

Tur ku Cent re Computer Sciencefor

TUCS Technical Report

No 829, July 2007

Author One | Author Two | Author Three

Author Four | Author Five

Title of the Technical Report

Dubravka Iliã | Sari Leppänen |

Elena Troubitsyna | Linas Laibinis

Towards Automated

Model-Driven Development

of Distributed

Communicating Systems

and Communication

Protocols

id846192046 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

TUCS Technical Report

No 829, July 2007

Towards Automated Model-Driven

Development of Distributed

Communicating Systems and

Communication Protocols

Dubravka Iliã

TUCS, Åbo Akademi University, Department of Information

Technologies, Joukahaisenkatu 3-5 A, 5
th
 floor

20520 Turku, FINLAND

Sari Leppänen

Nokia Research Center, Computing Architectures Laboratory,

P.O. Box 407, 00045 Helsinki, FINLAND

Elena Troubitsyna

Åbo Akademi University, Department of Information Technologies

Technologies, Joukahaisenkatu 3-5 A, 5
th
 floor

20520 Turku, FINLAND

Linas Laibinis

Åbo Akademi University, Department of Information Technologies

Technologies, Joukahaisenkatu 3-5 A, 5
th
 floor

20520 Turku, FINLAND

Abstract

Model-driven development has gained increasing acceptance in the engineering
community. Via abstraction and gradual model transformation, it offers an efficient way
to cope with complexity of modern software-intensive systems, typical examples of
which are distributed telecommunicating systems and communication protocols.
However, variety of models representing the system structure and behaviour from
different viewpoints and at different levels of abstraction raise the question of model
consistency and their adherence to the predefined architectural rules. In this paper we
formalize a development flow of distributed telecommunicating systems and
communication protocols as an architectural profile in UML. We specify and formally
verify this profile. The profile allows us to check adherence of models to the predefined
architectural rules. Furthermore, by formalizing and verifying intra- and inter-
consistency rules, we ensure that the models do not contradict to each other. We use the
B Method as our formal framework. The presented work establishes a basis for
automating model-driven development of telecommunicating systems and
communication protocols.

Keywords: B Method, consistency of UML models, formal methods, refinement, UML
profiles

TUCS Laboratory

Distributed Systems Design

1

1. Introduction

MDD (Model Driven Development) [1] has emerged as the paradigm aiming at
ensuring cost-effective and time-efficient software development. It is gaining increasing
acceptance in the software engineering community. MDD is design-centric, i.e., it
focuses primarily on modelling the system functionality and behaviour rather than the
technology to implement it. At the time when the technology is changing rapidly, MDD
allows the developers to reuse their previously developed solutions and, as a result,
reduce costs and time of developing new applications. Moreover, it enables a fast
integration of emerging technologies into the existing systems.
 The ideas of MDD are implemented via UML (Unified Modelling Language) [2]. It
is a graphical modelling notation used to create system models. Modelling with UML
typically starts from abstract, high-level models, which are then iteratively transformed
into more detailed models. However, validating a large variety of produced models with
respect to the given architectural rules is a recognized problem when modelling with
UML. In UML2 [3, 4], the architectural rules can be defined in a systematic way using
the built-in light-weight extension mechanism called profiles. The profiling mechanism
allows us to specify a new modelling language by defining the architectural rules for the
system under development. These rules represent the modelling concepts and
constraints on them in a particular domain. With the support of a proper tool, we can
use the defined architectural rules for �driving� the development process and

automatically checking whether the produced models conform to them. Therefore, UML
profiles can provide a solid basis for increasing the level of automation in software
development.
 In this paper we introduce the Lyra profile � a UML2 profile that defines the
architectural rules for the Lyra design method [5, 6]. Lyra is a model-driven and
component-based design method for development of distributed communicating
systems and communication protocols. It has been developed at Nokia Research Center
and applied in large-scale industrial development projects. Lyra consists of four
consecutive development stages. At each development stage, a system can be described
from different viewpoints. These viewpoints are visually represented by different types
of UML2 models. Hence, the Lyra development flow results in a large set of models,
which raises the question of validating the models against the predefined architectural
rules and managing model consistency.
 Ensuring consistency of Lyra models is a two-fold task. On the one hand, we need to
ensure intra-consistency of the models, i.e., consistency among artefacts specifying
different aspects of the system on the same development stage. On the other hand, we
should guarantee inter-consistency of models, i.e., consistency among modelling
artefacts from the different development stages. In this paper we propose an approach to
formal verification of model consistency in Lyra. We use the description of the Lyra
design method given in the form of the Lyra profile to derive general patterns for UML2
models created at different stages of Lyra development and express intra- and inter-
consistency rules for them. Then, we define Lyra models as formal specifications in the
B Method [7] � a formal framework for modelling complex software-intensive systems.
Each Lyra model together with the corresponding intra- and inter-consistency rules is

2

represented by a B model. Hence, in our approach the B Method serves as a common
semantics for UML2 models. In this respect, our approach to ensuring consistency of
UML2 models is similar to the approach based on defining a common semantics of
UML presented by Derrick et al. in [8].
 Since both MDD and B adopt the top-down development paradigm, it is natural to
describe the model-driven UML2-based Lyra development in B. In our approach, the B
development starts from an abstract system specification, which simulates creating Lyra
models in the order defined by the design method. The abstract specification contains
the models from the first Lyra development stage and intra-consistency rules defined for
them. It is transformed into more detailed specifications by correctness preserving steps
called refinements. The refinement process allows us to structure complex intra- and
inter-constancy requirements and handle them in a stepwise manner, by specifying and
verifying only part of them at a time. Then, we add the remaining requirements
subsequently. The resulting refined specifications represent more detailed models and
their intra-consistency rules. In addition, they specify the inter-consistency rules defined
between models at two subsequent stages.
 The obtained B specifications and refinements are formally verified by the use of an
automatic tool support provided for B � AtelierB. The formal verification ensures intra-
and inter-consistency of the corresponding UML2 models, thus establishing the basis
for automatic verification of the Lyra design flow.
 The paper is structured as follows. In Section 2 we briefly introduce UML profiling
principles. Section 3 describes the Lyra design method via an example. Section 4
describes the design method in the form of the Lyra profile, which is introduced through
its basic concepts and creating principles. In Section 5 we define the notion of
consistency in Lyra. Section 6 continues by giving a short introduction to our modelling
framework � the B Method. In Section 7 we describe our approach to ensuring intra-
and inter-consistency in Lyra by formal specification and refinement in B. Section 8
discusses the related work. Finally, in Section 9 we conclude with the overview of the
proposed approach and the future work.

2. UML profiles

The latest version of UML - UML2 - significantly differs from its previous versions.
The most considerable structural change is the division of the UML2 specification into
two complementary specifications: Infrastructure and Superstructure. They define
respectively the foundation language constructs and the user-level constructs required
for UML2. UML2 Infrastructure [3] is assumed to be extensively reused when creating
various metamodels. For instance, Meta-Object Facility (MOF) reuses it to provide the
ability to model metamodels and UML2 Superstructure [4] reuses it to define UML
metamodel itself.
 In UML2, profiles are the built-in light-weight extension mechanism which allows
customization of UML for different domains. Profiles can be used to extend a MOF-
based metamodel, e.g., the UML metamodel, for a specific context, domain or purpose.
Profiles are only allowed to contain tagged values, stereotypes, constraints and data
types [4]. Stereotypes represent variations of existing modelling elements (e.g., UML2

3

metaclasses) with the same form (having the same attributes and relationships) but with
a modified intent [4]. A stereotype can have additional constraints on the base metaclass
it extends as well as tagged values containing additional information for a stereotyped
element. Tagged values are defined as properties of the form name-value, where the
name is used as a tag. In UML2, these properties can be attached to the introduced
stereotypes by marking them as attributes inside a class representing a new stereotype.
 The profiling mechanism is defined by the package Profiles in UML2 Infrastructure.
As it is not a first-class extension mechanism of UML, it does not allow modifications
of existing metamodels [4]. This implies that the newly introduced stereotypes, meta-
attributes, and associated constraints cannot contradict with the reference metamodel; it
is impossible to take away any of the metamodel constraints, but it is possible to add
new constraints that are specific to a profile. In short, the reference metamodel is
considered always as a �read only� specification. This implies that the specialized

semantics should not contradict with the semantics of the reference metamodel. This
restriction on using the UML profile mechanism guarantees, e.g., that any CASE-tool
compliant with the UML2 metamodel can be used for constructing models conformant
with a UML2 metamodel based profile.
 As a part of a UML2 profile, it is not allowed to have an association between two
stereotypes or between a stereotype and a metaclass, unless it is a subset of the existing
association in the reference metamodel [4]. In other words, according to the above-
mentioned profiling principles, the introduced association should be related to an
association of the same type in the reference metamodel. Moreover, the multiplicity
ranges of the introduced association should match the corresponding multiplicities of
the association in the reference metamodel. Described associations provide a convenient
and intuitive way to model the introduced restrictions and constraints on a profile.
Further, such associations could also be expressed using OCL (Object Constraint
Language) [9] in UML profiles. In fact, UML2 Infrastructure proposes two methods to
achieve the effect of new (meta)associations: (1) adding new constraints within a profile
that specialize the usage of some associations of the reference metamodel, or (2)
extending the Dependency metaclass by a stereotype and defining specific constraints
on this stereotype.
 Various UML profiles have been recently introduced for different purposes. For
instance, OMG proposes UML profiles for CORBA [10], for Schedulability,
Performance and Time [11], for Modelling Quality of Service and Fault Tolerance
Characteristics and Mechanisms [12] etc. The Lyra profile, which this paper introduces,
is built based on the Lyra design method described in the following section.

3. Overview of Lyra design method by an

example

Lyra [5, 6] is a service-oriented and model-based design method for the development of
distributed communicating systems. It has been developed in Nokia Research Center by
integrating the best practices and design patterns established in the domain. The method
has been successfully applied in several large-scale industrial development projects.

4

 Lyra has four main stages: Service Specification, Service Decomposition, Service
Distribution and Service Implementation. The Service Specification (SS) stage defines
the services provided by the system and the different types of users of these services. A
service is a functionality that the system provides. In this stage we define the externally
observable behaviour of the system services on the corresponding user interfaces. In the
Service Decomposition (SDe) stage the abstract model produced in the previous stage is
decomposed into a set of service components and logical interfaces between them. This
stage yields the logical architecture of the service implementation. In the Service
Distribution (SDi) stage the logical architecture of services is distributed over a given
platform architecture. This results in a physical architecture of a distributed
communicating system. Finally, in the Service Implementation stage the structural
elements are integrated into the target environment. In this stage we arrive at a model
which can be used as, e.g., a source for automatic code generation. A detailed
description of the Lyra method can be found elsewhere [5, 6].
 We exemplify the Lyra design method by modelling a positioning system of Third
Generation Partnership Project (3GPP) [13]. The system provides the positioning
service for calculating the physical location of a given user equipment in a mobile
network. A detailed informal description of the service can be found in [13].
 As a modelling language for describing the positioning system we use UML2 [3, 4],
although the Lyra design method is generic with respect to modelling languages and
tools.
 Models at the Service Specification stage. Our first development stage � Service
Specification � starts from creating Domain Model. It is a UML2 use case model that
specifies the service PositionCalculation within Positioning system and the type of its user
� User, as represented in Fig. 1.

Positioning

User

<<usecase>>
PositionCalculation

Fig. 1. Domain Model of the positioning system at the
SS stage

Positioning_PSAP

Positioning

 To

From

PositionCalculation_PSAP
 Position

 Calculation

To

 From
 To

Positioning_USAP

User
 From

Fig. 2. Communication Context of the positioning system
at the SS stage

At this stage we also create Communication Context model, where Positioning system
and PositionCalculation service are defined as active classes, as shown in Fig. 2. To
model interfaces via which a system service is provided, we attach UML2 ports to the
active classes. In Lyra these ports are called Provided Service Access Points (PSAPs).
They are defined for the classes Positioning and PositionCalculation as Positioning_PSAP

5

and PositionCalculation_PSAP respectively. In the Communication Context model we
also specify the external class for the system user � User � with the attached port.
However, since this port models an interface of a service user, it is called Used Service
Access Point (USAP) (see, e.g., Positioning_USAP in Fig. 2).
 The UML2 interfaces on all specified PSAPs define the signals and signal
parameters of the system-user communication. For instance, the interfaces To and From
of PositionCalculation_PSAP class are specified as follows:

interface To_ PositionCalculation_PSAP {
 public signal pc_req (part PCReqParam);
}

interface From_ PositionCalculation_PSAP {
 public signal pc_cnf (part PCCnfParam);
 public signal pc_fail_cnf (part PCFailCnfParam)
}

Here PCReqParam, PCCnfParam, and PCFailCnfParam are the abstract data structures
encapsulating actual signal parameters.
 The descriptions of the interfaces and the valid order of the signals are visually
represented by interactions in Signalling Scenario models. PositionCalculation interaction
(shown in Fig. 3) comprises two Signalling Scenario models. They describe the signals
(pc_req, pc_cnf, pc_fail_cnf) between the communicating entities in case of service
Success (Fig. 3a) and Failure (Fig. 3b).

User Positioning

pc_req

pc_cnf

Interaction
PositionCalculation

Success

User Positioning

pc_req

pc_fail_cnf

Interaction
PositionCalculation

Failure

a) b)

Fig. 3. The Signalling Scenario models of the positioning system at the SS stage

 The communication between the PositionCalculation service and its user is described
in the PSAP Communication state machine, as shown in Fig. 4. The positioning request
pc_req received from the user should always be confirmed � by the signal pc_cnf in case
of success and by pc_fail_cnf otherwise.

Idle PositionCalculation

pc_req

[xp_pc_ok]
/^pc_cnf

[xp_pc_failure]
/^pc_fail_cnf

�yes�

Successful position
calculation?

�no�

xp_pc_failure

xp_pc_ok

Fig. 4. PSAP Communication of the positioning system
at the SS stage

Fig. 5. PositionCalculation Substate
Machine at the SS stage

6

 In the PSAP Communication model, the PositionCalculation state is composite. At this
level of abstraction we define the behaviour for its substates by a non-deterministic
Substate Machine. Such a model non-deterministically determines the success or failure
of the service execution, as shown in Fig. 5.
 Models at the Service Decomposition stage. To provide the position calculation
service, the positioning system uses services provided by some external service
providers. For instance, to provide the positioning service, at first Radio Network
Database (DB) should be requested to send the information on an approximate location
of the user equipment (UE). This information is then used to contact UE. Then, another
external service provider � Reference Local Measurement Unit (RefLMU) � is requested
to provide the reference measurements to calculate the exact location of UE. This
information is handled by the positioning Algorithm server to produce the final
estimation on the UE location.

User

DB

 UE

 Algorithm

 RefLMU

Positioning
<<usecase>>

PositionCalculation

Fig. 6. Domain Model of the positioning system at the SDe stage

 At the SDe stage these external service providers are introduced into the previously
developed system models. In Domain Model we introduce the corresponding actors for
DB, UE, RefLMU and Algorithm. They are associated with the PositionCalculation use case,
as represented in Fig. 6. Correspondingly, the Communication Context model now
contains the external classes representing DB, UE, RefLMU and Algorithm. Each of these
classes should have its own PSAP describing the communication with the system
service (e.g., DB_PSAP in Fig. 7). Moreover, for the active classes Positioning and
PositionCalculation we define USAPs via which the external services are used. Each
active class should have USAP for each external class. For instance, we define
DB_USAP for both Positioning and PositionCalculation classes as shown in Fig. 7.

Positioning_PSAP

Positioning

To

From

PositionCalculation_PSAP
Position

 Calculation

To

 From

DB_PSAP

DB
 To

 From

To

DB_USAP
From To

DB_USAP
From

Fig. 7. Excerpt from the Communication Context model of the positioning system at the SDe stage

7

 The PositionCalculation service comprises several subservices. These subservices are
modelled as the subuse cases: LMU_Measurement, DB_Enquiry, UE_Enquiry, and
Algorithm_Invocation in the Decomposition Diagram of the positioning system, as
represented in Fig. 8.

 LMU_Measurement

 PositionCalculation

 DB_Enquiry

 UE_Enquiry

 Algorithm_Invocation

<<include>>

<<include>>

<<include>>

Fig. 8. Decomposition Diagram for the PositionCalculation service at the SDe stage

 The order of the subservice execution is defined in the Signalling Scenario models
using the interaction references (ref). Each interaction reference represents a set of
Signalling Scenario models for some subservice. The subservice execution order is
determined by the order in which these references appear in the Signalling Scenario
model for the PositionCalculation service, as shown in Fig. 9.

User

 pc_req

Successful_LMU_Measurement

Successful_DB_Enquiry

Successful_UE_Enquiry

Successful_Algorithm_Invocation

pc_cnf

ref

ref

ref

ref

Positioning

Success

Fig. 9. The Signalling Scenario model for the successful execution of the

PositionCalculation service at the SDe stage

 We represent the logical architecture of the positioning system by Architecture
Diagram, as shown in Fig. 10. It describes the logical structure of the active class
Positioning (defined in the Communication Context model in Fig. 7). In Architecture
Diagram, the active class Positioning is called a system component. A system component
is composed of several logical elements. Each of them encapsulates a part of the service
functionality and is called a service component. The service components of the
Positioning system component are shown in Fig. 10.
 The part of the service functionality which handles the communication with DB,
while requesting an approximate location of the user equipment, is encapsulated within

8

the service component DBHandler. Similarly, the service component UEHandler manages
the communication with the corresponding user equipment. RefLMUHandler handles the
communication with the external service provider RefLMU and computes the
intermediate measurement results. At last, the service component AlgoHandler conducts
the final calculations at the requested user equipment position.

 ServiceDirector

DBHandler

UEHandler

AlgoHandler

RefLMUHandler

Positioning_PSAP

Positioning_PSAP

From
To

RefLMU_USAP

DB_USAP

DB_USAP

RefLMU_USAP

UE_USAP

Algorithm_USAP

UE_USAP Algorithm_USAP

DB_Handler_PEER

Fig. 10. Instantiation of the Positioning logical architecture

 The execution flow of the introduced service components is managed by an
architectural element called ServiceDirector. It processes service requests and
orchestrates the execution of the service components. The behaviour of ServiceDirector is
described in a hierarchical way. The top-most state machine of ServiceDirector is the
PSAP Communication model in Fig. 4.

Algorithm_Invocation
via ep_algo

LMU_Measurement
via ep_lmu

DB_Enquiry
via ep_db

UE_Enquiry
via ep_ue

[xp_lmu_ok]

[xp_db_ok]

[xp_ue_ok]

[xp_algo_ok]

[xp_pc_ok] [xp_pc_failure]

[xp_lmu_failure]

[xp_db_failure]

[xp_ue_failure]

[xp_algo_failure]

meas _req()

wf_ meas _response

meas_cnf()

xp_lmu_ok xp_lmu_failure

meas_fail_cnf()

Fig. 11. Execution Control of the positioning
system at the SDe stage

Fig. 12. LMU_Measurement USAP
communication at the SDe stage

9

 In the SDe stage the composed state PositionCalculation from the PSAP
Communication model is decomposed into a set of substates in the Execution Control
state machine, shown in Fig. 11. These substates are: LMU_Measurement, DB_Enquiry,
UE_Enquiry, and Algorithm_Invocation.
 The substates of the Execution Control state machine are further refined. They
describe either some internal computation in the substates or USAP communication that
triggers the execution of a particular service component. The refined behaviour is
represented in the corresponding substate machines. For instance, USAP
communication in the substate LMU_Measurement is described in Fig. 12.
 Models at the Service Distribution stage. The SDi stage focuses on distributing
system components over a given network architecture. The positioning system should
be distributed over two network elements: Positioning_RNC (Radio Network Controller)
and Positioning_SAS (Stand-alone Assisted Global Positioning System Serving Mobile
Location Center). The distributed positioning service is represented by the domain
models for each network element. The Domain Model for Positioning_RNC and Domain
Model for Positioning_SAS are shown in Fig. 13a and 13b respectively.
 When modelling the service distribution over the network element Positioning_RNC,
Positioning_SAS becomes an external service provider. Therefore, it is modelled as an
actor together with the existing external service providers DB and UE. Similarly, when
modelling the service distribution over Positioning_SAS, we represent Positioning_RNC as
an actor together with RefLMU and Algorithm.

Positioning_RNC

User

Distributed
PositionCalculation_RNC

DB

 UE

 Positioning _SAS

Positioning_SAS

 Positioning _RNC

Distributed
PositionCalculation_SAS

 Algorithm

 RefLMU

a) b)

Fig. 13. Domain Model of the positioning system at the SDi stage

 The Communication Context model of the positioning system (shown in Fig. 14)
reflects the service distribution represented in the domain models (Fig. 13). It defines
the following active classes: DistributedPositionCalculation_RNC, Positioning_RNC,
DistributedPositionCalculation_SAS, and Positioning_SAS.
 The communication between the network elements is defined via the ports
Positioning_SAS_PEER and Positioning_RNC_PEER of the classes Positioning_RNC and
Positioning_SAS (see Fig. 14) respectively. Observe that both
DistributedPositionCalculation_SAS and DistributedPositionCalculation_RNC classes have the
same ports as the corresponding classes Positioning_SAS and Positioning_RNC.

10

Positioning_RNC_PSAP
 Positioning_RNC

 To

From

To

DB_USAP

From

From

To
UE_USAP

Positioning_SAS_PEER From To

DistributedPositionCalculation_RNC_PSAP

DistributedPositionCalculation_RNC

 To

From

To
DB_USAP

From

From

To
UE_USAP

 DistributedPositionCalculation_SAS_PEER From To

 Positioning_SAS To

From

From

To
Algorithm_USAP

Positioning_RNC_PEER

RefLMU_USAP

From To

DistributedPositionCalculation_SAS

To

RefLMU_USAP

From

From

To
DistributedPositionCalculation_RNC_PEER To From

Algorithm_USAP

Fig. 14. Excerpt from Communication Context of the positioning system at the SDi stage

 Since the positioning system services and subservices are distributed over different
network elements, their decomposition is represented by two distinct Decomposition
Diagrams � for Positioning_SAS and for Positioning_RNC.
 By introducing the network elements Positioning_RNC and Positioning_SAS, we map
the logical architecture of the positioning system to the physical network architecture. It
is represented by Architecture Diagrams for both network elements. Architecture
Diagram for the Positioning_SAS element is given in Fig. 15.

 ServiceDirector_SAS

AlgoHandler

RefLMUHandler

RefLMU_USAP

RefLMU_USAP

Algorithm_USAP

Algorithm_USAP

RNCToSAS

SASToRNC Positioning_SAS

Fig. 15. Logical architecture of the Positioning_SAS network element

 While mapping the logical architecture of the positioning system to the actual
network architecture, we distribute the service components and ServiceDirector across
the network elements Positioning_SAS and Positioning_RNC. The distributed
ServiceDirector of the network element Positioning_SAS is called ServiceDirector_SAS (in
Fig. 15). It controls the service components AlgoHandler and RefLMUHandler of the
network element Positioning_SAS, as shown in the state machine Execution Control in
Fig 16. ServiceDirector_SAS also manages the communication with Positioning_RNC.

11

Similarly, ServiceDirector_RNC of Positioning_RNC controls the service components
DBHandler and UEHandler and the communication with Positioning_SAS. In addition,
ServiceDirector_RNC handles the communication with the system user.

Algorithm_Invocation
via ep_algo

LMU_Measurement
via ep_lmu

[xp_lmu_ok]

[xp_algo_ok]

Algorithm_Invocation
via ep_algo LMU_Measurement

via ep_lmu

[xp_algo_failure]

[xp_lmu_failure]

serving_meas
via ep_serving Idle

MEAS(v_meas) ep_lmu_meas

[xp_lmu_ok]

[xp_meas_failure]
[xp_meas_ok] /^MEAS_FAILURE(v_meas_failure)

/^MEAS_RESPONSE(v_meas_response)

Fig. 16. Execution Control state machine of
ServiceDirector_SAS

Fig. 17. PEER Communication of
ServiceDirector_SAS

 We specify the communication between Positioning_RNC and Positioning_SAS via
corresponding PEERs by PEER Communication state machines. For the network
element Positioning_RNC, the PEER Communication state machine coincides with the
state machine describing USAP communication with RefLMU in Fig. 12. The PEER
Communication state machine of the network element Positioning_SAS is represented as
the PSAP Communication state machine in Fig. 17.
 The fourth Lyra stage � Service Implementation � focuses on implementing low
level details (e.g., data encoding and decoding, routing of messages etc.) on the top of
the already existing architecture. Here we omit its detailed description which can be
found elsewhere (e.g., [6]).
 While presenting the development of the positioning system, we have already
described some elements of the Lyra profile. In the next section we present the entire
profile in detail.

4. The Lyra profile

4.1. Lyra profiling principles

The development of the Lyra profile was inspired by the earlier work by Selonen and
Xu [14, 15] on defining a profile for capturing architectural rules and constraints
relevant to the specific product line platforms. Selonen and Xu introduced a concept of
an architectural profile [14, 15], which relies on the UML_1.5 profile mechanism.
Architectural profiles are extended UML profiles specialized for describing
architectural constraints and rules for a given domain [15, 16]. Selonen and Xu use
extended UML profiles to enable adding constraints on inherited meta-associations
between user-defined stereotypes. (Let us note, that this is not allowed in UML_1.5
profiles). These extended profiles contain two parts: the standard UML metamodel part
showing the subset of the metamodel that is being extended, and the extension part
showing the stereotypes and the inherited meta-associations and other constraints. The

12

extension part describes the valid relationships between the architectural concepts:
classifiers, interfaces, and dependencies between them. The actual architecture checked
against the profile must satisfy the constraints implied by the profile, i.e., it should not
have other structures except the ones explicitly described in the profile. The
dependencies used in the extension part of an architectural profile represent
visualizations of the constraints that could also be expressed, e.g., using OCL [14, 15].
Such visualizations are easy for a software architect to read and understand. While
introducing the Lyra profile, we use the corresponding visualizations in a similar way as
it is done in the architectural profiles.

4.2. Concepts of the Lyra profile

The Lyra profile represents the basic reference model that allows the designers to check
correctness and completeness of the Lyra design models. For instance, we can verify
correctness of all models of the positioning system at each Lyra stage with respect to the
profile.
 To introduce the Lyra profile, we use UML2 as our description language. This allows
us to avoid unnecessary redefinitions since most elements of Lyra models reuse existing
UML2 notions.
 The aim of the Lyra profile is to tailor the existing UML2 metamodel to the Lyra
design method. We customize the UML2 metamodel by introducing specific
stereotypes. They allow us to use the Lyra concepts in modelling and add corresponding
semantics to the metamodel. Namely, each Lyra stereotype allows us to use a specific
Lyra element while modelling either system structure or behaviour.
 While presenting the profile, we show Lyra stereotypes as extensions of the
corresponding UML2 meta-classes. For clarity, we show only the associations between
stereotypes and omit the corresponding meta-associations between the extended meta-
classes as described in [15].

4.2.1. Introducing stereotypes for modeling

the system structure

To model the system structure, we use Domain Model, Decomposition Diagram,
Communication Context, and Architecture Diagram, as described in the previous
section. The elements of these models are instances of either the existing meta-classes
from UML2 metamodel or the Lyra stereotypes. We focus only on those models that
rely on some Lyra stereotype.
 To define Domain Model, we need a concept of a specialized actor representing
either a user of the modelled service or its provider. Hence, we introduce a stereotype
called LyraActor. LyraActor is an external entity that interacts with the system. This is
an abstract concept that can be instantiated either as ServiceUser or ServiceProvider.
ServiceUser is an external user of the system, whereas ServiceProvider is an external
provider of some other service the system might use. In our positioning system example
the instance of ServiceUser is User and the instances of ServiceProvider are DB, UE,
RefLMU and Algorithm (shown in Fig. 6).

13

 Architecture Diagram in Lyra is a UML2 component diagram whose basic elements
are components. Lyra introduces different types of these components designated by new
stereotypes � SystemComponent and ServiceComponent.
 SystemComponent is a structural model element, which encapsulates a logical,
independent piece of a system specification. Hence, it can be developed in isolation and
later integrated into a larger system. SystemComponent consists of ServiceComponents.
They are logical model elements, which encapsulate the service behaviour and have
specific functionalities. In the positioning system example, an instance of
SystemComponent is Positioning system component shown in Fig. 10. It consists of four
instances of ServiceComponent: DBHandler, UEHandler, RefLMUHandler, and AlgoHandler.
Each of these instances encapsulates a part of the positioning service functionality.
 SystemComponent interacts with its environment by requesting or providing a
service. The Lyra profile introduces the abstract stereotype AccessPoint to specify
different communication points between SystemComponent and its environment.
AccessPoint can be instantiated either as SAP (Service Access Point) or PeerAP (Peer
Access Point).
 SAP is a communication point through which a system may either provide its
services to the external users or use the services provided by external service providers.
SAP through which a system provides its service is called PSAP (Provided Service
Access Point), whereas SAP through which a system uses other services is called USAP
(Used Service Access Point). In our example, the positioning system provides its
position calculation service to the system user through PositionCalculation_PSAP, as
shown in Fig. 7. However, to provide this service, the positioning system also uses
(through DB_USAP) a service provided by the network database component.
 PeerAP is a communication point between a set of distributed service components.
For instance, the network elements Positioning_SAS and Positioning_RNC, which
represent the actual distribution of the positioning service, communicate through
Positioning_SAS_PEER and Positioning_RNC_PEER, as shown in Fig. 14.

4.2.2. Introducing stereotypes for modeling

the system behaviour

As described in the previous section, we model system behaviour by using Signalling
Scenarios and several different types of state machines: Execution Control, PSAP
Communication, USAP Communication, PEER Communication, and Internal
Computation. Elements of these models are instances of the corresponding meta-classes
from the UML2 metamodel. However, we introduce Lyra stereotypes to represent the
types of the state machines defining the hierarchical structure of behaviour, shown in
Fig. 18.
 The top-most state machine is an instance of the stereotype PSAPCommunication. It
describes the communication through PSAP of the owning ServiceComponent, i.e., the
communication with the service user. For instance, the PSAP Communication state
machine of the position calculation service shown in Fig. 4 describes the
communication with the service user via PositionCalculation_PSAP from Fig. 2.

According to a received user request, a PSAP Communication state machine calls
(i.e., invokes) an Execution Control state machine, which is an instance of the
stereotype ExecutionControl. It defines the execution flow of the subservices required

14

to produce a response to a user request. For instance, the Execution Control state
machine of the positioning system (represented in Fig. 11) defines the execution order
of the needed subservices: LMU_Measurement, DB_Enquiry, UE_Enquiry, and
Algorithm_Invocation.

 PSAPCommunication

ExecutionControl

USAPCommunication InternalCommunication PEERCommunication

<<call>>

<<call>>
<<call>> <<call>>

Fig. 18. Hierarchical structure of behaviour

 The Execution Control state machine can invoke different types of behaviour
depending on the way in which the subservices are implemented. Namely, if the
implementation of a subservice involves some internal computations, which are not
directly related to the service interfaces, the Execution Control state machine calls an
Internal Computation state machine that is an instance of the stereotype
InternalComputation. However, if some subservices are provided by the external
service providers then the Execution Control state machine calls a USAP
Communication state machine. This is an instance of the stereotype
USAPCommunication that describes the USAP communication of the owning
ServiceComponent, i.e., the communication with an external service provider. For
instance, the USAP Communication state machine represented in Fig. 12, describes the
communication with an external service provider � RefLMU. Finally, if some part of
the service implementation has been distributed to a remote physical location then the
Execution Control state machine calls a PEER Communication state machine. It is an
instance of the stereotype PEERCommunication. A PEER Communication state
machine describes the communication through PEERs of the owning
ServiceComponent. For instance, the PEER Communication state machine, represented
in Fig. 17, specifies the communication through Positioning_SAS_PEER of the
Positioning_SAS network element with another network element Positioning_RNC.
 In general, the PSAP, USAP and PEER Communication state machines together with
the Execution Control and the Internal Computation state machines specify the overall
service logics. They all are instances of the stereotype ServiceBehaviour.
ServiceBehaviour constitutes one part of the overall ServiceComponent behaviour.
Another part � ServiceComponentBehaviour � is not considered to be a part of the
service logics. It encapsulates all internal implementation-specific functionalities, like
dynamic process management and routing of incoming messages. This is a part of the
communication protocol, presentation of which we omitted in our positioning system
example.

The summary of the Lyra profile is given in Fig. 19.

15

Fig. 19. Summary of the Lyra profile

Behavior

<<metaclass>>

StateMachine
<<metaclass>>

Actor
<<metaclass>>

LyraActor

SAP

USAP PSAP PeerAP

InternalBehavior AccessPointCommunication

InternalComputation ExecutionControl SAPCommunication

USAPCommunication PSAPCommunication PeerCommunication

BehavioredClassifier
<<metaclass>>

ServiceComponentBehavior

Port
<<metaclass>>

EncapsulatedClassifier
<<metaclass>>

AccessPoint
ServiceBehavior

ServiceComponent
0..1

0..1

0..1

+classifierBehavior 0..1

*

*

*

+ownedServiceComponentPort
*

*

+context

+ownedBehavior *

ServiceUser ServiceProvider

Interface
<<metaclass>>

*
+implement

* *
+use

*

*
+required

*

*

+provided

*

SystemComponent

* *
+ownedPort

*

+ownedServiceComponent

*
*

+ownedSystemComponent
*

16

5. Defining consistency in Lyra

The Lyra design method adopts the top-down development paradigm. Development
starts from a high level of abstraction. The models at each subsequent stage represent
the system at lower levels of abstraction, i.e., they specify the required functionality in
more detail. This raises a problem of ensuring model consistency, throughout the system
development. In other words, we have to guarantee that each properly defined model is
not contradictory with already created models. We call a model properly defined if it
satisfies the model presentation rules, i.e., the structural requirements imposed on the
modelling elements.
 Ensuring consistency is a two-fold task. On the one hand, a model should be
consistent with the models at the same development stage. On the other hand, it should
be also consistent with the models from the previous development stages. The
consistency between the concepts specifying different aspects of the system structure
and behaviour on the same development stage is known as intra-consistency [17];
whereas the inter-consistency [17] is defined as the consistency among modelling
concepts from different development stages.
 The Lyra profile presented in the previous section allows us only to ensure that
created Lyra models are properly defined, i.e., that their structure conforms to the one
defined in the profile. Defining consistency in the Lyra profile is, however, a difficult
task. Although one could express intra-consistency rules as OCL constraints on the
profile elements, it would still require referencing those UML2 meta-classes extended
by the profile stereotypes. This would complicate the process of creating OCL
constraints. Furthermore, Lyra is based on stage-specific development. Expressing
inter-consistency rules for different Lyra stages would require either:
 annotating the existing profile elements to designate different stages and then add

OCL inter-consistency constraints on the top of the already existing intra- consistency
constraints, or

 creating a metamodel for each Lyra stage and again using OCL to express inter-
constancy.

In both cases defining consistency in the Lyra profile would be complex and tedious.
 Next we propose a formal approach to achieving intra- and inter-consistency in Lyra.
We start from deriving general forms of consistency rules between Lyra models.
 Models at the Service Specification (SS) stage. The system development starts
from creating Domain Model describing the system services and their users. Its general
form is given in Fig. 20a. To be properly defined, Domain Model should satisfy certain
structural constraints. For instance, an association in the Domain Model can be created
only if the corresponding actor and use case have been created first.
 From Domain Model we derive the formal system structure represented in the
Communication Context diagram. The general form of this model is shown in Fig. 20b.
To be consistent with the previously created Domain Model, Communication Context
should satisfy a number of intra-consistency rules.

17

 System

PSAP
Port

Active
Class

 To

 From

 To
 PSAP Port

Active
Class

 From
 a) c)

b)

Success

Yes No

e) To From

External
Class

d)

State1

State2

Actor Subject

request

response

 Interaction

Use Case

Actor

Association

USAP Port

Fig. 20. The design flow of the SS stage

 Table 1 shows an excerpt from the list of intra-consistency rules for the models in SS
stage. Specifically, it shows part of the intra-consistency rules for the Communication
Context model.

Table 1. Excerpt from the list of intra-consistency rules for Communication Context at SS stage
Rule
1.1
1.2

One active class is created for the system which is defined in Domain Model.
The name of the system is the name of the active class.

2.1
2.2

For each use case in Domain Model an active class is defined.
The name of the class is the same as the name of the corresponding use case.

3.1
3.2

For each actor in Domain Model one external class is created.
The name of the actor in Domain Model becomes the name of the external class.

4.1
4.2

The association between the actor and the system defines PSAP on the corresponding active class.
The name of the port on the active class corresponding to the system is obtained according to the rule:
<name of the system>_PSAP (i.e., <name of the active_class>_PSAP)

5.1
5.2

The association between the actor and the use case defines PSAP on the corresponding active class.
The name of the port on the active class corresponding to the use case is obtained according to the rule:
<name of the use case>_PSAP (i.e., <name of the active_class>_PSAP)

6.1
6.2

The association between the actor and the system defines USAP on the corresponding external class.
The name of the port on the external class is obtained according to the rule:
<name of the system >_USAP

 The next model at the SS stage � Signalling Scenario (Fig. 20c) � gives an informal
description of the communication between a system service and its user(s). The
communication is defined in terms of interactions. Each interaction is a set of the
Signalling Scenario models defined for a particular system service.
 Formally, the communication between a system service and its users is expressed in
the PSAP Communication model (Fig. 20d), which is a UML2 state machine. In
general, a PSAP Communication model has two states: the idle state and the composite
state. The composite state is obtained from the interactions defined in the Signalling
Scenario models. Transitions between the idle and the composite states specify the
messages exchanged within the same Signalling Scenario models.
 The main computation states in the PSAP Communication model are composite. The
behaviour of the service on the level of substates is defined in the corresponding
Substate Machine models (Fig. 20e). At the SS stage, Substate Machine also non-
deterministically models success or failure of service execution.

18

 Models at the Service Decomposition (SDe) stage. To provide a system services,
the system usually relies on the services of some external service providers. Their
explicit representation is introduced into the system model at the SDe stage. The
external service providers are represented as new actors associated with the system
services in Domain Model (Fig. 21a). To ensure that Domain Model at the SDe stage is
consistent with Domain Model at the SS stage, we should guarantee that, after
introducing external service providers, the elements of the model introduced at the SS
stage remain unchanged. In other words, we should ensure inter-consistency between
the models of those two stages.

From

PSAP
Port

System

Use Case

Actor

Association

a)

External
Class

To
 c)

PSAP
Port

 To

Actor

Actor

Sub-use
Case

UseCase

b)

From

Subject

Actor

request
response

e)

d)

Actor Subject
request

response

ref
ref

f)

 Sub-state

request

response

response

WaitForService

PSAP
Port Active

Class

 To From

From

To

g)

USAP
Port

Sub-state

Sub-use
Case

External
Class

Fig. 21. The design flow of the SDe stage

Table 2. Excerpt from the list of inter-consistency rules for Communication Context at SDe stage

Rule
1 Each active class created at SS stage should remain the active class in the Communication Context at

SDe stage.
2 Each external class created at SS stage should remain the external class in the Communication Context at

SDe stage.
3 PSAPs on active classes created at SS stage remain unchanged.
4.1

4.2

USAP is added to the active class corresponding to the system for each newly added actor in Domain
Model at SDe stage.
The name of the USAP is obtained according to the rule: <name of the added actor>_USAP

5.1

5.2

USAP is added to the active class corresponding to the use case for each newly added actor in Domain
Model at SDe stage.
The name of the USAP is obtained according to the rule: <name of the added actor>_USAP

 At the SDe stage we rely on the intra-consistency rules defined for the SS stage. For
instance, while creating Communication Context (Fig. 21c), we again define external
UML2 classes for the actors introduced in Domain Model at the SDe stage. Each
external class obtains its own PSAP, describing communication with the system service.
Furthermore, each association between the system service and an external service
provider is modelled as a USAP attached to the associated active classes. Let us observe
that the elements introduced in Communication Context at the SS stage should remain
unaffected, i.e., we should ensure inter-consistency between these models on SS and

19

SDe stages. An excerpt from the list of the inter-consistency rules for the
Communication Context model at the SDe stage is shown in Table 2.
 The decomposition of the system service into subservices is depicted in
Decomposition Diagram (Fig. 21b). This is an additional model appearing at the SDe
stage. Decomposition Diagram is actually a use case model showing the subuse cases
that should be executed to provide the system service.
 By defining the subservice execution order we complete the behavioural
specification of a decomposed service. We augment the Signalling Scenario models
created at the SS stage by adding interaction references (denoted as ref in Fig. 21d)
representing a set of Signalling Scenario models (Fig. 21e) for each subuse case. These
scenarios describe the communication between the system subservices and the external
service providers. The subservice execution order is then defined by the order in which
the references appear in the augmented Signalling Scenario (Fig. 21d).
 At the SDe stage, the PSAP Communication model is refined to explicitly model the
behaviour on the level of subservices. The composite state, modelling the actual service
execution in the PSAP Communication model, is decomposed into a set of substates in
the Execution Control state machine (Fig. 21f). The substates of the Execution Control
state machine correspond to the subservices. The internal computation in the substates
and the communication between the subservices are modelled for each substate in the
corresponding Substate Machine (Fig. 21g).

Actor

a)

c)

g)

System

Association
 Actor

Actor

Distributed
UseCase

b) d)

f)

request

response
 response

WaitForService

MNE

SNE

Association

SNE

MNE

e)
PSAP

Port

 To From

USAP

From To

PEER

To

From

Active Class

PEER
To

From

PEER

To

From

PSAP

Port

Active Class

 To
 From

USAP
 From

To

PEER

To

From

h)
i)

Idle

 Sub-state

Actor
 Subject

request

response

ref

Distributed
UseCase

Distributed
Sub-useCase Distributed

Sub-useCase
Distributed

Sub-useCase

Distributed
UseCase

Distributed
UseCase

Sub-state

Active
Class

Active
Class

Active
Class

Active
Class

Fig. 22. The design flow of the SDi stage

 Models at the Service Distribution (SDi) stage. The SDi stage focuses on
distributing decomposed system services over a given platform architecture. The
elements of Domain Model from the previous stage remain unchanged. However, they
are now associated to the underlying platform and referred to as network elements. The
network element that communicates with the user is called the Main Network Element
(MNE), while the other network elements are called Secondary Network Elements
(SNE). Since the system service distributed on each network element uses only services
of the external providers allocated to that particular element, Domain Model at SDi

20

stage should be defined for each of the network elements from their own viewpoints.
This means that, when defining Domain Model for the MNE (Fig. 22a), we model the
rest of the network elements as actors. Similarly, when defining Domain Model for SNE
(Fig. 22b), we model the MNE and the other existing SNEs as actors.
 The resulting set of the inter-consistency rules for Domain Model at SDe stage is
shown in Table 3. The similar rules are defined for each model.

Table 3. Excerpt from the list of inter-consistency rules for Domain Model at SDi stage

Rule
1.1

1.2
1.3

The system created in Domain Model at SDe stage is split into separate network elements in the SDi
stage.
For each network element, new Domain Model is created.
The name of the system is obtained according to the rule:
<Name of the system_Name of the network element>

2.1

2.2

Each use case created at SDe stage is distributed in the Domain Models at SDi stage across different
network elements.
The name of the use case is obtained according to the rule:
<Distributed_Name of the use case_Name of the network element>

3 Actors from the Domain Model at SDe stage are associated with different network elements and become
a part of different Domain Models in SDi stage.

4.1

4.2

In each Domain Model for a network element, all the other network elements become actors associated
with the system.
The name of the actor is the same as the name of the network element it is representing.

 Communication Context (Fig. 22c) defines the active classes for all distributed
services and corresponding network elements upon which they are distributed. The
external classes defined at the previous Lyra stage remain unchanged. The associations
from Domain Model define the interfaces on USAPs and PSAPs of the classes
corresponding to the network elements. The communication between distributed
services is defined via the PEER interfaces attached to the corresponding network
elements.
 Distribution of the decomposed functionality of the system is defined by the
Decomposition Diagram models. Since the system services and subservices may be
distributed on different network elements, Decomposition Diagram should represent the
system decomposition from the individual viewpoints of each network element. This
means that we should create Decomposition Diagram for the MNE (Fig. 22d) and
Decomposition Diagram for the SNE (Fig. 22e).
 The Signalling Scenario models (Fig. 22f) for the distributed services introduce
interaction references for the distributed subuse cases. They describe the PEER
communication between the parts of the distributed service.
 The Execution Control state machine defined in the previous Lyra stage remains the
same. However, Substate Machine attached to its composite distributed state is replaced
with the new Execution Control machine (Fig. 22g) defining the distributed
functionality in a remote location. It is defined from the viewpoint of the MNE.
Additionally, the new PSAP Communication state machine (Fig. 22h) needs to be
defined for the distributed service from the viewpoint of the SNE.
 The composite states in the Execution Control machine are further specified by the
corresponding Substate Machine models (Fig. 22i).

21

 To summarize, the overall Lyra design flow is guided by the requirements imposed
on its modelling elements: 1) each model is created according to certain structural
requirements; 2) models within one stage are created according to the defined intra-
consistency rules; 3) models at each subsequent development stage preserve the inter-
consistency rules.
 We show how to ensure consistency in Lyra by formalizing models and the intra-
and inter-consistency rules defined above. The next section gives a brief introduction
into our modelling framework � the B Method.

6. The B Method

The B Method [7, 18] (further referred to as B) is an approach for the industrial
development of highly dependable software that has been successfully used in the
development of several complex real-life applications [19]. The tool support available
for B provides us with the assistance for the entire development process with a high
degree of automation in verifying correctness. For instance, Atelier B [20], one of the
tools supporting the B Method, has facilities for automatic verification and code
generation. The high degree of automation in verifying correctness improves scalability
of B and speeds up the development.
 In B, a specification is represented by a module or a set of modules, called Abstract
Machines. The common pseudo-programming notation � Abstract Machine Notation
(AMN) � is used to construct and formally verify them. An abstract machine
encapsulates a state and operations of the specification and has the following general
form:

MACHINE Name

SETS Set

VARIABLES v

INVARIANT I

INITIALISATION Init

OPERATIONS Op

 Each machine is uniquely identified by its Name. The state variables of the machine
are declared in the VARIABLES clause and initialized in the INITIALISATION
clause. The variables in B are strongly typed by constraining predicates of the
INVARIANT clause. The constraining predicates are conjoint by conjunction (denoted
as ). All types in B are represented by non-empty sets and hence set membership
(denoted as ) expresses typing constraint for a variable, e.g., xTYPE. Local types can
be introduced by enumerating the elements of the type, e.g., TYPE = {element1,
element2,�} in the SETS clause. The operations of the machine are atomic, meaning
that once started, they cannot be interrupted until finished. They are defined in the
OPERATIONS clause. The operations are specified as the guarded operations of the
form:

Operation = SELECT cond THEN body END

22

 Here cond is a state predicate, and body is a B statement describing how the state
variables are affected by the operation. If cond is satisfied, the behaviour of the guarded
operation corresponds to the execution of its body. If cond is false at the current state
then the operation is disabled, i.e., cannot be executed.
 B statements that we are using to describe the computation in operations have the
following syntax:

S == x := e | x, y := e1, e2 | S1 ; S2 | S1 || S2 |
 x : T | ANY z WHERE cond THEN S END | ...

The first three constructs � assignments and sequential composition � have the standard
meaning. The remaining constructs allow us to model parallel and nondeterministic
behaviour in a specification. The detailed description of the B statements can be found
elsewhere (e.g., [18]).
 B also provides structuring mechanisms for modularization. It allows handling the
complexity of development by describing parts of the specification in separate
machines. Here we use EXTENDS mechanism to incorporate these separate machines
into the overall specification. When machine M1 extends machine M2, written as
EXTENDS M2 in the definition of M1, it means that M2 is included as part of the
machine M1. Its state is part of the state of M1. Moreover, all of the operations of M2
become operations of M1.
 The semantics of B is based on the weakest precondition calculus [21]. If S is a B
statement and P a predicate representing the postcondition, i.e., a set of states which can
be reached after performing the B statement, then [S]P represents the weakest
precondition that guarantee P after executing S. The weakest precondition rules for a
subset of B statements are defined as follows:

[skip] P  P
[x:=E] P  P(x/E)
[S1 || S2] P  [S1] P and [S2] P
[ANY z WHERE cond THEN S END] P   z (P  [S] P)

They are used for verifying correctness of B specifications.
 To ensure correctness of a B machine, we should verify that the initialization
preserve the invariant and that the invariant is valid, which means that there are some
possible machine states satisfying it. In other words, initialisation statement Init must
always guarantee the machine invariant I:

[Init] I  true

Moreover, to establish correctness of a B specification, we should verify that every
operation Opi also preserves the invariant I when invoked under some precondition
condi:

I  condi  [bodyi] I

Here bodyi is the body of the operation Opi.

23

 The formal development in B is based on stepwise refinement [22]. While developing
a system by refinement, we start from an abstract formal specification and transform it
gradually into an implementable program by a number of correctness preserving steps,
called refinements. The result of a refinement step in B is a machine called
REFINEMENT. Its structure coincides with the structure of the abstract machine. In
addition, it explicitly states which machine it refines.
 In this paper we extensively use data refinement � a general form of refinement,
which allows us to change the state space of a machine. To replace abstract data
structures with the refined ones, we define the refinement relation (linking invariant)
that explicitly states the connection between the newly introduced variables and the
variables that they replace. The refinement relation constitutes a part of the invariant of
the refining machine.
 To ensure correctness of a refinement, we should verify that initialization and each
operation of the refining machine refine the initialization and the corresponding
operations of refined machine. Since the refinement relation is a part of the invariant of
the refining machine, it suffices to ensure that the initialization and each operation of
the refining machine satisfy this invariant.
 While developing a system by refinement, it is often needed to introduce new
variables while leaving the existing data structure unchanged. This is a specific form of
data refinement called superposition refinement [22]. It also allows introducing new
events which describe computations on these new variables.
 The B tool support provides assistance in verification of B models. The verification
can be completely automatic or user-assisted. In the former case, the tool generates the
required proof obligations and discharges them without user�s help. In the latter case,
the user proves certain proof obligations using the interactive prover provided by the
tool.
 In the next section we demonstrate how to use specification and refinement in B to
verify the consistency of Lyra models.

7. Formal verification of consistency

In Section 5 we derived informal consistency requirements. The informal requirements
form the basis for formalizing Lyra models and consistency rules in B.

Ensuring intra-consistency of Lyra models in B. To ensure intra-consistency between
the models in Lyra we should verify that models at one development stage:
 satisfy model presentation rules, i.e., the constraints expressing how to properly

define model elements, and
 are not contradictory with each other.
To verify these properties, we first represent each Lyra model as a B machine of a
general form given in Fig. 23.
 The name of the machine corresponds to the name of a Lyra model and is followed
by the acronymic name of the stage, i.e., SS, SDe or SDi. The variables of this machine
correspond to model elements and their presentation rules are expressed as its invariant.
Each operation simulates creating an element of the model. Namely, for each element,

24

the corresponding Create_ModelElement operation represents creating the element
according to the model presentation and the intra-consistency rules.

MACHINE Model_Stage

EXTENDS < Previously created model >

VARIABLES < Names of model elements >, Model_Stage_Status

INVARIANT < Model presentation rules >

INITIALISATION

 < Initialise the variables for model elements > || Model_Stage_Status:=Empty

OPERATIONS

Start_Model_Stage =

 BEGIN

 Model_Stage_Status:=Creating

 END;

Stop_Model_Stage =

 SELECT < Model creation rules satisfied >

 THEN Model_Stage_Status:=Finished

 END;

Create_ModelElementA =

 SELECT Model_Stage_Status=Creating

 THEN < Create a model element A while ensuring model presentation and intra-consistency rules >

 END;

Create_ModelElementB =

 SELECT Model_Stage_Status=Creating

 THEN < Create a model element B while ensuring model presentation and intra-consistency rules >

 END;

END

Fig. 23. General form of the B machine for a Lyra model

 To ensure that the models are created according to the Lyra design flow, we
introduce the variable Model_Stage_Status. When the creation of the corresponding
Lyra model starts, the operation Start_Model_Stage assigns the value Creating to the
Model_Stage_Status and this in turn enables creating of model elements. Let us observe
that Model_Stage_Status=Creating is the guard of the Create_ModelElementA and
Create_ModelElementB operations in Fig. 23. When a particular model is created,
Model_Stage_Status variable is assigned the value Finished. This, in turn, triggers
creating a subsequent model. The order in which the models are created is orchestrated
by the corresponding top machine. Its general form is shown in Fig. 24.
 Observe that each machine corresponding to the subsequent model EXTENDS the
machine for the last created model in that stage and hence all the machines for
previously created models. In this way we obtain the top machine for a specific stage by
incorporating machines for Lyra models created in that stage.
 The B extension mechanism allows us to simulate the order in which Lyra models
are created. Namely, after one model is created, the top machine defines which model is
to be created next. For instance, if Model0 should be created first and then Model1, the
guard of the Create_Model1_Stage operation of the top machine has the following
form:

Model0_Stage_Status=Finished  Model1_Stage_Status=Empty

25

where the value Empty assigned to the variable Model1_Stage_Status denotes that
creating of the Model1 has not started yet. Since Model0_Stage_Status=Finished, i.e.,
Model0 is created, the top machine triggers creating Model1 by calling the operation
Start_Model1_Stage from the body of the operation Create_Model1_Stage.

MACHINE Stage

EXTENDS Model1_Stage

INVARIANT

/* intra-consistency rules */

/* Model0 */

(Model0_Stage_Status=Finished  ...)

/* Model1 */

(Model1_Stage_Status=Finished  ...) ...

OPERATIONS

Create_Model0_Stage =

 SELECT

 Model0_Stage_Status=Empty

 THEN

 Start_Model0_Stage

 END;

Create_Model1_Stage =

 SELECT

 Model0_Stage_Status=Finished  Model1_Stage_Status=Empty

 THEN

 Start_Model1_Stage

 END

...

END

Fig. 24. General form of the B machine for a specific Lyra stage

 Since we assume that the Lyra models are checked for consistency only after they
are created, the invariant of the machine corresponding to a certain Lyra stage
guarantees that the intra-consistency rules for a particular model are satisfied only
when Model_Stage_Status=Finished.
 To verify the intra-consistency rules, we should prove correctness of the defined top
machines and the machines representing the corresponding Lyra models. This task is
facilitated by an automatic tool support available for the B Method � AtelierB [20].
AtelierB generates the required proof obligations and attempts to discharge them
automatically. In some cases it requires user�s assistance for doing this. Upon
discharging all proof obligations the verification process completes. It ensures that all
the model elements and models themselves at a specific Lyra stage are created
according to the specified structural and intra-consistency rules.

Ensuring inter-consistency of Lyra models in B. To verify inter-consistency, we
should ensure that the models at different development stages are not contradictory with
each other. In this paper we propose refinement [22] as a technique for checking model
inter-consistency. A graphical representation of the proposed approach is given in Fig.
25.

26

Domain Model

Decomposition Diagram

Communication Context

Signalling Scenario

Execution Control

Substate Machine

Domain Model

Communication Context

Signalling Scenario

PSAP Communication

Substate Machine

SS

SDe

Domain Model MNE

Domain Model SNE

Decomposition Diagram MNE

Decomposition Diagram SNE

Communication Context

Signalling Scenario

SDi

Execution Control

PSAP Communication

Substate Machine

Notation:
 extends

is refined by

Lyra stages

Fig. 25. Overall Lyra development in B

 The models in each Lyra stage correspond to the B machines specified according to
the pattern given in Fig. 23. The rules of intra-consistency remain unchanged through
stages. However, the models starting from the second Lyra stage should be consistent
with the models from the previous stages. Hence, we define a B machine corresponding
to the top machine of the subsequent Lyra stage as a refinement of the top machine for
the previous Lyra stage. Its general form is shown in Fig. 26.

REFINEMENT Stage�

REFINES Stage

EXTENDS Model0_Stage�

INVARIANT

/* intra-consistency rules */

 ...

/* inter-consistency rules */

 /* Model0 */

 (Model0_Stage�_Status=Finished  

 /* Model1 */

(Model1_Stage�_Status=Finished ...) ...

OPERATIONS

Create_Model0_Stage =...

Create_Model1_Stage =...

Create_Model0_Stage� =...

Create_Model1_Stage� =...

...

END
Fig. 26. General form of the B refinement for the subsequent Lyra stage

 The top machine Stage� is a superposition refinement of the machine Stage. Namely,
the existing data structure introduced in the machine Stage is unchanged. However, we
introduce new variables for the models of the subsequent stage and operations over
them. The inter-consistency rules defining the relationships between the model elements

27

from these two stages are expressed as the linking invariant of the refinement Stage�. In
addition, the invariant of the machine Stage� expresses the intra-consistency rules in a
similar way as the invariant of the machine Stage (see Fig. 24).
 Verification of inter-consistency is achieved in a similar way as for intra-consistency.
Using Atelier B, we prove correctness of the defined abstract machines corresponding
to the models of the subsequent Lyra stage. In addition, we prove that the top machine
representing the current Lyra stage is refinement of the top machine representing the
previous Lyra stage.
 Next we present detailed formal definition of several Lyra models and verification of
their consistency.

7.1. Translating Lyra models in B � an example

We start from defining a B machine to represent Domain Model at the SS stage (Fig.
20a). Domain Model is the first Lyra model. Hence, we should ensure only its structural
consistency.
 While constructing the B machine for Domain Model (DomainModel_SS in Fig. 27),
we define only the model presentation rules for its elements: Actor, UseCase,
Association and System. For instance, one of the rules common for all elements in Lyra
models postulates that each model element is strictly identified by its unique identifier.
This is enforced by typing the introduced variables using the set of unique identifiers
(UNIQUE_ID).

MACHINE DomainModel_SS

VARIABLES
 Actor, Actor_Name, UseCase, UseCase, Name, System, System_Contains, System_Name, Association, Association_Ends, ...
 DomainModel_SS_Status
INVARIANT

Actor  UNIQUE_ID Actor_Name  Actor NAMES 
UseCase  UNIQUE_ID UseCase_Name  UseCase NAMES 
Association  UNIQUE_ID Association_Ends Association (Actor UseCase) 

INITIALISATION
 Actor, Actor_Name := || ... || DomainModel_SS_Status := Empty
OPERATIONS
Start_DomainModel_SS =...
Stop_DomainModel_SS =...
Create_System =...
Create_Actor =
 SELECT DomainModel_SS_Status=Creating
 THEN
 ANY name WHERE name  NAMES  Name_Not_In_Use
 THEN
 ANY idx WHERE idx  UNIQUE_ID  ID_Not_In_Use
 THEN
 Actor := Actor  { idx } || Actor_Name := Actor_Name  { idx  name } || ...

 END
 END
 END;
Create_UseCase =...
Create_Association =...
END

Fig. 27. Excerpt from the DomainModel_SS machine

28

 The additional model presentation rules are derived from the requirements for
Domain Model in the SS stage. For instance, a model presentation rule for the element
Actor in Domain Model at the SS stage expresses that an actor has to have the name.
Observe that the operation Create_Actor in Domain_Model_SS machine enforces this
rule while creating an actor. Namely, the variable Actor_Name contains the names for
each created actor. We omitted the detailed presentation of all the operations of
Domain_Model_SS. They follow the general form of the operations given in Fig. 23.
 The next step in Lyra development is creating the Communication Context model
(Fig. 20b). To ensure intra-consistency, the machine CommunicationContext_SS (Fig.
28) refers to DomainModel_SS in its EXTENDS clause. The elements of the
Communication Context model are the variables of the CommunicationContext_SS
machine. They are defined relying on the definitions of DomainModel_SS machine. The
dependencies between the models are formulated as the intra-consistency rules. They
implement the requirements obtained for the Communication Context model at SS
stage. For instance, an intra-consistency rule for the active classes in Communication
Context at the SDe stage states that an active class should be defined for each use case
in Domain Model with the same name as the corresponding use case. This rule is
specified while creating the element ActiveClass in the CommunicationContext_SS
machine.

MACHINE CommunicationContext_SS
EXTENDS DomainModel_SS
VARIABLES
 ActiveClass , ActiveClass_Name ,
 ExternalClass , ExternalClass_Name ,
 PSAP_Port , USAP_Port ,
 Interface_IN , Interface_OUT, ...
 CommunicationContext_SS_Status
INVARIANT
 ActiveClass  UNIQUE_ID ActiveClass_Name  ActiveClass (System UseCase) 
INITIALISATION
 ActiveClass, ActiveClass_Name :=  || ... || CommunicationContext_SS_Status := Empty
OPERATIONS
Start_CommunicationContext_SS =...
Stop_CommunicationContext_SS =
 SELECT ran (ActiveClass_Name) = (UseCase System) ...
 THEN
 CommunicationContext_SS_Status:=Finished
 END;
Create_ActiveClass_For_UseCase =
 SELECT
 CommunicationContext_SS_Status=Creating
 THEN
 ANY id1, idx WHERE id1  UNIQUE_ID  id1  UseCase  id1  ran (ActiveClass_Name) 
 idx  UNIQUE_ID ID_Not_In_Use
 THEN
 ActiveClass := ActiveClass  { idx } || ActiveClass_Name := ActiveClass_Name { idx id1 } || ...

 END
 END;
Create_ActiveClass_For_System =...
Create_ExternalClass =...
Create_USAP_Port =...
Create_PSAP_Port =...
END

Fig. 28. Excerpt from the CommunicationContext_SS machine

29

 The Create_ActiveClass_For_UseCase operation (see Fig. 28) creates an active
class with the same name as the use case with the unique ID. The guard of the operation
Stop_CommunicationContext_SS ensures that this model is properly created only
when there exists an active class in Communication Context for each use case in
Domain Model.
 We omit presenting the B machines for Signalling Scenario, PSAP Communication
and Substate Machine in the SS stage since they follow the same general form given in
Fig. 23. The top machine for the SS stage is obtained according to the pattern shown in
Fig. 24.
 The inter-consistency rules guide defining Domain Model (Fig. 21a) in the SDe
stage. The SDe stage adds new actors to Domain Model. They should be associated
with already existing use cases. The machine DomainModel_SDe (see Fig. 29) has
similar structure as DomainModel_SS (see Fig. 27).

MACHINE DomainModel_SDe
EXTENDS SubstateMachine_SS
VARIABLES
 Actor, Actor_Name1, Association1, Association_Ends1, DomainModel_SDe_Status
INVARIANT
 Actor1  UNIQUE_ID Actor_Name1  Actor1 NAMES 
 Association1  UNIQUE_ID Association_Ends1 Association1 (Actor1UseCase) ...
INITIALISATION
 Actor1, Actor_Name1 :=  || ... || DomainModel_SDe_Status := Empty
OPERATIONS
Start_DomainModel_SDe =...
Stop_DomainModel_SDe =...
Create_Actor1 =...
Create_Association1 =
 SELECT DomainModel_SDe_Status=Creating
 THEN
 ANY id1,id2,idx
 WHERE id1UNIQUE_ID  id1Actor1  id2UNIQUE_ID  id2UseCase (id1,id2) ran (Association_Ends1) 
idx  UNIQUE_ID  ID_Not_In_Use
 THEN
 Association1 := Association1 { idx } || Association_Ends1 := Association_Ends1 { idx (id1,id2) } || ...

 END
 END
END

Fig. 29. Excerpt from the DomainModel_SDe machine

 However, the new variables: Actor1, Actor_Name1, Association1 and
Association_Ends1, are introduced to model the newly introduced elements. Observe
that the operation Create_Association1 enforces the inter-consistency rule: it represents
the associations between the variable UseCase from the DomainModel_SS and the
introduced variable Actor1 in DomainModel_SDe.
 B development in the SDe stage proceeds as shown in Fig. 25 and finishes with
defining the refinement SDe (Fig. 30), which is obtained using the pattern given in Fig.
26.

30

REFINEMENT SDe
REFINES SS
EXTENDS SubstateMachine_SDe
INVARIANT
/* intra-consistency rules */
 ...
/* inter-consistency rules */
 /* Domain Model */

(DomainModel_SDe_Status=Finished  ran(Association_Ends1)(Actor1UseCase)) 
 /* Decomposition Diagram */

(DecompositionDiagram_SDe_Status=Finished  (Association_Source2[dom(Association_Target2)]=UseCase))  ...
OPERATIONS
Create_DomainModel_SS =...
Create_CommunicationContext_SS =...
Create_SignallingScenario_SS =...
Create_PSAPComm_SS =...
Create_SubstateMachine_SS =...
Create_Domain_Model_SDe =
 SELECT
 DomainModel_SDe_Status=Empty PSAPCommunication_SS_Status=Finished
 THEN
 Start_DomainModel_SDe
 END;
Create_DecompositionDiagram_SDe = ...
Create_CommunicationContext_SDe =...
Create_SignallingScenario_SDe = ...
Create_ExecutionControl_SDe = ...
Create_SubstateMachine_SDe =...
END

Fig. 30. Excerpt from the SDe refinement

 The invariant of the refinement SDe expresses not only the intra-consistency rules
addressed at the SDe stage but also the inter-consistency rules between models on SS
and SDe stages. For instance, for Domain Model in SDe stage to be consistent with
Domain Model in SS stage, it should associate the newly added Actor1 with UseCase
from the same model in the SS stage, i.e., ran(Association_Ends1)(Actor1UseCase))
should hold. By proving refinement between the corresponding top machines, we verify
inter-consistency of Lyra models from the SS and SDe stages.
 The SDi stage is handled in the similar way, resulting in a set of B machines for the
corresponding Lyra models and a refinement SDi � a top machine for this stage. A
graphical representation given in Fig. 25 summarizes the overall process of Lyra
formalization, allowing us to establish consistency among models in the Lyra
development flow.

8. Related work

There are several formal approaches to ensuring consistency of UML models. Engels et
al. describe in [23] how to formalize the consistency of models in UML-RT � a dialect
of UML for modelling concurrent systems. They focus on translating UML-RT
statechart diagrams into CSP and ensuring their consistency during model evolution.
Similarly, our approach ensures the consistency between models on different
development stages via refinement in B. However, we consider a wider set of UML
models.

31

 Van Der Straeten et al. [24, 25] propose an extension of the UML metamodel,
namely the UML Profile for Model Consistency, supporting the consistency between
different versions of a model. They check consistency by translating the UML Profile
into the description logic (DL). Logic rules are then used to detect model
inconsistencies. Moreover, this approach does not consider preserving consistency
between different levels of abstraction and also uses a limited subset of UML (i.e., only
class, sequence and state diagram).
 Ensuring intra-consistency of UML models has been addressed by Kim and
Carrington [26]. They describe how consistency constraints of UML model elements
(i.e., elements of the UML metamodel) can be formally defined at a language level
using Object-Z. This formal meta-modelling approach to defining UML modelling
concepts is based only on UML State Machine. The metaclasses from UML State
Machine are translated into Object-Z classes. Consistency constraints are defined as
invariants on these Object-Z classes. Consistency between different UML models is
checked via verifying that model elements composing the models preserve all
consistency constraints attached to their metaclasses. Therefore, the approach deals with
intra-consistency only, while our approach handles both intra- and inter-consistency.
 The use of Object-Z to reason about model consistency was also studied by Rash and
Wehrheim [27]. They give formal semantics to UML classes and state machines using
Object-Z. As a common semantic domain for both classes and state machines, they use
semantic model of the process algebra CSP. Consistency checking is then achieved by
translating the obtained Object-Z specification into CSP. Similarly to our approach, they
use refinement for model evolution and show how consistency is preserved, but on a
limited subset of UML.
 The problem of consistency has mostly been studied for UML class and state
diagrams. Meanwhile, only a few researches considered less formal concepts of UML,
such as use cases, sequence and activity diagrams. In [28], Krishnan proposes an
approach that defines UML diagrams (including use case diagrams) in terms of state
predicates. The consistency between various diagrams is then verified using the theorem
prover PVS. Although our approach comprises both formal and informal UML
descriptions similarly as [28], it also reasons about consistency during model evolution.
 The approaches to consistency of UML models based on their translation to some
formal notation are the most common, as observed in [29]. However, there are many
approaches [30, 31, 32, 33, 34] which are grouped around the constraint definition
languages, in particular OCL, proposing different enhancements of OCL to enable
better expressiveness of constraints. Naturally, these approaches show how intra-
consistency between UML models can be achieved. However, to the best of our
knowledge, there is no research addressing inter-consistency checking using OCL.

9. Conclusion

In this paper we formalized and formally verified Lyra development flow represented as
the Lyra profile. This work establishes a basis for automating model-driven
development of distributed communicating systems and communication protocols.

32

 We made two technical contributions. The first is the definition of the Lyra UML2
profile for developing communicating systems and protocols conforming to specified
architectural rules. The profile has been derived as a result of a number of large
industrial developments conducted according to the Lyra methodology within Nokia
Research Center. The profile defines the Lyra-specific modelling concepts and
dependencies between them, thus outlining the required stages of the system
development. The profile is considered to be a reference model using which we could
validate created Lyra models. Validation ensures that these models use only concepts
defined by the architectural rules. We discussed the related work in this area while
presenting the major profiling principles.
 The second contribution is specification and verification of the Lyra design method
within the formal modelling framework � the B Method. This work allowed us to
establish consistency between the Lyra UML2 models while undertaking the Lyra
development, which otherwise we could not achieve within the profile solely. While
verifying the Lyra development flow, we simulated Lyra development and formalized
both the Lyra models and the intra- and inter-consistency rules in B. The Lyra models
are translated into the corresponding B machines according to the proposed patterns.
The intra-consistency rules are expressed as the invariant of the top machine for each
particular stage. The inter-consistency rules are defined as the linking invariant in the
refinement machines corresponding to the subsequent stages. Full formal verification of
the obtained specifications and refinements is done using an automatic tool support for
the B Method � Atelier B. It guarantees both intra- and inter-consistency of models
created at various stages of Lyra development.
 In general, the presented approach establishes a basis for automating the Lyra design
flow. It not only defines a profile supporting the entire development process of
communicating systems and communication protocols, but also smoothly integrates
formal verification for ensuring model consistency.
 As our future work we are planning to extend the proposed approach to define and
verify behavioural consistency as well. It would complement the structural consistency
we have defined and presented in this paper.

References

[1] B. Selic, �The Pragmatics of Model-Driven Development,� IEEE Software, Volume
20, Issue 5, 2003, pp. 19 � 25.

[2] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language Reference
Manual. Addison Wesley, 1999.

[3] OMG. (2006, March). UML 2.0 Infrastructure Specification. [Online]. Available:
http://www.omg.org/docs/formal/05-07-05.pdf

[4] OMG. (2005, August). UML 2.0 Superstructure Specification. [Online]. Available:
http://www.omg.org/docs/formal/05-07-04.pdf

[5] S. Leppänen, M. Turunen, and I. Oliver, �Application Driven Methodology for

Development of Communicating Systems,� presented at the Forum on Specification
and Design Languages, Lille, France, September 2004.

33

[6] S. Leppänen, �The Lyra Method,� Tampere University of Technology, Finland,

Technical Report, 2005.
[7] J.-R. Abrial, The B Book: Assigning Programs to Meanings. Cambridge University

Press, 1996.
[8] J. Derrick, D. Akehurst, and E. Boiten, �A framework for UML consistency,� in

Proceedings of the <<UML>> 2002 Workshop on Consistency Problems in UML-
based Software Development, 2002, pp. 30-45.

[9] OMG. (2006, May). Object Constraint Language (OCL) 2.0 Specification. [Online].
Available: http://www.omg.org/docs/formal/06-05-01.pdf

[10] OMG. (2002, April). UML Profile for CORBA. [Online]. Available:
http://www.omg.org/docs/formal/02-04-01.pdf

[11] OMG. (2005, January). UML Profile for Schedulability, Performance, and Time
Specification. [Online]. Available: http://www.omg.org/docs/formal/05-01-02.pdf

[12] OMG. (2006, May). UML Profile for Modeling Quality of Service (QoS) and Fault
Tolerance Characteristics and Mechanisms. [Online]. Available:
http://www.omg.org/docs/formal/06-05-02.pdf

[13] 3GPP Organizational Partners. (2006, June). Technical specification 25.305: Stage 2
functional specification of UE positioning in UTRAN. France. [Online]. Available:
http://www.3gpp.org/ftp/Specs/archive/25_series/25.305/25305-730.zip

[14] P. Selonen and J. Xu, �Validating UML Models against Architectural Profiles,� in

Proceedings of the 9th European Software Engineering Conference (ESEC�03), 2003,
pp. 58-67.

[15] P. Selonen, Model Processing Operations for the Unified Modeling Language.
Doctoral dissertation, Tampere University of Technology, Finland, 2005.

[16] C. Riva, P. Selonen, T. Systä, and J. Xu, �UML-based Reverse Engineering and
Model Analysis Approaches for Software Architecture Maintenance,� in Proceedings
of the 20th IEEE International Conference on Software Maintenance (ICSM'04),
2004, pp. 50-59.

[17] Z. Huzar, L. Kuzniarz, G. Reggio, and J. L. Sourrouille, �Consistency Problems in

UML-Based Software Development,� in UML Modeling Languages and
Applications, LNCS 3297, Springer-Verlag, 2005, pp. 1-12.

[18] S. Schneider, The B Method. An introduction. Palgrave, 2001.
[19] MATISSE Handbook for Correct Systems Construction. (2003). EU-project

MATISSE: Methodologie and Technologies for Industrial Strength Systems
Engineering, IST-199-11345. [Online]. Available:
http://www.esil.univ-mrs.fr/~spc/matisse/Handbook

[20] ClearSy, Atelier B - User Manual (Version 3.6), Aix-en-Provence, France, 2003.
[21] E. W. Dijkstra, A Discipline of Programming. Prentice-Hall International, 1976.
[22] R. J. Back and J. von Wright, Refinement Calculus: A Systematic Introduction.

Springer-Verlag, 1998.
[23] G. Engels, J. M. Kuster, R. Heckel, and L. Groenewegen, �Towards Consistency�

Preserving Model Evolution,� in Proceedings of the International Workshop on
Principles of Software Evolution, 2002, pp. 129-132.

[24] R. Van Der Straeten, T. Mens, J. Simmonds, and V. Jonckers, �Using Description

Logic to Maintain Consistency between UML Models,� in UML 2003, LNCS 2863,
2003, pp. 326-340.

http://www.3gpp.org/ftp/Specs/archive/25_series/25.305/25305-730.zip
http://www.esil.univ-mrs.fr/~spc/matisse/Handbook

34

[25] J. Simmonds, R. Van Der Straeten, V. Jonckers, and T. Mens, �Maintaining

consistency between UML models using description logic,� L' Objet (Objet) Vol. 10,
LMO�04, 2004, pp. 231-244.

[26] S.-K. Kim and D. Carrington, �A Formal Object-Oriented Approach to defining
Consistency Constraints for UML Models,� in Proceedings of the 2004 Australian
Software Engineering Conference (ASWEC�04), 2004, pp. 87-94.

[27] H. Rasch and H. Wehrheim, �Checking Consistency in UML Diagrams: Classes and

State Machines,� in FMOODS 2003, LNCS 2884, 2003, pp. 229-243.
[28] P. Krishnan, �Consistency Checks for UML�, in Proceedings of the Seventh Asia-

Pacific Software Engineering Conference (APSEC�00), 2000, pp. 162-169.
[29] M. Elaasar and L. Briand, �An Overview of UML Consistency Management,�

Carleton University, Canada, Technical Report SCE-04-18, August 2004.
[30] J.-L. Sourrouille and G. Caplat, �Checking UML Model Consistency,� in

Proceedings of the <<UML>> 2002 Workshop on Consistency Problems in UML-
based Software Development, 2002, pp. 1-15.

[31] D. Chiorean, M. Pasca, A. Cârcu, C. Botiza, S. Moldovan, �Ensuring UML Models

Consistency Using the OCL Environment,� Electronic Notes in Theoretical Computer
Science, Volume 102, 2004, pp. 99-110.

[32] H. Gomaa and D. Wijesekera, �Consistency in Multiple-View UML Models: A Case
Study,� in Proceedings of the <<UML>> 2003 Workshop on Consistency Problems
in UML-based Software Development II, 2003, pp. 1-8.

[33] R. Wagner, H. Giese, and U. Nickel, �A Plug-In for Flexible and Incremental
Consistency Management,� in Proceedings of the <<UML>> 2003 Workshop on
Consistency Problems in UML-based Software Development II, 2003, pp. 78-85.

[34] J.-P. Bodeveix, T. Millan, C. Percebois, C. Le Camus, P. Bazex, and L. Feraud,
�Extending OCL for verifying UML models consistency,� in Proceedings of the
<<UML>> 2002 Workshop on Consistency Problems in UML-based Software
Development, 2002, pp. 75-90.

ISBN 978-952-12-1919-1

ISSN 1239-1891

