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Abstract 

Model-driven development has gained increasing acceptance in the engineering 
community. Via abstraction and gradual model transformation, it offers an efficient way 
to cope with complexity of modern software-intensive systems, typical examples of 
which are distributed telecommunicating systems and communication protocols. 
However, variety of models representing the system structure and behaviour from 
different viewpoints and at different levels of abstraction raise the question of model 
consistency and their adherence to the predefined architectural rules. In this paper we 
formalize a development flow of distributed telecommunicating systems and 
communication protocols as an architectural profile in UML. We specify and formally 
verify this profile. The profile allows us to check adherence of models to the predefined 
architectural rules. Furthermore, by formalizing and verifying intra- and inter-
consistency rules, we ensure that the models do not contradict to each other. We use the 
B Method as our formal framework. The presented work establishes a basis for 
automating model-driven development of telecommunicating systems and 
communication protocols. 

 

Keywords: B Method, consistency of UML models, formal methods, refinement, UML 
profiles 
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1. Introduction 

MDD (Model Driven Development) [1] has emerged as the paradigm aiming at 
ensuring cost-effective and time-efficient software development. It is gaining increasing 
acceptance in the software engineering community. MDD is design-centric, i.e., it 
focuses primarily on modelling the system functionality and behaviour rather than the 
technology to implement it. At the time when the technology is changing rapidly, MDD 
allows the developers to reuse their previously developed solutions and, as a result, 
reduce costs and time of developing new applications. Moreover, it enables a fast 
integration of emerging technologies into the existing systems.  
 The ideas of MDD are implemented via UML (Unified Modelling Language) [2]. It 
is a graphical modelling notation used to create system models. Modelling with UML 
typically starts from abstract, high-level models, which are then iteratively transformed 
into more detailed models. However, validating a large variety of produced models with 
respect to the given architectural rules is a recognized problem when modelling with 
UML. In UML2 [3, 4], the architectural rules can be defined in a systematic way using 
the built-in light-weight extension mechanism called profiles. The profiling mechanism 
allows us to specify a new modelling language by defining the architectural rules for the 
system under development. These rules represent the modelling concepts and 
constraints on them in a particular domain. With the support of a proper tool, we can 
use the defined architectural rules for �driving� the development process and 

automatically checking whether the produced models conform to them. Therefore, UML 
profiles can provide a solid basis for increasing the level of automation in software 
development.  
 In this paper we introduce the Lyra profile � a UML2 profile that defines the 
architectural rules for the Lyra design method [5, 6]. Lyra is a model-driven and 
component-based design method for development of distributed communicating 
systems and communication protocols. It has been developed at Nokia Research Center 
and applied in large-scale industrial development projects. Lyra consists of four 
consecutive development stages. At each development stage, a system can be described 
from different viewpoints. These viewpoints are visually represented by different types 
of UML2 models. Hence, the Lyra development flow results in a large set of models, 
which raises the question of validating the models against the predefined architectural 
rules and managing model consistency.  
 Ensuring consistency of Lyra models is a two-fold task. On the one hand, we need to 
ensure intra-consistency of the models, i.e., consistency among artefacts specifying 
different aspects of the system on the same development stage. On the other hand, we 
should guarantee inter-consistency of models, i.e., consistency among modelling 
artefacts from the different development stages. In this paper we propose an approach to 
formal verification of model consistency in Lyra. We use the description of the Lyra 
design method given in the form of the Lyra profile to derive general patterns for UML2 
models created at different stages of Lyra development and express intra- and inter-
consistency rules for them. Then, we define Lyra models as formal specifications in the 
B Method [7] � a formal framework for modelling complex software-intensive systems. 
Each Lyra model together with the corresponding intra- and inter-consistency rules is 
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represented by a B model.  Hence, in our approach the B Method serves as a common 
semantics for UML2 models. In this respect, our approach to ensuring consistency of 
UML2 models is similar to the approach based on defining a common semantics of 
UML presented by Derrick et al. in [8]. 
 Since both MDD and B adopt the top-down development paradigm, it is natural to 
describe the model-driven UML2-based Lyra development in B. In our approach, the B 
development starts from an abstract system specification, which simulates creating Lyra 
models in the order defined by the design method. The abstract specification contains 
the models from the first Lyra development stage and intra-consistency rules defined for 
them. It is transformed into more detailed specifications by correctness preserving steps 
called refinements. The refinement process allows us to structure complex intra- and 
inter-constancy requirements and handle them in a stepwise manner, by specifying and 
verifying only part of them at a time. Then, we add the remaining requirements 
subsequently. The resulting refined specifications represent more detailed models and 
their intra-consistency rules. In addition, they specify the inter-consistency rules defined 
between models at two subsequent stages.  
 The obtained B specifications and refinements are formally verified by the use of an 
automatic tool support provided for B � AtelierB. The formal verification ensures intra- 
and inter-consistency of the corresponding UML2 models, thus establishing the basis 
for automatic verification of the Lyra design flow.  
 The paper is structured as follows. In Section 2 we briefly introduce UML profiling 
principles. Section 3 describes the Lyra design method via an example. Section 4 
describes the design method in the form of the Lyra profile, which is introduced through 
its basic concepts and creating principles. In Section 5 we define the notion of 
consistency in Lyra. Section 6 continues by giving a short introduction to our modelling 
framework � the B Method. In Section 7 we describe our approach to ensuring intra- 
and inter-consistency in Lyra by formal specification and refinement in B. Section 8 
discusses the related work. Finally, in Section 9 we conclude with the overview of the 
proposed approach and the future work. 

2. UML profiles 

The latest version of UML - UML2 - significantly differs from its previous versions. 
The most considerable structural change is the division of the UML2 specification into 
two complementary specifications: Infrastructure and Superstructure. They define 
respectively the foundation language constructs and the user-level constructs required 
for UML2. UML2 Infrastructure [3] is assumed to be extensively reused when creating 
various metamodels. For instance, Meta-Object Facility (MOF) reuses it to provide the 
ability to model metamodels and UML2 Superstructure [4] reuses it to define UML 
metamodel itself. 
 In UML2, profiles are the built-in light-weight extension mechanism which allows 
customization of UML for different domains. Profiles can be used to extend a MOF-
based metamodel, e.g., the UML metamodel, for a specific context, domain or purpose. 
Profiles are only allowed to contain tagged values, stereotypes, constraints and data 
types [4]. Stereotypes represent variations of existing modelling elements (e.g., UML2 



 

3 

metaclasses) with the same form (having the same attributes and relationships) but with 
a modified intent [4]. A stereotype can have additional constraints on the base metaclass 
it extends as well as tagged values containing additional information for a stereotyped 
element. Tagged values are defined as properties of the form name-value, where the 
name is used as a tag. In UML2, these properties can be attached to the introduced 
stereotypes by marking them as attributes inside a class representing a new stereotype. 
 The profiling mechanism is defined by the package Profiles in UML2 Infrastructure. 
As it is not a first-class extension mechanism of UML, it does not allow modifications 
of existing metamodels [4]. This implies that the newly introduced stereotypes, meta-
attributes, and associated constraints cannot contradict with the reference metamodel; it 
is impossible to take away any of the metamodel constraints, but it is possible to add 
new constraints that are specific to a profile. In short, the reference metamodel is 
considered always as a �read only� specification. This implies that the specialized 

semantics should not contradict with the semantics of the reference metamodel. This 
restriction on using the UML profile mechanism guarantees, e.g., that any CASE-tool 
compliant with the UML2 metamodel can be used for constructing models conformant 
with a UML2 metamodel based profile. 
 As a part of a UML2 profile, it is not allowed to have an association between two 
stereotypes or between a stereotype and a metaclass, unless it is a subset of the existing 
association in the reference metamodel [4]. In other words, according to the above-
mentioned profiling principles, the introduced association should be related to an 
association of the same type in the reference metamodel. Moreover, the multiplicity 
ranges of the introduced association should match the corresponding multiplicities of 
the association in the reference metamodel. Described associations provide a convenient 
and intuitive way to model the introduced restrictions and constraints on a profile. 
Further, such associations could also be expressed using OCL (Object Constraint 
Language) [9] in UML profiles. In fact, UML2 Infrastructure proposes two methods to 
achieve the effect of new (meta)associations: (1) adding new constraints within a profile 
that specialize the usage of some associations of the reference metamodel, or (2) 
extending the Dependency metaclass by a stereotype and defining specific constraints 
on this stereotype. 
 Various UML profiles have been recently introduced for different purposes. For 
instance, OMG proposes UML profiles for CORBA [10], for Schedulability, 
Performance and Time [11], for Modelling Quality of Service and Fault Tolerance 
Characteristics and Mechanisms [12] etc. The Lyra profile, which this paper introduces, 
is built based on the Lyra design method described in the following section. 

3. Overview of Lyra design method by an 

example 

Lyra [5, 6] is a service-oriented and model-based design method for the development of 
distributed communicating systems. It has been developed in Nokia Research Center by 
integrating the best practices and design patterns established in the domain. The method 
has been successfully applied in several large-scale industrial development projects. 
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 Lyra has four main stages: Service Specification, Service Decomposition, Service 
Distribution and Service Implementation. The Service Specification (SS) stage defines 
the services provided by the system and the different types of users of these services. A 
service is a functionality that the system provides. In this stage we define the externally 
observable behaviour of the system services on the corresponding user interfaces. In the 
Service Decomposition (SDe) stage the abstract model produced in the previous stage is 
decomposed into a set of service components and logical interfaces between them. This 
stage yields the logical architecture of the service implementation. In the Service 
Distribution (SDi) stage the logical architecture of services is distributed over a given 
platform architecture. This results in a physical architecture of a distributed 
communicating system. Finally, in the Service Implementation stage the structural 
elements are integrated into the target environment. In this stage we arrive at a model 
which can be used as, e.g., a source for automatic code generation. A detailed 
description of the Lyra method can be found elsewhere [5, 6]. 
 We exemplify the Lyra design method by modelling a positioning system of Third 
Generation Partnership Project (3GPP) [13]. The system provides the positioning 
service for calculating the physical location of a given user equipment in a mobile 
network. A detailed informal description of the service can be found in [13]. 
 As a modelling language for describing the positioning system we use UML2 [3, 4], 
although the Lyra design method is generic with respect to modelling languages and 
tools. 
 Models at the Service Specification stage. Our first development stage � Service 
Specification � starts from creating Domain Model. It is a UML2 use case model that 
specifies the service PositionCalculation within Positioning system and the type of its user 
� User, as represented in Fig. 1. 
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<<usecase>> 
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Fig.  1. Domain Model of the positioning system at the  
SS stage 
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Fig.  2. Communication Context of the positioning system  
at the SS stage 

 

At this stage we also create Communication Context model, where Positioning system 
and PositionCalculation service are defined as active classes, as shown in Fig. 2. To 
model interfaces via which a system service is provided, we attach UML2 ports to the 
active classes. In Lyra these ports are called Provided Service Access Points (PSAPs). 
They are defined for the classes Positioning and PositionCalculation as Positioning_PSAP 
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and PositionCalculation_PSAP respectively. In the Communication Context model we 
also specify the external class for the system user � User � with the attached port. 
However, since this port models an interface of a service user, it is called Used Service 
Access Point (USAP) (see, e.g., Positioning_USAP in Fig. 2).  
 The UML2 interfaces on all specified PSAPs define the signals and signal 
parameters of the system-user communication. For instance, the interfaces To and From 
of PositionCalculation_PSAP class are specified as follows: 
 
interface To_ PositionCalculation_PSAP { 
 public signal pc_req (part PCReqParam); 
} 
 

interface From_ PositionCalculation_PSAP { 
 public signal pc_cnf (part PCCnfParam); 
 public signal pc_fail_cnf (part PCFailCnfParam) 
} 

 

Here PCReqParam, PCCnfParam, and PCFailCnfParam are the abstract data structures 
encapsulating actual signal parameters. 
 The descriptions of the interfaces and the valid order of the signals are visually 
represented by interactions in Signalling Scenario models. PositionCalculation interaction 
(shown in Fig. 3) comprises two Signalling Scenario models. They describe the signals 
(pc_req, pc_cnf, pc_fail_cnf) between the communicating entities in case of service 
Success (Fig. 3a) and Failure (Fig. 3b). 
 

  
User Positioning 

pc_req 

pc_cnf 

Interaction 
PositionCalculation 

Success 

 

  
User Positioning 

pc_req 

pc_fail_cnf 

Interaction 
PositionCalculation 

Failure 

 

a) b) 

Fig.  3. The Signalling Scenario models of the positioning system at the SS stage 

 

 The communication between the PositionCalculation service and its user is described 
in the PSAP Communication state machine, as shown in Fig. 4. The positioning request 
pc_req received from the user should always be confirmed � by the signal pc_cnf in case 
of success and by pc_fail_cnf otherwise. 
 

 

Idle PositionCalculation
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/^pc_cnf 

[xp_pc_failure] 
/^pc_fail_cnf 
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Successful position 
calculation? 

�no� 

xp_pc_failure 
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Fig.  4. PSAP Communication of the positioning system  
at the SS stage 

Fig.  5. PositionCalculation Substate 
Machine at the SS stage 
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 In the PSAP Communication model, the PositionCalculation state is composite. At this 
level of abstraction we define the behaviour for its substates by a non-deterministic 
Substate Machine. Such a model non-deterministically determines the success or failure 
of the service execution, as shown in Fig. 5. 
 Models at the Service Decomposition stage. To provide the position calculation 
service, the positioning system uses services provided by some external service 
providers. For instance, to provide the positioning service, at first Radio Network 
Database (DB) should be requested to send the information on an approximate location 
of the user equipment (UE). This information is then used to contact UE. Then, another 
external service provider � Reference Local Measurement Unit (RefLMU) � is requested 
to provide the reference measurements to calculate the exact location of UE. This 
information is handled by the positioning Algorithm server to produce the final 
estimation on the UE location. 

 

 

  

                           

   
User 

 

    

DB             
  

 
 UE      

  
 
 Algorithm     

  
 
 RefLMU 

 

Positioning 
<<usecase>> 

PositionCalculation 

 
Fig.  6. Domain Model of the positioning system at the SDe stage 

 

 At the SDe stage these external service providers are introduced into the previously 
developed system models. In Domain Model we introduce the corresponding actors for 
DB, UE, RefLMU and Algorithm. They are associated with the PositionCalculation use case, 
as represented in Fig. 6. Correspondingly, the Communication Context model now 
contains the external classes representing DB, UE, RefLMU and Algorithm. Each of these 
classes should have its own PSAP describing the communication with the system 
service (e.g., DB_PSAP in Fig. 7). Moreover, for the active classes Positioning and 
PositionCalculation we define USAPs via which the external services are used. Each 
active class should have USAP for each external class. For instance, we define 
DB_USAP for both Positioning and PositionCalculation classes as shown in Fig. 7.  
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Fig.  7. Excerpt from the Communication Context model of the positioning system at the SDe stage 
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 The PositionCalculation service comprises several subservices. These subservices are 
modelled as the subuse cases: LMU_Measurement, DB_Enquiry, UE_Enquiry, and 
Algorithm_Invocation in the Decomposition Diagram of the positioning system, as 
represented in Fig. 8.  
 

 
 LMU_Measurement 

 PositionCalculation 

 DB_Enquiry 

 UE_Enquiry 

 Algorithm_Invocation 

<<include>> 

<<include>> 

<<include>> 

 
Fig.  8. Decomposition Diagram for the PositionCalculation service at the SDe stage 

 

 The order of the subservice execution is defined in the Signalling Scenario models 
using the interaction references (ref). Each interaction reference represents a set of 
Signalling Scenario models for some subservice. The subservice execution order is 
determined by the order in which these references appear in the Signalling Scenario 
model for the PositionCalculation service, as shown in Fig. 9. 

 

 
User 

 pc_req 

Successful_LMU_Measurement 

Successful_DB_Enquiry 

Successful_UE_Enquiry 

Successful_Algorithm_Invocation 

pc_cnf 

ref 

ref 

ref 

ref 

Positioning 

 

Success 

 
Fig.  9. The Signalling Scenario model for the successful execution of the  

PositionCalculation service at the SDe stage 

 

 We represent the logical architecture of the positioning system by Architecture 
Diagram, as shown in Fig. 10. It describes the logical structure of the active class 
Positioning (defined in the Communication Context model in Fig. 7). In Architecture 
Diagram, the active class Positioning is called a system component. A system component 
is composed of several logical elements. Each of them encapsulates a part of the service 
functionality and is called a service component. The service components of the 
Positioning system component are shown in Fig. 10.  
 The part of the service functionality which handles the communication with DB, 
while requesting an approximate location of the user equipment, is encapsulated within 



 

8 

the service component DBHandler. Similarly, the service component UEHandler manages 
the communication with the corresponding user equipment. RefLMUHandler handles the 
communication with the external service provider RefLMU and computes the 
intermediate measurement results. At last, the service component AlgoHandler conducts 
the final calculations at the requested user equipment position. 

 
 

              ServiceDirector 
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RefLMUHandler 

 

Positioning_PSAP 
 

Positioning_PSAP 
 

From 
To 
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RefLMU_USAP 
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Algorithm_USAP 
 

UE_USAP Algorithm_USAP 
 

DB_Handler_PEER 
 

 
Fig.  10. Instantiation of the Positioning logical architecture 

 

 The execution flow of the introduced service components is managed by an 
architectural element called ServiceDirector. It processes service requests and 
orchestrates the execution of the service components. The behaviour of ServiceDirector is 
described in a hierarchical way. The top-most state machine of ServiceDirector is the 
PSAP Communication model in Fig. 4.  
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Fig.  11. Execution Control of the positioning 
system  at the SDe stage 

Fig.  12. LMU_Measurement USAP 
communication at the SDe stage 
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 In the SDe stage the composed state PositionCalculation from the PSAP 
Communication model is decomposed into a set of substates in the Execution Control 
state machine, shown in Fig. 11. These substates are: LMU_Measurement, DB_Enquiry, 
UE_Enquiry, and Algorithm_Invocation. 
 The substates of the Execution Control state machine are further refined. They 
describe either some internal computation in the substates or USAP communication that 
triggers the execution of a particular service component. The refined behaviour is 
represented in the corresponding substate machines. For instance, USAP 
communication in the substate LMU_Measurement is described in Fig. 12. 
 Models at the Service Distribution stage. The SDi stage focuses on distributing 
system components over a given network architecture. The positioning system should 
be distributed over two network elements: Positioning_RNC (Radio Network Controller) 
and Positioning_SAS (Stand-alone Assisted Global Positioning System Serving Mobile 
Location Center). The distributed positioning service is represented by the domain 
models for each network element. The Domain Model for Positioning_RNC and Domain 
Model for Positioning_SAS are shown in Fig. 13a and 13b respectively. 
 When modelling the service distribution over the network element Positioning_RNC, 
Positioning_SAS becomes an external service provider. Therefore, it is modelled as an 
actor together with the existing external service providers DB and UE. Similarly, when 
modelling the service distribution over Positioning_SAS, we represent Positioning_RNC as 
an actor together with RefLMU and Algorithm. 
  

   
                 

Positioning_RNC 
 

   
User 

 

Distributed   
PositionCalculation_RNC   

DB             

  
  
  
  
  UE      

  
   Positioning _SAS 

 

   
                 

Positioning_SAS 
 

   Positioning _RNC 
  

Distributed   
PositionCalculation_SAS 

 Algorithm     
  

 
 
 
 RefLMU 

  

 

a) b) 

Fig.  13. Domain Model of the positioning system at the SDi stage 

 

 The Communication Context model of the positioning system (shown in Fig. 14) 
reflects the service distribution represented in the domain models (Fig. 13). It defines 
the following active classes: DistributedPositionCalculation_RNC, Positioning_RNC, 
DistributedPositionCalculation_SAS, and Positioning_SAS. 
 The communication between the network elements is defined via the ports 
Positioning_SAS_PEER and Positioning_RNC_PEER of the classes Positioning_RNC and 
Positioning_SAS (see Fig. 14) respectively. Observe that both 
DistributedPositionCalculation_SAS and DistributedPositionCalculation_RNC classes have the 
same ports as the corresponding classes Positioning_SAS and Positioning_RNC. 
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Fig.  14. Excerpt from Communication Context of the positioning system at the SDi stage 

 

 Since the positioning system services and subservices are distributed over different 
network elements, their decomposition is represented by two distinct Decomposition 
Diagrams � for Positioning_SAS and for Positioning_RNC. 
 By introducing the network elements Positioning_RNC and Positioning_SAS, we map 
the logical architecture of the positioning system to the physical network architecture. It 
is represented by Architecture Diagrams for both network elements. Architecture 
Diagram for the Positioning_SAS element is given in Fig. 15.  
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Fig.  15. Logical architecture of the Positioning_SAS network element 

 

 While mapping the logical architecture of the positioning system to the actual 
network architecture, we distribute the service components and ServiceDirector across 
the network elements Positioning_SAS and Positioning_RNC. The distributed 
ServiceDirector of the network element Positioning_SAS is called ServiceDirector_SAS (in 
Fig. 15). It controls the service components AlgoHandler and RefLMUHandler of the 
network element Positioning_SAS, as shown in the state machine Execution Control in 
Fig 16. ServiceDirector_SAS also manages the communication with Positioning_RNC. 
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Similarly, ServiceDirector_RNC of Positioning_RNC controls the service components 
DBHandler and UEHandler and the communication with Positioning_SAS. In addition, 
ServiceDirector_RNC handles the communication with the system user. 
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Fig.  16. Execution Control state machine of 
ServiceDirector_SAS 

Fig.  17. PEER Communication of 
ServiceDirector_SAS 

 

 We specify the communication between Positioning_RNC and Positioning_SAS via 
corresponding PEERs by PEER Communication state machines. For the network 
element Positioning_RNC, the PEER Communication state machine coincides with the 
state machine describing USAP communication with RefLMU in Fig. 12. The PEER 
Communication state machine of the network element Positioning_SAS is represented as 
the PSAP Communication state machine in Fig. 17. 
 The fourth Lyra stage � Service Implementation � focuses on implementing low 
level details (e.g., data encoding and decoding, routing of messages etc.) on the top of 
the already existing architecture. Here we omit its detailed description which can be 
found elsewhere (e.g., [6]). 
 While presenting the development of the positioning system, we have already 
described some elements of the Lyra profile. In the next section we present the entire 
profile in detail. 

4. The Lyra profile 

4.1. Lyra profiling principles 

The development of the Lyra profile was inspired by the earlier work by Selonen and 
Xu [14, 15] on defining a profile for capturing architectural rules and constraints 
relevant to the specific product line platforms. Selonen and Xu introduced a concept of 
an architectural profile [14, 15], which relies on the UML_1.5 profile mechanism. 
Architectural profiles are extended UML profiles specialized for describing 
architectural constraints and rules for a given domain [15, 16]. Selonen and Xu use 
extended UML profiles to enable adding constraints on inherited meta-associations 
between user-defined stereotypes. (Let us note, that this is not allowed in UML_1.5 
profiles). These extended profiles contain two parts: the standard UML metamodel part 
showing the subset of the metamodel that is being extended, and the extension part 
showing the stereotypes and the inherited meta-associations and other constraints. The 
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extension part describes the valid relationships between the architectural concepts: 
classifiers, interfaces, and dependencies between them. The actual architecture checked 
against the profile must satisfy the constraints implied by the profile, i.e., it should not 
have other structures except the ones explicitly described in the profile. The 
dependencies used in the extension part of an architectural profile represent 
visualizations of the constraints that could also be expressed, e.g., using OCL [14, 15]. 
Such visualizations are easy for a software architect to read and understand. While 
introducing the Lyra profile, we use the corresponding visualizations in a similar way as 
it is done in the architectural profiles. 

4.2. Concepts of the Lyra profile 

The Lyra profile represents the basic reference model that allows the designers to check 
correctness and completeness of the Lyra design models. For instance, we can verify 
correctness of all models of the positioning system at each Lyra stage with respect to the 
profile.  
 To introduce the Lyra profile, we use UML2 as our description language. This allows 
us to avoid unnecessary redefinitions since most elements of Lyra models reuse existing 
UML2 notions.  
 The aim of the Lyra profile is to tailor the existing UML2 metamodel to the Lyra 
design method. We customize the UML2 metamodel by introducing specific 
stereotypes. They allow us to use the Lyra concepts in modelling and add corresponding 
semantics to the metamodel. Namely, each Lyra stereotype allows us to use a specific 
Lyra element while modelling either system structure or behaviour. 
 While presenting the profile, we show Lyra stereotypes as extensions of the 
corresponding UML2 meta-classes. For clarity, we show only the associations between 
stereotypes and omit the corresponding meta-associations between the extended meta-
classes as described in [15]. 

4.2.1. Introducing stereotypes for modeling  

the system structure 

To model the system structure, we use Domain Model, Decomposition Diagram, 
Communication Context, and Architecture Diagram, as described in the previous 
section. The elements of these models are instances of either the existing meta-classes 
from UML2 metamodel or the Lyra stereotypes. We focus only on those models that 
rely on some Lyra stereotype. 
 To define Domain Model, we need a concept of a specialized actor representing 
either a user of the modelled service or its provider. Hence, we introduce a stereotype 
called LyraActor. LyraActor is an external entity that interacts with the system. This is 
an abstract concept that can be instantiated either as ServiceUser or ServiceProvider. 
ServiceUser is an external user of the system, whereas ServiceProvider is an external 
provider of some other service the system might use. In our positioning system example 
the instance of ServiceUser is User and the instances of ServiceProvider are DB, UE, 
RefLMU and Algorithm (shown in Fig. 6). 
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 Architecture Diagram in Lyra is a UML2 component diagram whose basic elements 
are components. Lyra introduces different types of these components designated by new 
stereotypes � SystemComponent and ServiceComponent.  
 SystemComponent is a structural model element, which encapsulates a logical, 
independent piece of a system specification. Hence, it can be developed in isolation and 
later integrated into a larger system. SystemComponent consists of ServiceComponents. 
They are logical model elements, which encapsulate the service behaviour and have 
specific functionalities. In the positioning system example, an instance of 
SystemComponent is Positioning system component shown in Fig. 10. It consists of four 
instances of ServiceComponent: DBHandler, UEHandler, RefLMUHandler, and AlgoHandler. 
Each of these instances encapsulates a part of the positioning service functionality. 
 SystemComponent interacts with its environment by requesting or providing a 
service. The Lyra profile introduces the abstract stereotype AccessPoint to specify 
different communication points between SystemComponent and its environment. 
AccessPoint can be instantiated either as SAP (Service Access Point) or PeerAP (Peer 
Access Point). 
 SAP is a communication point through which a system may either provide its 
services to the external users or use the services provided by external service providers. 
SAP through which a system provides its service is called PSAP (Provided Service 
Access Point), whereas SAP through which a system uses other services is called USAP 
(Used Service Access Point). In our example, the positioning system provides its 
position calculation service to the system user through PositionCalculation_PSAP, as 
shown in Fig. 7. However, to provide this service, the positioning system also uses 
(through DB_USAP) a service provided by the network database component. 
 PeerAP is a communication point between a set of distributed service components. 
For instance, the network elements Positioning_SAS and Positioning_RNC, which 
represent the actual distribution of the positioning service, communicate through 
Positioning_SAS_PEER and Positioning_RNC_PEER, as shown in Fig. 14. 

4.2.2. Introducing stereotypes for modeling  

the system behaviour 

As described in the previous section, we model system behaviour by using Signalling 
Scenarios and several different types of state machines: Execution Control, PSAP 
Communication, USAP Communication, PEER Communication, and Internal 
Computation. Elements of these models are instances of the corresponding meta-classes 
from the UML2 metamodel. However, we introduce Lyra stereotypes to represent the 
types of the state machines defining the hierarchical structure of behaviour, shown in 
Fig. 18. 
 The top-most state machine is an instance of the stereotype PSAPCommunication. It 
describes the communication through PSAP of the owning ServiceComponent, i.e., the 
communication with the service user. For instance, the PSAP Communication state 
machine of the position calculation service shown in Fig. 4 describes the 
communication with the service user via PositionCalculation_PSAP from Fig. 2. 

According to a received user request, a PSAP Communication state machine calls 
(i.e., invokes) an Execution Control state machine, which is an instance of the 
stereotype ExecutionControl. It defines the execution flow of the subservices required 
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to produce a response to a user request. For instance, the Execution Control state 
machine of the positioning system (represented in Fig. 11) defines the execution order 
of the needed subservices: LMU_Measurement, DB_Enquiry, UE_Enquiry, and 
Algorithm_Invocation. 

 PSAPCommunication 

ExecutionControl 

USAPCommunication InternalCommunication PEERCommunication 

<<call>> 

<<call>> 
<<call>> <<call>> 

 
Fig.  18. Hierarchical structure of behaviour 

 

 The Execution Control state machine can invoke different types of behaviour 
depending on the way in which the subservices are implemented. Namely, if the 
implementation of a subservice involves some internal computations, which are not 
directly related to the service interfaces, the Execution Control state machine calls an 
Internal Computation state machine that is an instance of the stereotype 
InternalComputation. However, if some subservices are provided by the external 
service providers then the Execution Control state machine calls a USAP 
Communication state machine. This is an instance of the stereotype 
USAPCommunication that describes the USAP communication of the owning 
ServiceComponent, i.e., the communication with an external service provider. For 
instance, the USAP Communication state machine represented in Fig. 12, describes the 
communication with an external service provider � RefLMU. Finally, if some part of 
the service implementation has been distributed to a remote physical location then the 
Execution Control state machine calls a PEER Communication state machine. It is an 
instance of the stereotype PEERCommunication. A PEER Communication state 
machine describes the communication through PEERs of the owning 
ServiceComponent. For instance, the PEER Communication state machine, represented 
in Fig. 17, specifies the communication through Positioning_SAS_PEER of the 
Positioning_SAS network element with another network element Positioning_RNC. 
 In general, the PSAP, USAP and PEER Communication state machines together with 
the Execution Control and the Internal Computation state machines specify the overall 
service logics. They all are instances of the stereotype ServiceBehaviour. 
ServiceBehaviour constitutes one part of the overall ServiceComponent behaviour. 
Another part � ServiceComponentBehaviour � is not considered to be a part of the 
service logics. It encapsulates all internal implementation-specific functionalities, like 
dynamic process management and routing of incoming messages. This is a part of the 
communication protocol, presentation of which we omitted in our positioning system 
example. 

The summary of the Lyra profile is given in Fig. 19. 
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Fig.  19. Summary of the Lyra profile
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5. Defining consistency in Lyra 

The Lyra design method adopts the top-down development paradigm. Development 
starts from a high level of abstraction. The models at each subsequent stage represent 
the system at lower levels of abstraction, i.e., they specify the required functionality in 
more detail. This raises a problem of ensuring model consistency, throughout the system 
development. In other words, we have to guarantee that each properly defined model is 
not contradictory with already created models. We call a model properly defined if it 
satisfies the model presentation rules, i.e., the structural requirements imposed on the 
modelling elements. 
 Ensuring consistency is a two-fold task. On the one hand, a model should be 
consistent with the models at the same development stage. On the other hand, it should 
be also consistent with the models from the previous development stages. The 
consistency between the concepts specifying different aspects of the system structure 
and behaviour on the same development stage is known as intra-consistency [17]; 
whereas the inter-consistency [17] is defined as the consistency among modelling 
concepts from different development stages. 
 The Lyra profile presented in the previous section allows us only to ensure that 
created Lyra models are properly defined, i.e., that their structure conforms to the one 
defined in the profile. Defining consistency in the Lyra profile is, however, a difficult 
task. Although one could express intra-consistency rules as OCL constraints on the 
profile elements, it would still require referencing those UML2 meta-classes extended 
by the profile stereotypes. This would complicate the process of creating OCL 
constraints. Furthermore, Lyra is based on stage-specific development. Expressing 
inter-consistency rules for different Lyra stages would require either: 
 annotating the existing profile elements to designate different stages and then add 

OCL inter-consistency constraints on the top of the already existing intra- consistency 
constraints, or 

 creating a metamodel for each Lyra stage and again using OCL to express inter-
constancy. 

In both cases defining consistency in the Lyra profile would be complex and tedious.  
 Next we propose a formal approach to achieving intra- and inter-consistency in Lyra. 
We start from deriving general forms of consistency rules between Lyra models. 
 Models at the Service Specification (SS) stage. The system development starts 
from creating Domain Model describing the system services and their users. Its general 
form is given in Fig. 20a. To be properly defined, Domain Model should satisfy certain 
structural constraints. For instance, an association in the Domain Model can be created 
only if the corresponding actor and use case have been created first. 
 From Domain Model we derive the formal system structure represented in the 
Communication Context diagram. The general form of this model is shown in Fig. 20b. 
To be consistent with the previously created Domain Model, Communication Context 
should satisfy a number of intra-consistency rules. 



 

17 

    System 
  

PSAP
Port 

  
Active 
Class 

  

 To
  

 From 
 

 To 
 PSAP Port

Active 
Class 

 

 From 
  a)  c)   

b)   

Success 
 

Yes   No  

e)   To From   
 

External 
Class 

d)   

State1 

State2  

Actor   Subject

request 

response 

  
  
  
  
  

                                                                 Interaction 

Use Case 
 

Actor  

 
Association

USAP Port

 
Fig.  20. The design flow of the SS stage 

 

 Table 1 shows an excerpt from the list of intra-consistency rules for the models in SS 
stage. Specifically, it shows part of the intra-consistency rules for the Communication 
Context model. 

 

Table  1. Excerpt from the list of intra-consistency rules for Communication Context at SS stage  
Rule 
1.1 
1.2 

One active class is created for the system which is defined in Domain Model.  
The name of the system is the name of the active class. 

2.1 
2.2 

For each use case in Domain Model an active class is defined.  
The name of the class is the same as the name of the corresponding use case. 

3.1 
3.2 

For each actor in Domain Model one external class is created.  
The name of the actor in Domain Model becomes the name of the external class. 

4.1 
4.2 

The association between the actor and the system defines PSAP on the corresponding active class. 
The name of the port on the active class corresponding to the system is obtained according to the rule: 
<name of the system>_PSAP (i.e., <name of the active_class>_PSAP) 

5.1 
5.2 

The association between the actor and the use case defines PSAP on the corresponding active class. 
The name of the port on the active class corresponding to the use case is obtained according to the rule: 
<name of the use case>_PSAP (i.e., <name of the active_class>_PSAP) 

6.1 
6.2 

The association between the actor and the system defines USAP on the corresponding external class. 
The name of the port on the external class is obtained according to the rule: 
<name of the system >_USAP 

 

 The next model at the SS stage � Signalling Scenario (Fig. 20c) � gives an informal 
description of the communication between a system service and its user(s). The 
communication is defined in terms of interactions. Each interaction is a set of the 
Signalling Scenario models defined for a particular system service. 
 Formally, the communication between a system service and its users is expressed in 
the PSAP Communication model (Fig. 20d), which is a UML2 state machine. In 
general, a PSAP Communication model has two states: the idle state and the composite 
state. The composite state is obtained from the interactions defined in the Signalling 
Scenario models. Transitions between the idle and the composite states specify the 
messages exchanged within the same Signalling Scenario models.  
 The main computation states in the PSAP Communication model are composite. The 
behaviour of the service on the level of substates is defined in the corresponding 
Substate Machine models (Fig. 20e). At the SS stage, Substate Machine also non-
deterministically models success or failure of service execution. 
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 Models at the Service Decomposition (SDe) stage. To provide a system services, 
the system usually relies on the services of some external service providers. Their 
explicit representation is introduced into the system model at the SDe stage. The 
external service providers are represented as new actors associated with the system 
services in Domain Model (Fig. 21a). To ensure that Domain Model at the SDe stage is 
consistent with Domain Model at the SS stage, we should guarantee that, after 
introducing external service providers, the elements of the model introduced at the SS 
stage remain unchanged. In other words, we should ensure inter-consistency between 
the models of those two stages.  

 
  

From   

PSAP
Port  

System 
 

Use Case 
 

Actor   

Association
 

a)  

External 
Class  

To  
             c)  

PSAP
Port  

         To   

Actor 
 

Actor   

Sub-use
Case 

 
 

UseCase 
  

b)   

From  

 
Subject

 
Actor 

 

request  
response

 

e)   

d) 

Actor Subject
request

 

response

ref   
ref   

f)   

 

 Sub-state  

   

request
 

response
 

response
 

WaitForService   

PSAP
Port Active 

Class 
 

 To  From  

 
 

From 
 

To

g)   

USAP 
Port 

Sub-state

Sub-use 
Case 

External
Class 

 
Fig.  21. The design flow of the SDe stage 

 

Table  2. Excerpt from the list of inter-consistency rules for Communication Context at SDe stage 

Rule 
1 Each active class created at SS stage should remain the active class in the Communication Context at 

SDe stage. 
2 Each external class created at SS stage should remain the external class in the Communication Context at 

SDe stage. 
3 PSAPs on active classes created at SS stage remain unchanged. 
4.1 
 
4.2 

USAP is added to the active class corresponding to the system for each newly added actor in Domain 
Model at SDe stage. 
The name of the USAP is obtained according to the rule: <name of the added actor>_USAP 

5.1 
 
5.2 

USAP is added to the active class corresponding to the use case for each newly added actor in Domain 
Model at SDe stage. 
The name of the USAP is obtained according to the rule: <name of the added actor>_USAP 

 

 At the SDe stage we rely on the intra-consistency rules defined for the SS stage. For 
instance, while creating Communication Context (Fig. 21c), we again define external 
UML2 classes for the actors introduced in Domain Model at the SDe stage. Each 
external class obtains its own PSAP, describing communication with the system service. 
Furthermore, each association between the system service and an external service 
provider is modelled as a USAP attached to the associated active classes. Let us observe 
that the elements introduced in Communication Context at the SS stage should remain 
unaffected, i.e., we should ensure inter-consistency between these models on SS and 
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SDe stages. An excerpt from the list of the inter-consistency rules for the 
Communication Context model at the SDe stage is shown in Table 2. 
 The decomposition of the system service into subservices is depicted in 
Decomposition Diagram (Fig. 21b). This is an additional model appearing at the SDe 
stage. Decomposition Diagram is actually a use case model showing the subuse cases 
that should be executed to provide the system service. 
 By defining the subservice execution order we complete the behavioural 
specification of a decomposed service. We augment the Signalling Scenario models 
created at the SS stage by adding interaction references (denoted as ref in Fig. 21d) 
representing a set of Signalling Scenario models (Fig. 21e) for each subuse case. These 
scenarios describe the communication between the system subservices and the external 
service providers. The subservice execution order is then defined by the order in which 
the references appear in the augmented Signalling Scenario (Fig. 21d). 
 At the SDe stage, the PSAP Communication model is refined to explicitly model the 
behaviour on the level of subservices. The composite state, modelling the actual service 
execution in the PSAP Communication model, is decomposed into a set of substates in 
the Execution Control state machine (Fig. 21f). The substates of the Execution Control 
state machine correspond to the subservices. The internal computation in the substates 
and the communication between the subservices are modelled for each substate in the 
corresponding Substate Machine (Fig. 21g). 
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Fig.  22. The design flow of the SDi stage 

 

 Models at the Service Distribution (SDi) stage. The SDi stage focuses on 
distributing decomposed system services over a given platform architecture. The 
elements of Domain Model from the previous stage remain unchanged. However, they 
are now associated to the underlying platform and referred to as network elements. The 
network element that communicates with the user is called the Main Network Element 
(MNE), while the other network elements are called Secondary Network Elements 
(SNE). Since the system service distributed on each network element uses only services 
of the external providers allocated to that particular element, Domain Model at SDi 
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stage should be defined for each of the network elements from their own viewpoints. 
This means that, when defining Domain Model for the MNE (Fig. 22a), we model the 
rest of the network elements as actors. Similarly, when defining Domain Model for SNE 
(Fig. 22b), we model the MNE and the other existing SNEs as actors. 
 The resulting set of the inter-consistency rules for Domain Model at SDe stage is 
shown in Table 3. The similar rules are defined for each model. 
 

Table  3. Excerpt from the list of inter-consistency rules for Domain Model at SDi stage 

Rule 
1.1 
 
1.2 
1.3 

The system created in Domain Model at SDe stage is split into separate network elements in the SDi 
stage. 
For each network element, new Domain Model is created. 
The name of the system is obtained according to the rule:  
<Name of the system_Name of the network element>  

2.1 
 
2.2 

Each use case created at SDe stage is distributed in the Domain Models at SDi stage across different 
network elements. 
The name of the use case is obtained according to the rule:  
<Distributed_Name of the use case_Name of the network element>  

3 Actors from the Domain Model at SDe stage are associated with different network elements and become 
a part of different Domain Models in SDi stage. 

4.1 
 
4.2 

In each Domain Model for a network element, all the other network elements become actors associated 
with the system. 
The name of the actor is the same as the name of the network element it is representing. 

 

 Communication Context (Fig. 22c) defines the active classes for all distributed 
services and corresponding network elements upon which they are distributed. The 
external classes defined at the previous Lyra stage remain unchanged. The associations 
from Domain Model define the interfaces on USAPs and PSAPs of the classes 
corresponding to the network elements. The communication between distributed 
services is defined via the PEER interfaces attached to the corresponding network 
elements.  
 Distribution of the decomposed functionality of the system is defined by the 
Decomposition Diagram models. Since the system services and subservices may be 
distributed on different network elements, Decomposition Diagram should represent the 
system decomposition from the individual viewpoints of each network element. This 
means that we should create Decomposition Diagram for the MNE (Fig. 22d) and 
Decomposition Diagram for the SNE (Fig. 22e). 
 The Signalling Scenario models (Fig. 22f) for the distributed services introduce 
interaction references for the distributed subuse cases. They describe the PEER 
communication between the parts of the distributed service. 
 The Execution Control state machine defined in the previous Lyra stage remains the 
same. However, Substate Machine attached to its composite distributed state is replaced 
with the new Execution Control machine (Fig. 22g) defining the distributed 
functionality in a remote location. It is defined from the viewpoint of the MNE. 
Additionally, the new PSAP Communication state machine (Fig. 22h) needs to be 
defined for the distributed service from the viewpoint of the SNE. 
 The composite states in the Execution Control machine are further specified by the 
corresponding Substate Machine models (Fig. 22i). 
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 To summarize, the overall Lyra design flow is guided by the requirements imposed 
on its modelling elements: 1) each model is created according to certain structural 
requirements; 2) models within one stage are created according to the defined intra-
consistency rules; 3) models at each subsequent development stage preserve the inter-
consistency rules. 
 We show how to ensure consistency in Lyra by formalizing models and the intra- 
and inter-consistency rules defined above. The next section gives a brief introduction 
into our modelling framework � the B Method. 

6. The B Method 

The B Method [7, 18] (further referred to as B) is an approach for the industrial 
development of highly dependable software that has been successfully used in the 
development of several complex real-life applications [19]. The tool support available 
for B provides us with the assistance for the entire development process with a high 
degree of automation in verifying correctness. For instance, Atelier B [20], one of the 
tools supporting the B Method, has facilities for automatic verification and code 
generation. The high degree of automation in verifying correctness improves scalability 
of B and speeds up the development.  
 In B, a specification is represented by a module or a set of modules, called Abstract 
Machines. The common pseudo-programming notation � Abstract Machine Notation 
(AMN) � is used to construct and formally verify them. An abstract machine 
encapsulates a state and operations of the specification and has the following general 
form: 

MACHINE Name 

SETS Set 

VARIABLES v 

INVARIANT I 

INITIALISATION Init 

OPERATIONS Op 
 
 Each machine is uniquely identified by its Name. The state variables of the machine 
are declared in the VARIABLES clause and initialized in the INITIALISATION 
clause. The variables in B are strongly typed by constraining predicates of the 
INVARIANT clause. The constraining predicates are conjoint by conjunction (denoted 
as ). All types in B are represented by non-empty sets and hence set membership 
(denoted as ) expresses typing constraint for a variable, e.g., xTYPE. Local types can 
be introduced by enumerating the elements of the type, e.g., TYPE = {element1, 
element2,�} in the SETS clause. The operations of the machine are atomic, meaning 
that once started, they cannot be interrupted until finished. They are defined in the 
OPERATIONS clause. The operations are specified as the guarded operations of the 
form: 

Operation = SELECT cond THEN body END 
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 Here cond is a state predicate, and body is a B statement describing how the state 
variables are affected by the operation. If cond is satisfied, the behaviour of the guarded 
operation corresponds to the execution of its body. If cond is false at the current state 
then the operation is disabled, i.e., cannot be executed. 
 B statements that we are using to describe the computation in operations have the 
following syntax: 
 

S   ==   x := e | x, y := e1, e2 | S1 ; S2 | S1 || S2 |  
             x : T | ANY z WHERE cond THEN S END | ... 

 

The first three constructs � assignments and sequential composition � have the standard 
meaning. The remaining constructs allow us to model parallel and nondeterministic 
behaviour in a specification. The detailed description of the B statements can be found 
elsewhere (e.g., [18]). 
 B also provides structuring mechanisms for modularization. It allows handling the 
complexity of development by describing parts of the specification in separate 
machines. Here we use EXTENDS mechanism to incorporate these separate machines 
into the overall specification. When machine M1 extends machine M2, written as 
EXTENDS M2 in the definition of M1, it means that M2 is included as part of the 
machine M1. Its state is part of the state of M1. Moreover, all of the operations of M2 
become operations of M1. 
 The semantics of B is based on the weakest precondition calculus [21]. If S is a B 
statement and P a predicate representing the postcondition, i.e., a set of states which can 
be reached after performing the B statement, then [S]P represents the weakest 
precondition that guarantee P after executing S. The weakest precondition rules for a 
subset of B statements are defined as follows: 
 

[skip] P  P 
[x:=E] P  P(x/E) 
[S1 || S2] P  [S1] P and [S2] P 
[ANY z WHERE cond THEN S END] P   z (P  [S] P) 
 

They are used for verifying correctness of B specifications.  
 To ensure correctness of a B machine, we should verify that the initialization 
preserve the invariant and that the invariant is valid, which means that there are some 
possible machine states satisfying it. In other words, initialisation statement Init must 
always guarantee the machine invariant I: 

 

[Init] I  true 
 

Moreover, to establish correctness of a B specification, we should verify that every 
operation Opi also preserves the invariant I when invoked under some precondition 
condi: 

I  condi  [bodyi] I 
 

Here bodyi is the body of the operation Opi. 
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 The formal development in B is based on stepwise refinement [22]. While developing 
a system by refinement, we start from an abstract formal specification and transform it 
gradually into an implementable program by a number of correctness preserving steps, 
called refinements. The result of a refinement step in B is a machine called 
REFINEMENT. Its structure coincides with the structure of the abstract machine. In 
addition, it explicitly states which machine it refines. 
 In this paper we extensively use data refinement � a general form of refinement, 
which allows us to change the state space of a machine. To replace abstract data 
structures with the refined ones, we define the refinement relation (linking invariant) 
that explicitly states the connection between the newly introduced variables and the 
variables that they replace. The refinement relation constitutes a part of the invariant of 
the refining machine. 
 To ensure correctness of a refinement, we should verify that initialization and each 
operation of the refining machine refine the initialization and the corresponding 
operations of refined machine. Since the refinement relation is a part of the invariant of 
the refining machine, it suffices to ensure that the initialization and each operation of 
the refining machine satisfy this invariant.  
 While developing a system by refinement, it is often needed to introduce new 
variables while leaving the existing data structure unchanged. This is a specific form of 
data refinement called superposition refinement [22]. It also allows introducing new 
events which describe computations on these new variables. 
 The B tool support provides assistance in verification of B models. The verification 
can be completely automatic or user-assisted. In the former case, the tool generates the 
required proof obligations and discharges them without user�s help. In the latter case, 
the user proves certain proof obligations using the interactive prover provided by the 
tool. 
 In the next section we demonstrate how to use specification and refinement in B to 
verify the consistency of Lyra models. 

7. Formal verification of consistency 

In Section 5 we derived informal consistency requirements. The informal requirements 
form the basis for formalizing Lyra models and consistency rules in B. 
 
Ensuring intra-consistency of Lyra models in B. To ensure intra-consistency between 
the models in Lyra we should verify that models at one development stage:  
 satisfy model presentation rules, i.e., the constraints expressing how to properly 

define model elements, and 
 are not contradictory with each other.  
To verify these properties, we first represent each Lyra model as a B machine of a 
general form given in Fig. 23.  
 The name of the machine corresponds to the name of a Lyra model and is followed 
by the acronymic name of the stage, i.e., SS, SDe or SDi. The variables of this machine 
correspond to model elements and their presentation rules are expressed as its invariant. 
Each operation simulates creating an element of the model. Namely, for each element, 
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the corresponding Create_ModelElement operation represents creating the element 
according to the model presentation and the intra-consistency rules. 

 
MACHINE Model_Stage 

EXTENDS < Previously created model > 

VARIABLES < Names of model elements >, Model_Stage_Status 

INVARIANT < Model presentation rules > 

INITIALISATION  

 < Initialise the variables for model elements > || Model_Stage_Status:=Empty  

OPERATIONS 

Start_Model_Stage = 

 BEGIN   

  Model_Stage_Status:=Creating   

 END; 

Stop_Model_Stage = 

 SELECT < Model creation rules satisfied > 

 THEN      Model_Stage_Status:=Finished 

 END; 

Create_ModelElementA =  

 SELECT Model_Stage_Status=Creating 

 THEN      < Create a model element A while ensuring model presentation and intra-consistency rules > 

 END; 

Create_ModelElementB = 

 SELECT Model_Stage_Status=Creating 

 THEN      < Create a model element B while ensuring model presentation and intra-consistency rules > 

 END; 

END 
 

Fig.  23. General form of the B machine for a Lyra model 
 

 To ensure that the models are created according to the Lyra design flow, we 
introduce the variable Model_Stage_Status. When the creation of the corresponding 
Lyra model starts, the operation Start_Model_Stage assigns the value Creating to the 
Model_Stage_Status and this in turn enables creating of model elements. Let us observe 
that Model_Stage_Status=Creating is the guard of the Create_ModelElementA and 
Create_ModelElementB operations in Fig. 23. When a particular model is created, 
Model_Stage_Status variable is assigned the value Finished. This, in turn, triggers 
creating a subsequent model. The order in which the models are created is orchestrated 
by the corresponding top machine. Its general form is shown in Fig. 24.  
 Observe that each machine corresponding to the subsequent model EXTENDS the 
machine for the last created model in that stage and hence all the machines for 
previously created models. In this way we obtain the top machine for a specific stage by 
incorporating machines for Lyra models created in that stage.  
 The B extension mechanism allows us to simulate the order in which Lyra models 
are created. Namely, after one model is created, the top machine defines which model is 
to be created next. For instance, if Model0 should be created first and then Model1, the 
guard of the Create_Model1_Stage operation of the top machine has the following 
form: 

Model0_Stage_Status=Finished  Model1_Stage_Status=Empty 
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where the value Empty assigned to the variable Model1_Stage_Status denotes that 
creating of the Model1 has not started yet. Since Model0_Stage_Status=Finished, i.e., 
Model0 is created, the top machine triggers creating Model1 by calling the operation 
Start_Model1_Stage from the body of the operation Create_Model1_Stage. 

 
MACHINE      Stage 

EXTENDS      Model1_Stage 

INVARIANT 

/* intra-consistency rules */ 

/* Model0 */ 

(Model0_Stage_Status=Finished  ...) 

/* Model1 */ 

(Model1_Stage_Status=Finished  ...)  ... 

OPERATIONS 

Create_Model0_Stage = 

     SELECT 

          Model0_Stage_Status=Empty 

     THEN  

          Start_Model0_Stage   

     END; 

Create_Model1_Stage = 

     SELECT 

          Model0_Stage_Status=Finished  Model1_Stage_Status=Empty 

     THEN  

          Start_Model1_Stage 

     END 

... 

END 
 

Fig.  24. General form of the B machine for a specific Lyra stage 
 

  Since we assume that the Lyra models are checked for consistency only after they 
are created, the invariant of the machine corresponding to a certain Lyra stage 
guarantees  that the intra-consistency rules for a particular model are satisfied only 
when Model_Stage_Status=Finished. 
 To verify the intra-consistency rules, we should prove correctness of the defined top 
machines and the machines representing the corresponding Lyra models. This task is 
facilitated by an automatic tool support available for the B Method � AtelierB [20]. 
AtelierB generates the required proof obligations and attempts to discharge them 
automatically. In some cases it requires user�s assistance for doing this. Upon 
discharging all proof obligations the verification process completes. It ensures that all 
the model elements and models themselves at a specific Lyra stage are created 
according to the specified structural and intra-consistency rules. 
 
Ensuring inter-consistency of Lyra models in B. To verify inter-consistency, we 
should ensure that the models at different development stages are not contradictory with 
each other. In this paper we propose refinement [22] as a technique for checking model 
inter-consistency. A graphical representation of the proposed approach is given in Fig. 
25. 
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Fig.  25. Overall Lyra development in B 

 

 The models in each Lyra stage correspond to the B machines specified according to 
the pattern given in Fig. 23. The rules of intra-consistency remain unchanged through 
stages. However, the models starting from the second Lyra stage should be consistent 
with the models from the previous stages. Hence, we define a B machine corresponding 
to the top machine of the subsequent Lyra stage as a refinement of the top machine for 
the previous Lyra stage. Its general form is shown in Fig. 26. 
 
REFINEMENT Stage� 

REFINES  Stage 

EXTENDS Model0_Stage� 

INVARIANT 

/* intra-consistency rules */  

  ... 

/* inter-consistency rules */ 

  /* Model0 */ 

 (Model0_Stage�_Status=Finished   

 /* Model1 */ 

(Model1_Stage�_Status=Finished ... )  ... 

OPERATIONS 

Create_Model0_Stage =... 

Create_Model1_Stage =... 

Create_Model0_Stage� =... 

Create_Model1_Stage� =... 

... 

END  
Fig.  26. General form of the B refinement for the subsequent Lyra stage 

 
 The top machine Stage� is a superposition refinement of the machine Stage. Namely, 
the existing data structure introduced in the machine Stage is unchanged. However, we 
introduce new variables for the models of the subsequent stage and operations over 
them. The inter-consistency rules defining the relationships between the model elements 
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from these two stages are expressed as the linking invariant of the refinement Stage�. In 
addition, the invariant of the machine Stage� expresses the intra-consistency rules in a 
similar way as the invariant of the machine Stage (see Fig. 24).  
 Verification of inter-consistency is achieved in a similar way as for intra-consistency. 
Using Atelier B, we prove correctness of the defined abstract machines corresponding 
to the models of the subsequent Lyra stage. In addition, we prove that the top machine 
representing the current Lyra stage is refinement of the top machine representing the 
previous Lyra stage. 
 Next we present detailed formal definition of several Lyra models and verification of 
their consistency. 

7.1. Translating Lyra models in B � an example  

We start from defining a B machine to represent Domain Model at the SS stage (Fig. 
20a). Domain Model is the first Lyra model. Hence, we should ensure only its structural 
consistency.  
 While constructing the B machine for Domain Model (DomainModel_SS in Fig. 27), 
we define only the model presentation rules for its elements: Actor, UseCase, 
Association and System. For instance, one of the rules common for all elements in Lyra 
models postulates that each model element is strictly identified by its unique identifier. 
This is enforced by typing the introduced variables using the set of unique identifiers 
(UNIQUE_ID). 

 
MACHINE       DomainModel_SS 

VARIABLES 
     Actor, Actor_Name, UseCase, UseCase, Name, System, System_Contains, System_Name, Association, Association_Ends, ... 
     DomainModel_SS_Status 
INVARIANT 

Actor  UNIQUE_ID Actor_Name  Actor  NAMES              
UseCase  UNIQUE_ID UseCase_Name  UseCase  NAMES  
Association  UNIQUE_ID Association_Ends Association  (Actor UseCase) 

INITIALISATION 
     Actor, Actor_Name  := || ... || DomainModel_SS_Status := Empty 
OPERATIONS 
Start_DomainModel_SS =... 
Stop_DomainModel_SS =... 
Create_System =... 
Create_Actor = 
     SELECT DomainModel_SS_Status=Creating 
     THEN 
          ANY name WHERE name  NAMES  Name_Not_In_Use 
          THEN 
               ANY idx WHERE idx  UNIQUE_ID  ID_Not_In_Use  
               THEN 
                    Actor := Actor  { idx } || Actor_Name := Actor_Name  { idx  name } || ... 

               END 
          END 
     END; 
Create_UseCase =... 
Create_Association =... 
END 

Fig.  27. Excerpt from the DomainModel_SS machine 
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 The additional model presentation rules are derived from the requirements for 
Domain Model in the SS stage. For instance, a model presentation rule for the element 
Actor in Domain Model at the SS stage expresses that an actor has to have the name. 
Observe that the operation Create_Actor in Domain_Model_SS machine enforces this 
rule while creating an actor. Namely, the variable Actor_Name contains the names for 
each created actor. We omitted the detailed presentation of all the operations of 
Domain_Model_SS. They follow the general form of the operations given in Fig. 23. 
 The next step in Lyra development is creating the Communication Context model 
(Fig. 20b). To ensure intra-consistency, the machine CommunicationContext_SS (Fig. 
28) refers to DomainModel_SS in its EXTENDS clause. The elements of the 
Communication Context model are the variables of the CommunicationContext_SS 
machine. They are defined relying on the definitions of DomainModel_SS machine. The 
dependencies between the models are formulated as the intra-consistency rules. They 
implement the requirements obtained for the Communication Context model at SS 
stage. For instance, an intra-consistency rule for the active classes in Communication 
Context at the SDe stage states that an active class should be defined for each use case 
in Domain Model with the same name as the corresponding use case. This rule is 
specified while creating the element ActiveClass in the CommunicationContext_SS 
machine. 

 
MACHINE      CommunicationContext_SS 
EXTENDS       DomainModel_SS 
VARIABLES 
     ActiveClass , ActiveClass_Name , 
     ExternalClass , ExternalClass_Name , 
     PSAP_Port , USAP_Port ,  
     Interface_IN , Interface_OUT, ... 
     CommunicationContext_SS_Status 
INVARIANT 
     ActiveClass  UNIQUE_ID ActiveClass_Name  ActiveClass  (System UseCase) 
INITIALISATION 
      ActiveClass, ActiveClass_Name :=  || ... || CommunicationContext_SS_Status := Empty 
OPERATIONS 
Start_CommunicationContext_SS =... 
Stop_CommunicationContext_SS = 
     SELECT ran (ActiveClass_Name) = (UseCase System) ... 
     THEN 
               CommunicationContext_SS_Status:=Finished 
     END; 
Create_ActiveClass_For_UseCase = 
     SELECT 
          CommunicationContext_SS_Status=Creating 
     THEN 
          ANY id1, idx WHERE id1  UNIQUE_ID  id1  UseCase  id1   ran ( ActiveClass_Name )   
                                                 idx  UNIQUE_ID ID_Not_In_Use       
          THEN 
             ActiveClass := ActiveClass  { idx } || ActiveClass_Name := ActiveClass_Name { idx  id1 } || ... 

          END 
     END; 
Create_ActiveClass_For_System =... 
Create_ExternalClass =... 
Create_USAP_Port =... 
Create_PSAP_Port =... 
END 

Fig.  28. Excerpt from the CommunicationContext_SS machine 
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 The Create_ActiveClass_For_UseCase operation (see Fig. 28) creates an active 
class with the same name as the use case with the unique ID. The guard of the operation 
Stop_CommunicationContext_SS ensures that this model is properly created only 
when there exists an active class in Communication Context for each use case in 
Domain Model. 
 We omit presenting the B machines for Signalling Scenario, PSAP Communication 
and Substate Machine in the SS stage since they follow the same general form given in 
Fig. 23. The top machine for the SS stage is obtained according to the pattern shown in 
Fig. 24. 
 The inter-consistency rules guide defining Domain Model (Fig. 21a) in the SDe 
stage. The SDe stage adds new actors to Domain Model. They should be associated 
with already existing use cases. The machine DomainModel_SDe (see Fig. 29) has 
similar structure as DomainModel_SS (see Fig. 27).  
 

MACHINE     DomainModel_SDe 
EXTENDS      SubstateMachine_SS 
VARIABLES 
     Actor, Actor_Name1, Association1, Association_Ends1, DomainModel_SDe_Status 
INVARIANT 
     Actor1  UNIQUE_ID Actor_Name1  Actor1  NAMES              
     Association1  UNIQUE_ID Association_Ends1 Association1  (Actor1UseCase) ... 
INITIALISATION   
     Actor1, Actor_Name1 :=  || ... || DomainModel_SDe_Status := Empty 
OPERATIONS 
Start_DomainModel_SDe =... 
Stop_DomainModel_SDe =... 
Create_Actor1 =... 
Create_Association1 = 
     SELECT DomainModel_SDe_Status=Creating 
     THEN 
          ANY id1,id2,idx  
          WHERE id1UNIQUE_ID  id1Actor1  id2UNIQUE_ID  id2UseCase (id1,id2) ran (Association_Ends1) 
idx  UNIQUE_ID  ID_Not_In_Use 
          THEN 
                Association1 := Association1 { idx } || Association_Ends1 := Association_Ends1 { idx (id1,id2) } || ... 

          END 
     END 
END 

Fig.  29. Excerpt from the DomainModel_SDe machine 
 

 However, the new variables: Actor1, Actor_Name1, Association1 and 
Association_Ends1, are introduced to model the newly introduced elements. Observe 
that the operation Create_Association1 enforces the inter-consistency rule: it represents 
the associations between the variable UseCase from the DomainModel_SS and the 
introduced variable Actor1 in DomainModel_SDe. 
 B development in the SDe stage proceeds as shown in Fig. 25 and finishes with 
defining the refinement SDe (Fig. 30), which is obtained using the pattern given in Fig. 
26.  
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REFINEMENT     SDe 
REFINES               SS 
EXTENDS             SubstateMachine_SDe 
INVARIANT 
/* intra-consistency rules */ 
 ... 
/* inter-consistency rules */ 
    /* Domain Model */ 

(DomainModel_SDe_Status=Finished   ran(Association_Ends1)(Actor1UseCase))  
   /* Decomposition Diagram */ 

(DecompositionDiagram_SDe_Status=Finished  (Association_Source2[dom(Association_Target2)]=UseCase))  ... 
OPERATIONS 
Create_DomainModel_SS =... 
Create_CommunicationContext_SS =... 
Create_SignallingScenario_SS =... 
Create_PSAPComm_SS =... 
Create_SubstateMachine_SS =... 
Create_Domain_Model_SDe = 
     SELECT 
          DomainModel_SDe_Status=Empty PSAPCommunication_SS_Status=Finished 
     THEN  
          Start_DomainModel_SDe 
     END; 
Create_DecompositionDiagram_SDe = ... 
Create_CommunicationContext_SDe =... 
Create_SignallingScenario_SDe = ... 
Create_ExecutionControl_SDe = ... 
Create_SubstateMachine_SDe =... 
END 

 

Fig.  30. Excerpt from the SDe refinement 
 

 The invariant of the refinement SDe expresses not only the intra-consistency rules 
addressed at the SDe stage but also the inter-consistency rules between models on SS 
and SDe stages. For instance, for Domain Model in SDe stage to be consistent with 
Domain Model in SS stage, it should associate the newly added Actor1 with UseCase 
from the same model in the SS stage, i.e., ran(Association_Ends1)(Actor1UseCase)) 
should hold. By proving refinement between the corresponding top machines, we verify 
inter-consistency of Lyra models from the SS and SDe stages. 
 The SDi stage is handled in the similar way, resulting in a set of B machines for the 
corresponding Lyra models and a refinement SDi � a top machine for this stage. A 
graphical representation given in Fig. 25 summarizes the overall process of Lyra 
formalization, allowing us to establish consistency among models in the Lyra 
development flow. 

8. Related work 

There are several formal approaches to ensuring consistency of UML models. Engels et 
al. describe in [23] how to formalize the consistency of models in UML-RT � a dialect 
of UML for modelling concurrent systems. They focus on translating UML-RT 
statechart diagrams into CSP and ensuring their consistency during model evolution. 
Similarly, our approach ensures the consistency between models on different 
development stages via refinement in B. However, we consider a wider set of UML 
models. 
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 Van Der Straeten et al. [24, 25] propose an extension of the UML metamodel, 
namely the UML Profile for Model Consistency, supporting the consistency between 
different versions of a model. They check consistency by translating the UML Profile 
into the description logic (DL). Logic rules are then used to detect model 
inconsistencies. Moreover, this approach does not consider preserving consistency 
between different levels of abstraction and also uses a limited subset of UML (i.e., only 
class, sequence and state diagram). 
 Ensuring intra-consistency of UML models has been addressed by Kim and 
Carrington [26]. They describe how consistency constraints of UML model elements 
(i.e., elements of the UML metamodel) can be formally defined at a language level 
using Object-Z. This formal meta-modelling approach to defining UML modelling 
concepts is based only on UML State Machine. The metaclasses from UML State 
Machine are translated into Object-Z classes. Consistency constraints are defined as 
invariants on these Object-Z classes. Consistency between different UML models is 
checked via verifying that model elements composing the models preserve all 
consistency constraints attached to their metaclasses. Therefore, the approach deals with 
intra-consistency only, while our approach handles both intra- and inter-consistency. 
 The use of Object-Z to reason about model consistency was also studied by Rash and 
Wehrheim [27]. They give formal semantics to UML classes and state machines using 
Object-Z. As a common semantic domain for both classes and state machines, they use 
semantic model of the process algebra CSP. Consistency checking is then achieved by 
translating the obtained Object-Z specification into CSP. Similarly to our approach, they 
use refinement for model evolution and show how consistency is preserved, but on a 
limited subset of UML. 
 The problem of consistency has mostly been studied for UML class and state 
diagrams. Meanwhile, only a few researches considered less formal concepts of UML, 
such as use cases, sequence and activity diagrams. In [28], Krishnan proposes an 
approach that defines UML diagrams (including use case diagrams) in terms of state 
predicates. The consistency between various diagrams is then verified using the theorem 
prover PVS. Although our approach comprises both formal and informal UML 
descriptions similarly as [28], it also reasons about consistency during model evolution. 
 The approaches to consistency of UML models based on their translation to some 
formal notation are the most common, as observed in [29]. However, there are many 
approaches [30, 31, 32, 33, 34] which are grouped around the constraint definition 
languages, in particular OCL, proposing different enhancements of OCL to enable 
better expressiveness of constraints. Naturally, these approaches show how intra-
consistency between UML models can be achieved. However, to the best of our 
knowledge, there is no research addressing inter-consistency checking using OCL. 

9. Conclusion 

In this paper we formalized and formally verified Lyra development flow represented as 
the Lyra profile. This work establishes a basis for automating model-driven 
development of distributed communicating systems and communication protocols. 
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 We made two technical contributions. The first is the definition of the Lyra UML2 
profile for developing communicating systems and protocols conforming to specified 
architectural rules. The profile has been derived as a result of a number of large 
industrial developments conducted according to the Lyra methodology within Nokia 
Research Center. The profile defines the Lyra-specific modelling concepts and 
dependencies between them, thus outlining the required stages of the system 
development. The profile is considered to be a reference model using which we could 
validate created Lyra models. Validation ensures that these models use only concepts 
defined by the architectural rules. We discussed the related work in this area while 
presenting the major profiling principles. 
 The second contribution is specification and verification of the Lyra design method 
within the formal modelling framework � the B Method. This work allowed us to 
establish consistency between the Lyra UML2 models while undertaking the Lyra 
development, which otherwise we could not achieve within the profile solely. While 
verifying the Lyra development flow, we simulated Lyra development and formalized 
both the Lyra models and the intra- and inter-consistency rules in B. The Lyra models 
are translated into the corresponding B machines according to the proposed patterns. 
The intra-consistency rules are expressed as the invariant of the top machine for each 
particular stage. The inter-consistency rules are defined as the linking invariant in the 
refinement machines corresponding to the subsequent stages. Full formal verification of 
the obtained specifications and refinements is done using an automatic tool support for 
the B Method � Atelier B. It guarantees both intra- and inter-consistency of models 
created at various stages of Lyra development.  
 In general, the presented approach establishes a basis for automating the Lyra design 
flow. It not only defines a profile supporting the entire development process of 
communicating systems and communication protocols, but also smoothly integrates 
formal verification for ensuring model consistency. 
 As our future work we are planning to extend the proposed approach to define and 
verify behavioural consistency as well. It would complement the structural consistency 
we have defined and presented in this paper. 
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