses object- and sequence diagrams as
visualizations, WYSIWYC (What You See Is What You Code)-model and direct
manipulation of structure based on ALVIS LIVE! [9] and Raptor [5] which is
programming environment that uses dataflow diagrams for its visualization. JHAVE
[8], BALSA 1II [2], ZEUS [3], XTANGO [23] and TRAKLA2 [16] are algorithm
animation systems which focus on visualizing data structures and algorithms such as
sorting. In conclusion, Jeliot3 is same type of tool as VILLE is but all the other
applications’ purpose, visualization technique or abstraction level differs essentially
from VILLE.

3. VILLE

VILLE is a program visualization tool, which can be used to create and edit various
programming examples, and to observe events in the examples during their execution.
Its main purpose is to support the learning process of novice programmers. Teacher can
add programming course’s programming examples to VILLE and then visualize their
execution e.g. in lectures or over the web.

When planning VILLE’s features, we considered e.g. Naps et al. [18] 11 points on
visualization tool effectiveness.

3.1. Key features

Example collection. VILLE contains predefined set of programming examples, which
are divided in different categories based on their subject. User can create new categories
and examples or edit the predefined ones. By creating and editing examples, teacher can
illustrate subjects that he thinks are essential in learning to program. Teacher can also
make changes to the programming examples during lectures to visualize the effects of
the modifications to students.

Language-independence. One of the most important aspects of VILLE is the
possibility to show programming examples in several different programming languages.
When user observes program execution in different languages, he sees how similar their
basic functionalities are. For novice programmers it is more important to learn how
different programming concepts really work than just the syntax of some programming
language.

Defining and adding new languages. At present VILLE supports Java, pseudo code
and C++ programming languages. Pseudo codes definition can be altered to suit the
teacher’s needs. It is also possible to define and add a new programming language to
extend the language support.

Visualization row by row. Progress of the program execution is visualized by
highlighting rows in the code. In addition to highlighting the program row under
execution, VILLE also highlights previously executed row with a different colour. This
makes the following of the program execution easier.

Flexible control of the visualization both forwards and backwards. User can move
one step at a time, both forwards and backwards in the execution of the program.
Examples can also be run automatically with adjustable speed. Moving backwards in
the program execution isn’t usually possible in similar applications (e.g. Jeliot3).
Additionally, VILLE has an execution slider with which user can use to move to any
place in program execution.

Breakpoints. The user can set breakpoints into any program code line and move
between them both forwards and backwards. This functionality enables debug-based
control and observation of the program execution. More over, backward tracing
between breakpoints is not a standard feature in program code debuggers.

Code line explanation. Every code line has an explanation, in which all the program
events on the line are clearly explained. Furthermore all possible outputs and variable
states are shown. Code line explanation is a missing feature in many similar
applications.

Role information. Variables’ role information is integrated into the code line
explanation. According to Sajaniemi and Kuittinen [22] this helps programming
learning and enhances understanding of the program.

The parallel view shows the program code execution simultaneously in two different
programming languages. This way the user can see how the execution progresses
similarly regardless of syntactical differences between the languages.

Call stack. The moving of the program execution between different method calls is
visualized with a call stack. When the execution shifts to a method, new window is
opened on the call stack. The window remains on the call stack until the method is
finished. When the execution leaves from the method, possible return value is shown on
top of the call stack. Alternatively the visualization of the execution can be viewed in
parallel view.

Publish examples. With the export feature VILLE’s examples can be saved to an
example collection. The example collection contains a version of VILLE, which has no
example creation and modification functions. Teacher can use the export feature to
publish programming course’s programming examples in the web for the students to
use.

3.2. The User Interface of VILLE

VILLE’s user interface consists of three different views. When the application starts,
main view is loaded. In the main view user can browse the examples and create new
categories for the examples. Program code visualization and example modification have
their own views, where user can navigate through the main view.

3.2.1. Main view

On the left side of the main view (Figure 2) lies programming example tree and buttons
for controlling the application. With the buttons below the programming examples user
can modify the examples (creation of new categories and examples, editing of examples
and deletion of examples). The buttons above the examples can be used to change the
language of the application between Finnish and English, exporting the examples to an

example collection and to move to the visualization of the chosen programming
example. On the right side of the view lies the description and code listing of a chosen
example.

Applet Viewer: ville.VilleGUI.class E

VILLE

visual learning tool

B suomeksi “ & Export H Run l Going Through Table
() Programming examples
=[] Variables
@ Assigning variables
L@ Assigning variables 2
t--@ Variable incrementation 2
rings
5 String operations public static void main (String[] args) |

String catenation double[] thl = {1.0,6.5,7.3,2.5,8.5};

i@ String catenation 2 /ffor-loop
J-[=) Conditional statements System.out.println("Print tables walues with for-loop™):

If-Then-Else for (int i=0; i < thl.lengthyi++] {
Mested conditional statements

>

g e System.out.println("thl["+i+"]1= "+thl[i]);
-5 Loop structures) . . .
e System.out.println(®Multiply every component with 2.0";:
o While //Let multiply teble's every walue with 2.0
@ Mested for-loops for (int i=0; i < thl.length;i++){
Mested for-oops 2 thi[i]= 2.0 * thi[i]:
® Greatest common Factor 3
: ‘F"’h“;:mia;c . //While loop
- For & Break & Continue =
J-[(2) Tables s 0 = 0

Table example 1 while { 3 < thl.length]{

@ Table references System.out.println("thl["+j+"]= "+tbl[]3]]:
i Matrix J++:
@ Table Slement Search H
- Table similarity H

Table Element Average
Initislizing Tables

2 WGoing Through Table
[=-[C3) Subprograms
E Subprogram calls

‘.. Subprogram calls 2 v
’ ﬂ Mew cabegory " Mew example]
[Edit " BB Delete]

University of Turku g #
Department of Information Technology

Figure 2: the main view of VILLE
3.2.2. Example Creation and Editing View

In the creation and editing view (Figure 3) user can add Java program code to the left
text area. When the translate button is pressed, VILLE creates pseudo code and C++
translations of the Java program code and automatically generates explanations for each
program line. Besides this user can write program example a description, which is
shown in the main view, when browsing the examples. To save an example, user has to
write a name for the example and destination file and choose the category where the
example is shown in the main views example tree. Editing of the examples is done in
the same view. In this case the example’s information is loaded in the editing fields.

The translation of the program code is done with syntax files. There is a syntax file for
each programming language and for the Finnish and English explanations. During the

translation the program code line is searched from the Java’s syntax file and the
translated to other languages using their syntax files’ equivalent syntax line. The events
of a program code are solved by going through the program in its execution order and
saving an execution event for each event in the program in separate control file. The
control file is used in the visualization view to control the visualization of the
programming example.

B Applet Viewer: ville.VilleGUI.class

VILLE

=1 E3

visual learning tool

~Translate new program
Java | Pseuds | .F;ython! CH+ |“Explana.t\.onl,:h|.'|)-" Explan;&m‘n' Output | [:;escrlp“t\oﬁ;(ﬁn)' Désér\i:tlbn"
public static void main (Itring[] args) | Al lint main() { o]
double[] thl = {1.0,6.5,7.3,2.5,8.5}; double(] thl = {1.0,6.5,7.3,2.5,68.5};
// for-loop //for-loop
System.out.println("Print tables wvalues with for-loop"): oout << "Print tables walues with for-loop®™ << endl;
for f{int 1=0; i < thl.length;i++){ for (int 1 = 0; i < thl.length; i++){
System.out.println("thl["+i+"]1= "4+thl[i]}): cout << "thl["+i+"]= "4+thl[i] << endl:;
3 }
Fystem.out.println("Multiply every component with 2.0"); eout << "Mulciply every component with 2.0" << endl;
/fLet mulciply teble's every wvalue with 2.0 /fLet multiply table's every value with 2.0
for f{int 1=0; i < thl.length;i++){ for (int 1 = 0; i < thl.length; 1i++){
thl[i]= 2.0 * thl[i]: thl[i] = 2.0 * thl[i]:
3 }
/fWhile loop //Thile loop
int 3 = 0; int 3 = 0
while { j < thl.length }{ while {3 < thl.length){
System.out.println("thIl["+j+"]= "+thl1[3]]: cout << "EDI["+3+"1= "+th1[j] << endl;
R A+
¥ }
+ }
v -
£ Translate
~Save programming exannpl
Example name(fin): iTaqukun Lapileaynti |Example name{eng): |Going Through Table |
File name: !table‘I | Choose categary: | Tables v|

F 3 University of Turku o
Department of Infcrmglti?; ;’echnol!{:»g;r 4
Figure 3: Creation and editing view of programming examples

VILLE supports Java syntax quite well. It understands basic variable types (int, float,
double, Boolean), String classes main aspects, conditional statements (if, else-if and
else), loop-structures (for and while), one and two dimensional tables and records. With
these programming concepts, the basic functionalities of programming can be illustrated
quite well.

3.3. Visualization view

In the visualization view (Figure 4) users can follow the execution of the programming
examples. On the left side of the view lies control buttons for the visualization and the
code listing of the programming example. With the controls user can start automatic

program execution or alternatively move one step at a time both forwards and
backwards in the program. Moreover user can add breakpoints to any code line and
move between the breakpoints with the program controls similar to debuggers.

Furthermore control area can be used to change the program code language to Java,
pseudo code or C++, even during the execution. On the right side of the view lies call
stack, on which the method calls are opened on their own frames. At the bottom of the
view lie fields that change based on the program states and an execution slider that can
used to move around in program execution. In those fields are shown code line
explanations, program output, variable states and roles of the variables.

==
B Applet Viewer: ville.VilleGUl.class [(=163
visual learning tool
Animation contrals Method stack
Execution speed Choose program language
= - @dava OPseudo O CHr factorial(10) I
wut| factorial(9) |
Factorial 2| factorial(®)]
public static void main{Stringl] args){ eit| factorial(f)
Systen.out.printlni®Factorial of mmber § is " -
System. out.princln(’. . and muuber 10 "+factorial Pt factorial(6)
public static int factorial(int lulu){
if (luku == 13 return L;

recurn 1; ¥

Sy Return valus

\

|

|
(]
‘ public static int factorialiint luku){ | — if {luku == 1){
|

|

\

|

|

\

\

recurn luku * factcorial (luku-1);
< | >
Program line explanation Program oukput State of variables
Return 720 Factorial of number 5 is 120 nain: args ==

factorial(l0): luku == 10
factorial (9): luku ==
factorial(8): luku ==
factorial(7): luku ==
factorial (6): luku ==

oo @ oo

. University of Turku v
Department of Information Technology %&té

Figure 4: the visualization view of VILLE in call stack mode

The program execution in the visualization view can also be followed in so-called
parallel view (Figure 5). Then the programming example opens in two parallel frames.
User can select the language in both frames and compare the syntaxes and the program
execution between two languages.

Applet Viewer: ville.VilleGUI.class E||E|EI

VILLE

visual learning tool

Animation controls

[J e [> [o Jon | 7]

Execution speed hoose program language Choose program language

= (%) Java CrPseudn (O CH+ O Java (%) Pseudd O+

Factorial Factorial

| public stacic woid main(Scring[] args)({ def main {args):

System. out _println("Factorial of mumber 5 is "t+factorialiS)); print "Factorial of number 5 is "+factorial(5)
System.out.println("..and nuwber 10 "+factoriali(lO}); print "..and nuwber 10 "+factorial (10}

}
| public stacic int factorialline luwkul{ def factorial(luku):
if (luku == 1){ if luku == 1:

return l; return 1

alse:
return luku * factorial{luku-1}; f return luku * rial{luku-1}

Program line explanation Program output State of variables

Return 720 Factorial of number 5 iz 120 wain: args ==
factorial (10): luku
factorial (9): luku
factorial (G):
factorial (7):
factorial (6):

£ 8 =
oo
L
m o @ e
=
=

University of Turku @&k
Department of Information Technology %&td

Figure 5: the visualization view of VILLE in parallel mode

4. Discussion

The primary goal of VILLE is to emphasize the programming language independency
view of basic programming concepts and enhance the learning process. From the learner
point of view is much more important to conquer the basic principles behind basic
programming concepts such as loop-control structure regardless of programming
language. Use of pseudo language is recommended and reasonable for basic
programming courses and with VILLE the teacher can define him own pseudo language
and visualize step by step its’ execution and effects to variable state and program
output. The concept of the roles of variables is gaining ground in computer science and
especially in teaching of programming because it gives a programming paradigm
independent and higher view of classifying the variables based on their behaviour. In
addition, the concept of roles of variables provides also more information about the
program code. In VILLE, a description line is generated for every executed code line
in which these secondary cues like natural language explanation and the role
information are include. These secondary cues according to Petre [20] aid students to
understand the relations between different concepts and structures, which is essential
part of the process of learn to program.

With VILLE the teacher can select the programming language to use in his basic
programming course and even self-define it to suit his purposes. In addition, the teacher
can create an example collection and publish it the internet where students can reach it
at any time.

4.1. VILLE vs. Jeliot3

VILLE and Jeliot 3 are same type of applications which can execute step by step a
program code, but there are also some differences between those two advanced tools.
Jeliot3 support only JAVA programming language while VILLE support JAVA, C++
and pseudo language, and the latter can be also self-defined.

In VILLE, user can compare same program code on two different programming
languages in the parallel view and by doing that, we can emphasize the language
independency of the basic programming concepts from programming. This possibility
aids the process of learning new programming languages or changing from one
programming language to other.

Jeliot3 visualized the changed of value of variables with graphical symbols and
execution is divided more detail than in VILLE in which the visualization goes as we
call it row by row highlighting current line and previous line at the same time.
Moreover, VILLE generates automatically a description line for every executed
program code line. The description is in natural language and it includes the role
information of variables and dynamic information of state of variables.

In Jeliot3 user can insert directly program code and animate it. To do the same in
VILLE user have to change from one view to another; first enter the code in creation
view and then change to visualization view to trace the execution of program code.
Moreover, with Jeliot3 user can step the execution only forward and the next step can
take place after the previous phase’s visualization is completed. VILLE enables control
of execution step by step both forward and backward in the phase defined by the
learner. More over, in both systems the visualizations can be viewed as an animation
and the execution speed can be altered.

Hence, VILLE visualization is more abstract and higher level than in Jeliot3. In
addition, VILLE includes predefined examples with navigation and modification
directly from user interface. These examples can be also published in the internet as an
example collection. These feature are absent in Jeliot3.

5. Future work

In future, VILLE is going to be under continuous development process. At present, new
program examples can be created in modification view and the goal is to integrate
modification features directly to visualization view. Moreover, it is planned that VILLE

10

will support execution time pop-up questions about the trace of execution and changes
in program states. Also, Jeliot’s theatre view is planned to be integrated to the
visualization view of VILLE, which gives much more detailed information about
changes of variable states. Also, the roles of variables are now presented in textual form
and thus some kind of graphical visualizations are going to be developed for better
visualization.

6. Conclusions

VILLE is programming language independent tool for teaching novice programming.
Teacher can create an example collection for his own course and even define the pseudo
language itself. In the end, VILLE constitute a good amendment to teaching basic
programming by offering more abstract concepts to handle basic programming related
issues and with it student can easier conquer the barriers in the learning process of learn
to program.

In fall, VILLE is going to be evaluated in first programming courses at University of
Turku. The research will focus on engagement level of students, effectiveness and
viability of VILLE and its’ features

References

[1] Ben-Ari, M. 2001. Program Visualization in Theory and Practice.
Informatik/Informatique 2, pp. 8—11.

[2] Brown, M.H. 1988. Exploring Algorithms Using Balsa II. IEEE Computer,
21(5), pp. 14-36.

[3] Brown, M.H. 1991. Zeus: A System for Algorithm Animation and Multi-View
Editing. In the Proceedings of IEEE Workshop on Visual Languages, pp. 4-9.
New York: IEEE Computer Society Press.

[4] Boada I, Soler J., Prados F. & Poch J. 2004. A Teaching/Learning Support Tool
for Introductory Programming Courses. In the Proceedings of the Fifth
International Conference on Information Technology Based Higher Education
and Training. ITHET 2004, pp. 604—609.

[5] Carlisle, M.C., Wilson, T.A., Humphries, J.W. & Hadfield, S.M. 2005.
RAPTOR: A Visual Programming Environment for Teaching Algorithmic
Problem Solving. In the Proceedings of the 36th SIGCSE Technical Symposium
on Computer Science Education, St. Louis, Missouri, USA, pp. 176—180.

[6] Garner, S. 2006. The Development, Use and Evaluation of a Program Design
Tool in the Learning and Teaching of Software Development. Issues in
Informing Science and Information Technology, vol. 3, pp. 253-260.

11

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Grandell, L., Peltoméki, M., Back, R.-J. & Salakoski, T. 2006. Why Complicate
Things? Introducing Programming in High School Using Python. In the
Proceedings of the 8th Austalian Conference on Computing Education, Hobart,
Australia, vol. 52, pp. 71-80.

Grissom, S., McNally, M. & Naps, T. 2003. Algorithm Visualization in CS
Education: Comparing Levels of Student Engagement. In the Proceedings of the
ACM Symposium on Software Visualization, San Diego, California, pp. 87-94.

Hundhausen, C.D. & Brown, J.L. 2007. What You See Is What You Code: A
'Live' Algorithm Development and Visualization Environment for Novice
Learners. Journal of Visual Languages and Computing, vol.18, no. 1, pp. 22—47.

Hundhausen, C.D., Douglas, S.A. & Stasko, J.D. 2002. A Meta-study of
Algorithm Visualization Effectiveness. Journal of Visual Languages and
Computing 13, pp. 259-290.

Kannusméki, O., Moreno, A., Myller, N. & Sutinen, E. 2004. What a Novice
Wants: Students Using Program Visualization in Distance Programming Course.
In the Proceedings of the Third Program Visualization Workshop (PVW'04),
Warwick, UK, pp. 126-133.

Kolling, M., Quig, B., Patterson, A. and Rosenberg, J. 2003. The BlueJ system
and its pedagogy. Journal of Computer Science Education, Special issue on
Learning and Teaching Object Technology, vol. 13, no. 4.

Laakso, M.-J., Salakoski, T., Grandell, L., Qiu, X., Korhonen, A. & Malmi, L.
2005a. Multi-Perspective Study of Novice Learners Adopting the Visual
Algorithm Simulation Exercise System TRAKLA?2. Informatics in Education, 4
(1), pp. 49-68.

Laakso, M.-J., Salakoski, T. & Korhonen, A. 2005b. The Feasibility of
Automatic Assessment and Feedback. In the Proceedings of Cognition and
Exploratory Learning in Digital Age (CELDA 2005). IEEE Technical
Committee on Learning Technology and Japanese Society of Information and
Systems in Education. Porto, Portugal, pp. 113-122.

Lister, R., Adams, S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M.,
McCartney, R., Mostrom, J.E., Sanders, K., Seppild, O., Simon, B. & Thomas,
L. 2004. A Multi-National Study of Reading and Tracing Skills in Novice
Programmers. SIGCSE Bulletin, vol. 36, nro. 4, pp. 119-150.

Malmi, L., Karavirta, V., Korhonen, A., Nikander, J., Seppild, O. & Silvasti, P.
2004. Visual Algorithm Simulation Exercise System with Automatic
Assessment: TRAKLA2. Informatics in Education, 3 (2), pp. 267-288.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.,
Laxer, C., Thomas, L., Utting, I. & Wilusz, T. 2001. A Multi-National, Multi-
Institutional Study of Assessment of Programming Skills of First-year CS
Students. ACM SIGCSE Bulletin, vol. 33, no. 4, pp. 125-140.

12

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Naps, T. L., RoBling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen,
C., Korhonen, A., Malmi, L., McNally, M., Rodger, S. & Velazquez-Iturbide, J.
A. 2002. Exploring the Role of Visualization and Engagement in Computer
Science Education. In the Working group reports from ITiCSE on Innovation
and Technology in Computer Science Education, vol. 35, no. 2, pp. 131-152.

Oechsle, R. & Schmitt, T. 2002. JAVAVIS: Automatic Program Visualization
with Object and Sequence Diagrams Using the Java Debug Interface (JDI). In
the Diehl, S. (Ed.), Software Visualization. vol. 2269 of Lecture Notes in
Computer Science. Springer-Verlag, pp. 176—190.

Petre, M. 1995. Why Looking Isn’t Always Seeing: Readership Skills and
Graphical Programming. Communications of the ACM, vol. 38, nro. 6, s. 33—44.

Sajaniemi J. 2002. PlanAni - A System for Visualizing Roles of Variables to
Novice Programmers. University of Joensuu, Department of Computer Science,
Technical Report, Series A, Report A-2002-4.

Sajaniemi, J. & Kuittinen, M. 2003. Program Animation Based on the Roles of
Variables. In the Proceedings of the 2003 ACM Symposium on Software
Visualization, San Diego, Kalifornia, pp. 7—ff.

Stasko, J. 1992. Animating Algorithms with XTANGO. ACM SIGACT News,
vol. 23, no. 2, pp. 67-71.

Stern, L., Sendergaard, H. & Naish, L. 1999. A Strategy for Managing Content
Complexity in Algorithm Animation. In the Proceedings of the 4th annual
SIGCSE/SIGCUE ITiCSE Conference on Innovation and Technology In
Computer Science Education, Krakova, Puola, pp.127-130.

Tudoreanu, M.E. 2003. Designing Effective Program Visualization Tools for
Reducing User's Cognitive Effort. In the Proceedings of the 2003 ACM
Symposium on Software Visualization, San Diego, California, 105—ff.

13

TurRKU

CENTRE for

COMPUTER
SCIENCE

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

University of Turku
« Department of Information Technology
« Department of Mathematics

Abo Akademi University
« Department of Information Technologies

=7 Turku School of Economics
5 « Institute of Information Systems Sciences

ISBN 978-952-12-1917-7
ISSN 1239-1891

