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Abstract

As embedded control systems are becoming more complexg, ihamneed for new soft-
ware development and structuring techniques. The conmibm&imulink/Stateflow
has become a popular tool for model-based design for thie ofphybrid systems,
due to the simulation and analysis tools available. To endbbkign and validation
of large complex systems in Simulink/Stateflow, an appatprinodel architecture is
needed. Mode-automata is such an architecture, whereotasitstrictly separated
from signal processing. In this paper we give a formal de@inibf mode-automata
in Simulink/Stateflow. This gives a precise definition of anhétecture that restricts
Simulink/Stateflow to a safe and easy to use subset that ysteasrify, but still us-
able in practice. We propose syntactic rules to check thatengSimulink/Stateflow
model complies to our mode-automata architecture and wstiite the approach with
a controller for a digital hydraulics system.
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1 Introduction

The design of computerized embedded control systems hagtgesan important activ-
ity in the last decades. As complexity has increased, the fieelearer methodologies
and paradigms has become greater. Correctness of congteinsy can be improved
first by means of formal techniques introduced in the desmm, fbut also by proposing
modeling/programming methodologies that will make thagtefiow clearer in itself.

The general setting of the work presented in this paper deigihsimproving the
design flow by 1) making modeling concepts clearer and 2péhtcing formal meth-
ods along the development process. In practice, we proposteidy this design flow
around the Stateflow/Simulink modeling tool. This lattands to become a standard
in industrial development of embedded software. Howewénoagh programming
methodologies have been proposed for it, it still lacks adgdormal setting that could
allow definition and application of interesting validatiwthniques.

1.1 Separating control and dataflow for managing systems com
plexity

One way to tackle complexity in embedded control systemgdes to separate the
expression of control and computations. During the lastd#&ry or so, we have seen
an emergence of different paradigms allowing to separasetlaspects. The idea un-
derlying all these paradigms is to express control usintgahédical state-machines and
computation with block diagrams, connecting differentstgtem in a dataflow man-
ner.

On the academic ground, several works have emerged that firyct the best com-
promise between expressiveness and complexity. One of ts significant is the
mode-automata of Maraninchi and Rémond [20] as implenteintehe Matou tool
[21]. Activity of the system is separated in differeonning modeshat are described
as states of a hierarchical state machine. The behaviobedtstem in each of these
modes is described by a set of dataflow equations (e.g. usingyntax of the Lustre
language [6]). This notion of mode is actually significantlat it corresponds ex-
actly to what end-users have in mind when asking for a clgaarsgion of control and
signal processing. However, this approach has lacked, fon@time, a successful
transfer to industrial tools. Another approach comparableode-automata is Mod-
echarts [14, 25]. However, Modecharts are more aimed aesgprg timing properties
for real-time systems, which is not considered here.

Among the industrial tools dedicated to the design of cdrdystems, there are
two successful examples of separation of control and sigrwdessing. The first one
is the introduction of hierarchical state-machines to tGABE environment [9]. In
this paper, we join recent work [7, 16] on the introductiorstdte-machine structures
in SCADE (which is very similar to Simulink). The second orethe coupling of
Stateflow and Simulink present in the Matlab tool-set. However, the semanticsioeh
the language is somewhat unclear, based on graphical aiensipSeveral works [10,
11, 27] have recently proposed formal semantics for a reddersubset of Simulink
| Stateflow. These set up a good background for our long-terah @Our goal in this
paper is not, however, to extend those semantics. Rathenwe propose sensible
subset of Stateflow/Simulink that we hope can serve as a djnieléor programmers
and allow for the establishment of validation techniquesblesin practice.

1Simulink and Stateflow are trademarkshd&thWorks Inc.
2For example, transitions going out of a state are testedviirig a 12 o’clock rule: transitions are picked
in a clockwise order around the originating state. This rsieurely graphical and not semantics-related.



We particularly want to define an interesting subset of 3tatéSimulink allowing
for simpler and clearer semantics from the designer poirtef, and yet not reducing
the expressive power too drastically. Our proposal amawordapplying the recommen-
dation advocated by the mode-automata approach to SimuStateflow designs.

Finally, as we propose an architectural guide-line for diniyy Simulink/Stateflow
applications, one important part of our work resides in tk&lelishment of static
rules that can be used to check whether the developer’srdesigforms to our mode-
automata-like architecture. These assumptions on modelsxpressed as rules that
can be checked automatically. Similar approaches for deficonstraints on e.g. UML
models have been developed (see [23, 24]). The ideas far grehitectural constraints
are similar, but here we focus on defining a specific architect

1.2 Propositions

The work presented in this paper goes in a more "methododdigilirection. We aim
at 1) the definition of a sound subset of Simulink / StatefloWicent for allowing
the construction of mode-automata-like structures; 2)@oa proposition of mode-
automata in Simulink / Stateflow.

The implementation of mode-automata that we propose iadrio adapt the ap-
proach proposed in [20], the most naturally possible to $imku Stateflow. Initial
work in this direction has been published by the authors gcanical report [5]. Here
we improve the formal description, consider more featuneStateflow and present a
complete example. The paper shows how even complex artiriséconstraints can
be conveniently described. Validation that the constsaimieed describe the desired
model restrictions is also briefly discussed.

Benefits from this methodological design approach for \ai@h is under study.
The whole approach is being applied in a national researcjegtron design of con-
troller for digital hydraulics systems. The mode-autonsdproach has been proposed
as an answer to meet explicit needs from end users to makesttigndmethodology
clearer both during the design and validation phases. Tée sady presented in sec-
tion 5 has been re-factored from a previous version intortiosle-automata structure.
Ongoing work includes building a new application from schaapplying our method-
ology right from the beginning.

1.3 Structure of the Paper

Section 2 briefly recalls the mode-automata approach. @estgives a formal defini-
tion of the subset of Simulink / Stateflow we consider. Secdashows how to apply
the mode-automata architecture to design Stateflow / Sikuhiodels. It gives a set of
syntactic constraints to check that a model satisfies tlisiteicture model and com-
ments on the validation of these rules. Section 5 presengsa-study to which we
apply the mode-automata paradigm. Section 6 concludesrasemts briefly ongoing
and future work.

2 Mode-Automata

Mode-automata have been proposed in [20] to enable theipisorof reactive sys-
tems in terms ofunning modes They give a way to combine in a sound semantic
framework dataflow oriented languages together with cdftoav design (automata).
Typical usage includes e.g. the control of an aircraft inchiithe same commands are
directed differently whether the airplane is in take-offeemr landing mode.



2, = fa(z, u) o, = fo(z, u)
ys = ha(z,u) ys = ho(z,u)

Figure 1: Example of a mode-automata

A mode-automaton consists of input variables, memory, wutpriables and a set
of modes. Each mode has a different function for updatingvddee of the output
variables and the memory. Transitions between modes arelgdidy conditions that
depends on the values of the input variables and the memory.

Figure 1 shows an example of a mode-automaton. The autorhawmput vari-
ablesu, memoryz, output variablesg, U y;. There are two parallel modesandr.
These two modes are further decomposed #itoso andry, 2, respectively. Transi-
tions are guarded by the conditions Each mode has a functiohthat updates the
output variables based on the current memory and input, #sawe functionh that
updates the memory based on current memory values and iafugss Since modes
s andr runs in parallel, the modes have to update disjoint sets tgfutsiys; andy;.,
as well as disjoint parts of memory; andz,.. Sequential modes then have to up-
date the same variables. Note that a precise behaviourarg®&s of mode-automata
is not given here, since the semantics is given by the unidgrfprmalism were the
mode-automata structure is implemented. In [20], behawassociated to leaf-modes
are described by dataflow equatioada Lustre [6].

3 Simulink and Stateflow

Control systems are often hybrid systems consisting of datbrete and continuous
parts. Matlab and particularlySimulinkdeveloped by Mathworks Inc., have become
popular tools for modelling, analysing and designing sugétesns. Simulink is a
graphical language where different functional blocks avenected by signals in a
dataflow manner.

Some discrete systems are conveniently modelled ugiitg state-machinesSi-
mulink is shipped withStateflow which is a graphical language for creating hierar-
chical state-machines similar to Statecharts by Harel.[12]order to implement the
designed systems, both Simulink and Stateflow allow diredeqeneration from the
models.

We first introduce notations used in the paper. Then we p®pdsrmalisation of
the subset of Simulink that we consider. Finally, we prefiemsubset of Stateflow that
we to use to describe the control architecture of mode-aatam

3.1 Notations

The formalisation is based on the use of higher order logi©l(Hto describe the
structure of the models. The notation we use is taken fronrdéfisement calculus
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Figure 2: Example of a Simulink model. The diagram (b) showes ¢ontent of the
subsystem in (a)

book by Back and von Wright [2]. We use the notatifn: A — B to denote a
total function f from A to B. Functions are defined usingcalculus and function
application is given by the dot-notation, e.g.q. A relation between elements of two
setsA and B is given asr : A — P(B), i.e. each element idl maps to possibly
empty set of elements iB. The domain of- is denoted bydom.r and the range by
ran.r. The cardinality of a sefl is denoted byard.A. Creation of a relation from the
corresponding functioyfi is denoted byf|. Composition of relationg ands is denoted
by s; . Furthermore, we denote the transitive closure of theiaat with »+ and the
reflexive transitive closure with*. The composition of functions and relations makes
it possible to create new higher level objects to reason ttheustructure of models.

3.2 Formalisation of Simulink diagram structure

The structure of a Simulink block diagram can be described ast of blocks con-
taining ports. The ports are then related by signals. Simkufias a large library of
different blocks for mathematical and logical functionkdis for modelling discrete
and continuous systems, as well as blocks for structurindatso Simulink diagrams
can be hierarchical, where subsystem blocks are used wwstetthe model. An exam-
ple of a Simulink diagram is shown in fig. 2. The diagram camaine source block
giving a valuec to a signal connected to the subsysténbSys. The subsystem have
in- and out-blockg; andp, to communicate with blocks higher in the hierarchy. The
functionality of the subsystem is given by a gain bloGksin, that multiplies the input
by a constan’. The output from the subsystem is then delivered to a singkatloat
consumes the given value. This diagram, hence, compeiegd = Kc.

3.2.1 Definition

A Simulink model is defined as atuplet = (B, root*™  subh, P, blk, sig, subi, subo):

e B is the set of blocks in the model. We can distinguish betwesebsystem
blocks B*, in-blocks in subsystem®?, out-blocks in subsystemB° (repre-
senting inputs and outputs of subsystems), merge blétksand blocks with
memory B™¢™ When referring to other types of "basic” blocks? is used in
this paper. Furthermore, subsystem can be divided intapabwirtual sub-
systemsB¥* andnon-virtual subsystemB™*, B* = Bv® U B™*. The virtual
subsystem do not affect the behavioural semantics of SikwulThey are used
purely for structuring the diagrams, while the non-virtsabsystems can affect
the semantics;

e root*™ € B¢ is the root subsystem;

e subh : B — B¢ is a function that describes the subsystem hierarchy. Fenyev
block b, subh.b gives the subsystemis in. Note thasubh.root*™ = root*"™;

e P is the set of ports for inputs and output of data to and fronckdo The ports
Pt C Pisthe set of in-ports ané?® C P is the set of out-ports;



e blk : P — B is arelation that maps every port to the block it is in;

e sig : P — P° maps every in-port to the out-port it is connected to by aaign

e subi : B* — P° — P(P?) is a partial function that describes the mapping
between the in-ports of a subsystem and the out-ports ofrttioicks in that
subsystem.

e subo : B* — P° — P(P%) is a partial function that describes the mapping
between the out-ports of a subsystem and the in-ports ofdhélocks in that
subsystem.

There are several constraints concerning these functiodsedations in order to
only consider valid Simulink models. These constraint®ive e.g. valid hierarchy
of subsystems and correct definition of connection overystbm boundaries. In this
paper we assume we only deal with syntactically correct 8itkhu Stateflow models
(ones that can be simulated),

Consider the diagram depicted in fig. 2. The blocks are defiiyeB = {source,
SubSys, p;, Gain, p,, sink}. The subsystems are given B%* = { SubSys, root >}
and B = (), while the hierarchy isubh = {(Gain, SubSys), (SubSys, roots™),
...}. Names of ports are usually not shown in diagrams. Here we ta follow-
ing ports,P = {p%,, p%.u, P2us> Piis - - -} The function describing which block each
port belongs to is then given &tk = {(p?,, source), (p},, Gain), (pg, Gain), (pl,,,
SubSys), ...}. The connections between the ports is definedigs= {(p, ;. %),
(pg, Ppi)s-- .}. The relations describing how ports in in/out-blocks cepend to ports
of subsystems are given byibi andsubo. The in-port of the subsystem is related
to the out-port of the in-bloclksubi = { (SubSys, p;, {P’,}), (SubSys, pg,0), .. .}.
The definition of outputs of the subsystem is simitatyo = {(SubSys, p2,,; {pj,o}),
(SubSys, p2,0),...}.

3.3 Formalisation of Stateflow

Stateflow is a Statechart implementation provided with Simku The main difference
from Statecharts is that Stateflow is completely sequeatidldeterministic. A State-
flow chart is basically a hierarchical state-machine whaates are labelled with lists
of actions and whose transitions are labelled with guardsaations. Both actions and
guards are specified using a specific "action language”. fefitav block is a normal
block in Simulink that can have in-ports and out-ports fameounicating with the rest
of the Simulink model. These ports can be referred to alsténatction language of
Stateflow. Stateflow contains many advanced features theat tfad to semantics am-
biguities. One goal of this formalisation (and of the guide$ we propose in sec. 4
for implementing the mode-automata in Simulink/Stateflésvjo reduce the number
of these ambiguitie®d a minimum

We consider only a small subset of Stateflow, described helawis defined pre-

cisely to fit the mode-automata architecture:

e in-ports These ports are used for giving guard conditions to treotsgegments.
The type of the ports have to be Boolean;

e out-ports These ports are used for exporting the current activitjustaf states
to the Simulink model;

e Hierarchical state-machinedNe consider both sequential or-states and parallel
and-states;

e Guards on transition segment$Ve only allow transition segments labelled by
guards. To aid graphical analysis, each guard needs to beathe of a port. If
Boolean operators were allowed in the guards, we would negad\er to e.g.
decide equality of guards. Note, that if guards used on a transition we also
often have transitions with the guarely. Therefore, we also allow the guard



namelg denoting—g. This does not complicate analysis, and it is therefore
allowed for convenience;

e Junctions Junctions represent decision points between differansition paths
and they are, hence, used for connecting transition segnt@yéther. They can
also be used for conjunction and disjunction of guard caowist

We do not allow activities inside states nor events, actémscondition actions on

transition segments. This ensures a usage which is as dgarsaible. In particular,

it forces for a clear separation of control from signal prsgiag. We believe this sep-
aration is essential. Stateflow/Simulink is, to us, too pssive and allows activities

(potentially with side-effects) to be expressed with thgceclanguage inside states,
which is one of the biggest source of confusion and imprenisor designers. We

believe the restrictions above limits Stateflow to a safesstithat is easy to formally
analyse, but is sufficiently powerful to be used in practiggether with Simulink.

The structure of a Stateflow chart is formalised in a similanmer as the Simulink

model. Stateflow is only a block in the Simulink model.

3.3.1 Definition

The Stateflow chaif is here given as atuplé, = (D, Q, Q*"?, Q°", J, root, sfh, sfprt,

T,T? L, bl trns) where:

D is the set of objects that can be transition segrsentcesor destinations

Q@ C D is the set of states (modes) in the Stateflow model,

e Q% C (is the set of and-state@°” C () is the set of or-states. We have that

Qand ) Qor — Q,

J is the set of junctions. The sets of junctions and statesisj@mt Q N .J = (;

e root € Q°" U Qs the root state;

e sth: Q — (Q°" U Q) is a function that maps a state to its parent. Hence, it
describes the hierarchy of states;

o sfprt : (Q — (Q°" U Q*4)) — P° is a function that maps every leaf-state
to a out-port. The out-port is then used to enable the subsythat describe
the behaviour in the state. The activity of a state can erpaatitomatically to
Simulink via a port with the same name as the state;

e T'is the set of transition segments;

e 79 C T is the set of default transition segments. A default tramsits the
initialisation of an or-state. The source of a transitiogreent of this type is the
or- state it is initialising;

e L is the set of labels on transition segments. Labels are gubed consist of
either port nameg; or negation of port namelg;. The value of the condition
associated with the port determines when a transition segimeenabled. A
transition with empty guard has the lalel

e Ibl: T"— L is afunction that gives the guard of each transition segment

e trns : T' — (D — P(D)) gives the source and destination for each transition
segment. Each transition segment has only one sourcerasnds therefore a
partial function.

3.3.2 Example

To illustrate the formal definition consider the Stateflovarthn fig. 3. The root state

of the diagram is an or-state with one sub-state This state is an and-state that
has two sub-stategy, and g3, which then have two sub-states each. The function
sth = {(root, root), (¢, root), (s,q), (r,q), ...} relates the states to their parent state.
There are seven transitions segmeffits: {t¢4,...,¢7} (the numbers are not shown in
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Figure 3: An example of Stateflow model.

the diagram). Three of these transitions are default ti@nsi, 7;; = {t1,t2,t3}. The
functiontrns then gives the source and destination of the transitiorss= {(¢1, root,
{q}), (t1,4,0),...,(ts,s1,{s2}),...}. The labelsL on the transitions are given as
L = {e,91,92,93,94}. Transitions are labelled by guards as described by the func
tion Ibl. Herelbl is given adbl = {(¢1, €), (t2, €), (t3,€), (s, g1) ...}. The following
paragraphs establish precise rules for the design of sistrsg in Simulink/Stateflow.

4 Mode-Automata in Simulink / Stateflow

The Simulink / Stateflow language is a very convenient toolsfgstem construction
due to the large set of features. However, some of theserésadwe difficult to analyse
and to use correctly. Design guidelines have been develapedsure that Simulink
| Stateflow models are maintainable, readable, and use afdyconstructs [15, 22].
Guidelines for using Simulink / Stateflow for production eodeneration have also
been developed [3, 8]. However, even if these guideline$adi@ved the models are
still difficult to formally analyse. In order to translater@ilink / Stateflow to Lustre
for verification, restrictions have been adopted [26, 28¢tsure that the constructs
are compatible. We also require that these restrictiong/dppthe controllers in this
paper, but we give additional architectural constraints. Il to restrict the language
to a safe kernel that is expressive enough to be convenias#lgl in practice, while
the models are still easy to understand and (formally) a®alfzurthermore, we would
like to provide an architecture that simplifies the condinrcof systems consisting
of both discrete control logic and signal processing. Resty Simulink / Stateflow
to the mode-automata architecture seems to be a good sofaticsatisfying these
requirements.

4.1 Building a mode-automaton in Simulink/Stateflow

Mode-automata consist of both a state-machine part and+sependent computation.
Stateflow is used to implement the state-machine part in BiknuTo implement the
mode-specific behavio@nabled subsystenis’, B¢ C B™¢, are associated with each
leaf-mode. The activity of each leaf-mode can be exportedraatically from State-
flow to Simulink, where it is used to enable the correct sutesys To always use the
output from enabled subsystems that are currently actieejsemergeblocks. Merge-
blocks are used to always take the value from the currentiyeaenabled subsystem.



4.2 Syntactic Constraints for the Mode-Automata Architecure

The mode-automata architecture as presented above ang id{Jl requires a number
of constraint involving transitions, state-hierarchydaronnection between Simulink
and Stateflow.

4.2.1 Preliminary definitions

To simplify the constraints for Stateflow we introduce sewew relations concerning
transitions. The relatiotrns relates junctions and states that are connected by normal
transition segmentsyns’ gives the relation between junctiorntsps?’ from states to
junctions andrns?-? from junctions to states. The relatiams? gives the states that
are connected by transitions, i.e., by a sequence of trangsiegments and junctions.
Default transitions are treated separately. The relatiosf'?7 gives the relation cor-
responding to default transitions to junctions ang? gives the initial state for each
or-state.

trns’ = A D{dg S D|3t‘t€T—Td/\d2 €trns.t.d1} R

trns’ = Nji:J-{j2 € J|j2 € trnst g1},

trns?d = Ag:Q-{j€ J|j€tmsq},

trnsh4 = X\j:J-{q€ Ql|qgetmsj},

trns? = Aq1:Q-{q € Qg2 € (trns?7;trns?*; trns?9).q1 V g2 € trnst.q1 }
trns@®d = Ng:Q-{j€ JFt-t€TyNjEtmst.q},

trns® = Aq: Q- {q2 € Q|2 € (trns?eI; trnsT*; trnst4).qq Vv

It-t € TN gy € trns.t.qy}

For Simulink diagrams, we will need to be able to express ttaimds in a way that
is not dependent on virtual blocks. Virtual subsystems doaffect the semantics of
the model and therefore they should not affect the modenaatim constraints. Hence,
to give the constraints for Simulink we need to state that & gepends on another
regardless of the virtual subsystem hierarchy.

A port depends on another if there is a signal between themegrform a connec-
tion over a subsystem boundary. This is expressed by thiomekep:

dep= Ap1: P-{p2 € Plp1 # p2 A (p1 € P* = py = sig.p1)A
(p1 € P° = (3b-b € B* A (subi.b.py = pa Vsubo.b.p1 = p2)))}

The functionndep then gives the connections between non-virtual blocks.

ndep= Ap;: P-{ps € P°
blk.py ¢ (B' U B° U B") Ablk.ps & (B' UB° U B")A
p2 € dep™ 1A
(Vp-pe PApe (dept.pr N (dep™ ')t .pe) = blkp € (B U B° U B*))}

A port is connected to another if there is sequence of signatsial subsystems, in-
blocks and out-blocks between them. Tridep function is the key to expressing actual
connections between blocks in a manner that is not dependéhe virtual subsystem
hierarchy.

4.2.2 Stateflow constraints

Stateflow allows transitions that have very complicated asgins. We here give a
number of additional constraints to limit the set of legahitions in order to only use
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Figure 4: Example of syntactically correct Stateflow modakst use constructs not
allowed by our mode-automata definition. The chart (a) shitegal transitions, (b)
shows illegal initialisations, while (c) shows illegal hisitions to parallel states.

transitions with intuitive and easily verifiable behavioArfew examples of Stateflow
constructs that are not allowed are shown in fig. 4.

The first constraint is that transitions should start andiarglates. Otherwise the
transition does nothing, since we have no actions on tiansit Transitions containing
cycles with only junctions are also not allowed, since tls tead to infinite loops in
the chart. Finally, if a transition has the same source astrdgion, it is unnecessary
and therefore not allowed (see fig. 4 (a)).

Vj-jeJAIg-qe QA (trns/*;tmsh9).5
Vi-jeJ=jé¢tms/Tj,
Vg-q€ Q= q¢tmsig

Each or-state should have exactly one default transitibirs i€ stricter than Stateflow,
since Stateflow also allows several default transitionadnitialisation at all (see fig. 4
(b)). Furthermore, it should always be possible to exedwértitialisation, which can
here be guaranteed by only syntactic rules. The conditinbeansured by having one
unguarded transition for each junction reached from thedetransition segment.
Alternatively, for each transition segment with guardrom a junction, there exists
another transition segment from the same junction with gt

Vg-q€ Q" = 3t-t e T?Acard.(trns.t.q) =1,
Vg-qeQ =
Vj - j € (trns?®d; trns?*).q
= ((th -ty € T ANtrns.t1.) 75 1]
= dty -ty € T Atrns.to.jg 75 1]
Aty 7é ta A lblt; = _‘|b|.t2)\/
(Ft-teT Atrns.t.j Alblt =e))

To enforce creation of more structured models, transitibas cross the boundary
of a composite state are not allowed (see fig. 4 (b) and (c))prdier to discover if
a transition crosses a composite state boundary, we chatkf timere is a transition
between two states then these two states have the same Jdrepiarent also has to be
an or-state, since transitions between parallel statesai@lowed. Default transitions
have to lead to a direct sub-state of the state they arelisiitig.

Yq1,q2 - q1 € Q A qo € trns?.qy = sth.qgy = sfh.ga A sfth.qgp € Q7
Va1,q2 - 1 € Q" A g2 € trs™.qy = q1 = sth.qo



4.2.3 Simulink constraints

Rules for the Simulink part of the model are also needed ireiofdr the model to
conform to the mode-automata architecture. The only output the Stateflow chart
is the current activity of the leaf states. Each out-portétibe connected to trenable
port, p. € P¢, of the enabled subsystem in Simulink that defines the behain that
state (mode).

VYpo - o € P° Ablk.p, =8 = Jpe - pe € P Ablk.p, € B A p, € ndep.p,

To ensure that the mode-dependent behaviour conforms tmdlitke-automata ar-
chitecture we need to constrain how outputs of enabled stdsy are used. Each
enabled subsyster,, is followed by amerge blockb,,,. The merge block is used to
obtain the latest result from different enabled subsysteonsiected to it. Exactly one
port in the merge block has to be updated regardless of thesstiaodes) the system
is in, otherwise the value of the output signal would be umaefiin certain modes. To
express this property we give a function that states whiddsygstems can be enabled
by a state; or one of its sub-states.

stesub= Aq: Q- {b. € B|
HQI “q1 € ((th_l)*q — (QOT U Qand))/\
ape * Pe € Pe A ndep.pe = sfprt.ql A blk.],)e _ be}

The set of merge-blocks affected by these states can themnipguted.

stmrg = Aqg: Q- {by € B™|3p; - p; € P, Ablk.p; = by, A
Ipo + Po € P° Ao, = ndep.p; A blk.p, € stesub.q}

This relation is then used to define the set of merge bloclctdteby stateg or its
sub-states. For a hierarchical Stateflow model we have tteay sub-state of an and-
state is connected to a different merge block and every gib-sf an or-state are
connected to the same merge block. After the signals havereeged, sub-states of
and-states updates different resulting signals, whilestates of or-states updates the
same signals.

Vg-q€ Q™ = (Va1,¢2-q1,q2 € (sth™ ) .g A g1 # ¢z
= stmrg.q; Nstmrg.qgo = 0) ,

Vg-q€ QT = (Va1,q2 - q1,q2 € (sfh™").g A g1 # g
= stmrg.q1 = stmrg.q2)

Furthermore, we need to ensure that an enabled subsystemnngated to a merge
block with only one signal.

Vp1,p2 - p1 € P? A p2 € P A p1 #pg A blk.py € B™ A blk.p; = blk.ps
= Vpn,pzz -P11 € ndep.p1 /\p22 S ndep.pg = b|k.p11 7& blk.pgg

The rules above, together with the definition of activity in and and-states, ensure
that exactly one input for each merge-block is enabled at#mee time. Note that to
simplify the rules above, there can be no multistage mergerrierge blocks connected
to merge blocks. This can be ensured by checking that eaafjenbéwck is connected
to an enabled subsystem:

Vp,b-p€ P'Ab€E B™Ablkp=0b= (¥p, - po € ndep.p = blk.p, € B®)
Memory inside mode enabled subsystems needs to be handleadave. Con-

sider a Pl-controller in an enabled subsystem enabled byemodWhen the mode
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is switched away fromm and then after some time switched back, the integrator can
contain a very old value not relevant anymore. This can legorbblems in control
applications. Either blocks that contain memory shouldvmded in enabled subsys-
tems or the memory should be reset upon activation to ensetigiable behaviour.

If memory is avoided, it can also potentially reduce the peobwith transients when
switching modes. The following rule ensures that no memsiysied in enabled sub-
systems enabled by the Stateflow chart:

Vb-b e B™™ = |subh|*.b N stesub.root = ()

This can be considered an optional rule, since it restrii@smodeling too much to be
used in general. However, conformance to this rule can lyraat verification of the
mode switching.

When all these restrictions are satisfied the Simulink /editay model conforms
to the mode-automata architecture. These constraintshesinbe used to simplify the
analysis when formally analysing the behaviour of the medel

4.3 Composition of Mode-Automata

Mode-automata allow for two different types of composispmamely AND-states
(parallel compositions) and OR-states (sequential coitipps). The sequential com-
position corresponds to the basic construction mecharosstindard automata. Par-
allel composition allows for introducing concurrency inestyn.

The formal definition of both parallel and sequential conifass has been studied
extensively in the literature. An overview can be found ih [Bor saving space, we
do not get into the details here. However, we need to be al#&goess under which
conditions our mode-automata architecture is preservamhyposing mode-automata
using one or the other of these compositions.

We only give an overview of how composition can be performeceh Parallel
composition consists of making two state-machinedAn, and M g sub-states of a
common and-state. The behaviour of the mode&fn and M g is orthogonal, which
means that enabled subsystems frarhy cannot update the same merge-blocks as
the enabled subsystems froil 5. When performing sequential composition the two
modelsM 4 and M g becomes sub-states of a common or-state. The mode-dependen
behaviours should now update the same outputs, meanintéyahould be connected
to the same merge-blocks. We can also give syntactic ruteiasito the ones previ-
ously presented, in order to describe how the modéls and M g can be composed
to form M. These rules can be used to ensure that the mode-automatsaabots
given earlier are preserved by the composition.

4.4 Validation of the architectural rules

The mode-automata architecture should allow a subset afilBiky Stateflow that is
safe to use and easy to verify, which also allow interestingets to be created. Hence,
the rules we have given need to be consistent, i.e., it shmpbssible to create models
satisfying the constraints. They should also be compleganimg that no undesirable
models satisfy the constraints. To investigate if the fdisagion of Simulink / State-
flow and our restrictions on the models work as intended, we Istudied their prop-
erties using the Alloy Analyzé&r{13]. Alloy is a model-checking tool based on first
order logic, where systems can be modeled using relaticths@mstraints on relations.
It can then be used to generate models satisfying the camtsteand to check validity

SAlloy Analyzer,http://all oy. mit.edu
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Figure 5: Example of a digital hydraulics system controlbgdour DFCUs [18]

of assertions in models. The constraints we have given cérabslated to Alloy, since
they are actually first order properties. Using this tool veedrchecked that the con-
straints are consistent, i.e., there are models that satigfem. Completeness of the
rules depends on the informal description of how we like Sinkuto be restricted. By
generating models satisfying constraints and checkinguhdesirable models cannot
be generated, confidence in that the formalisation worketasded is gained.

5 Case Study

To investigate the suitability of the model architecturehvage tested it on a case study.
The case study is a digital hydraulics system with energingdé, 17]. In this paper
we focus on the architectural rules for Simulink / Stateflathjle the previous two pub-
lications describes the algorithms used, as well as desidrverification techniques.
The aim of digital hydraulics [17, 18] is to use cheap and $&ngm/off valves instead
of expensive and complicated servo- or proportional valvidsis has the potential to
lead to cheaper, more flexible and robust hydraulics systé&ims downside is that dig-
ital hydraulics require complicated controllers to acleig@od performance. To ensure
reliability and performance of such systems adequate softwtructuring and design
methods need to be used.

The system developed in this case study consists of a hycdlihder that moves
a load mass either to a desired position or with a desireddsp&a overview of the
system is shown in fig. 5. The speed of the load mass is coedrbly the pressure on
each side of the piston in the cylindéx-(andB-side). The pressures are controlled by
opening and closing suitable combinations of valves in tiggt&l Flow Control Units
(DFCU). The system has several running modes for normalanathd energy saving
motion. Each mode requires different types of computatitence, mode automata is
a good solution for structuring the controller.

Model-based design is used to construct the controllerdeicio be able to inves-
tigate the behaviour of the entire system. An overview ofghgtem with a model of
the physical system is given in fig. 6. Here the controlleriieeg in the subsystem
Controller, a model of the valve dynamics is given Valves the pump is modeled
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in Pump the hydraulic cylinder irCylindersand the load of the cylinder is modeled
in Mechanism The entire system can then be simulated and the perfornairbe
controller can be evaluated.

e

= L

P pazpB

QA&QBE—P{QA&QB
—plx u_PB »{u_PB FAGRE

u_BT P u_BT F—{Foyl
d/dt

v
pP Cylinders
Mechanism
Valves
@4

Figure 6: Model based design of a digital hydraulics syste@imulink
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Figure 7: Overview of the controller of the digital hydraadisystem

An overview of the controller is given in fig. 7. It is fairly ige and complex con-
sisting of over 4000 blocks. The controller has the chambessure® 4 andpp, the
piston position: and pump pressugg- as sensor inputs. From these sensor inputs the
controller computes the optimal valve configurationss, var, upg, upr, as well
as the pump reference pressuig,..;. The mode specific computation is encapsu-
lated in the subsystei®election of Control ModeThe subsystem computes chamber
reference pressurgsy,..; andppg,.y, mode specific parameters MODE, and the
pump reference pressurgp,.;. Based on this information, the subsystéfodel-
based Controllethen computes the optimal valve configuration indepengeritthe
mode.

5.1 Mode-automata architecture

The mode selection subsystem shown in fig. 8 has been desigroehform to the
mode-automata architecture. The subsystnditionscomputes a set of conditions
that are used for the mode switching. These conditions aedan the sensor values
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Figure 9: Switching structure of trectualmode

read from the environment. Based on the conditions modesvétehed in the State-
flow chart. The activity of the leaf states are automaticaltported to the Simulink
diagram to enable the mode specific behaviour. There are &nallpl modestarget
modeandactual modein the Stateflow chart. The target mode determines the pump
pressure reference, while the actual mode determines thveley chamber pressure
references and the mode specific parameters.

The actual mode consists of five leaf modes. The switchingdst them is shown
in fig. 9. Target mode is also switched in a similar manner.

0 Stopped motion If the reference speed is close to zero or no other mode is
feasible this mode is used;

1 Normal extending motiorThis mode is selected if the reference speed is greater
than a threshold value, the mode is feasible and energygaviould not be
used;

2 Retracting motion This mode is similar to mode 1, but it concerns movement
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in the opposite direction;

3a Extending energy saving motiolfithe reference speed is greater than a thresh-
old value and energy saving can be used, this mode is selected

3b Retracting energy saving motioithis mode is similar to mode 3a, but it con-
cerns movement in the opposite direction.

Note that the conditions containing the preN5O T are not the negation of their cor-
responding conditions, but contain other additional fesgo prevent excessive mode
switching. Observe also that there are only in-port nameguasds on transition seg-
ments, and that all transitions follow the mode-automalesrgiven for Stateflow in
Subsection 4.2.

Consider the computation of chamber pressure referepges; andpg,.¢. Each
leaf state ofactual modés connected to enable ports of enabled subsystems ingde th
subsysteniA- and B-side pressure referencg®own in fig. 10. Every enabled subsys-
tem then computes the valuef,.. y andpg,..; when enabled. The results from these
subsystems are merged according to the mode-automatdoue® the final pressure
references.

As is, the merge block accepts that several or none of itstémjoube active at the
same time. However this situation needs to be preventediier éo ensure predictabil-
ity. The architecture proposed here does prevent thishalirtputs of the merge blocks
are obtained from enabled blocks whose enabling signaldiegetly linked to activity
of the exclusivedr) states of the Stateflow diagram.
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Figure 10: Mode dependent computation of pressure refesng., andpg ..
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5.2 Lessons learnt

We have used pre- and post-conditions to state correctrmssraints for subsys-
tems [4]. By exploiting the structure given by the mode-audta architecture proof
obligations for the mode switching system can be deriveds fias been done to verify
the correctness of the mode selection subsystem [4].

Composition can be used to construct the controller fromllemparts. The con-
troller behaviour otarget modeandactual modeare orthogonal and can be developed
separately. The final system is then obtained by the and-ositiqm. The behaviour
in actual mode can also be constructed from smaller pantgwsicomposition.

It seems to us reasonable to use mode-automata for desigaitegof an appli-
cation. Imposing them as a top-most architecture is togicége. In the case-study,
the mode-automaton controls signals..s, par.y and MODE. The signals are used
to control the "model-based controller” (see fig. 7), whitlern computes the actual
actuator values.

6 Conclusions and Further Work

In this paper we have given a formal definition of mode-autianraplemented using
Simulink and Stateflow. The mode-automata architecturgices the allowed con-
structs from Simulink / Stateflow to a safe kernel with cleamsntics. The aim is to
allow enough features for the architecture to be usabledntjge, while simplifying the
analysis of the models. The mode-automata model archigeptovides a structured
and maintainable model architecture for mode-based systiroan also be exploited
for validating desirable properties of the controller. the@rmore, we mentioned two
methods for composing different mode-automata. In ordesal@ate the formalisa-
tion of the architecture, its properties have been invagtid with the Alloy Analyzer.
This enabled creation of the complex constraints needeile fill ensuring that they
are consistent and adequate. The case study showed thathitecture is suitable for
developing complex controllers and aid their verificatidh [

As future work we intend to create a tool for checking thatm@8ink / Stateflow
model conforms to our definition of mode-automata. This cardbne by translat-
ing the Simulink / Stateflow models to the representatiorigiin the formalisation.
Similar approaches have been used for UML diagrams [23]. tAercsolution would
consists, as pointed out earlier, in implementing a conéoree rules checker using the
Matlab scripting language.

More generally, we plan to extend this work in several ditts. Stepwise devel-
opment and refinement can be beneficial for developing congylstems. We plan to
introduce the notion of refinement into Simulink / Stateflaikihg advantage of the
mode-automata architecture and the formalisation of thectre. This will be done
by first expressing the semantics of the considered sub&atraflink / Stateflow in the
refinement calculus [2] in order to benefit from this framekvoUltimately, this will
give us strong formal support for stepwise refinement of $imku Stateflow models.

Verification and Testing methods based on this architeette@lso interesting top-
ics for further research. In this context, we plan to assenaldet of well-established
techniques and apply them to Simulink / Stateflow models. s&hechniques will
contain, among other things local specification in the fofragsume-guarantee con-
tracts [4, 19] and compositional verification rules [1, 4].

Simulink / Stateflow has become a popular tool for model-8asign of control
systems. The architecture of the Simulink / Stateflow designmportant in order
to ensure that the constructed control system is maintinadliable, and the logic
of it is easy to follow. Mode-automata is such an architexfior separating control
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and signal processing in mode-based systems. The moderatat@rchitecture also
simplifies verification, since models are guaranteed to hawertain simple structure.
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