

Tur ku Cent re Computer Sciencefor

TUCS Technical Report
No 828, August 2007

Author One | Author Two | Author Three
Author Four | Author Five

Title of the Technical Report

Dubravka Ilić | Elena Troubitsyna |
Linas Laibinis | Colin Snook

Formal Model-Driven
Development of Fault
Tolerant Control Systems

TUCS Technical Report
No 828, August 2007

Formal Model-Driven Development of
Fault Tolerant Control Systems

Dubravka Ilić

TUCS, Åbo Akademi University, Department of Information
Technologies, Joukahaisenkatu 3-5 A, 5th floor
20520 Turku, FINLAND

Elena Troubitsyna
Åbo Akademi University, Department of Information Technologies
Technologies, Joukahaisenkatu 3-5 A, 5th floor
20520 Turku, FINLAND

Linas Laibinis
Åbo Akademi University, Department of Information Technologies
Technologies, Joukahaisenkatu 3-5 A, 5th floor
20520 Turku, FINLAND

Colin Snook
School of Electronics and Computer Science,
University of Southampton, SO17 1BJ, UK

Abstract

Fault tolerance techniques aim at ensuring that a system continues to
operate properly even in the presence of faults. Fault tolerance is especially
important in safety-critical systems, where system failures might have
catastrophic consequences. Transient faults – temporal defects within the
system – are typical for control systems. However, they require complex
mechanisms to tolerate them. In this paper, we propose an approach to
formal model-driven development of Failure Management System (FMS) – a
software component implementing a mechanism for tolerating transient
faults in control systems in avionics. In our development we integrate
formal modelling and verification in the B Method with graphical modelling
in UML-B. UML-B is a specialized subset of UML which supports automatic
translation of the subset of UML diagrams into the B specifications. By
integrating formal and graphical modelling we combine benefits of visual
modelling with rigorous verification. We develop generic patterns for
modelling the FMS at different development stages starting at high level of
abstraction till detailed pre-implementation specification. Correctness of
model transformations is ensured by refinement relation. The developed
generic patterns can be easily reused in the product line development in the
avionics domain. Hence, the proposed approach facilitates reuse and
leverages efficiency while ensuring dependability of developed systems.

Keywords: B Method, control systems, fault tolerance, refinement,
transient faults, UML-B

TUCS Laboratory
Distributed Systems Design

1. Introduction

Nowadays complexity of software increases constantly and rapidly. Moreover,
competitive software markets impose additional demands on software development in
terms of its time efficiency and cost effectiveness. However, speeding up software
development to meet this requirement involves significant risks, especially when
developing dependable systems [1].
 To guarantee dependability, we should ensure that software is not only fault-free but
also is able to cope with the faults of the other system components. In this paper we
propose an approach to developing a software component called Failure Management
System (FMS), which implements a mechanism for tolerating transient faults in control
systems. FMS is a typical subcomponent of an embedded control system in the avionic
domain, dedicated to fault tolerance. The main purpose of the FMS is to protect the
controlling software – controller – from failures caused by transient sensor faults.
 Transient faults [2], are common type of faults in control systems. Transient faults
are temporal defects within the system. They may appear for a short time while the
system is operating, then disappear, but possibly reappear later. However, even their
short presence may lead to a system failure. Obviously, the lack of tolerance to these
faults in the system could have severe consequences. Hence, ensuring correct
functioning of the mechanism for tolerating transient faults is essential for ensuring
dependability of the overall control system.
 To provide cost-effective and time-efficient development of such system, we
consider it in the context of software product lines [3]. Recently, software product lines
development paradigm has emerged as a technique leveraging cost-effectiveness and
time-efficiency of development process. It is based on well-structured reuse of already
developed software assets. If correctness of reusable software assets is guaranteed and
reuse is done in a rigorous manner then such a development technique potentially
increases dependability of developed systems. To achieve this we present an approach
to development of generic reusable patterns modelling FMS at different abstraction
levels. Our approach is an example of formalized model-driven development [4]. It
integrates formal framework of the B Method [5] with visual modelling in UML-B [6].
The B Method is a formal framework for the development of dependable systems
correct by construction. It adopts refinement approach – a paradigm for top-down
development of systems correct by construction. To ensure a wide acceptance of our
approach we combine formal modelling and verification with graphical modelling in
UML-B. UML-B is a specialized subset of UML [7], which enables automatic
translation of UML diagrams into the B specifications. In other words, it allows us to
hide the formal B syntax behind the UML notation while still rely on the B semantics.
 We show how to develop the FMS generic models in UML-B, through a number of
development phases supported by refinement-based model transformations.
Development starts from an abstract FMS model expressed in UML-B. In general, we
model fault tolerance as an intrinsic part of the system by specifying its main steps:
error detection and error recovery. The system structure and behaviour are specified
using different types of UML-B diagrams. This results in a well-structured system

1

specification. Each new development phase incorporates more details of the fault
tolerance mechanisms into previous development phases, in a structured manner, while
preserving already specified system properties and behaviour. The development
completes with a fully described model of the FMS structure and behaviour, represented
by a set of development templates. They can be instantiated by concrete data to obtain
specifications of similar systems in the application domain.
 To automate the process of obtaining formal B specifications from UML-B models,
we use the translator tool U2B [8]. Correctness of the development is verified using
AtelierB [9] – an automated tool support for the B Method. Therefore, the proposed
approach has a high degree of automation.
 The paper is organized as follows. In Section 2 we introduce the FSM by describing
its structure and typical patterns of its behaviour. Then, Section 3 briefly outlines our
formal modelling frameworks – the B Method and UML-B. We describe the main
modelling concepts of both and their development paradigms. The main contribution of
the paper is presented in Section 4, where we describe in detail the development of the
FMS in UML-B. We start from an abstract model of the FMS and obtain more detailed
FMS models through a number of development phases. Each phase first shortly
describes what is modelled, and then proceeds with presenting the models in detail.
Each phase concludes with the corresponding B model, obtained automatically from the
UML-B models using the tool support, U2B. Finally, in Section 5, we discuss some
related work and conclude the presented approach by outlining our future work.

2. Failure Management System

Embedded control systems are typical examples of reactive systems. The controlling
software of such systems, called controller, is designed to react to stimuli of the
application by setting actuators to certain values. The behaviour of the application is
monitored by sensors – the devices that transform physical parameters of the application
into signals, which are then used as inputs by the controller. Typical structure of a
control system is shown in Fig. 1.

Fig. 1. Structure of an embedded control system

 In general, sensors can be classified into analogue or switch-type sensors, and hence,
the corresponding inputs can be represented as numerical or Boolean values. The
behaviour of a control system is cyclic. The controller processes inputs obtained from
the sensors, calculates new values to which the actuators will be set, and starts a new
cycle.

2

 In this paper we adopt the systems approach, where both the controlled application
and the controller are modelled together.
 The Failure Management System (FMS) [10, 11] is a part of the controller (shown in
Fig. 2). It is designed to protect the system from erroneous sensor inputs and prevent
their further propagation. Hence, it can be perceived as its protective “wrapper”.

Fig. 2. Position of the FMS within an embedded control system

 In this paper we consider inputs to be obtained from multiple homogenous analogue
sensors, i.e., a set of redundant sensors of the same type, monitoring the same physical
process. The FMS obtains sensor readings as its input, analyses them and produces the
result of analysis as the output to the control algorithm. In its turn, the control algorithm
performs the system controlling actions. While calculating the output, the FMS has to
ensure that only fault-free inputs received from the system environment are passed to
the controller. To achieve this, we assume that initially the system is error-free. The
FMS operating cycle starts by obtaining the readings from the monitored sensors as the
inputs to the FMS. Then, the FMS performs error detection on these inputs by applying
the predefined error detection mechanism. As a result, the inputs are categorized as
fault-free or faulty. Then, the FMS performs the input analysis and, depending on which
action is chosen, it either simply outputs the sensor reading, calculates it based on the
last obtained fault-free sensor reading, or proceeds with the system shut down. Next we
describe the error detection mechanism and the input analysis in detail.

2.1. Error detection mechanism
The error detection mechanism is the most complex part of the FMS. It detects errors in
sensor readings and classifies inputs as faulty or fault-free. The mechanism has a
predefined architecture of so called evaluation tests as shown in Fig. 3. An evaluation
test is a computation required to classify sensor reading as faulty or fault-free. Since we
consider only homogeneous sensors, the same set of evaluation tests should be executed
on input readings from each sensor. In case of heterogeneous sensors, the architecture of
detection would be different – possibly different sets of evaluation tests would be
needed for each sensor.
 The architecture of evaluation tests determines the order of test execution based on
the increasing test complexity. The first tests to be executed are called simple tests. An
input reading may pass through several simple tests, which can be applied in any order.

3

When triggered, a simple test runs using solely an input reading from the sensor. After
the test is executed, it is marked as passed for the current input, which in turn may
trigger the execution of some other associated test defined by the architecture. After all
simple test are executed, the control is passed to the complex tests with the level of
complexity 1. The complex tests may use input readings from several sensors. However,
all simple tests required for these sensors should be executed before any complex test is
performed, as shown in Fig. 3.

Fig. 3. Architecture of error detection mechanism

 In general, there might be L+1 levels of test execution, where the last one applies the
complex tests with the level of complexity L. The execution of a test of this level
depends not only on the execution of the previous simple tests, but also on the execution
of the complex tests with the level of complexity up to L-1. If the input requires several
tests of the same complexity level, they can be executed in any order. However, all the
applicable tests of the lower levels should be already executed. Hence, the detection
procedure operates in stages, first executing all the simple tests associated with a certain
input and then all complex tests of increasing complexity.
 Both simple and complex evaluation tests may vary depending on the application
domain. In avionics, the most commonly used simple tests for analogue sensors are the
magnitude test, the rate test, and the predicted value test [11].
 The magnitude test compares the value of an input reading with some predefined
limit. If the limit is exceeded, the error is detected and the input is classified as faulty.
Otherwise, it is considered to be fault-free.
 Similarly, the rate test compares a rate of the value of an input reading over a fixed
time interval with a predefined rate limit. The error is detected if this limit is exceeded.
 The predicted value test compares the value of an input reading with a pre-computed,
i.e., expected value. The error is detected if the discrepancy between the obtained
reading and the calculated value is outside of predefined margins.
 An example of a complex test applicable to homogeneous sensors is a dual sensor
difference test, which compares readings from two sensors and detects an error if the
difference between their values exceeds a predefined limit. According to the
architecture of tests, this test is enabled only after the magnitude, rate, and predicted
value tests are passed.
 The results of tests performed at the error detection stage, are used in input analysis.
This stage is shortly described in the next section.

4

2.2. Input analysis
The input analysis performs error recovery by masking faulty, yet recoverable, inputs.
Hence, it prevents propagation of erroneous inputs further into the controller.
 To explain how remedial actions work, during the error recovery, let us for simplicity
consider a single sensor. Assume that a system is fault-free and receives a fault-free
input. Then, healthy action is activated. It assigns the input the status ok and forwards it
unchanged as an output. Let us now assume that the system receives a faulty input.
Then, to not overreact, the FMS reserves a certain time limit for an input to recover.
Temporary action assigns the input the status suspected and calculates the output using
the last good value of this input obtained in the previous FMS cycle. Temporary actions
are performed until the number of consequently received faulty inputs reaches some
predefined limit. If the sensor before reaching this predefined limit starts to produce
fault-free inputs, the system returns to the normal operating state and healthy actions are
activated again. However, when the sensor fails to recover within the predefined
number of cycles, then confirmation action is activated. It assigns the input the status
confirmed failed. Then, the FMS proceeds with the control actions defined for freezing
(stopping) the system.

2.3. The summary of the FMS behaviour
The behaviour of the FMS described above can be summarized as shown in Fig. 4.

Fig. 4. The FMS behaviour pattern

For simplicity, it presents possible FMS operating cycles for a single sensor. Namely, it
shows the flow of the detection decisions and the effect of the FMS actions after the

5

input is received from the system environment. In the absence of faults, the system
operates in the state Normal. However, when the input is faulty, it transits to the state
Recover. The system switches back to the state Normal, if the input has recovered, or stays
in the state Recover, if the input is still suspected. The system enters the state Failed, if the
input has failed to recover.
 The given behavioural pattern can be easily generalized for N multiple sensors. In
this case, the system failure state might be reached when several or all sensors have
failed. The transition to the failure state corresponds to freezing the system or switching
to a backup controller (if possible).
 The behaviour pattern described above can be used in the product line development
[3] of the controlling software for fault tolerant systems.
 In the next section we introduce our modelling frameworks – the B Method and
UML-B.

3. Frameworks for formal modelling and
refinement – the B Method and UML-B

3.1. The B Method
The B Method [5, 12] (further referred to as B) is an approach for specifying and
designing dependable software systems. It is based on set theory and first-order logic.
 A specification in B is represented by a module or a set of modules, called Abstract
Machines. The common pseudo-programming notation – Abstract Machine Notation
(AMN) – is used to construct and formally verify them. An abstract machine
encapsulates a state and events of the specification and has the following general form:

MACHINE Name
SETS Types
VARIABLES v
INVARIANT I
INITIALISATION Init

EVENTS
 E1 = …
 …
 En = …
END

Each machine is uniquely identified by its Name. The state variables of the machine are
declared in the VARIABLES clause and initialized in the INITIALISATION clause.
The variables in B are strongly typed by constraining predicates of the INVARIANT
clause. The constraining predicates are conjoint by conjunction (denoted as ∧). All types
in B are represented by non-empty sets and hence set membership (denoted as ∈)
expresses typing constraint for a variable, e.g., x∈TYPE. Local types can be introduced

6

by enumerating the elements of the type, e.g., TYPE = {element1, element2,…} in the
SETS clause. Sometimes, it is useful to introduce user’s own definitions as the
abbreviations for certain complex expressions. Such definitions can be formulated in the
DEFINITIONS clause.
 In this paper we adopt the event-based approach to system modelling [13, 14]. The
events are defined in the EVENTS clause as the guarded operations of the form:

Event = SELECT cond THEN body END

Here cond is a state predicate on the variables, and body is a B statement describing
how the state variables are affected by the event. If cond is satisfied, the behaviour of
the event corresponds to the execution of its body. If cond is false at the current state
then the event is disabled, i.e., its execution is blocked.
 The events of the machine are atomic, meaning that, once an execution of an event
has started, it cannot be interrupted until completion. The list of B statements that we
are using to describe the computation in events is shown in Table 1.

Table 1. List of some commonly used B statements
Statement Description
x := e Assignment
x, y := e1, e2 Multiple assignment
S1 ; S2 Sequential composition
S1 || S2 Parallel execution of S1 and S2

x :∈ T Nondeterministic assignment – assigns variable x
arbitrary value from given set T

ANY x WHERE Q THEN S END
Nondeterministic block – introduces a new local
variable x according to the predicate Q, which is
then used in S

 The first three constructs – assignments and sequential composition – have the
standard meaning. The remaining constructs allow us to model parallel and
nondeterministic behaviour in a specification. The detailed description of the B
statements can be found elsewhere [12].

3.1.1. Verifying correctness

The B Method has the weakest precondition semantics [15]. Let S be a statement and P
a postcondition predicate, i.e., a set of states which can be reached after executing S.
Then [S]P represents the weakest precondition that guarantees establishing P after
executing S.
 The weakest precondition rules for a subset of B statements used in this paper are
defined as follows:

 [skip] P ⇔ P
 [x:=E] P ⇔ P[E/x]
 [S1 || S2] P ⇔ [S1] P and [S2] P
 [ANY x WHERE Q THEN S END] P ⇔ ∀ x (Q ⇒ [S] P)

These rules serve as a basis for verifying correctness of specifications in B. Namely, to
ensure correctness of a B machine, we should verify that the initialisation preserves the

7

invariant and that the invariant is valid, i.e., that there are some possible machine states
which satisfy it. In other words, initialisation statement INIT must always guarantee the
machine invariant I:

[INIT] I ⇔ true (1)

 and
∃x.I ⇔ true (2)

Moreover, we should ensure that every event Ei also preserves the invariant I:

I ∧ gi ⇒ [Si] I (3)

Here gi is the guard and Si is the body of the event Ei. Finally, we should also verify that
the system is deadlock-free, i.e., whenever the invariant I holds, at least one event Ei is
enabled:

I ⇒ gi (4)
n
1V

Here gi (i=1,…, n) is the guard of the event Ei. When all (1), (2), (3), and (4) are
established by proofs, the correctness of the B machine is verified.

3.1.2. Refinement of B models

The formal development in B is based on stepwise refinement [16]. The development
starts from an abstract model, which is then gradually augmented by implementation
details. We build a sequence of more concrete models via a number of correctness
preserving steps, called refinements. The result of a refinement step in B is a machine
called REFINEMENT. Its structure coincides with the structure of the abstract
machine. In addition, it explicitly states which machine it refines.
 We refine a machine by refining its state and events. In this paper we extensively use
data refinement – a general form of refinement, which allows us to change the state
space of a machine. To replace abstract data structures with the refined ones, we define
the refinement relation, so called gluing invariant, that explicitly states the connection
between the newly introduced variables and the variables that they replace. The
refinement relation constitutes a part of the invariant of the refining machine.
 To ensure correctness of a refinement, we should verify that initialization and each
event of the refining machine refine the initialization and the corresponding events of
the more abstract machine:

[INIT’]¬[INIT]¬I’ ⇔ true (5)

 and
I ∧ I’ ∧ gi’ ⇒ gi ∧ [Si’]¬[Si]¬I’ (6)

Here INIT’ and INIT are respectively the initializations of the refining and the abstract
machine, and I’ and I are their invariants. gi’ and gi are the guards of the refining and its
corresponding abstract event, and Si’ and Si are their bodies. Informally, (5) and (6)
require that any execution of the concrete model should correspond to one of the
allowed executions of the abstract model.

8

Moreover, we should verify that refinement does not introduce additional deadlocks:

I ∧ I’ ∧ gi ⇒ gi’ (7) n
1V

where gi’ (i=1,…, n) is the guard of the event Ei’.
 While developing a system by refinement, we often need to introduce new variables
while leaving the existing data structure unaffected. This is a specific form of data
refinement called superposition refinement [16]. It allows us to introduce new events
describing computations on the new variables. A new event should refine the statement
skip of the abstract machine. In other words, it cannot affect the old variables. In
addition, we should guarantee that it does not take control indefinitely, i.e., that it
terminates. To ensure this, we define the variant – a natural number expression which
should be decreased by each execution of a new event. Therefore, for each new event
we should verify that whenever the invariant I’ of the refining machine holds and the
guard gi’ of the new event is enabled, the execution of its body Si’ decreases the variant V:

I’ ∧ gi ⇒ [n:=V; Si’] (V < n) and V ∈ NAT (8)

 A high degree of automation in verifying correctness is provided by the available
tool support, e.g., AtelierB [9]. The verification can be completely automatic or user-
assisted. In the former case, the tool generates the required proof obligations (1) – (8)
and discharges them without user’s help. In the latter case, the user proves certain proof
obligations using the interactive prover provided by the tool.

3.2. UML-B
Since it was introduced by Rumbaugh, Jacobson and Booch, a graphical modelling
language UML [7] has achieved significant dissemination among the industrial
engineers worldwide. However, despite its popularity, it has been criticized for the lack
of formal semantics and ambiguity. Although a freedom to interpret the UML graphical
notation in different ways largely contributed to its growing popularity, today the UML
community pays increasing attention to providing a precise semantics to UML. This
motivated development of the UML-B [6].
 UML-B is a specialisation of UML which defines a formal graphical modelling
notation. It is based on the UML built-in light-weight extension mechanism called
profiles, which allows customization of UML to different domains. Profiles are only
allowed to contain tagged values, stereotypes, constraints and data types [17].
Stereotypes represent variations of existing UML modelling elements with the same
form (having the same attributes and relationships) but with a modified intent [17]. A
stereotype can have additional constraints on the base element it extends. It also has
tagged values which add additional information to the stereotyped element. Tagged
values are defined as stereotype properties expressed as name-value pairs, where the
name is used as a tag.
 UML-B customizes UML by introducing specific stereotypes that allow us to use the
concepts of the formal modelling language B while creating UML models. Moreover, it
adds a corresponding semantics to the predefined subset of UML entities. To support

9

modelling in UML-B, we use the Rational Rose tool [18] with an additional plugin – the
translator tool U2B [8]. It allows us to automatically convert the UML-B models into
their equivalent B models. We can then verify the model correctness by using the B tool
support, e.g., AtelierB.
 A UML-B model of a system is represented by package diagram, class diagram and
statechart. Next we briefly describe each of these concepts.

3.2.1. UML-B Package

A UML-B package corresponds to a B machine or a refinement. Namely, a package
with the stereotype <<machine>> represents a B machine, whereas a package with the
stereotype <<refinement>> represents a B refinement. A package is used to group together
a class diagram and the associated statecharts. It describes a system structure and
behaviour at a certain level of abstraction. The overall UML-B development results in a
set of packages and dependencies between them. The top level package represents an
abstract view on the system, whereas the subsequent packages describe the system on
the lower levels of abstraction.

3.2.2. UML-B Class diagram

A UML-B class diagram captures the functional requirements of the modelled system.
The classes of a class diagram define sets, constants, variables and events of a B
machine or a refinement, as shown in Fig. 5. Since a UML-B class represents a set of
instances, its attributes are replicated for each instance. Hence, they correspond to B
variables which type is a function from the instance set to the attribute type. For
instance, the attribute b of the class B in Fig. 5 is typed in the corresponding B machine
M as a total function from the set of instances of the class B to the type of b, i.e.,
b∈B_SET → BOOL.

M
<<machine>>

B
b : BOOL = FALSE

A
<<constant>> a : NAT

0..* 0..10..*

+c

0..1

Fig. 5. An example of a UML-B class diagram and its corresponding B machine

 UML-B allows adding extra modelling information in the form of UML-B clauses
for modelling B specific constructs that cannot be expressed diagrammatically. For
instance, SETS is a clause that is usually attached to a class. It allows us to explicitly
define attribute types as enumerated or deferred sets in addition to the already
predefined types NAT, BOOL etc. Another frequently used clause is INVARIANT, which can
be attached to a class to specify system properties.

10

11

 UML-B class attributes can be stereotyped as <<constant>> or <<static>>. The attribute
with the stereotype <<constant>> defines a B constant (e.g., see the constant a in Fig. 5).
An attribute with the stereotype <<static>> belongs to a particular class but not its
instance. Hence, its type is just the attribute type rather then a function from the set of
instances. A class with the only one instance is called utility class. The attributes of a
utility class are all static.
 UML-B classes can be specialized by introducing the inheritance relationship
between a (super)class and its subclasses. A subclass is then typed as a subset of current
instances of its superclass.
 Associations between classes are handled similarly to class attributes. They designate
B variables that are typed depending on the association multiplicity. The detailed list of
association representations can be found elsewhere [6].
 The methods of a class explicitly describe its behaviour. However, every method
specification is combined with the behaviour expressed in a statechart, associated with
that class. UML-B introduces a stereotype for class methods as well. In addition to the
already described stereotype <<static>>, a method can also have the stereotype
<<definition>>. Such method then represents a (parameterized) B definition.

3.2.3. UML-B Statechart

A UML-B statechart describes the behaviour of the class to which it is attached. The
name of a statechart represents a state variable in B (e.g., see the statechart a_state
shown in Fig. 6).

s1 s2

t1

t2

Fig. 6. The statechart a_state describing the behaviour of the class A from
the class diagram in Fig. 5 and its corresponding B machine

 The set of state names in a statechart defines the type of this variable (e.g., see
A_STATES={s1,s2} in the same figure). The transitions between states are defined as B
events that update the state variable. An event is enabled for execution only if the value
of the state variable is equal to the state name from which there is a corresponding
transition. For instance, the event t1 corresponding to the transition t1 in Fig. 6 occurs
only if, for a particular instance thisA of the class A, the state variable a_state has the

value s1, i.e., a_state(thisA)=s1. Furthermore, transitions may have additional guard
conditions and actions. They correspond, respectively, to the guards and bodies of the
appropriate B events.

3.2.4. Action and constraint language – μB

Obtaining a complete behavioural model in UML-B requires defining an additional
notation – the specific action and constraint language μB (micro B) – allowing us to
explicitly specify class methods, transition guards and actions, invariants etc. It is
largely reusing the B abstract machine notation, shown in Table 1. The detailed
description of the language will be introduced later.

3.2.5. Refinement in UML-B

UML-B adopts the stepwise refinement approach to system development. In particular,
it supports superposition refinement [16], a special kind of data refinement, which
allows us to extend the state space while preserving the existing data structures
unaffected. The first step of refining a UML-B model is duplicating the current model in
order to preserve the old class diagrams and statecharts. Then, we introduce new UML-
B elements gradually by incorporating more details representing the system structure
and behaviour.

s1

s2

s21

s22

s21

s22

t3

t2

t1

Fig. 7. Refinement of the statechart a_state from Fig. 6 and its corresponding B machine

 On the abstract level the system is described by a set of class diagram and statecharts
defined within the abstract <<machine>> package. While developing the system in a
number of refinement steps, we create a chain of <<refinement>> packages, where each
subsequent package is a refinement of the previous package. Each refinement step
incorporates more details into the system structure (hence changing the class diagram),
and the behaviour (affecting the statecharts). Specifically, a more detailed behaviour of

12

the system is modelled by hierarchically adding substates and new transitions to the
existing statecharts.
 Let us again consider the simple statechart a_state shown in Fig. 6. Assume that this
is an abstract statechart modelling the behaviour of some hypothetical system. Assume
also that we are refining the system by focusing on more detailed system behaviour
within the state s2. Namely, after executing t1, the system goes first into the substate s21
of the state s2, and then, by executing t3, it reaches the substate s22 within the state s2.
Finally, as previously specified, from the substate s22 it goes back to s1. To depict this
refinement step graphically, we use hierarchical states as shown in Fig. 7.
 To reduce their complexity, we represent statecharts together with hierarchical states
only when introducing them for the first time. In later refinement steps, we adopt the
flat statechart representation. Namely, we omit representing hierarchical states, but
rather directly show the introduced substates and transitions between them. Refinement
of UML-B statecharts is described in detail in [19].
 A more detailed description of development in UML-B is given in the following
section in the context of FMS development, where we also show how to obtain B
models of the FMS from their UML-B counterparts and verify their correctness.

4. Developing the FMS by specification and
refinement in UML-B

Outline of the FMS development in UML-B. Our UML-B development of the FMS is
performed in phases. Each development phase is described by a set of UML-B models
depicting the main structural and behavioural aspects of the FMS at a corresponding
level of abstraction. The subsequent phases correspond to refinement steps. We describe
each phase according to the following template. We start with a short elaboration on
what is modelled at the current phase. Then, we describe the FMS structure by a class
diagram. For each class in the class diagram, we explain its newly introduced attributes
and what they are modelling. After describing the FMS structure, we continue by
describing its behaviour via a statechart. The states of the statechart diagram correspond
to the steps of the FMS operational cycle. The transitions between states describe the
way the FMS cycle evolves.
 While describing the subsequent development phases, we focus only on a refined
FMS structure and behaviour. Description of each development phase concludes with
the corresponding B machine obtained by translating the modelled FMS class diagram
and statechart for that particular phase.
 Next, we present the FMS development phases in detail.

4.1. Abstract specification of the FMS
In the 1st development phase we model the FMS cycle very abstractly: the FMS reads
input values from the sensors, and it either calculates the output or fails. If the output is
successfully calculated, the FMS cycle starts again. In case of a failure, the system
enters the ‘freezing’ state.

13

Fig. 8. The class diagram and the statechart fms_state for
the 1st FMS development phase

Structure. The abstract FMS is modelled as the stereotyped package <<machine>> FMS0,
as shown in Fig. 8. The corresponding class diagram of this package outlines the
general system structure. The utility class FMS models the generic part of the system,
i.e., properties of the whole system. For instance, the calculated system output is
modelled as the attribute Output of the class FMS. Since it is the attribute of the utility
class, it is stereotyped as <<static>>, meaning that the FMS calculates only one output.
The concrete sensor readings, i.e., input values to the FMS are modelled as the attribute
InputN of the class INDEX that models the monitored sensors.
 To model the procedure of calculating the FMS output, we introduce an additional
attribute to the class INDEX – Last_Good_InputN. Moreover, INDEX becomes a superclass of
the subclass ACCEPTABLE_INPUTS, which models the inputs from sensors that did not
fail. In other words, it considers only those inputs that are either fault-free or faulty but
recoverable. Similarly, the subclass GOOD_INPUTS further partitions the space of
ACCEPTABLE_INPUTS by modelling the fault-free inputs only. In B, a subclass is
represented as an element of the power set of superclass instances.

Behaviour. Utility class FMS encapsulates the overall system behaviour within the
attached fms_state statechart, as shown in Fig. 8. The names of the states within this
statechart correspond to the phases of the FMS operating cycle. They have the
following meaning:

- env – the state in which the FMS obtains inputs from the monitored sensors,
- act – the state in which the FMS analyses the inputs and performs recovery

actions, if needed,
- out – the state in which the FMS calculates and sends the output to the controller,
- freeze – the state in which the FMS freezes (i.e., shuts down the system).

 The transitions between states are directly related with the FMS main methods
defined in the class FMS. In general, main methods are the methods of a utility class,
which may trigger other specific methods stereotyped as definitions and often referred
to as actions.
 After the FMS is initialized, the FMS operating cycle starts by executing the main
method Environment. It triggers the action def_Set_InputN, specified on the corresponding

env

actout

freeze

Environm ent / def_Set_InputN

Action / def_Update

Action

Return / def_Set_Output

Fail

<<machine>> FMS0
INDEXFMS

InputN : NAT
Last_Good_InputN : NAT

<<static>> def_Set_InputN()
<<s tatic>> def_Update()

Output : NAT

Environment()
Action()
Return()
Fail()
<<s tatic>> def_Set_Output()

ACCEPTABLE_INPUTS

GOOD_INPUTS

14

transition in the statechart fms_state. Since it changes the values of the attribute InputN, it
is defined as the method of the class INDEX. It simulates the inputs readings by
arbitrarily setting the values of the attribute InputN for all instances of the INDEX class.
The method is specified in μB as follows:

def_Set_InputN == (InputN :∈ INDEX → NAT)

The prefix def designates that the method is a B definition. It is a shorthand notation for
the stereotype <<definition>>. We use it in case when the method is already stereotyped as
<<static>> to avoid duplication of stereotypes. Therefore, whenever def is used, the
stereotype <<definition>> is applied.
 After reading the input values, the FMS executes the method Action defined by the
corresponding transition on the statechart. As a result of executing Action, the FMS either
fails or continues by calculating the output. In case the FMS has successfully calculated
the output, the execution of Action is extended with the def_Update action part. def_Update
is defined as a static method of the class INDEX updating the values of the attributes of
this class. Namely, it alters the set of the monitored sensors, considering in further FMS
cycles only those which did not fail. The acceptable inputs are arbitrarily chosen from
the set of inputs of all operational (non-failed) sensors, as shown in the following μB
method definition:

def_Update == (ACCEPTABLE_INPUTS :∈ {pp | pp ⊆ INDEX};
INDEX := ACCEPTABLE_INPUTS ∥
InputN := ACCEPTABLE_INPUTS ◁ InputN ∥
Last_Good_InputN := ACCEPTABLE_INPUTS ◁ Last_Good_InputN)

In further refinement steps the method Action will be refined to include the concrete
mechanism for error detection and input analysis.
 If the FMS has not failed at the current cycle, it produces the system output by
executing the method Return, which corresponds to the statechart transition with the
same name, as shown in Fig. 8. Its action part is the static method def_Set_Output, defined
within the class FMS. The output is calculated based on the last good input values, which
are systematically updated by the values of the fault-free inputs at each FMS cycle, as
shown in the corresponding μB definition:

def_Set_Output == (GOOD_INPUTS :∈ {pp | pp ⊆ ACCEPTABLE_INPUTS};
 Last_Good_InputN := Last_Good_InputN (GOOD_INPUTS ◁ InputN);

 Output :∈ ran(Last_Good_InputN))

If the FMS fails, it does not resume its cyclic behaviour and stays in the failed (i.e.,
frozen) state.
 To ensure system safety, we define an additional invariant within the specific
invariant clause attached to the FMS class. This safety invariant specifies that the FMS
can operate relying only on the sensors that have not failed. Formally, the invariant is
expressed as follows:

15

safety invariant1==
(fms_state ∈ {out,env} ⇒ ∃ss.(ss∈INDEX ∧ ss∈ ACCEPTABLE_INPUTS)) ∧
(Indx=∅ ⇒ fms_state=freeze)

In other words, when the FMS is in the states out or env, it processes the readings from at
least one operational (non-failed) sensor. When there are no operational sensors, the
FSM should be in the state freeze.

B machine for the phase 1. Before continuing with the FMS development in UML-B,
we use the U2B [8] tool to automatically generate the B model from the obtained UML-
B model. The resulting specification (shown in Fig. 9) is then verified using the prover
tool supported by AtelierB [9].

Fig. 9. Excerpt from the abstract specification of the FMS in B

16

As explained in Sections 3.2.2 and 3.2.3, the UML-B package represented in Fig. 8
corresponds to the B machine FMS0. The classes and subclasses of the class diagram are
translated into B variables, with the exception of a utility class representing the system
in general. Let us observe that the names of the states from the statechart fms_state create
an enumerated set, which in turn is used as the type for the state variable fms_state.
Moreover, the transitions of this diagram create the corresponding B events. The
invariant defines the types of the introduced variables and the desired safety property,
i.e., the fact that the output is produced only if the inputs are fault-free or recovering. As
a result of the first stage we have obtained an initial abstract specification defining the
purpose of the FMS – to produce the output – and formulated the safety invariant that
describes the conditions for doing this.

4.2. Phase 2: Introducing error detection by
refinement

The 2nd FMS development phase introduces an abstract representation of error
detection, performed by the FMS after obtaining the sensor readings. Hence, we
enhance the specification of the FMS cycle to include the error detection mechanism.
Namely, after reading the input values from the monitored sensors, the FMS performs
the predefined error detection procedure on them. As a result, it classifies the inputs as
faulty or fault-free. Then, it continues its operation as specified in the previous
development phase.

<<refinement>> FMSR1

FMS INDEX

Fig. 10. The class diagram and the statechart fms_state for
the 2nd FMS development phase

Structure. The FMS at the 2nd development phase is represented as the stereotyped
package <<refinement>> FMSR1, as shown in Fig. 10. This allows us to connect the models
created at the previous and the current development phase.
 The class diagram of the package FMSR1 (see Fig. 10) preserves the structure defined
at the previous development phase. However, to model the results of the error detection,
we introduce the new attribute Input_In_ErrorN into the class INDEX. It is a boolean
attribute, which is set to TRUE if the error is detected on the monitored input, and to
FALSE otherwise. Initially, we consider that the inputs are fault-free.

Output : NAT

Environm ent()
Detection()
Action()
Return()
Fail()
<<static>> def_Set_Output()

InputN : NAT
Las t_Good_InputN : NAT
Input_In_ErrorN : BOOL

<<s tatic>> def_Set_InputN()
<<s tatic>> def_Update()
<<s tatic>> def_Reinitialize()
<<s tatic>> def_Set_Input_In_ErrorN()

GOOD_INPUTS

ACCEPTABLE_INPUTS

env

out

Return / def_Set_Output || def_Reinitialize

freeze

Fail

act

det

act1

det

Environm ent / def_Set_InputN

act1

Action / def_Update

Detection / def_Set_Input_In_ErrorN

Action

17

Behaviour. To incorporate an abstract model of error detection, we modify the
statechart by adding the new substates det and act1 within the existing state act, and the
corresponding new transition Detection between them. We preserve the flat statechart
representation as explained in Section 3.2.5. The resulting statechart is represented in
Fig. 10.
 Since the transition Detection describes the behaviour of the FMS, it is introduced as
one of the main methods of the utility class FMS. The action part of this transition is
defined as the <<static>> method def_Set_Input_In_ErrorN of the class INDEX. It
nondeterministically assigns values to the variable Input_In_ErrorN:

def_Set_Input_In_ErrorN == (Input_In_ErrorN :∈ INDEX → BOOL)

The newly introduced attribute Input_In_ErrorN together with the existing attributes also
needs to be updated to ensure that only acceptable (fault-free or faulty but recoverable)
inputs are considered in the next FMS cycles. Hence, the method def_Update, specifying
the action part of the main method Action, is refined as follows:

def_Update == (<unchanged> ∥
Input_In_ErrorN := ACCEPTABLE_INPUTS ◁ Input_In_ErrorN)

Here <unchanged> part refers to the expressions defined in the previous development
phase for this particular method.
 After successfully calculating the output, the FMS starts a new cycle. However, since
at each FMS cycle all the inputs are initially considered fault-free, the attribute
Input_In_ErrorN has to be reinitialized. Therefore, we introduce the method def_Reinitialize
into the class INDEX. This method specifies the FMS actions taken while executing the
main method Return. It sets the values of Input_In_ErrorN to FALSE, meaning that none of
the monitored inputs is considered faulty before actual detection is performed, i.e.:

def_Reinitialize == (Input_In_ErrorN := INDEX × {FALSE})

B machine for the phase 2. After translating the created UML-B models for the 2nd
FMS development phase into B, we obtain the refinement machine shown in Fig. 11.

18

Fig. 11. Excerpt from the refinement FMSR1 in B

The refinement FMSR1, created according to Fig. 10, introduces the new (sub)state
variable act_state modelling the substates in the state act. Moreover, the existing event
Action is refined correspondingly. Let us observe that the newly introduced transition
Detection between the substates det and act1 becomes the event Detection, which refines the
old event Action. Its body is specified by the action part def_Set_Input_In_ErrorN of the
corresponding transition. As a result of the second phase we have abstractly modelled
error detection procedure. The abstract specification has been refined by strengthening
the invariant, introducing the new variable and computation on it.

4.3. Phase 3: Introducing input analysis by
refinement

In the 3rd FMS development phase we introduce an abstract representation of input
analysis performed by the FMS after the error detection. Once the FMS detects a faulty
input, it uses the input analysis to decide whether it can be recovered or not. Then it
saves the results of the analysis as the current input status and continues its operation
either by calculating the output or failing when a certain predefined stopping condition
is satisfied.

19

 <<refinement>> FMSR2

Fig. 12. The class diagram and the statechart fms_state for
the 3rd FMS development phase

Structure. At this development phase, the FMS is represented as the stereotyped
package <<refinement>> FMSR2 (see Fig. 12), which refines the package FMSR1 from the
2nd development phase. To introduce the details of the input analysis, we first modify
the structure of our model by altering the class diagram of the package FMSR2. To model
the obtained result of the input analysis, we add the attribute Input_StatusN to the class
INDEX. The type of this attribute is introduced in the additional clause SETS attached to
the class. It is defined as follows:

INPUT_STATUSN = {ok, suspected, confirmed_failed}

where ok stands for a fault-free input, suspected for a faulty yet recoverable input, and
confirmed_failed represents a faulty but non-recoverable input.
 At this phase, we also introduce an abstract representation of the stopping condition
as a stereotyped boolean attribute <<constant>> StopCond in the class FMS. If StopCond is
evaluated to TRUE, the system should be stopped (i.e., shut down).

Behaviour. To specify the input analysis in the FMS operating cycle, we refine the state
act1 in the statechart fms_state. We add the new substates anl and act2 to the state act1 and
the transition Analysis between them, as shown in Fig. 12. This transition describes the
specific behaviour of the FMS and hence it is introduced as an additional main method
in the utility class FMS. Its action part, explicitly describing the input analysis
calculations, is defined as the <<static>> method def_Set_Input_StatusN of the class INDEX.
The method produces a result of the input analysis on the basis of the error detection
results from the previous step. Namely, the inputs detected as faulty become either
suspected or confirmed_failed. On the other hand, the inputs detected as fault-free are given
the status of either ok or suspected. More precisely:

FMS
Output : NAT
<<constant>> StopCond : BOOL

Environm ent()
Detection()
Analys is ()
Action()
Return()
Fail()
<<static>> def_Set_Output()

INDEX
InputN : NAT
Last_Good_InputN : NAT
Input_In_ErrorN : BOOL
Input_StatusN : INPUT_STATUSN

<<static>> def_Set_InputN()
<<static>> def_Update()
<<static>> def_Reinitialize()
<<static>> def_Set_Input_In_ErrorN()
<<static>> def_Set_Input_StatusN()

GOOD_INPUTS

ACCEPTABLE_INPUTS

env

out

Return / def_Set_Output || def_Reinitialize

freeze

Fail

det

Environm ent / def_Set_InputN

 act1

anl

act2

anl

Detection / def_Set_Input_In_ErrorN

act2

Analys is / def_Set_Input_StatusN

Action[not(StopCond)] / def_Update

Action[StopCond]

20

def_Set_Input_StatusN ==
 (Input_StatusN :∈ {ff | ff ∈ INDEX → INPUT_STATUSN ∧
 ∀ee.(ee∈INDEX ∧ Input_In_ErrorN(ee)=FALSE⇒ff(ee)∈{ok,suspected}) ∧
 ∀ee.(ee∈INDEX ∧ Input_In_ErrorN(ee)=FALSE⇒ff(ee)∈{suspected,confirmed_failed})})

 At the previous development phases, we defined the abstract subclasses
ACCEPTABLE_INPUTS and GOOD_INPUTS. Now we can refine them using the information
about the input status. Namely, we define the acceptable inputs as the inputs whose
status is ok or suspected. Similarly, the good inputs are the inputs whose status is ok.
Then, the methods determining those particular instances of the class INDEX that belong
to these two subclasses are refined as follows:

def_Update == (<unchanged> ∥

 ACCEPTABLE_INPUTS := Input_StatusN∼[{ok,suspected}] ;
 Input_StatusN := Input_StatusN▷{ok,suspected})

def_Set_Output == (<unchanged> ∥ GOOD_INPUTS := Input_StatusN∼[{ok}])

 In addition to refining the values assigned to the subclass ACCEPTABLE_INPUTS, the
method def_Update updates the attribute Input_StatusN so that only inputs which did not fail
are considered in the subsequent FMS cycle.
 Since the controller of the system relies only on the inputs it obtains from the FMS,
to guarantee system safety, we define an additional safety invariant. It specifies an error
confinement condition for the FMS:

safety invariant2==
 (fms_state=act ∧ act_state=act1 ∧ act1_state=act2 ⇒

∀ee.(ee∈INDEX ⇒
 (Input_In_ErrorN(ee)=FALSE ∧ Input_StatusN(ee)∈{ok,suspected}) ∧

 (Input_In_ErrorN(ee)=TRUE ∧ Input_StatusN(ee)∈{suspected,confirmed_failed})))

This predicate states that, whenever the FMS is in the substate act2 and some input ee is
detected fault-free, the value assigned to the variable Input_StatusN is either ok or
suspected. Similarly, if an error is detected for some input ee, the value assigned to the
variable Input_StatusN is either suspected or confirmed_failed.

B machine for the phase 3. The obtained B machine for the 3rd FMS development
phase is shown in Fig. 13.

21

Fig. 13. Excerpt from the refinement FMSR2 in B

The result of this phase is the formal specification which now contains an abstract
representation of the input analysis. Similarly to the previous refinement step, the
refinement FMSR2 further unfolds the system state. In the specification it is reflected by
the new variable act1_state and the corresponding computation on it defined in the new
event Analysis.

4.4. Phase 4: Refining the input analysis
The 4th FMS development phase further refines the input analysis. In the previous
phase, we defined the input analysis as an atomic action, which assigns the statuses of
all monitored sensors at once, where in reality the sensor inputs are analyzed
independently, i.e., one by one, until all the inputs are analyzed (processed). In this
phase, we also specify in detail the procedure of determining the input status. It is based
on using a specific counting mechanism, which re-evaluates the status of the analyzed
inputs at each FMS cycle, allowing us to introduce input recovery. As a result, some of
the suspected inputs can be recovered and used in the next FMS cycle.

22

env

det

 anl

anlloop

fin_anl

act2freeze

Action[StopCond]

Fail

out

Action[not(StopCond)] / def_Update

Return / def_Set_Output || def_Reinitialize Environm ent / def_Set_InputN

anlloop

Detection / def_Set_Input_I

Fig. 14. The class diagram and the statechart fms_state for
the 4th FMS development phase

Structure. The refined FMS at this development phase is represented by the
stereotyped package <<refinement>> FMSR3, as shown in Fig. 14. The structure of the FMS
defined previously by the class diagram in Fig. 12 is preserved. To model realistic input
analysis and a counting mechanism (i.e., recovery) required for the input analysis, we
extend the class diagram with additional attributes. Let us describe the introduced
attributes in detail.
 First, we focus on the data structures needed to model the step-by-step input analysis.
Since the analysis is performed on each input (i.e., each instance of the class INDEX), we
need to keep the record of those inputs that are already analysed within the current
operating cycle. Hence, in the class INDEX we introduce the boolean attribute Processed.
It is set to TRUE, if the input has been processed, and to FALSE otherwise.
 The attributes introduced to support the counting mechanism should enable
controlled input recovery. To ensure error recovery termination, we need a counter that
keeps track of input behaviour. To achieve this, we introduce the attribute cc into the
class INDEX. It accumulates the values determining how trustworthy a particular input is.
These values depend on the result of the error detection. Namely, if the input is
determined as faulty, its trustworthiness is “measured” by a certain predefined value x,
generic for the system and hence introduced as a constant attribute in the class FMS. On
the other hand, if the input is determined as fault-free, its trustworthiness is evaluated by
another predefined value y, introduced similarly as the attribute x. To ensure finite error
recovery, we should keep cc below the predefined upper limit z, which is introduced as
an additional configuration parameter. Moreover, we introduce an additional counter
num, which counts the number of the consequent recovery cycles for each recovering
input. In addition, we specify the maximum number of the allowed recovery cycles for
all inputs as the constant attribute Limit of the class FMS. Both num and Limit are specific
for the whole system and hence are defined as attributes of the class FMS.

n_ErrorN

Analys isLoop[ran(Processed)/={TRUE}] / def_Set_Input_StatusN1

fin_anl

Analys isLoop[ran(Processed={TRUE})]

Analys is / def_Set_Input_StatusN

<<refinement>> FMSR3
INDEXFMS

InputN : NAT
Last_Good_InputN : NAT
Input_In_ErrorN : BOOL
Input_StatusN : INPUT_STATUSN
Processed : BOOL
cc : NAT
num : NAT

<<static>> def_Set_InputN()
<<static>> def_Update()
<<static>> def_Reinitialize()
<<static>> def_Set_Input_In_ErrorN()
<<static>> def_Set_Input_StatusN()
def_Set_Input_StatusN1()

Output : NAT
<<constant>> StopCond : BOOL
<<constant>> x : NAT
<<constant>> y : NAT
<<constant>> z : NAT
<<constant>> Lim it : NAT

Environm ent()
Detection()
Analys isLoop()
Analys is ()
Action()
Return()
Fail()
<<static>> def_Set_Output()

ACCEPTABLE_INPUTS

GOOD_INPUTS

23

Behaviour. To model the input analysis, we need to extend the FMS state space by
adding a new hierarchical state to the existing statechart fms_state. Specifically, we refine
the state anl by unfolding its substates anlloop and fin_anl, as shown in Fig. 14. A new
transition between these substates specifies an additional FMS main method –
AnalysisLoop. In general, after performing the error detection, the FMS starts analyzing
the inputs one by one, until all the inputs are processed. Hence, the guard
ran(Processed)={TRUE} of the transition AnalysisLoop defines the terminating condition for
the analysis. The FMS implements the gradual input analysis as specified by a newly
introduced statechart attached to the class INDEX – Input_StatusN1, as represented in Fig.
15. Let us observe that it will be translated into a variable in the B specification, thus
allowing us to save the intermediate results of the analysis.

ok

suspected

confirmed_failed

def_Set_Input_StatusN1[Input_In_ErrorN=FALSE & G3] / A3

def_Set_Input_StatusN1[Input_In_ErrorN=FALSE & G3] / A3

def_Set_Input_StatusN1[Input_In_ErrorN=FALSE & G3] / A3

def_Set_Input_StatusN1[Input_In_ErrorN=TRUE & G1] / A2

def_Set_Input_StatusN1[Input_In_ErrorN=TRUE & G1] / A2

def_Set_Input_StatusN1[Input_In_ErrorN=FALSE & G2] / A1

def_Set_Input_StatusN1[Input_In_ErrorN=FALSE & G5]

where:

G1=(num+1 ≥ Limit OR cc+x ≥ z)
G2=(num+1<Limit ∧ cc-y=0)
G3=(num+1<Limit ∧ cc-y>0)
G4=(num+1<Limit ∧ cc+x<z)
G5=(num=0 ∧ cc=0)

A1=(num:=0 ∥ cc:=cc-y)
A2=(num:=num+1 ∥ cc:=cc+x)
A3=(num:=num+1 ∥ cc:=cc-y)

Fig. 15. The statechart Input_StatusN1 specifying the behaviour of the class INDEX

The statechart Input_StatusN1, shown in Fig. 15, describes a deterministic procedure of
determining the status of a single input. Hence, the states of this statechart are the input
statuses: ok, suspected, and confirmed_failed, as introduced in the previous phases. The input
status changes depending on the values of the configuration parameters x, y, z, cc, Limit,
and num. For clarity, in the statechart we use the abbreviations to express the guards and
the corresponding actions specifying the transition def_Set_Input_StatusN1. Let us observe
that def_Set_Input_StatusN1 is defined as the method of the class INDEX, and it is not
stereotyped as <<static>>, as the other definitions in the model. This is due to the fact that
it operates on the instances of the class INDEX (single inputs), rather then on the whole
class.
 Let us describe the behaviour represented by the statechart Input_StatusN1 in detail.
Initially, all inputs are considered to be ok. After the error detection determines for each
input whether it is faulty or not, the analysis uses these results to calculate their statuses.

24

If the input is determined as faulty, the FMS increments the counter cc of the input
trustworthiness by x. On the other hand, if the input is fault-free, the FMS decrements cc
by y. Then it examines the value of cc. If it is equal to zero for the given input, then the
status of that input is ok. If 0<cc<z, then the input status is suspected (i.e., the input is
recovering). Otherwise, the input status is considered to be confirmed_failed. The
configuration parameters x, y, and z are set for each system individually, after observing
its real performance. By setting the value of x higher then the value of y, the counter cc is
biased towards failure. To prohibit the counter cc oscillating between some values and
never reaching the limit z or zero for recovering inputs, the counter num should be kept
below Limit. As soon as it exceeds this limit, the recovery terminates and, if cc is
different from zero, the input status becomes confirmed_failed.
 In our previous development phases, we defined the attribute Input_StatusN modelling
the results of the input analysis performed within the method def_Set_Input_StatusN. Now,
the statechart Input_StatusN1 describes the change of the input status for a single input. To
establish the refinement relationship between the old attribute Input_StatusN and the
newly introduced statechart Input_StatusN1, we refine the main method Analysis from the
previous development phase. Namely, after all inputs are analyzed (i.e., AnalysisLoop is
completed), the intermediate results of the analysis are assigned to the attribute
Input_StatusN. This is specified within the action def_Set_Input_StatusN of the method
Analysis:

def_Set_Input_StatusN == (Input_StatusN := Input_StatusN1)

 Then, the FMS performs previously defined Action. It includes updating the newly
introduced attributes Processed, cc, and num and the obtained results of the input analysis
– Input_StatusN1. It allows us to discard the information about those inputs whose status
has been confirmed_failed in the following FMS cycles. Hence, we refine the action
def_Update of the main method Action:

def_Update == (<unchanged> ∥
 Input_StatusN1 := Input_StatusN ▷ {ok,suspected} ∥
 Processed := ACCEPTABLE_INPUTS ◁ Processed ∥
 cc := ACCEPTABLE_INPUTS ◁ cc ∥
 num := ACCEPTABLE_INPUTS ◁ num)

After that, the FMS cycle continues as specified earlier. However, since each new FMS
operating cycle should start with unprocessed inputs, the attribute Processed should be
reinitialized. The action def_Reinitialize of the otherwise unchanged main method Return, is
refined to implement this requirement, as follows:

def_Reinitialize == (<unchanged> ∥ Processed := INDEX × {FALSE})

The safety invariants specified at the previous development phases are preserved.
However, we define an additional safety invariant specifying the extended error
confinement condition for the individual input analysis as follows:

25

safety invariant3==
 (∀ee.(ee∈INDEX ∧ Processed(ee)=TRUE ∧ Input_In_ErrorN(ee)=TRUE ⇒

Input_StatusN1(ee)∈{suspected,confirmed_failed}) ∧
 ∀ee.(ee∈INDEX ∧ Processed(ee)=TRUE ∧ Input_In_ErrorN(ee)=FALSE ⇒

Input_StatusN1(ee)∈{ok,suspected}))

B machine for the phase 4. Translating the created UML-B models for this
development phase into B results in the refinement machine FMSR3, as represented in
Fig. 16.

26

Fig. 16. Excerpt from the refinement FMSR3 in B

 The result of the fourth phase is a refined specification containing the detailed
representation of the input analysis and input classification. We further refined the event
Analysis and introduced the new event AnalysisLoop. This allowed us to model the input
analysis done individually, i.e., one-by-one, on each sensor and the procedure for
determining the input status.

4.5. Phase 5: Refining the error detection –
introducing the evaluation tests

In the 2nd development phase, we already abstractly specified the error detection part of
the FMS. In this development phase, we further refine it by introducing the evaluation
tests that are consecutively applied on the obtained inputs. They determine the result of
the detection for each input separately, rather than for all of them at once, as modelled
in the previous phases. After executing all predefined tests on the obtained inputs, the
FMS proceeds with the input analysis based on the results of the applied tests, as
described earlier.

Structure. The FMS at the 5th development phase is represented as the stereotyped
package <<refinement>> FMSR4, refining FMSR3 from the 4th development phase. To model
evaluation tests, we introduce an additional class into our previous class diagram – the
class TEST. The tests applied to the inputs obtained by the FMS form a specific
architecture expressing the dependencies between them, as explained in Section 2.1.
These dependencies are modelled as the association ComplexTest, stereotyped as
<<constant>>. This allows us to distinguish between tests that are independent and those

27

that depend on the results of other tests. The additional constraint attached to the
association ComplexTest requires that a test can not depend on itself.

<<refinement>> FMSR4

Fig. 17. The class diagram and the statechart fms_state for
the 5th FMS development phase

We need to keep track of all tested inputs and their test results. Hence, we introduce the
association class IT, modelling the set of all (test, index) pairs in the following way. If it
is an instance of IT, then it.test refers to its first element, and it.index to the second
element. For each such instance, we first define whether the particular input has been
tested by its corresponding test. We model this by introducing the boolean attribute
TestExecuted into the class IT. For each instance the attribute either has the value TRUE, if
it.index has been tested by it.test, or FALSE otherwise. Similarly, the boolean attribute
TestPassed models the results of test execution for instances of IT. The attribute has the
value TRUE, if the test has been successfully passed by the corresponding input, and
FALSE otherwise.

FMS
Output : NAT
<<cons tant>> StopCond : BOOL
<<cons tant>> x : NAT
<<cons tant>> y : NAT
<<cons tant>> z : NAT
<<cons tant>> Limit : NAT

Environm ent()
DetectionLoop()
Detection()
Analys isLoop()
Analys is ()
Action()
Return()
Fail()
<<static>> def_Set_Output()

ACCEPTABLE_INPUTS

GOOD_INPUTS

INDEX
InputN : NAT
Las t_Good_InputN : NAT
Input_In_ErrorN : BOOL
Input_StatusN : INPUT_STATUSN
Processed : BOOL
cc : NAT
num : NAT
Input_In_ErrorN1 : BOOL

<<s tatic>> def_Set_InputN()
<<s tatic>> def_Update()
<<s tatic>> def_Reinitialize()
<<s tatic>> def_Set_Input_In_ErrorN()
<<s tatic>> def_Set_Input_StatusN()
def_Set_Input_StatusN1()
def_Set_Input_In_ErrorN1()

IT
TestExecuted : BOOL
TestPassed : BOOL
<<static>> Counter : NAT

<<static>> def_Set_Counter()
def_RunTestOnInput()

TEST

1..n
0..n

1..n

ComplexTest

<<cons tant>>

{!aa.(aa:dom(ComplexTest)=>aa/:ComplexTest(aa))}

0..n

env

anlloop

Analys isLoop[ran(Processed)/={TRUE}] / def_Set_Input_StatusN1

fin_anl

Analys isLoop[ran(Processed)={TRUE}]

act2

Analys is / def_Set_Input_StatusN

freeze

Action[StopCond]

out

Action[not(StopCond)] / def_Update

Return / def_Set_Output || def_Reinitialize

det

detloop

fin_det

detloop

Environm ent / def_Set_InputN || def_Set_Counter

DetectionLoop[Counter>0] / def_RunTestOnInput ; def_Set_Counter

fin_det

DetectionLoop[Counter=0]

Detection / def_Set_Input_In_ErrorN

28

 Since the decision whether some particular input is faulty may be based on more than
single test execution, in the class INDEX we introduce the attribute Input_In_ErrorN1, which
represents the final result of the error detection based on all tests executed on that input.
In addition, to model the terminating condition for the error detection, we introduce the
static attribute Counter in the class IT. This attribute defines the number of the remaining
tests still to be executed on the inputs from the monitored sensors.

Behaviour. Refinement of the error detection introduces the substates detloop and fin_det
within the state det, as shown in Fig. 17. The transition DetectionLoop between these
substates is specified as an additional FMS main method. In general, after obtaining the
inputs from the monitored sensors, the FMS proceeds with error detection on single
inputs, until all the inputs are determined faulty or fault-free, i.e., until all the tests
required to be executed on each input are applied. Hence, the guard Counter=0 of the
transition DetectionLoop defines when the detection process is completed. The value of the
Counter is set prior to the error detection by the action def_ Set_Counter within the
Environment main method. In addition, Counter is re-evaluated after each detection loop by
the same action. This action sets Counter to the number of IT instances that have not been
tested yet. Precisely, it is defined as follows:

def_Set_Counter ==
(Counter := card ({ it | it ∈ IT ∧ TestExecuted(it)=FALSE ∧

Input_In_ErrorN1(it.index)=FALSE ∧
(it.test∈dom(ComplexTest)⇒

∀tt.(tt∈ComplexTest(it.test)⇒TestExecuted(it.index,tt)=TRUE)) }))

not_executed

executed_undefined

def_RunTestOnInput / Tes tPassed::BOOL || TestExecuted:=TRUE

executed_passed executed_not_passed

def_RunTestOnInput[Tes tPassed=TRUE] def_RunTestOnInput[TestPassed=FALSE] / def_Set_Input_In_ErrorN1(self.index)

Fig. 18. The statechart diagram TestOnInput

 After determining the initial number of DetectionLoop iterations, the FMS implements
step-by-step error detection, as specified by a newly introduced statechart attached to
the class IT – TestOnInput (see Fig. 18). In the corresponding B specification, TestOnInput
becomes a state variable, whose values denote the states of the instances of the class IT.
 Initially, none of the tests is executed. The method def_RunTestOnInput of the class IT
specifies the detection in detail. It is associated with the transitions of the statechart
TestOnInput. Since it operates over given instances (i.e., pairs (test, index)), it is not

29

stereotyped as <<static>>. The implemented mechanism of the error detection is shown in
Fig. 19.

Fig. 19. Process of the error detection

 Let us explain the error detection procedure over sensor inputs. Assume that,
according to the architecture of tests, there are simple tests STest_1 and STest_2, and a
complex test C1Test. Both simple tests have successfully passed on the input 1, hence,
the values in the matrix TestPassed for these tests on input 1 are T (i.e., TRUE). After the
simple tests have successfully passed on input 1, the complex test can be executed. Its
result determines whether the input is in error or not. Since C1Test has successfully
passed on input 1, the input 1 is fault-free, i.e., Input_In_ErrorN for input 1 is F (i.e, FALSE).
 Let us now observe the error detection procedure for the input K. Since the test
STest_1 has successfully passed, the value in the matrix TestPassed for this input is T.
However, since STest_2 has failed, the complex test C1Test is not executed. Overall, the
input K is considered to be faulty, i.e., Input_In_ErrorN is T for input K.
 According to the description above, the method def_RunTestOnInput results in
distinguishing between faulty and fault-free inputs. Namely, when an input has
successfully passed a certain test (TestPassed=TRUE), the value of Input_In_ErrorN1 stays
unchanged, i.e., it remains FALSE as specified initially. However, if the test has failed
(TestPassed=FALSE), the value of Input_In_ErrorN1 for the tested input is set to TRUE by the
corresponding action def_Set_Input_In_ErrorN1. Since it alters the attribute of the class
INDEX, it is defined as the method of this class. The μB definition of the method is as
follows:

def_Set_Input_In_ErrorN1(ii) == (Input_In_ErrorN1(ii):=TRUE)

 Let us observe that this method is parameterized by a particular input. In the
statechart TestOnInput in Fig. 18, def_Set_Input_In_ErrorN1 is parameterized by self.index.
Here, self is a μB extension referring to the current class instance whose behaviour is
described by the statechart, i.e., it is the current instance of IT. However, since IT is an
association class, its instances are pairs (test,index). Hence, self.index represents the
current input.
 This refinement step focuses on refining the main method Detection. In the previous
models, its action def_Set_Input_In_ErrorN nondeterministically set the error detection
results at once, on all obtained inputs. Now, however, these results are determined

30

consecutively, for each single input and then after accumulated in Input_In_ErrorN1
assigned to Input_In_ErrorN:

def_Set_Input_In_ErrorN == (Input_In_ErrorN := Input_In_ErrorN1)

 After detection is completed, the FMS continues with the input analysis as specified
earlier. However, the newly introduced attributes need to be updated together with the
existing attributes so that the failed inputs are no longer used in the FMS cycle. Hence,
we refine the method def_Update as shown below:

def_Update == (<unchanged> ∥
 Input_In_ErrorN1 := ACCEPTABLE_INPUTS ◁ Input_In_ErrorN1 ∥
 IT := (TEST×ACCEPTABLE_INPUTS) ;
 TestPassed := IT ⩤ TestPassed ∥
 TestExecuted := IT ⩤ TestExecuted ∥
 TestOnInput := IT ⩤ TestOnInput)

 Then, the FMS calculates the output and starts the new operating cycle. However,
before a new cycle starts, the newly introduced attributes TestExecuted, TestPassed and
Input_In_ErrorN1 need to be reinitialized. Hence, the existing method def_Reinitialize is
refined to implement this as follows:

 def_Reinitialize == (<unchanged> ∥
 Input_In_ErrorN1 := INDEX × {FALSE} ∥
 TestPassed := IT×{FALSE} ∥ TestExecuted := IT×{FALSE})

 The safety invariant of this development phase (safety_invariant4) guarantees that, if
any of the tests applied on a certain input has failed, the input is considered in error:

∀it.(it∈IT ∧ TestOnInput(it)=executed_not_passed ⇒ Input_In_ErrorN1(it.index)=TRUE)

However, this would be insufficient without additionally requiring that, for some input
to be fault-free, it should successfully pass all the executed tests:

∀it.(it∈IT ∧ TestOnInput(it)=executed_passed ⇒ Input_In_ErrorN1(it.index)=FALSE)

B machine for the phase 5. The B machine, obtained by translating the created UML-
B models for this development phase, is shown in Fig. 20.

31

32

Fig. 20. Excerpt from the refinement FMSR4 in B

 As shown in the diagrams in Fig. 17 and Fig. 18, the focus of this refinement step is
on the error detection procedure of the FMS. Hence, the B refinement FMSR4 introduces
new data structures derived from the introduced class TEST and the association
ComplexTest. They allow us to represent the detection architecture formally. Apart from
that, the B machine obtains an additional event DetectionLoop, refining the existing
detection procedure. It corresponds to the transition between the newly introduced
substates detloop and fin_det within the state det from the diagram fms_state. The body of
the event DetectionLoop is specified via action def_RunTestOnInput of the corresponding
transition in the statechart fms_state. The action is defined within the newly introduced
statechart TestOnInput. Its formal counterpart is given in the definitions clause of the B
refinement machine.

4.6. Phase 6: Refining the error detection –
introducing the time scheduling

The 6th FMS development phase further specifies the mechanism of the error detection.
The applicability of the evaluation tests, introduced in the previous development phase,
depends on the test frequencies and the internal state of the system. At this development
phase, we introduce this information into the error detection procedure. Namely, to
enable tests executions according to the given frequencies, we introduce time
scheduling. We model a global clock, which is used to guarantee that the tests with the
same frequencies are executed at the same time instances.

Structure. The FMS at the 6th development phase results in the stereotyped package
<<refinement>> FMSR5, as shown in Fig. 21. The main structural change is introduction of
two additional classes into the system. The first one – the class STATES – allows us to
model the set of internal states of the system. The second one – the class CONDITION – is
an association class. It has only one boolean attribute <<constant>> Cond, modelling the
enableness of a certain test with respect to the internal system state. If Cond is TRUE then
the corresponding test is enabled for execution at the given internal system state.
Otherwise, it is disabled.
 By introducing the attributes Time and State into the class FMS, we actually implement
the concepts of the current time and the current internal system state. Since the
enableness of an evaluation test depends not only on the internal system state but also
on the given test frequency, we add the attribute <<constant>> Freq to the class TEST. It

33

models the predefined execution frequency for each test. Furthermore, we explicitly
define how and when the time progresses in our system. Hence, we introduce the
attribute Clock_Flag into the class FMS, modelling the state of the time scheduler. It can be
either enabled or disabled. Initially, we assume it to be disabled.

<<refinement>> FMSR5

Fig. 21. The class diagram for the 6th FMS development phase

Behaviour. To model time scheduling of tests depending on their frequencies and the
internal system state, we need to specify how the time in the system changes and how it
affects the evaluation tests. This is defined by the method TickTime in the class FMS. The
method is completely specified in μB. It increments the value of the current time,
whenever Clock_Flag is enabled and there exist the tests enabled for execution at the
current time instance. In addition, it models a possible change of the internal system
state by nondeterministically updating the attribute State. When there are no more tests
enabled for execution, Clock_Flag is disabled and the FMS cycle proceeds as specified
earlier. A new FMS cycle can start only after the previous one finishes, i.e., the time
should not progress before the cycle is finished. Hence, we add the guard
Clock_Flag=disabled on the transition Environment in the diagram fms_state.
 In the previous FMS development phase, the method DetectionLoop was modelling the
error detection performed on inputs by applying certain tests and observing their results.
The action part of this method – def_RunTestOnInput – was actually specifying the testing
mechanism on an instance of the association class IT. At the current phase we refine this
action by introducing additional guards to the corresponding transitions in the statechart
TestOnInput. These guards specify that:

- the tests are executed with certain given frequencies;
- for some complex test to be executed, its frequency has to be divisible by the

frequencies of all the simple tests required for its execution;
- execution of each test depends on the current internal state of the system.

 Except the error detection the other FMS actions remain as specified in previous
development phases. However, to allow time to progress before another FMS cycle
starts, we refine the method def_Reinitialize as follows:

def_Reinitialize == (<unchanged> ∥ Clock_Flag:=enabled)

ACCEPTABLE_INPUTS

GOOD_INPUTS

IT
TestExecuted : BOOL
TestPassed : BOOL
<<static>> Counter : NAT

<<static>> def_Set_Counter()
def_RunTestOnInput()

CONDITION
<<cons tant>> Cond : BOOL

FMS
Output : NAT
<<cons tant>> StopCond : BOOL
<<cons tant>> x : NAT
<<cons tant>> y : NAT
<<cons tant>> z : NAT
<<cons tant>> Lim it : NAT
Tim e : NATURAL
State : STATES
Clock_Flag : CLOCK_STATES

Environm ent()
DetectionLoop()
Detection()
Analys isLoop()
Analys is ()
Action()
Return()
Fail()
<<s tatic>> def_Set_Output()
TickTime()

INDEX
InputN : NAT
Last_Good_InputN : NAT
Input_In_ErrorN : BOOL
Input_StatusN : INPUT_STATUSN
Processed : BOOL
cc : NAT
num : NAT
Input_In_ErrorN1 : BOOL

<<static>> def_Set_InputN()
<<static>> def_Update()
<<static>> def_Reinitialize()
<<static>> def_Set_Input_In_ErrorN()
<<static>> def_Set_Input_StatusN()
def_Set_Input_StatusN1()
def_Set_Input_In_ErrorN1()

STATES

TEST
<<cons tant>> Freq : NAT

1..n

0..n

1..n

ComplexTest

<<constant>>

{!aa.(aa:dom(ComplexTest)=>aa/:ComplexTest(aa))}

0..n

34

B machine for the phase 6. Translating the class diagram and statecharts developed in
the current development phase results in the B machine shown in Fig. 22.

Fig. 22. Excerpt from the refinement FMSR5 in B

35

At this phase we have introduced an abstract representation of time required to model
frequency of test execution and system state needed for modelling test enabledness.
This has resulted in formal definition of the architecture of test execution.

4.7. Phase 7: Refining the error detection –
introducing types of evaluation tests

The 7th development phase continues to elaborate on the error detection mechanism by
modelling different types of evaluation tests. We replace the nondeterministic detection
procedure by a deterministic one, which introduces concrete steps of test application.

 <<refinement>> FMSR6

Fig. 23. The class diagram for the 7th FMS development phase

executed_undefined

not_executed

def_RunTestOnInput / def_Testing

executed_passed executed_not_passed

def_RunTestOnInput[TestPassed=TRUE] def_RunTestOnInput[TestPassed=FALSE] / def_Set_Input_In_ErrorN1(self.index)

Fig. 24. The refined statechart TestOnInput

Structure. The stereotyped package <<refinement>> FMSR6 represents the FMS at the 7th
development phase. To introduce specific types of the evaluation tests, we define the
subclasses of the class TEST, as shown in Fig. 23. The subclasses are:

FMS
Output : NAT
<<cons tant>> StopCond : BOOL
<<cons tant>> x : NAT
<<cons tant>> y : NAT
<<cons tant>> z : NAT
<<cons tant>> Lim it : NAT
Tim e : NATURAL
State : STATES
Clock_Flag : CLOCK_STATES

Environm ent()
DetectionLoop()
Detection()
Analys isLoop()
Analys is()
Action()
Return()
Fail()
<<s tatic>> def_Set_Output()
TickTime()

ACCEPTABLE_INPUTS

GOOD_INPUTS

IT
TestExecuted : BOOL
TestPassed : BOOL
<<static>> Counter : NAT

<<static>> def_Set_Counter()
def_RunTestOnInput()
<<s tatic>> def_Testing()

STATES
INDEX

InputN : NAT
Last_Good_InputN : NAT
Input_In_ErrorN : BOOL
Input_StatusN : INPUT_STATUSN
Processed : BOOL
cc : NAT
num : NAT
Input_In_ErrorN1 : BOOL
Previous_InputN : NAT

<<static>> def_Set_InputN()
<<s tatic>> def_Update()
<<s tatic>> def_Reinitialize()
<<s tatic>> def_Set_Input_In_ErrorN()
<<s tatic>> def_Set_Input_StatusN()
def_Set_Input_StatusN1()
def_Set_Input_In_ErrorN1()

CONDITION
<<cons tant>> Cond : BOOL

TEST
<<cons tant>> Freq : NAT

1..n

0..n

1..n ComplexTest

<<cons tant>>

{!aa.(aa:dom(ComplexTest)=>aa/:ComplexTest(aa))}

0..n

MAG RATE
<<constant>> upLimit : NATURAL
<<cons tant>> loLim it : NATURAL

<<cons tant>> rateLimit : NATURAL

MULT
<<constant>> diffLim it : NATURAL

PRED
<<cons tant>> Tolerance : NATURAL
<<cons tant>> Predicted_Value : NATURAL-->NATURAL

36

- MAG – the magnitude tests,
- PRED – the predicted value tests,
- RATE – the rate tests,
- MULT – the dual sensor difference tests.

Each of the subclasses also introduces test specific properties, by defining them as
subclass attributes. For instance, the subclass MAG has two constant attributes upLimit (the
upper limit of an input) and loLimit (the lower limit of an input) needed for the execution
of the magnitude test. Similarly, the subclass PRED contains two constant attributes
Predicted_Value (the predicted value of an input at a given time) and Tolerance (the allowed
tolerance between the predicted and the current input value) required for execution of
predicted value test. The subclass RATE contains only one attribute rateLimit (the allowed
difference between the previous and the current input value). However, to apply a rate
test, we need to model the previous value of a particular sensor reading. Hence, we
introduce it as the attribute Previous_InputN in the class INDEX. Finally, to execute a
difference test on dual sensors, we introduce the attribute diffLimit (the allowed difference
between the values of two sensors) into the subclass MULT.

Behaviour. We refine the main method DetectionLoop to model the tests executed with
given frequencies and their dependency on the current internal state of the system. The
guard of the action def_RunTestOnInput within the main method DetectionLoop controls the
enableness of tests for execution. However, def_RunTestOnInput does not specify in detail
how the actual testing of the input value is performed. Instead, this is modelled as a
nondeterministic assignment to the variable TestPassed. At this development phase, we
refine this nondeterminism by introducing the method def_Testing in the association class
IT. It is defined as an action triggered by the transition def_RunTestOnInput in the statechart
TestOnInput, as shown in Fig. 24. Here def_Testing is specified as follows:

37

The newly introduced attribute Previous_InputN is updated to ensure that only inputs
which are ok or suspected are considered in the following FMS cycles. The refined
method def_Update now corresponds to the following μB:

def_Update == (<unchanged> ∥
 Previous_InputN := ACCEPTABLE_INPUTS ◁ Previous_InputN)

B machine for the phase 7. Elaborating on the error detection procedure in the UML-B
diagrams in Fig. 23 and Fig. 24 and their translation into B results in the refined B
machine, as shown in Fig. 25.

38

Fig. 25. Excerpt from the refinement FMSR6 in B

At the seventh phase we model how to differentiate between types of tests and hence
further refine the error detection procedure. This allowed us to define the test
architecture more accurately, depending on the type of tests.

Summary. Development of a fault tolerant control system tolerating transient faults –
the FMS – is achieved through the number of development phases. At each
development phase we represent the system structure (via UML-B class diagrams), and
its behaviour (via UML-B statecharts).
 The development starts from an abstract FMS description, modelling the basic
system functionality. This 1st development phase outlines the stages of the FMS
operating cycle, starting with obtaining the sensor readings, processing them, and either
failing or calculating the output of the FMS. In the latter case the FMS operating cycle
starts again. In addition, the system safety properties are specified as safety invariants.
They are preserved in the 2nd development phase, which introduces processing of inputs
performed after obtaining the sensor readings. Namely, it introduces the error detection
procedure within the FMS. The error detection classifies the inputs as faulty or fault-
free, continuing the operating cycle as previously specified. In the 3rd FMS development
phase, we abstractly introduce the input analysis performed by the FMS after the error
detection. The result of the input analysis is the input statuses. They determine possible
FMS recovery actions. At this phase, we also introduce a certain predefined stopping
(freezing) condition, and express additional system safety properties. The 4th FMS
development phase refines the input analysis. We define the input analysis as performed
independently on each monitored sensor. In addition, we specify in detail the procedure
of determining the input status based on using a specific counting mechanism. The 5th
development phase refines already specified error detection mechanism by introducing

39

the evaluation tests. They are applied on the obtained inputs, as defined by the given test
architecture. The 6th FMS development phase further specifies the mechanism of the
error detection. Namely, it introduces time scheduling to enable test execution
according to the given frequencies and the internal state of the system. Finally, the 7th
development phase focuses on the details of the error detection mechanism by modeling
different types of evaluation tests, while still preserving specified safety properties.
 The overall development results in UML-B diagrams representing general models,
i.e., development templates, for developing similar systems. These templates can be
instantiated for particular systems by populating the abstract data in templates by
concrete data. For instance, we can consider different number of sensors, define
concrete stopping conditions and internal system states, replace the abstract system
configuration parameters (e.g., x, y, z etc.) with concrete values and so on.

5. Conclusions

In this paper we proposed an approach that integrates the formal refinement-based
development of the Failure Management System (FMS) [4] with the UML-based
development. The FMS is the typical subcomponent of controllers in avionics
applications, which purpose is to prevent system failures due to erroneous inputs from
its environment. Within the FMS, we specifically focus on designing the mechanisms
for tolerating transient faults, as the most typical faults in control systems. In general,
developing the FMS is costly and time consuming. Apart from that, dependability of
such systems is crucial and should be appropriately ensured. Our UML-based
development of the FMS aims at creating a set of development templates, which could
be reused by means of instantiation for developing a family of similar components.
Thus, they potentially increase development cost-efficiency and time-effectiveness.
Moreover, the approach allows us to automatically obtain formal models from the
corresponding UML models and ensure their correctness, which essentially contributes
to the overall system dependability.
 The development of the FMS is undertaken using the formal modelling language
UML-B. It combines the B Method and UML, allowing us to use the familiar UML
notation, yet more precisely. The development adopts the refinement-based, top-down
approach. Hence, we initially specify the system abstractly, by modelling the FMS
structure and behaviour describing only basic stages of its operating cycle. In general,
system structure is described using the UML-B class diagram, whereas its behaviour is
represented in the corresponding UML-B statechart. The further development phases
introduce more details into existing UML-B models in a structured manner.
 Using the graphical UML-like modelling language allowed us to obtain better
structured models of the FMS. The separate representation of the system structure and
behaviour within different types of diagrams enabled considering only part of the
system requirements at a time. Moreover, representing the system behaviour in the form
of statecharts improved our reasoning about the system and allowed us to specify some
interesting system properties at particular system states.
 After completing each development phase, we used the automatic translator tool,
U2B, to obtain corresponding B models. This, in turn, allowed us to use the available

40

tool support, AtelierB, to automate verification and prove correctness of our
development templates. We proved app. 65% of the generated proof obligations
automatically, while the remaining proof obligations (most of which have been of the
same form) required slight user interaction. They have been proved using the interactive
prover within AtelierB.
 Our approach to developing the FMS, is similar to the work of Laibinis and
Troubitsyna [20]. They propose an approach to formal model-driven development of a
fault tolerant controller in B. However, it mainly implements the fault tolerance based
on triple modular hardware redundancy. Our approach is based on computational
redundancy for dealing specifically with transient faults, which were not considered in
their development.
 The lack of methodology for the specification of system fault tolerance motivated the
work of Dondossola and Botti [21]. They proposed an approach to systematization of
fault tolerance concepts with the aim to support guided analysis of fault tolerance
requirements, leading to specification of fault tolerant solutions in various safety related
applications. The approach to fault tolerance specification is based on using UML and
TRIO (Tempo Reale ImplicitO) temporal logic. However, although our approach is less
general, since we focus on specific control systems and tolerating specific types of
faults, we specify fault tolerance more explicitly, and allow considering requirements
related to fault tolerance in a stepwise manner, which results in better structured system
specification.
 Liu and Joseph [22] consider the specification and verification of safety-critical
systems by use of formal techniques. They show how to specify and verify fault
tolerance within a single formal framework. For that purpose, they use transition
systems as the computational model, and specify fault tolerant properties using the
Temporal Logic of Actions (TLA) notation. They model physical faults in a system in
general. Fault tolerance is achieved by adding the appropriate recovery actions, which
make the program tolerant to these faults. In our approach, we do not use explicit
representation of faults. On the contrary, we propose a specific mechanism to detect
these faults, in particular transient faults, and then implicitly decide on the recovery
actions. However, the approach of Liu and Joseph uses more advanced timing policy,
which is in our approach simplified to cope only with the required frequencies of
detection test execution.
 There are many other approaches, e.g., [23, 24, 25] that tackle a similar problem –
design of software-implemented fault tolerance. This work is complementary to ours:
while it focuses on studying how to modify software at the code level to achieve fault
tolerance, we aim at studying how to specify and develop software with the fault
tolerance mechanisms integrated into it.
 The research on building fault tolerant components is especially addressed in the
work of Anderson et al. [26, 27] and Popov et al. [28]. They propose an approach to
developing protective wrappers as means to improve the dependability of the systems,
which are built upon reusable components. Similarly to our approach, they advocate
that the development of a protective wrapper should be a systematic, stepwise process.
However, they consider reusable off-the-shelf components usually perceived as black
boxes, and specify mechanisms able to withstand their erroneous behaviour. This is the
main difference between our approaches – we explicitly specify the fault tolerance

41

mechanisms as an essential part of the system. In this respect, we undertake a formal
development of our fault tolerant control system and give a proof of its correctness by
means of formal verification.
 Formal UML-based development of the FMS has been also undertaken by Snook et
al. [10, 29]. Similarly to our approach, they focus on reusability of the FMS modelled
using UML-B. However, their approach focuses on the structure of the FMS, and
modelling and instantiating complex FMS requirements. Our approach focuses on
behavioural specification in the first place, while correspondingly specifying the FMS
structure as well. In addition, our error detection procedure differs from the one they
propose. They do not explicitly address the dependencies between evaluation tests used
in this procedure, whereas we define a hierarchical test architecture allowing us to
tackle the input deviations more efficiently. However, we believe that more solid
foundations for developing fault tolerant controllers of the similar type could be
achieved by merging these two approaches. It is our plan to investigate this integration
of results in our future studies.

Acknowledgments

This work is supported by EU funded research project IST 511599 RODIN (Rigorous
Open Development Environment for Complex Systems).

References

[1] Laprie, J.-C., Dependability: Basic Concepts and Terminology, Springer-Verlag,
Vienna, 1991

[2] Storey, N., Safety-critical computer systems, Addison-Wesley, 1996
[3] Bosch, J., Design and Use of Software Architectures: Adopting and Evolving a

Product-Line Approach, Addison-Wesley, 2000
[4] Selic, B., “The Pragmatics of Model-Driven Development”, IEEE Software,

20(5), 2003, pp. 19-25
[5] Abrial, J.-R., The B Book: Assigning Programs to Meanings, Cambridge Univ.

Press, 1996
[6] Snook, C. and Butler, M., “UML-B: Formal modelling and design aided by

UML”, ACM Transactions on Software Engineering and Methodology, 15(1),
2006, pp. 92-122

[7] Rumbaugh, J., Jacobson, I., and Booch, G., Unified Modeling Language
Reference Manual, Addison Wesley, 1999

[8] Snook, C. and Butler, M., “U2B - A tool for translating UML-B models into B”,
In Mermet, J., Eds. UML-B Specification for Proven Embedded Systems Design,
Chapter 6, Springer, 2004

[9] Clearsy System Engineering, AtelierB: User Manual, Version 3.7. Available at:
http://www.atelierb.societe.com/ressources/DOC/english/user_manual.pdf

42

http://www.atelierb.societe.com/ressources/DOC/english/user/_manual.pdf

[10] Johnson, I., Snook, C., Edmunds, A., and Butler, M., “Rigorous development of
reusable, domain-specific components, for complex applications”, In Proc. of 3rd
International Workshop on Critical Systems Development with UML, Lisbon,
2004, pp. 115-129

[11] Johnson, I., Snook, C., Rodin Project Case Study 2: Requirements Specification
Document, RODIN Deliverable D4 - Traceable Requirements Document for Case
Studies, Section 3, 2005, pp. 24-52

[12] Schneider, S., The B Method. An introduction, Palgrave, 2001
[13] Abrial, J.-R., “Event Driven Sequential Program Construction”, 2001. Available

at: http://www.atelierb.societe.com/ressources/articles/seq.pdf
[14] Abrial, J.-R. and Hallerstede, S., “Refinement, Decomposition and Instantiation

of Discrete Models: Application to Event-B”, Fundamentae Informatica, 77(1-2),
2007, pp. 1-28

[15] Dijkstra, E.W., A Discipline of Programming, Prentice-Hall International, 1976
[16] Back, R.J., and von Wright, J., Refinement Calculus: A Systematic Introduction,

Springer-Verlag, 1998
[17] OMG, UML 2.0 Superstructure Specification, 2005. Available at:

http://www.omg.org/docs/formal/05-07-04.pdf
[18] IBM, Rational Rose, http://www-306.ibm.com/software/rational/
[19] Snook, C., and Walden, M., “Refinement of Statemachines Using Event B

Semantics”, In B 2007: Formal Specification and Development in B, LNCS 4355,
Springer-Verlag, 2006, pp. 171-185

[20] Laibinis, L., and Troubitsyna, E., “Refinement of fault tolerant control systems in
B”, In ComputerSafety, Reliability, and Security - Proceedings of SAFECOMP
2004 Lecture Notes in Computer Science, Vol. 219, Springer-Verlag, September
2004, pp. 254-268

[21] Dondossola, G., and Botti, O., “System Fault Tolerance Specification: Proposal
of a Method Combining Semi-formal and Formal Approaches”, In Proceedings
of the 3rd International Conference on Fundamental Approaches to Software
Engineering (FASE'00), LNCS 1783, Springer-Verlag, 2000, pp. 82-96

[22] Liu, Z., and Joseph, M., “Specification and Verification of Fault-Tolerance,
Timing, and Scheduling”, ACM Transactions on Programming Languages and
Systems, 21(1), 1999, pp. 46-89

[23] Rebaudengo, M., Reorda, M.S., Torchiano, M., and Violante, M., “A Source-to-
Source Compiler for Generating Dependable Software”, IEEE International
Workshop on Source Code Analysis and Manipulation, 2001, pp. 33-42

[24] Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., and August, D.I., “SWIFT:
Software Implemented Fault Tolerance”, Proceedings of the Third International
Symposium on Code Generation and Optimization, March 2005, pp. 243-254

[25] Oh, N., Mitra, S., and McCluskey, E.J., “ED4I: Error Detection by Diverse Data
and Duplicated Instructions”, IEEE Transactions on Computers, 51(2), 2002, pp.
180-199

[26] Anderson, T., Feng, M., Riddle, S., and Romanovsky, A., “Protective Wrapper
Development: A Case Study”, In Proceedings of the 2nd International Conference
on COTS-Based Software Systems, LNCS 2580, Springer-Verlag, 2003, pp. 1-14

43

http://www.atelierb.societe.com/ressources/articles/seq.pdf
http://www.omg.org/docs/formal/05-07-04.pdf
http://www-306.ibm.com/software/rational/

44

[27] Anderson, T., Feng, M., Riddle, S., and Romanovsky, A., “Error Recovery for a
Boiler System with OTS PID Controller”, In Proceedings of the 10th IEEE
International Workshop on Object-Oriented Real-Time Dependable Systems,
IEEE Computer Society, 2005, pp. 113-120

[28] Popov, P., Riddle, S., Romanovsky, A., and Strigini, L., “On systematic design of
protectors for employing OTS items”, In Proceedings of the 27th EUROMICRO
Conference, IEEE Computer Society, 2001, pp. 22-29

[29] Snook, C., Poppleton, M., and Johnson, I., “The engineering of generic
requirements for failure management”, In Proceedings of 11th International
Workshop on Requirements Engineering: Foundation for Software Quality,
Oporto, 2005, pp. 145-160

ISBN 978-952-12-1918-4
ISSN 1239-1891

	1. Introduction
	2. Failure Management System
	2.1. Error detection mechanism
	2.2. Input analysis
	2.3. The summary of the FMS behaviour

	3. Frameworks for formal modelling and refinement – the B Method and UML-B
	3.1. The B Method
	3.1.1. Verifying correctness
	3.1.2. Refinement of B models

	3.2. UML-B
	3.2.1. UML-B Package
	3.2.2. UML-B Class diagram
	3.2.3. UML-B Statechart
	3.2.4. Action and constraint language – μB
	3.2.5. Refinement in UML-B

	4. Developing the FMS by specification and refinement in UML-B
	4.1. Abstract specification of the FMS
	4.2. Phase 2: Introducing error detection by refinement
	4.3. Phase 3: Introducing input analysis by refinement
	4.4. Phase 4: Refining the input analysis
	4.5. Phase 5: Refining the error detection – introducing the evaluation tests
	4.6. Phase 6: Refining the error detection – introducing the time scheduling
	4.7. Phase 7: Refining the error detection – introducing types of evaluation tests

	5. Conclusions
	Acknowledgments
	References

