Mikko-Jussi Laakso | Teemu Rajala | Erkki
Kaila | Tapio Salakoski

Visualizable Pseudo
Programming Language

Turku CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 838, August 2007

-y
>
¥ riucs

Visualizable Pseudo Programming
Language

Mikko-Jussi Laakso
University of Turku, Department of Information Technology

Teemu Rajala
University of Turku, Department of Information Technology

Erkki Kaila

University of Turku, Department of Information Technology

Tapio Salakoski

University of Turku, Department of Information Technology

TUCS Technical Report
No 838, August 2007

Abstract

Selecting aright programming language for introductory CS courses is not an easy task.
The pressure to use a commercially successful language can easily be the most
significant factor in choosing the language. However, several studies suggest that it is
preferable to use language especially designed for teaching. These languages are usually
some kind of pseudo languages, defined by the programming educators. The idea of
using pseudo language is to keep the syntax of the code as smple as possible so the
students can focus on learning the programming concepts, insead of some irrelevant
syntactical features.

Pseudo languages are usualy subsets of existing programming languages, and thus can
be used to teach all the basic programming concepts. This however leads to a fact that
programs written in pseudo code are usually not executable as-is, which is one of its
main problems. With this in mind we have developed a program visualization tool
caled VILLE in university of Turku. The tool has a built-in pseudo language that is a
subset of Python. Users can add programming examples written in Java and trandate
them to pseudo language. The programs in pseudo code can dso be trandated to a
runnable Python code. Additionally, users can define their own pseudo language and
modify the existing syntaxes.

Keywords: novice programming, pseudo code, program visualization, self-definable,
teaching

TUCS Laboratory

Learning and Reasoning Laboratory

1. Introduction

As McCracken [10] states, learning to program is one of the most important outcomes
of the computer science studies. However, the first steps may prove to be extremely
difficult. According to Lister et al. [9], as well as lacking the actual skills for problem
solving, the students may as well have deficient prerequisite skills for solving the tasks,
including the ability to read and understand the program code. This may partially derive
from the choice of programming language used in teaching. While most of the
commercially successful languages used nowadays are expressive, flexible and suitable
for variety of projects, the excessive syntax in basic programs may be confusing for
beginners.

Ala-Mutka [1] states that more it takes to learn the programming language and the use
of the environment the harder it is for students to assmilate the general aspects of
programming and problem solving. Hence, it is course designer's and teacher’'s
responsibility to choose the programming language that has sufficient enough syntax to
learn, but which still holds enough potential to teach more advanced aspects — such as
object orientation — and which supports the move on to the more advanced languages.

In this paper we discuss the reasons to choose pseudo language — in this case a dightly
modified subset of Python — as a first language in introductory programming course,
and present some researches and articles on language selection. We also present VILLE,
a multilanguage program visudization tool that supports the use of various
programming languages.

2. Related work

There has been lot of discussion on choosing the right language for the first
programming courses. It seems of course sensible to select a language most suitable for
teaching. However, there is aways the pressure to use commercially successful
languages [2]. The popularity of language shouldn’t nevertheless be the key factor. It is
more important to choose the language on the basis of how easily students can
understand the basic concepts of the programming paradigm taught.

Grandell et al. [3] used Python as their first language in introductory programming
course in high school. In their opinion Python is more suitable than Java as a teaching
language, because it has less syntactical baggage. Mclver & Conway [11] present seven
undesirable features that are common in programming languages usualy taught in
introductory programming courses, and continue with categorizing seven criteria for
choosing an introductory language. Hu [5] tried to find a suitable programming
language for novices, and as a result created a language with minimal number of
statements called core language. According to article the core language used alongside

with dynamic visualizations maintained an appropriate mix of theory and practice
during teaching of a course. Olsen [14] used pseudo code as a design tool in an
introductory CS course. Students used pseudo code to define the solution, and then
implemented the actua program with C++. Kélling et a. [7] have used object-first
principle in teaching programming to novices. The tool they have developed - called
BlueJ — has class and object views which students can use to design and develop
programs without writing any actual code. Reek [16] has also tried top-down approach
in teaching programming.

Another important aspect is the program paradigm used in teaching. Wells and Kurtz
[19] suggest that imperative programming paradigm is generally used excessively and
students should instead be exposed to several paradigms as early as possible on their
studies. To solve this they created a pseudo language that is a superset of many
programming paradigms. Brilliant and Wiseman [2] discuss the choice of programming
paradigm used, and point out that using non-procedural (non-imperative) language
usualy evens up the differences between students with different level of computing
experience. However they didn’'t find any advantages using a particular paradigm as a
starting point. Van Roy et al. [18] discuss the role of language paradigms in
programming teaching, mainly choosing the right paradigm, valuing the terms of
concepts and design process over the paradigm, and advantages of using the object
oriented paradigm as thefirst one.

3. Reasons to use pseudo language

Most languages are not designed to be used in teaching programming. The choice of
language is often decided because of such characteristics as ‘suitability for object-
orientation and concurrent programming or pressure from commercial level’ (see e.g.
[4]). However, the basic syntax of programming language can prove to be very difficult
for novices to master. Let’s review the common first example in any CS course, an
application that outputs ‘Hello world!” written in Java:

public class HelloWorldd
public static wvold maini(2tring[] args)d
System.out.println("Hello world!™):
'

Figure 1: ‘Hello world’” example in Java

The example clearly proves that Java has a lot of excessive syntax that has no purpose
in learning the basic logic of programming. The class definition, access level modifiers,
the complicated syntax of main method declaration and its parameter, and the use of
print statement from System class's output stream all are way too complicated subjects
to understand when writing your first program. Since most imperative languages have

similar control structures and operational logic, a pseudo programming language with
clearer syntax could be more appropriate as a first teaching language. Let’s review the
above example in basic pseudo language (see appendix A) used in VILLE:

print "Hello world!"™

Figure 2: ‘Hello world’ example in pseudo language

The output of two examplesisthe same, but the pseudo version is lacking all the formal
definitions. Besides having smaller and cleaner syntax, the pseudo code has some more
advantages, including dynamic typing, enforced structural design and easier use of
tables. Grandell et al. [3] researched the usage of Python (which pseudo language we're
using is a subset of) as afirst language in high school introductory programming course
with quite auspicious results. There were over 10 % less students failing the course and
over 10 % increase in the highest score rates compared to the earlier classes, taught in
Java. In addition, students who had earlier experience in programming with other
languages found Python easier and more fun

The disadvantage of using such language is that the students normally would like to try
to execute their examples, and normaly there’s no platform for running pseudo code.
There are however two workarounds: firstly, since the pseudo code syntax used is a
subset of Python, the programs are runnable with a Python interpreter, and secondly,
pseudo code is directly runnable in VILLE. Another advantage of such tool is
narrowing the gap when transferring forward to other languages, such as Java. Thisin
mind, the basic syntax of pseudo code is quite similar to that in Javaand C.

4. VILLE —a tool for using and executing
pseudo language

VILLE isa program visuaization tool for novice programmers that can be used both in
lectures and for independent learning. VILLE has a built-in syntax editor with which
users can add new languages to the tool or modify the built-in language syntaxes (Java,
Pseudo and C++). Thus teacher can add his programming course’s programming
examples to VILLE and then visualize their execution in self-defined programming
language. More specific description of the system and its features can be found in
Rgaaet a. [15].

4.1. Key features

Language-independency. One of the most important aspects of VILLE is the
possibility to show programming examples in several different programming languages.
When user observes program execution in different languages, he sees how similar their

basic functionalities are. It is far more important for novice programmers to learn how
different programming concepts actually work, than to focus on syntactical issues of a
specific language.

Defining and adding new languages. At present, VILLE supports Java, pseudo code
and C++ programming languages. Pseudo code's definition can be altered to suit
teachers needs. It is also possible to define and add new programming languages to
further extend the language support.

Example collection. VILLE contains predefined set of programming examples, divided
in different categories based on their subject. User can create new categories and
examples or edit the ones included. By creating and editing examples teacher can
illustrate subjects that he thinks are essential in learning to program. Teacher can also
make changes to the programming examples during lectures to visualize the effects of
the modifications.

Execution row by row. Progress of the program execution is visualized by highlighting
rows in the code. In addition to highlighting the program row under execution, VILLE
aso highlights previoudy executed row with a different colour. This makes following
of the program execution easier.

Flexible control of visualization both forwards and backwards. User can move one
step at atime, both forwards and backwards in the execution of the program. Examples
can also be run automatically with adjustable speed. Moving backwards in the program
execution isn't usualy possible in similar applications. Additionaly, VILLE has an
execution slider with which user can use to move to any point of program execution.

Breakpoints. The user can set breakpoints into any program code line and move
between them both forwards and backwards. This functionality enables debug-based
control and observation of the program execution. More over, backward tracing
between breakpoints is not a standard feature in program code debuggers.

Code line explanation. Every code line has an explanation, in which all the program
events related to the line are clearly explained. Furthermore, al possible outputs and
variable states are shown. Code line explanation is a missing feature in many similar
applications.

Role information. Variables role information is integrated into the code line
explanation. According to Sganiemi and Kuittinen [17[this helps programming
learning and enhances understanding of the program.

The parallel view shows the program code execution simultaneously in two different
programming languages. This way the user can see how the execution progresses
similarly regardless of syntactical differences between the languages.

Call stack. The moving of the program execution between different methods due to
function calls and returns is visualized with a call stack. When a method is called, new
window is opened in the call stack. The window remains in the call stack until the
method is finished. When the execution returns to the caller, possible return value is
shown on top of the call stack. The visudization of the execution can be aternatively
viewed in parallel view with program code viewed in two languages simultaneously.

Publish examples. With the export feature VILLE's examples can be saved to an
example collection. The example collection contains a version of VILLE with example
creation and modification functions disabled. Teacher can use the export feature to
publish course’ s programming examples in web for students to use.

Pop-up questions. One useful feature of VILLE is the possibility to create pop-up
guestions for the programming examples. With the built-in editor teacher can create
multiple choice questions and set them to trigger in certain states of the program
execution.

4.2. The User Interface of VILLE

For students VILLE offers three different views. In the main view user can browse
through programming examples and start the visualization of chosen example. In the
visuaization view user can follow the execution of the example. The visualization view
has two different modes: the cal stack mode and the parallel mode. In the call stack
mode (Figure 3) in addition to code listing on the left side of the view, method calls are
visuaized as a stack of windows on the right side of the view. Method calls' return
values are shown on top of the stack. On the top left corner are the program execution
controls, slider for the speed of automatic execution and drop-down menu where user
can choose programming language in which the example is shown. Under the code
listing and call stack lie fields that show information about the program state. The left
field shows an explanation of program line under execution and the roles of variables on
that line. The middle field lists all the output generated by the program and the right
field shows the states and values of variables during the execution. At the bottom of the
view is an execution slider, which can be used to move around in the program.

Applet Viewer: ville. VilleGUI, class EEX

visual learning tool
Animation cantrols Method stack
Execution speed Choose program language
- @lava OPseudo O CH+ factorial(10) |
P2 factorial(9) |
Factorial rut factorial(8)]
public static void main(Stringl] args){ vt factorial(?)
System.out.println{'Factorial of mumber § is " o -
gpstem. cut.println(’. . snd number 10 "4factorial P factorial(6)
¥ public static int factorialiint lulku){
public static int factorialiint lukuj{ 1. if fluku == 11§
if (luku == 13{ return 1;
return 1; +

e Return value

120

return luku * factorial {Luku-1};

i
I
I
|
|
I
I
|
|
I
I
|
B3 | >

Program ine explanation Program output State of wariabls

Return 720 Factorial of rumber 5 is 120 main: args ==
factorial{10): luku
factorial(9): luku
factorial(8): luku
factorial {7): luku
factoriali(6): luku

__M University of Turku @38
E i Department of Information Technology %t

Figure 3: Visualization view of VILLE in call stack mode

The program execution in the visualization view can aso be followed in the pardlel
view (Figure 4). In this case the programming example opens in two paralel frames.
User can select the language for both frames and compare the syntaxes and the program
execution between the two languages side-by-side. As discussed in chapter 2, pseudo
language is often found to be the most suitable first language for students learning to
program. However, the gap between pseudo and commercial languages (e.g. Java) can
prove to be quite wide. The advantage of the parallel view — besides narrowing the gap
mentioned — is proving that the imperative paradigm is implemented quite similarly in
al supported languages.

B Applet Viewer: ville.VillaGUI.class (=063

VILLE . :
visual learning tool

Animatian controls

[[e | TH

Execution speed Chanse program language

Choose program language

(&) Java OPseudn (O CH+) dava &) Patide fol=T"

: Factorial Factorial

| public stacic void main(Stringl] args]{ def main {args):

gysten. out.printlni{"Factorial of number § is "+factorial(S)}; print "Factorial of number § is "+factorialif}

| System. out_printlni”. _snd mumber 10 "+factorial(l0i); print *._and mumber 10 "+factorial(10)

(L f

| public staric int facvorialiine lulku){ def factorialilukw):
if (lwma == 114 if lubu == 1:

return 1; return 1

¥
elsef I else:

arn luku * factorial (luku-1}; return luku * factorial {luku-1}

Program line explanation Frogram output State of wvariables

Eeturn 720 Factorial of rwber 5 iz 120 nain: args ==
factorialill): luku ==
factorialif9): luku
factorialid):
factoriali7):
factorialig):

=
=

g8

@@ oo

= University of Turku 7
Department of Information Technology &t

Figure 4: Visualization view of VILLE in paralld mode

Teachers have access to three additiond views: the example creation and modification
view, the syntax editor and the pop-up question editor. In example creation and editing
view teachers can modify or create examples. In the syntax editor view teachers can
modify existing syntaxes and create new syntaxes for programming languages. With the
pop-up editor teachers can create pop-up questions for the examples that are shown to
the students during the execution of examples. It is also possible to organize the
examples and categories with simple controls.

Since the examples are executed on row-by-row basis, al supported languages have to
have matching syntax lines. Hence, the pseudo language supported is a dightly
modified subset of Python (see appendix 1 for pseudo code syntax); this pseudo code
can however be translated to executable Python code with VILLE. The syntax editor
(Figure 5) view has the syntax lines used in parsing Java code on the left side of the
view, and the syntax lines of modifiable languages on the right side.

VILLE
visual learning tool

Jawa syntax: Editable syntax: iPythoaneudo vi [E Save] Mew syntax] @ Remove synkax]

u &

for {int @0 = @1; @0 »>= @2; BO--}{ for (@0 = El; @O »= @2; BO--):

for (int @0 = Bl; @0 <= B2; BO++){ for (B0 = Bl; B0 <= [2; BO4+):

for (int B0 = Bl; @0 > BZ; AO--){ for (B0 = Bl; BO > B2; BO——):

for (int @0 = Bl; B0 £ B2; BO++H){ for (B0 = Bl; BO < B2; @bH):

10: for (int A0 = ALl; @0 »>= B2; B0 = RO-A3){ 10: |for (@0 = Bl; B0 »>= BZ; B0 = @0-B3):

11: |1 11: |=
12: |for (int @0 = @Ll; @0 <= B2: BO = BO+@3){ 12: |for (@0 = B1l; @O0 <= B2; B0 = GO+B3):
13: |} 13 |=

14: (for (int @0 = @l; @O0 > B2; B0 = BO-@3){ 14: |Eor (@0 = B1l; @O > B2; BO = BO-@3):
15: |} 15: [=

16: (for (int @0 = @1l; @O0 < @2; @0 = EO+@3){ 16: |for (@0 = B1l; MO0 < B2; B0 = BO+4E3):
17: |} 17: |=

18: \while (B0O){ 18: |while EO:

19: |3 19: |m

z0: |else if (@0} 20: |elif @0:

2l: 1} 21: (=

zz: [if (@0){ 22: |if @0:

23 1} 23: =

24: elsed 24: |else:

295 ¥ 25: |=

f: lvuhlic araric woid mainiStrinegll armsil B ldef main iarmsi:

Explanation syntax of the ediable ine: |Intializing increasing for-loop using variable @0 from value @1 to value @2-1, |

__M i University of Turku)3 &
E b liied Department of Information Technology

Figure 5: Syntax editor view in VILLE

4.3. Similar tools

There are many tools that visualize program execution. However, there are very few
that use pseudo language, and to our knowledge none featuring a possibility to add or
modify syntaxes and languages.

Jdliot3 and AL VIS Live are the most smilar tools to VILLE from this paper’s point of
view. There are also some systems which can execute pseudo code but those systems
are desgned for teaching data structures and agorithms. More detailed analysis,
comparison between VILLE and Jeliot3 and references can be found in Rajala et al.
[15].

Table 1 presents comparison between VILLE and two popular program visualization
tools, Jeliot 3 and ALVIS Live from the language perspective. Jeliot 3 [12] is a tool
developed in University of Joensuu. In addition to code highlighting, it has a theatre
view that visualizes variable and object states. ALVIS Live [6] is an algorithm
animator, which uses pseudo code called SALSA. In ALVIS users can create algorithms
by typing the pseudo code or by graphical tools.

VILLE Jeliot 3 ALVISLive
Built-in Java, pseudo Java SALSA
languages codeand C++ pseudo code
Editable Yes No No
syntaxes
Add and define [Yes No No
new languages
Examples \Various built-in, |Variousincluded JPossibleto
possibletoadd Jwith Windows Jadd new
new ones executable ones
version; possible
to add new ones
Program code |Selectable Java SALSA
viewed in Jlanguage; pseudo code
alternative view
with two
Jlanguages
Graphical No Yes Yes
dementsfor
visualizations

Table 1: Comparison of VILLE, Jeliot3 and ALVIS Live

From the language perspective, VILLE is the only tool that supports several
programming languages. With it user can define additional programming languages and
trace the execution of the program code side by side in parallel view with two selected
programming languages. More over, teacher can create a pseudo code of his own and
programs written with this pseudo code can be executed like any other programming
language. Thus, by using VILLE the teacher can emphasize the programming language
independency view. These features are absent from Jeliot3 and ALVIS.

Of course, there are differences between all tools when investigating the visualization
techniques and methods. For example, in contrast to VILLE, which presents program
and vaiable states primarily in textual form, these two other systems, Jeliot3 and
ALVIS, use graphical symbols. These kinds of features are out of the scope of this
article.

5. Discussion

From the learners point of view it is much more important to master the principles
behind the basic programming concepts regardiess of the selected programming
language. More over, the syntaxes of the basic programming components are very

similar in all imperative languages. Thus, the use of pseudo language is recommended
and reasonable for the basic programming courses. Still, we have to keep in mind that
pseudo code is often perceived as non-executable programming language which can be
seen as a drawback.

Many different pseudo languages have been defined and proposed for general use.
However, the new ones are gtill created and presented by teachers because the existing
ones do not fulfil their requirements. These self defined pseudo languages are very
rarely interpretable or executable; however, by using VILLE the teacher can overcome
this problem, and execute programs written in his own language. In addition, the
execution is visualized step by step and its effects to variable states and program outputs
are aso presented. The language — with some limitations - can be self defined: the
scope of supported features includes al the basic programming components (e.g.
control structures, records, tables, strings etc.) covering majority of topics in the first
programming courses. VILLE’ s built-in pseudo code is presented in appendix A.

Our research is going on and VILLE has been tested at University of Turku. The
preliminary results indicate that students who used VILLE found it useful while
learning programming basics.

6. Conclusions

VILLE is program visuaization tool for teaching novice programming for lecture use
and for self learning. The tool supports the programming language independent view
which demonstrates the similarity between basic programming components in every
imperative programming language.

The teacher can define his own pseudo language that suits his teaching needs and those
programs written on that language can be executed and visuadized in VILLE. In
addition, the teacher can organize all course related programming examplesin VILLE
and publish those in the web for students to acquire.

VILLE constitutes a good amendment to introductory programming courses by offering
a chance to handle basic programming related issues in more abstract way.

References

[1] AlaMutka, K. (2005). Ohjelmoinnin opetuksen ongelmia ja ratkaisuja
Tekniikan opetuksen symposium 20.-21.10.2005. Helsinki University of
Technology.
http://www.dipoli.tkk.fi/ok/p/refl ektori/verkkojulkai su/index.php?p=verkkojul ka
isu.

[2] Brilliant, S.S. and Wiseman, T.R. (1996). The first programming paradigm and
language dilemma. ACM SIGCSE Bulletin, 28(1):338-342.

10

http://www.dipoli.tkk.fi/ok/p/reflektori/verkkojulkaisu/index.php?p=verkkojulka

(3]

[4]

[5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

Grandell, L., Pdtomé&ki, M., Back, R.-J. and Salakoski, T. (2006). Why
Complicate Things? Introducing Programming in High School Using Python.
Proceedings of the 8th Australian Conference on Computing Education, Hobart,
Australia, 52:71-80.

Hadjerrouit, S. (1998). Java as first programming language: a critical evaluation,
ACM SIGCSE Bulletin, 30(2):43-47.

Hu, Minjie. (2004). Teaching Novices Programming with Core Language and
Dynamic Visualisation. Proceedings of the NACCQ 2004, Christchurch, New
Zedland, 95-104.

Hundhausen, C. D. and Brown, J. L. (2007). What You See Is What Y ou Code:
A 'Live' Algorithm Development and Visudization Environment for Novice
Learners. Journal of Visual Languages and Computing, 18(1):22-47.

Kolling, M., Quig, B., Patterson, A. and Rosenberg, J. (2003). The BlueJ system
and its pedagogy. Journal of Computer Science Education, Specia issue on
Learning and Teaching Object Technology, 13(4).

Laakso, M.-J., Salakoski, T. and Korhonen, A. (2005). The Feasibility of
Automatic Assessment and Feedback. Proceedings of Cognition and Exploratory
Learning in Digitd Age (CELDA 2005). IEEE Technical Committee on
Learning Technology and Japanese Society of Information and Systems in
Education. Porto, Portugal, 113-122.

Lister, R., Adams, E., Fitzgerald, S., Fone, W., Hamer, J.,, Lindholm, M.,
McCartney, R., Mostrom, J., Sanders, K., Seppdd, O., Simon, B. and Thomas,
L. (2004). A multi-national study of reading and tracing skills in novice
programmers, ACM SIGCSE Bulletin, 36(4):119-150.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.,
Laxer, C., Thomas, L., Utting, I. and Wilusz, T. (2001). A Multi-National,
Multi-Ingtitutiond Study of Assessment of Programming Skills of First-year CS
Students. ACM SIGCSE Bulletin, 33(4):125-140.

Mclver, L. and Conway, D. (1996). Seven Deadly Sins of Introductory
Programming Language Design. Proceedings, Software Engineering: Education
& Practice, 309-316.

Moreno, A., Myller, N., Sutinen, E. & Ben-Ari, M. (2004). Visudizing
programs with Jeliot 3. Proceedings of the working conference on Advanced
visua interfaces, Gallipoli, Italy, 373-376.

Naps, T., Eagan, J. and Norton, L. (2000). JHAV E—an environment to actively
engage students in Web-based algorithm visualizations. Proceedings of the
thirty-first SIGCSE technica symposium on Computer science education,
Austin, Texas, United States, 109-113.

Olsen, A.L. (2005). Using Pseudocode to Teach Problem Solving. Journal of
Computing Sciences in Colleges, 21(2):231-236.

11

[15]

[16]

[17]

[18]

[19]

Ragala T., Laakso, M., Kaila, E. & Salakoski T. (2007). VILLE — Multilanguage
Tool for Teaching Novice Programming. TUCS Technical Report, No 827,
June 2007.

Reek, M.M. (1995). A Top-Down Approach to Teaching Programming. ACM
SIGCSE Bulletin, 27(1):6-9.

Sajaniemi, J. & Kuittinen, M. (2003). Program Animation Based on the Roles of
Variables. In the Proceedings of the 2003 ACM Symposium on Software
Visualization, San Diego, Cdlifornia, 7—f.

Van Roy, P., Armstrong, J., Flatt, M. and Magnusson, B. (2003). The role of
language paradigms in teaching programming. Proceedings of the 34th SIGCSE
technical symposium on Computer science education, Reno, Nevada, USA, 269-
270.

Wells, M.B. and Kurtz, B.L. (1989). Teaching multiple programming
paradigms. a proposa for a paradigm general pseudocode. Proceedings of the
twentieth SIGCSE technical symposium on Computer science education,
Louisville, Kentucky, United States, 246-251.

12

TURKU

CENTRE for

COMPUTER
SCIENCE

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

University of Turku
« Department of Information Technology
o Department of Mathematics

Abo Akademi University
o Department of Information Technologies

Wz
U

Turku School of Economics
« Institute of Information Systems Sciences

ISBN 978-952-12-1938-2
ISSN 1239-1891

