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Abstract

As embedded control systems are becoming more complex, there is a need for new soft-
ware development and structuring techniques. The combination Simulink/Stateflow
has become a popular tool for model-based design for this type of hybrid systems,
due to the simulation and analysis tools available. To enable design and validation
of large complex systems in Simulink/Stateflow, an appropriate model architecture is
needed. Mode-automata is such an architecture, where control is strictly separated
from signal processing. In this paper we give a formal definition of mode-automata
in Simulink/Stateflow. This gives a precise definition of an architecture that restricts
Simulink/Stateflow to a safe and easy to use subset that is easy to verify, but still us-
able in practice. We propose syntactic rules to check that a given Simulink/Stateflow
model complies to our mode-automata architecture and we illustrate the approach with
a controller for a digital hydraulics system.
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1 Introduction

The design of computerized embedded control systems has become an important activ-
ity in the last decades. As complexity has increased, the need for clearer methodologies
and paradigms has become greater. Correctness of control systems can be improved
first by means of formal techniques introduced in the design flow, but also by proposing
modeling/programming methodologies that will make the design flow clearer in itself.

The general setting of the work presented in this paper dealswith improving the
design flow by 1) making modeling concepts clearer and 2) introducing formal meth-
ods along the development process. In practice, we propose to study this design flow
around the Stateflow/Simulink modeling tool. This latter tends to become a standard
in industrial development of embedded software. However, although programming
methodologies have been proposed for it, it still lacks a steady formal setting that could
allow definition and application of interesting validationtechniques.

1.1 Separating control and dataflow for managing systems com-
plexity

One way to tackle complexity in embedded control systems design is to separate the
expression of control and computations. During the last 15 years or so, we have seen
an emergence of different paradigms allowing to separate these aspects. The idea un-
derlying all these paradigms is to express control using hierarchical state-machines and
computation with block diagrams, connecting different subsystem in a dataflow man-
ner.

On the academic ground, several works have emerged that try to find the best com-
promise between expressiveness and complexity. One of the most significant is the
mode-automata of Maraninchi and Rémond [20] as implemented in the Matou tool
[21]. Activity of the system is separated in differentrunning modesthat are described
as states of a hierarchical state machine. The behaviour of the system in each of these
modes is described by a set of dataflow equations (e.g. using the syntax of the Lustre
language [6]). This notion of mode is actually significant inthat it corresponds ex-
actly to what end-users have in mind when asking for a clear separation of control and
signal processing. However, this approach has lacked, for along time, a successful
transfer to industrial tools. Another approach comparableto mode-automata is Mod-
echarts [14, 25]. However, Modecharts are more aimed at expressing timing properties
for real-time systems, which is not considered here.

Among the industrial tools dedicated to the design of control systems, there are
two successful examples of separation of control and signalprocessing. The first one
is the introduction of hierarchical state-machines to the SCADE environment [9]. In
this paper, we join recent work [7, 16] on the introduction ofstate-machine structures
in SCADE (which is very similar to Simulink). The second one is the coupling of
Stateflow and Simulink1, present in the Matlab tool-set. However, the semantics behind
the language is somewhat unclear, based on graphical assumptions2. Several works [10,
11, 27] have recently proposed formal semantics for a reasonable subset of Simulink
/ Stateflow. These set up a good background for our long-term goal. Our goal in this
paper is not, however, to extend those semantics. Rather we try to propose sensible
subset of Stateflow/Simulink that we hope can serve as a guideline for programmers
and allow for the establishment of validation techniques usable in practice.

1Simulink and Stateflow are trademarks ofMathWorks Inc.
2For example, transitions going out of a state are tested following a 12 o’clock rule: transitions are picked

in a clockwise order around the originating state. This ruleis purely graphical and not semantics-related.
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We particularly want to define an interesting subset of Stateflow/Simulink allowing
for simpler and clearer semantics from the designer point ofview, and yet not reducing
the expressive power too drastically. Our proposal amountsto applying the recommen-
dation advocated by the mode-automata approach to Simulink/ Stateflow designs.

Finally, as we propose an architectural guide-line for building Simulink/Stateflow
applications, one important part of our work resides in the establishment of static
rules that can be used to check whether the developer’s design conforms to our mode-
automata-like architecture. These assumptions on models are expressed as rules that
can be checked automatically. Similar approaches for defining constraints on e.g. UML
models have been developed (see [23, 24]). The ideas for given architectural constraints
are similar, but here we focus on defining a specific architecture.

1.2 Propositions

The work presented in this paper goes in a more ”methodological” direction. We aim
at 1) the definition of a sound subset of Simulink / Stateflow sufficient for allowing
the construction of mode-automata-like structures; 2) an actual proposition of mode-
automata in Simulink / Stateflow.

The implementation of mode-automata that we propose is trying to adapt the ap-
proach proposed in [20], the most naturally possible to Simulink / Stateflow. Initial
work in this direction has been published by the authors in a technical report [5]. Here
we improve the formal description, consider more features in Stateflow and present a
complete example. The paper shows how even complex architectural constraints can
be conveniently described. Validation that the constraints indeed describe the desired
model restrictions is also briefly discussed.

Benefits from this methodological design approach for validation is under study.
The whole approach is being applied in a national research project on design of con-
troller for digital hydraulics systems. The mode-automataapproach has been proposed
as an answer to meet explicit needs from end users to make the design methodology
clearer both during the design and validation phases. The case study presented in sec-
tion 5 has been re-factored from a previous version into thismode-automata structure.
Ongoing work includes building a new application from scratch applying our method-
ology right from the beginning.

1.3 Structure of the Paper

Section 2 briefly recalls the mode-automata approach. Section 3 gives a formal defini-
tion of the subset of Simulink / Stateflow we consider. Section 4 shows how to apply
the mode-automata architecture to design Stateflow / Simulink models. It gives a set of
syntactic constraints to check that a model satisfies this architecture model and com-
ments on the validation of these rules. Section 5 presents a case-study to which we
apply the mode-automata paradigm. Section 6 concludes and presents briefly ongoing
and future work.

2 Mode-Automata

Mode-automata have been proposed in [20] to enable the description of reactive sys-
tems in terms ofrunning modes. They give a way to combine in a sound semantic
framework dataflow oriented languages together with control-flow design (automata).
Typical usage includes e.g. the control of an aircraft in which the same commands are
directed differently whether the airplane is in take-off mode or landing mode.
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Figure 1: Example of a mode-automata

A mode-automaton consists of input variables, memory, output variables and a set
of modes. Each mode has a different function for updating thevalue of the output
variables and the memory. Transitions between modes are guarded by conditions that
depends on the values of the input variables and the memory.

Figure 1 shows an example of a mode-automaton. The automatonhas input vari-
ablesu, memoryx, output variablesyr ∪ ys. There are two parallel modess andr.
These two modes are further decomposed intos1, s2 andr1, r2, respectively. Transi-
tions are guarded by the conditionsgi. Each mode has a functionf that updates the
output variables based on the current memory and input, as well as a functionh that
updates the memory based on current memory values and input values. Since modes
s andr runs in parallel, the modes have to update disjoint sets of outputsys andyr,
as well as disjoint parts of memoryxs andxr. Sequential modes then have to up-
date the same variables. Note that a precise behavioural semantics of mode-automata
is not given here, since the semantics is given by the underlying formalism were the
mode-automata structure is implemented. In [20], behaviors associated to leaf-modes
are described by dataflow equations,à-la Lustre [6].

3 Simulink and Stateflow

Control systems are often hybrid systems consisting of bothdiscrete and continuous
parts. Matlab and particularlySimulinkdeveloped by Mathworks Inc., have become
popular tools for modelling, analysing and designing such systems. Simulink is a
graphical language where different functional blocks are connected by signals in a
dataflow manner.

Some discrete systems are conveniently modelled usingfinite state-machines. Si-
mulink is shipped withStateflow, which is a graphical language for creating hierar-
chical state-machines similar to Statecharts by Harel [12]. In order to implement the
designed systems, both Simulink and Stateflow allow direct code generation from the
models.

We first introduce notations used in the paper. Then we propose a formalisation of
the subset of Simulink that we consider. Finally, we presentthe subset of Stateflow that
we to use to describe the control architecture of mode-automata.

3.1 Notations

The formalisation is based on the use of higher order logic (HOL) to describe the
structure of the models. The notation we use is taken from therefinement calculus
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Figure 2: Example of a Simulink model. The diagram (b) shows the content of the
subsystem in (a)

book by Back and von Wright [2]. We use the notationf : A → B to denote a
total functionf from A to B. Functions are defined usingλ-calculus and function
application is given by the dot-notation, e.g.,f.a. A relation between elements of two
setsA andB is given asr : A → P(B), i.e. each element inA maps to possibly
empty set of elements inB. The domain ofr is denoted bydom.r and the range by
ran.r. The cardinality of a setA is denoted bycard.A. Creation of a relation from the
corresponding functionf is denoted by|f |. Composition of relationsr ands is denoted
by s; r. Furthermore, we denote the transitive closure of the relation r with r+ and the
reflexive transitive closure withr∗. The composition of functions and relations makes
it possible to create new higher level objects to reason about the structure of models.

3.2 Formalisation of Simulink diagram structure

The structure of a Simulink block diagram can be described asa set of blocks con-
taining ports. The ports are then related by signals. Simulink has a large library of
different blocks for mathematical and logical functions, blocks for modelling discrete
and continuous systems, as well as blocks for structuring models. Simulink diagrams
can be hierarchical, where subsystem blocks are used to structure the model. An exam-
ple of a Simulink diagram is shown in fig. 2. The diagram contains one source block
giving a valuec to a signal connected to the subsystemSubSys. The subsystem have
in- and out-blockspi andpo to communicate with blocks higher in the hierarchy. The
functionality of the subsystem is given by a gain block,Gain, that multiplies the input
by a constantK. The output from the subsystem is then delivered to a sink block that
consumes the given value. This diagram, hence, computesresult = Kc.

3.2.1 Definition

A Simulink model is defined as a tupleM = (B, rootsim , subh, P, blk, sig, subi, subo):
• B is the set of blocks in the model. We can distinguish between;subsystem

blocksBs, in-blocks in subsystemsBi, out-blocks in subsystemsBo (repre-
senting inputs and outputs of subsystems), merge blocksBm and blocks with
memoryBmem.When referring to other types of ”basic” blocksBb is used in
this paper. Furthermore, subsystem can be divided into, normal, virtual sub-
systemsBvs andnon-virtual subsystemsBns, Bs = Bvs ∪ Bns. The virtual
subsystem do not affect the behavioural semantics of Simulink. They are used
purely for structuring the diagrams, while the non-virtualsubsystems can affect
the semantics;

• rootsim ∈ Bvs is the root subsystem;
• subh : B → Bs is a function that describes the subsystem hierarchy. For every

block b, subh.b gives the subsystemb is in. Note thatsubh.rootsim = rootsim;
• P is the set of ports for inputs and output of data to and from blocks. The ports

P i ⊆ P is the set of in-ports andP o ⊆ P is the set of out-ports;
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• blk : P → B is a relation that maps every port to the block it is in;
• sig : P i → P o maps every in-port to the out-port it is connected to by a signal;
• subi : Bs → P o → P(P i) is a partial function that describes the mapping

between the in-ports of a subsystem and the out-ports of the in-blocks in that
subsystem.

• subo : Bs → P o → P(P i) is a partial function that describes the mapping
between the out-ports of a subsystem and the in-ports of the out-blocks in that
subsystem.

There are several constraints concerning these functions and relations in order to
only consider valid Simulink models. These constraints involve e.g. valid hierarchy
of subsystems and correct definition of connection over subsystem boundaries. In this
paper we assume we only deal with syntactically correct Simulink / Stateflow models
(ones that can be simulated),

Consider the diagram depicted in fig. 2. The blocks are definedby B =̂ {source,
SubSys, pi, Gain , po, sink}. The subsystems are given asBvs =̂ {SubSys, rootsim}
andBns =̂ ∅, while the hierarchy issubh =̂ {(Gain , SubSys), (SubSys , rootsim),
. . .}. Names of ports are usually not shown in diagrams. Here we have the follow-
ing ports,P = {po

so, p
i
sub, p

o
sub, pi

si, . . .}. The function describing which block each
port belongs to is then given asblk =̂ {(po

so, source), (pi
g, Gain), (po

g, Gain), (pi
sub,

SubSys), . . .}. The connections between the ports is defined assig =̂ {(pi
sub, po

so),
(pi

g, po
pi), . . .}. The relations describing how ports in in/out-blocks correspond to ports

of subsystems are given bysubi and subo. The in-port of the subsystem is related
to the out-port of the in-block,subi =̂ { (SubSys, po

pi, {p
i
sub}), (SubSys, po

c, ∅), . . .}.
The definition of outputs of the subsystem is similar,subo =̂ {(SubSys, po

sub, {p
i
po}),

(SubSys, po
c, ∅), . . .}.

3.3 Formalisation of Stateflow

Stateflow is a Statechart implementation provided with Simulink. The main difference
from Statecharts is that Stateflow is completely sequentialand deterministic. A State-
flow chart is basically a hierarchical state-machine whose states are labelled with lists
of actions and whose transitions are labelled with guards and actions. Both actions and
guards are specified using a specific ”action language”. A Stateflow block is a normal
block in Simulink that can have in-ports and out-ports for communicating with the rest
of the Simulink model. These ports can be referred to also in the action language of
Stateflow. Stateflow contains many advanced features that often lead to semantics am-
biguities. One goal of this formalisation (and of the guidelines we propose in sec. 4
for implementing the mode-automata in Simulink/Stateflow)is to reduce the number
of these ambiguitiesto a minimum.

We consider only a small subset of Stateflow, described below, that is defined pre-
cisely to fit the mode-automata architecture:

• in-ports. These ports are used for giving guard conditions to transition segments.
The type of the ports have to be Boolean;

• out-ports. These ports are used for exporting the current activity status of states
to the Simulink model;

• Hierarchical state-machines. We consider both sequential or-states and parallel
and-states;

• Guards on transition segments. We only allow transition segments labelled by
guards. To aid graphical analysis, each guard needs to be thename of a port. If
Boolean operators were allowed in the guards, we would need aprover to e.g.
decide equality of guards. Note, that if guardg is used on a transition we also
often have transitions with the guard¬g. Therefore, we also allow the guard
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name!g denoting¬g. This does not complicate analysis, and it is therefore
allowed for convenience;

• Junctions. Junctions represent decision points between different transition paths
and they are, hence, used for connecting transition segments together. They can
also be used for conjunction and disjunction of guard conditions.

We do not allow activities inside states nor events, actionsand condition actions on
transition segments. This ensures a usage which is as clear as possible. In particular,
it forces for a clear separation of control from signal processing. We believe this sep-
aration is essential. Stateflow/Simulink is, to us, too permissive and allows activities
(potentially with side-effects) to be expressed with the action language inside states,
which is one of the biggest source of confusion and imprecision for designers. We
believe the restrictions above limits Stateflow to a safe subset that is easy to formally
analyse, but is sufficiently powerful to be used in practise together with Simulink.

The structure of a Stateflow chart is formalised in a similar manner as the Simulink
model. Stateflow is only a block in the Simulink model.

3.3.1 Definition

The Stateflow chartS is here given as a tuple,S = (D, Q, Qand, Qor, J, root, sfh, sfprt,
T, T d, L, lbl, trns) where:

• D is the set of objects that can be transition segmentsourcesor destinations;
• Q ⊆ D is the set of states (modes) in the Stateflow model;
• Qand ⊆ Q is the set of and-states.Qor ⊆ Q is the set of or-states. We have that

Qand ∩ Qor = ∅;
• J is the set of junctions. The sets of junctions and states are disjoint Q ∩ J = ∅;
• root ∈ Qor ∪ Qand is the root state;
• sfh : Q → (Qor ∪ Qand) is a function that maps a state to its parent. Hence, it

describes the hierarchy of states;
• sfprt : (Q − (Qor ∪ Qand)) → P o is a function that maps every leaf-state

to a out-port. The out-port is then used to enable the subsystem that describe
the behaviour in the state. The activity of a state can exported automatically to
Simulink via a port with the same name as the state;

• T is the set of transition segments;
• T d ⊆ T is the set of default transition segments. A default transition is the

initialisation of an or-state. The source of a transition segment of this type is the
or- state it is initialising;

• L is the set of labels on transition segments. Labels are guards that consist of
either port namesgi or negation of port names!gi. The value of the condition
associated with the port determines when a transition segment is enabled. A
transition with empty guard has the labelǫ;

• lbl : T → L is a function that gives the guard of each transition segment;
• trns : T → (D → P(D)) gives the source and destination for each transition

segment. Each transition segment has only one source andtrns is therefore a
partial function.

3.3.2 Example

To illustrate the formal definition consider the Stateflow chart in fig. 3. The root state
of the diagram is an or-state with one sub-stateq1. This state is an and-state that
has two sub-states,q2 and q3, which then have two sub-states each. The function
sfh = {(root, root), (q, root), (s, q), (r, q), . . .} relates the states to their parent state.
There are seven transitions segments,T =̂ {t1, . . . , t7} (the numbers are not shown in
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Figure 3: An example of Stateflow model.

the diagram). Three of these transitions are default transitions,Td =̂ {t1, t2, t3}. The
functiontrns then gives the source and destination of the transitionstrns =̂ {(t1, root,
{q}), (t1, q, ∅), . . . , (t4, s1, {s2}), . . .}. The labelsL on the transitions are given as
L =̂ {ǫ, g1, g2, g3, g4}. Transitions are labelled by guards as described by the func-
tion lbl. Herelbl is given aslbl =̂ {(t1, ǫ), (t2, ǫ), (t3, ǫ), (t4, g1) . . .}. The following
paragraphs establish precise rules for the design of such systems in Simulink/Stateflow.

4 Mode-Automata in Simulink / Stateflow

The Simulink / Stateflow language is a very convenient tool for system construction
due to the large set of features. However, some of these features are difficult to analyse
and to use correctly. Design guidelines have been developedto ensure that Simulink
/ Stateflow models are maintainable, readable, and use only safe constructs [15, 22].
Guidelines for using Simulink / Stateflow for production code generation have also
been developed [3, 8]. However, even if these guidelines arefollowed the models are
still difficult to formally analyse. In order to translate Simulink / Stateflow to Lustre
for verification, restrictions have been adopted [26, 28] toensure that the constructs
are compatible. We also require that these restrictions apply for the controllers in this
paper, but we give additional architectural constraints. We like to restrict the language
to a safe kernel that is expressive enough to be convenientlyused in practice, while
the models are still easy to understand and (formally) analyse. Furthermore, we would
like to provide an architecture that simplifies the construction of systems consisting
of both discrete control logic and signal processing. Restricting Simulink / Stateflow
to the mode-automata architecture seems to be a good solution for satisfying these
requirements.

4.1 Building a mode-automaton in Simulink/Stateflow

Mode-automata consist of both a state-machine part and mode-dependent computation.
Stateflow is used to implement the state-machine part in Simulink. To implement the
mode-specific behaviourenabled subsystemsBe, Be ⊆ Bns, are associated with each
leaf-mode. The activity of each leaf-mode can be exported automatically from State-
flow to Simulink, where it is used to enable the correct subsystem. To always use the
output from enabled subsystems that are currently active, we usemerge-blocks. Merge-
blocks are used to always take the value from the currently active enabled subsystem.
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4.2 Syntactic Constraints for the Mode-Automata Architecture

The mode-automata architecture as presented above and in [16, 20], requires a number
of constraint involving transitions, state-hierarchy, and connection between Simulink
and Stateflow.

4.2.1 Preliminary definitions

To simplify the constraints for Stateflow we introduce sevennew relations concerning
transitions. The relationtrnst relates junctions and states that are connected by normal
transition segments,trnsj gives the relation between junctions,trnsq,j from states to
junctions andtrnsj,q from junctions to states. The relationtrnsq gives the states that
are connected by transitions, i.e., by a sequence of transition segments and junctions.
Default transitions are treated separately. The relationtrnsdq,j gives the relation cor-
responding to default transitions to junctions andtrnsdq gives the initial state for each
or-state.

trnst =̂ λd1 : D · {d2 ∈ D|∃t · t ∈ T − T d ∧ d2 ∈ trns.t.d1} ,
trnsj =̂ λj1 : J · {j2 ∈ J |j2 ∈ trnst.j1} ,
trnsq,j =̂ λq : Q · {j ∈ J |j ∈ trnst.q} ,
trnsj,q =̂ λj : J · {q ∈ Q|q ∈ trnst.j} ,
trnsq =̂ λq1 : Q · {q2 ∈ Q|q2 ∈ (trnsq,j ; trnsj∗; trnsj,q).q1 ∨ q2 ∈ trnst.q1} ,
trnsdq,j =̂ λq : Q · {j ∈ J |∃t · t ∈ Td ∧ j ∈ trns.t.q} ,
trnsdq =̂ λq1 : Q · {q2 ∈ Q|q2 ∈ (trnsdq,j ; trnsj∗; trnsj,q).q1∨

∃t · t ∈ T d ∧ q2 ∈ trns.t.q1}

For Simulink diagrams, we will need to be able to express constraints in a way that
is not dependent on virtual blocks. Virtual subsystems do not affect the semantics of
the model and therefore they should not affect the mode-automata constraints. Hence,
to give the constraints for Simulink we need to state that a port depends on another
regardless of the virtual subsystem hierarchy.

A port depends on another if there is a signal between them or they form a connec-
tion over a subsystem boundary. This is expressed by the relation dep:

dep =̂ λp1 : P · {p2 ∈ P |p1 6= p2 ∧ (p1 ∈ P i ⇒ p2 = sig.p1)∧
(p1 ∈ P o ⇒ (∃b · b ∈ Bs ∧ (subi.b.p1 = p2 ∨ subo.b.p1 = p2)))}

The functionndep then gives the connections between non-virtual blocks.

ndep =̂ λp1 : P · {p2 ∈ P o|
blk.p1 /∈ (Bi ∪ Bo ∪ Bvs) ∧ blk.p2 /∈ (Bi ∪ Bo ∪ Bvs)∧
p2 ∈ dep+.p1∧
(∀p · p ∈ P ∧ p ∈ (dep+.p1 ∩ (dep−1)+.p2) ⇒ blk.p ∈ (Bi ∪ Bo ∪ Bvs))}

A port is connected to another if there is sequence of signals, virtual subsystems, in-
blocks and out-blocks between them. Thendep function is the key to expressing actual
connections between blocks in a manner that is not dependenton the virtual subsystem
hierarchy.

4.2.2 Stateflow constraints

Stateflow allows transitions that have very complicated semantics. We here give a
number of additional constraints to limit the set of legal transitions in order to only use
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Figure 4: Example of syntactically correct Stateflow modelsthat use constructs not
allowed by our mode-automata definition. The chart (a) showsillegal transitions, (b)
shows illegal initialisations, while (c) shows illegal transitions to parallel states.

transitions with intuitive and easily verifiable behaviour. A few examples of Stateflow
constructs that are not allowed are shown in fig. 4.

The first constraint is that transitions should start and endin states. Otherwise the
transition does nothing, since we have no actions on transitions. Transitions containing
cycles with only junctions are also not allowed, since this can lead to infinite loops in
the chart. Finally, if a transition has the same source and destination, it is unnecessary
and therefore not allowed (see fig. 4 (a)).

∀j · j ∈ J ∧ ∃q · q ∈ Q ∧ (trnsj∗; trnsj,q).j ,
∀j · j ∈ J ⇒ j /∈ trnsj+.j ,
∀q · q ∈ Q ⇒ q /∈ trnsq.q

Each or-state should have exactly one default transition. This is stricter than Stateflow,
since Stateflow also allows several default transitions or no initialisation at all (see fig. 4
(b)). Furthermore, it should always be possible to execute the initialisation, which can
here be guaranteed by only syntactic rules. The condition can be ensured by having one
unguarded transition for each junction reached from the default transition segment.
Alternatively, for each transition segment with guardg from a junction, there exists
another transition segment from the same junction with guard¬g.

∀q · q ∈ Qor ⇒ ∃t · t ∈ T d ∧ card.(trns.t.q) = 1 ,
∀q · q ∈ Qor ⇒
∀j · j ∈ (trnsdq,j ; trnsj∗).q
⇒ ((∀t1 · t1 ∈ T ∧ trns.t1.j 6= ∅
⇒ ∃t2 · t2 ∈ T ∧ trns.t2.j 6= ∅
∧t1 6= t2 ∧ lbl.t1 = ¬lbl.t2)∨
(∃t · t ∈ T ∧ trns.t.j ∧ lbl.t = ǫ))

To enforce creation of more structured models, transitionsthat cross the boundary
of a composite state are not allowed (see fig. 4 (b) and (c)). Inorder to discover if
a transition crosses a composite state boundary, we check that if there is a transition
between two states then these two states have the same parent. The parent also has to be
an or-state, since transitions between parallel states arenot allowed. Default transitions
have to lead to a direct sub-state of the state they are initialising.

∀q1, q2 · q1 ∈ Q ∧ q2 ∈ trnsq.q1 ⇒ sfh.q1 = sfh.q2 ∧ sfh.q1 ∈ Qor ,
∀q1, q2 · q1 ∈ Qor ∧ q2 ∈ trnsdq.q1 ⇒ q1 = sfh.q2
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4.2.3 Simulink constraints

Rules for the Simulink part of the model are also needed in order for the model to
conform to the mode-automata architecture. The only outputfrom the Stateflow chart
is the current activity of the leaf states. Each out-port should be connected to theenable
port, pe ∈ P e, of the enabled subsystem in Simulink that defines the behaviour in that
state (mode).

∀po · po ∈ P o ∧ blk.po = S ⇒ ∃pe · pe ∈ P e ∧ blk.pe ∈ Be ∧ po ∈ ndep.pe

To ensure that the mode-dependent behaviour conforms to themode-automata ar-
chitecture we need to constrain how outputs of enabled subsystems are used. Each
enabled subsystem,be, is followed by amerge block, bm. The merge block is used to
obtain the latest result from different enabled subsystemsconnected to it. Exactly one
port in the merge block has to be updated regardless of the states (modes) the system
is in, otherwise the value of the output signal would be undefined in certain modes. To
express this property we give a function that states which subsystems can be enabled
by a stateq or one of its sub-states.

stesub =̂ λq : Q · {be ∈ Be|
∃q1 · q1 ∈ ((sfh−1)∗.q − (Qor ∪ Qand))∧
∃pe · pe ∈ P e ∧ ndep.pe = sfprt.q1 ∧ blk.pe = be}

The set of merge-blocks affected by these states can then be computed.

stmrg =̂ λq : Q · {bm ∈ Bm|∃pi · pi ∈ Pi ∧ blk.pi = bm∧
∃po · po ∈ P o ∧ po = ndep.pi ∧ blk.po ∈ stesub.q}

This relation is then used to define the set of merge block affected by statesq or its
sub-states. For a hierarchical Stateflow model we have that every sub-state of an and-
state is connected to a different merge block and every sub-state of an or-state are
connected to the same merge block. After the signals have been merged, sub-states of
and-states updates different resulting signals, while sub-states of or-states updates the
same signals.

∀q · q ∈ Qand ⇒ (∀q1, q2 · q1, q2 ∈ (sfh−1).q ∧ q1 6= q2

⇒ stmrg.q1 ∩ stmrg.q2 = ∅) ,

∀q · q ∈ Qor ⇒ (∀q1, q2 · q1, q2 ∈ (sfh−1).q ∧ q1 6= q2

⇒ stmrg.q1 = stmrg.q2)

Furthermore, we need to ensure that an enabled subsystem is connected to a merge
block with only one signal.

∀p1, p2 · p1 ∈ P i ∧ p2 ∈ P i ∧ p1 6= p2 ∧ blk.p1 ∈ Bm ∧ blk.p1 = blk.p2

⇒ ∀p11, p22 · p11 ∈ ndep.p1 ∧ p22 ∈ ndep.p2 ⇒ blk.p11 6= blk.p22

The rules above, together with the definition of activity in or- and and-states, ensure
that exactly one input for each merge-block is enabled at thesame time. Note that to
simplify the rules above, there can be no multistage merge, i.e. merge blocks connected
to merge blocks. This can be ensured by checking that each merge block is connected
to an enabled subsystem:

∀p, b · p ∈ P i ∧ b ∈ Bm ∧ blk.p = b ⇒ (∀po · po ∈ ndep.p ⇒ blk.po ∈ Be)

Memory inside mode enabled subsystems needs to be handled with care. Con-
sider a PI-controller in an enabled subsystem enabled by mode m. When the mode
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is switched away fromm and then after some time switched back, the integrator can
contain a very old value not relevant anymore. This can lead to problems in control
applications. Either blocks that contain memory should be avoided in enabled subsys-
tems or the memory should be reset upon activation to ensure predictable behaviour.
If memory is avoided, it can also potentially reduce the problem with transients when
switching modes. The following rule ensures that no memory is used in enabled sub-
systems enabled by the Stateflow chart:

∀b · b ∈ Bmem ⇒ |subh|∗.b ∩ stesub.root = ∅

This can be considered an optional rule, since it restricts the modeling too much to be
used in general. However, conformance to this rule can greatly aid verification of the
mode switching.

When all these restrictions are satisfied the Simulink / Stateflow model conforms
to the mode-automata architecture. These constraints can then be used to simplify the
analysis when formally analysing the behaviour of the models.

4.3 Composition of Mode-Automata

Mode-automata allow for two different types of compositions, namely AND-states
(parallel compositions) and OR-states (sequential compositions). The sequential com-
position corresponds to the basic construction mechanism for standard automata. Par-
allel composition allows for introducing concurrency in a design.

The formal definition of both parallel and sequential compositions has been studied
extensively in the literature. An overview can be found in [5]. For saving space, we
do not get into the details here. However, we need to be able toexpress under which
conditions our mode-automata architecture is preserved bycomposing mode-automata
using one or the other of these compositions.

We only give an overview of how composition can be performed here. Parallel
composition consists of making two state-machines inMA andMB sub-states of a
common and-state. The behaviour of the modes inMA andMB is orthogonal, which
means that enabled subsystems fromMA cannot update the same merge-blocks as
the enabled subsystems fromMB. When performing sequential composition the two
modelsMA andMB becomes sub-states of a common or-state. The mode-dependent
behaviours should now update the same outputs, meaning thatthey should be connected
to the same merge-blocks. We can also give syntactic rules similar to the ones previ-
ously presented, in order to describe how the modelsMA andMB can be composed
to form MC . These rules can be used to ensure that the mode-automata constraints
given earlier are preserved by the composition.

4.4 Validation of the architectural rules

The mode-automata architecture should allow a subset of Simulink / Stateflow that is
safe to use and easy to verify, which also allow interesting models to be created. Hence,
the rules we have given need to be consistent, i.e., it shouldbe possible to create models
satisfying the constraints. They should also be complete, meaning that no undesirable
models satisfy the constraints. To investigate if the formalisation of Simulink / State-
flow and our restrictions on the models work as intended, we have studied their prop-
erties using the Alloy Analyzer3 [13]. Alloy is a model-checking tool based on first
order logic, where systems can be modeled using relations and constraints on relations.
It can then be used to generate models satisfying the constraints and to check validity

3Alloy Analyzer,http://alloy.mit.edu
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Figure 5: Example of a digital hydraulics system controlledby four DFCUs [18]

of assertions in models. The constraints we have given can betranslated to Alloy, since
they are actually first order properties. Using this tool we have checked that the con-
straints are consistent, i.e., there are models that satisfies them. Completeness of the
rules depends on the informal description of how we like Simulink to be restricted. By
generating models satisfying constraints and checking that undesirable models cannot
be generated, confidence in that the formalisation works as intended is gained.

5 Case Study

To investigate the suitability of the model architecture wehave tested it on a case study.
The case study is a digital hydraulics system with energy saving [4, 17]. In this paper
we focus on the architectural rules for Simulink / Stateflow,while the previous two pub-
lications describes the algorithms used, as well as design and verification techniques.
The aim of digital hydraulics [17, 18] is to use cheap and simple on/off valves instead
of expensive and complicated servo- or proportional valves. This has the potential to
lead to cheaper, more flexible and robust hydraulics systems. The downside is that dig-
ital hydraulics require complicated controllers to achieve good performance. To ensure
reliability and performance of such systems adequate software structuring and design
methods need to be used.

The system developed in this case study consists of a hydraulic cylinder that moves
a load mass either to a desired position or with a desired speed. An overview of the
system is shown in fig. 5. The speed of the load mass is controlled by the pressure on
each side of the piston in the cylinder (A- andB-side). The pressures are controlled by
opening and closing suitable combinations of valves in the Digital Flow Control Units
(DFCU). The system has several running modes for normal motion and energy saving
motion. Each mode requires different types of computation.Hence, mode automata is
a good solution for structuring the controller.

Model-based design is used to construct the controller in order to be able to inves-
tigate the behaviour of the entire system. An overview of thesystem with a model of
the physical system is given in fig. 6. Here the controller is given in the subsystem
Controller, a model of the valve dynamics is given inValves, the pump is modeled
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in Pump, the hydraulic cylinder inCylindersand the load of the cylinder is modeled
in Mechanism. The entire system can then be simulated and the performanceof the
controller can be evaluated.
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Figure 6: Model based design of a digital hydraulics system in Simulink
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An overview of the controller is given in fig. 7. It is fairly large and complex con-
sisting of over 4000 blocks. The controller has the chamber pressurespA andpB, the
piston positionx and pump pressurepP as sensor inputs. From these sensor inputs the
controller computes the optimal valve configurationsuPA, uAT , uPB, uBT , as well
as the pump reference pressurepPref . The mode specific computation is encapsu-
lated in the subsystemSelection of Control Mode. The subsystem computes chamber
reference pressurespAref andpBref , mode specific parameters inMODE , and the
pump reference pressure,pPref . Based on this information, the subsystemModel-
based Controllerthen computes the optimal valve configuration independently of the
mode.

5.1 Mode-automata architecture

The mode selection subsystem shown in fig. 8 has been designedto conform to the
mode-automata architecture. The subsystemConditionscomputes a set of conditions
that are used for the mode switching. These conditions are based on the sensor values
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read from the environment. Based on the conditions modes areswitched in the State-
flow chart. The activity of the leaf states are automaticallyexported to the Simulink
diagram to enable the mode specific behaviour. There are two parallel modes,target
modeandactual mode, in the Stateflow chart. The target mode determines the pump
pressure reference, while the actual mode determines the cylinder chamber pressure
references and the mode specific parameters.

The actual mode consists of five leaf modes. The switching between them is shown
in fig. 9. Target mode is also switched in a similar manner.

0 Stopped motion. If the reference speed is close to zero or no other mode is
feasible this mode is used;

1 Normal extending motion. This mode is selected if the reference speed is greater
than a threshold value, the mode is feasible and energy saving should not be
used;

2 Retracting motion. This mode is similar to mode 1, but it concerns movement
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in the opposite direction;

3a Extending energy saving motion. If the reference speed is greater than a thresh-
old value and energy saving can be used, this mode is selected;

3b Retracting energy saving motion. This mode is similar to mode 3a, but it con-
cerns movement in the opposite direction.

Note that the conditions containing the prefixNOT are not the negation of their cor-
responding conditions, but contain other additional features to prevent excessive mode
switching. Observe also that there are only in-port names asguards on transition seg-
ments, and that all transitions follow the mode-automata rules given for Stateflow in
Subsection 4.2.

Consider the computation of chamber pressure references,pAref andpBref . Each
leaf state ofactual modeis connected to enable ports of enabled subsystems inside the
subsystemA- and B-side pressure referencesshown in fig. 10. Every enabled subsys-
tem then computes the value ofpAref andpBref when enabled. The results from these
subsystems are merged according to the mode-automata rulesto give the final pressure
references.

As is, the merge block accepts that several or none of its inputs to be active at the
same time. However this situation needs to be prevented in order to ensure predictabil-
ity. The architecture proposed here does prevent this: all the inputs of the merge blocks
are obtained from enabled blocks whose enabling signals aredirectly linked to activity
of the exclusive (or) states of the Stateflow diagram.
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5.2 Lessons learnt

We have used pre- and post-conditions to state correctness constraints for subsys-
tems [4]. By exploiting the structure given by the mode-automata architecture proof
obligations for the mode switching system can be derived. This has been done to verify
the correctness of the mode selection subsystem [4].

Composition can be used to construct the controller from smaller parts. The con-
troller behaviour oftarget modeandactual modeare orthogonal and can be developed
separately. The final system is then obtained by the and-composition. The behaviour
in actual mode can also be constructed from smaller parts using or-composition.

It seems to us reasonable to use mode-automata for designingparts of an appli-
cation. Imposing them as a top-most architecture is too restrictive. In the case-study,
the mode-automaton controls signalspAref , pBref andMODE . The signals are used
to control the ”model-based controller” (see fig. 7), which then computes the actual
actuator values.

6 Conclusions and Further Work

In this paper we have given a formal definition of mode-automata implemented using
Simulink and Stateflow. The mode-automata architecture restricts the allowed con-
structs from Simulink / Stateflow to a safe kernel with clear semantics. The aim is to
allow enough features for the architecture to be usable in practise, while simplifying the
analysis of the models. The mode-automata model architecture provides a structured
and maintainable model architecture for mode-based systems. It can also be exploited
for validating desirable properties of the controller. Furthermore, we mentioned two
methods for composing different mode-automata. In order tovalidate the formalisa-
tion of the architecture, its properties have been investigated with the Alloy Analyzer.
This enabled creation of the complex constraints needed, while still ensuring that they
are consistent and adequate. The case study showed that the architecture is suitable for
developing complex controllers and aid their verification [4].

As future work we intend to create a tool for checking that a Simulink / Stateflow
model conforms to our definition of mode-automata. This can be done by translat-
ing the Simulink / Stateflow models to the representation given in the formalisation.
Similar approaches have been used for UML diagrams [23]. Another solution would
consists, as pointed out earlier, in implementing a conformance rules checker using the
Matlab scripting language.

More generally, we plan to extend this work in several directions. Stepwise devel-
opment and refinement can be beneficial for developing complex systems. We plan to
introduce the notion of refinement into Simulink / Stateflow taking advantage of the
mode-automata architecture and the formalisation of the structure. This will be done
by first expressing the semantics of the considered subset ofSimulink / Stateflow in the
refinement calculus [2] in order to benefit from this framework. Ultimately, this will
give us strong formal support for stepwise refinement of Simulink / Stateflow models.

Verification and Testing methods based on this architectureare also interesting top-
ics for further research. In this context, we plan to assemble a set of well-established
techniques and apply them to Simulink / Stateflow models. These techniques will
contain, among other things local specification in the form of assume-guarantee con-
tracts [4, 19] and compositional verification rules [1, 4].

Simulink / Stateflow has become a popular tool for model-based design of control
systems. The architecture of the Simulink / Stateflow designs is important in order
to ensure that the constructed control system is maintainable, reliable, and the logic
of it is easy to follow. Mode-automata is such an architecture for separating control
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and signal processing in mode-based systems. The mode-automata architecture also
simplifies verification, since models are guaranteed to havea certain simple structure.
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