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Abstract

We consider interaction properties of relational periods, where the relation is a
compatibility relation on words induced by a relation on letters. By the famous
theorem of Fine and Wilf, p + q − gcd(p, q) − 1 is the maximal length of a word
having periods p and q but not period gcd(p, q). Such words of maximal length
are called extremal Fine and Wilf words. In this paper we study properties of the
corresponding words in a relational variation of the Fine and Wilf theorem.
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1 Introduction

Let w = w1 · · ·wn be a word of length n. A positive integer p is a period of w if
wi = wi+p for i = 1, 2, . . . , n − p. If w has two periods p and q and n is at least
p + q − gcd(p, q), then the word has also as period the greatest common divisor
gcd(p, q). This result was first proved by Fine and Wilf in 1965 in connection
with real functions [13]. The bound on the length of the word is optimal; see [9].
Hence, the maximal length of a non-constant word with coprime periods p and q

is p + q − 2. Such words are called a extremal Fine and Wilf words. In 1994 de
Luca and Mignosi [12] showed that the set of all factors of these words coincides
with the set of factors of Sturmian words. Furthermore, the extremal words are
palindromes and unique up to renaming of letters. The theorem of Fine and Wilf
for more that two periods was investigated in several papers [8, 10, 17]. In 2003
Tijdeman and Zamboni [19] gave a fast algorithm to count an extremal word (and
its length) for arbitrary number of periods. Moreover, they showed that such word
with periods p1, . . . , pr and without period gcd(p1, . . . , pr) containing a maximal
number of distinct letters is uniquely determined up to word isomorphism and is
a palindrome.

In this paper we consider relational Fine and Wilf words, where the relation is
a similarity relation on words induced by a compatibility relation on letters. The
compatibility relation generalizes that of partial words introduced by Berstel and
Boasson in 1999 [2]. Combinatorics on partial words has been widely studied in
recent years. Motivation for the research of partial words (and words with sim-
ilarity relations in general) comes partly from the study of biological sequences
such as DNA, RNA and proteins [3].

Using similarity relations we introduce relational periods. Variations of Fine
and Wilf’s theorem for these periods were obtained recently by Halava, Harju and
Kärki [15, 16]. Optimal bounds for periods’ interaction were considered in the
cases where a word has one relational period p and one pure period q. A word
with relational period p and pure period q but without relational period gcd(p, q)
will be called a relational Fine and Wilf word. We prove that under some natural
constraints the structure of such words of maximal length is unique up to renaming
of letters. These extremal words are over a ternary alphabet and the relation is
necessarily similar to the compatibility relation of partial words. Furthermore, we
consider their palindromic properties.

2 Similarity relations

Let R ⊆ X × X be a relation on a set X . We usually write x R y instead of
(x, y) ∈ R. The identity relation on X is denoted by ιX . The relation R is a
compatibility relation if it is both reflexive and symmetric, i.e., (i) ∀x ∈ X :
x R x, and (ii) ∀x, y ∈ X : x R y =⇒ y R x. In this presentation we consider
special kind of relations on words defined in the following way.
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Definition 1. Let A be an alphabet. A relation on words over A is called a simi-
larity relation, if its restriction on letters is a compatibility relation and, for words
u = u1 · · ·um and v = v1 · · · vn (ui, vj ∈ A), the relation R satisfies

u1 · · ·um R v1 · · · vn ⇐⇒ m = n and ui R vi for all i = 1, 2, . . . , m.

The restriction of R on letters, denoted by RA, is called the generating relation of
R. Words u and v satisfying u R v are said to be R-similar or R-compatible.

Since a similarity relation R is induced by its restriction on letters, it can be
presented by listing all pairs {a, b} (a 6= b) such that (a, b) ∈ RA. We use the
notation

R = 〈r1, . . . , rn〉,

where ri = (ai, bi) ∈ A×A for i = 1, 2, . . . , n, to denote that R is the similarity
relation generated by the symmetric closure of ιA∪{r1, . . . , rn}. For example, let
A = {a, b} and set R = 〈(a, b)〉. Then

RA = {(a, a), (b, b), (a, b), (b, a)}

Hence, the relation R makes all words over A with equal length similar to each
other. On the other hand, let us consider the ternary alphabet B = {a, b, c} and set
S = 〈(a, b)〉. Then

SB = {(a, a), (b, b), (c, c), (a, b), (b, a)}

and, for example, abba S baab but, for instance, words abba and baac are not S-
similar.

More on properties of similarity relations can be found in [14]. For exam-
ple, the connection between similarity relations and the compatibility relation of
partial words is discussed in detail.

3 Relational periods

For words with compatibility relation on letters, i.e., similarity relation on words
we will now define relational periods.

Definition 2. Let R be a compatibility relation on an alphabet A. For a word x =
x1 · · ·xn ∈ A+, an integer p ≥ 1 is an R-period of x if, for all i, j ∈ {1, 2, . . . , n},
we have

i ≡ j (mod p) =⇒ xi R xj.

This definition can be generalized naturally to infinite words. Note that the
normal (pure) period of words is a relational period where the relation is the iden-
tity relation. Note also that, for the relation R↑ = 〈{(♦, a) | a ∈ A}〉, an R↑-
period corresponds to a period of partial words, where A is an alphabet and holes
are denoted by ♦-symbols.
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Example 1. Consider the word x = babbbcbd in the alphabet A = {a, b, c, d}. Let
R = 〈{(a, b), (b, c), (c, d), (d, a)}〉 be a compatibility relations on A. We consider
the minimal R-period of x. Since (b, d) 6∈ R, the smallest R-period must be
greater than 5. For example, 2 is not an R-period of x, since (x4, x8) = (b, d) and
8 ≡ 4 (mod 2). Indeed, the smallest R-period is 6, because of the relation a R d.
Note that the minimal pure period of x is 8.

4 Bounds of interaction

In recent years several variations of the theorem of Fine and Wilf have been
proved. In particular, there are theorems related to the study of partial words.
J. Berstel and L. Boasson gave a variant of the theorem of Fine and Wilf for par-
tial words with one hole in [2]. Generalizations for several holes were considered,
for example, by F. Blanchet-Sadri in [4] and F. Blanchet-Sadri and R.A. Hegstrom
in [5], where it was shown that local partial periods p and q force a sufficiently
long partial word to have a period gcd(p, q) when certain unavoidable cases (spe-
cial words) are excluded. The bound on the length depends on the number of holes
in the word. On the other hand, A.M. Shur and Yu.V. Gamzova found bounds for
the length of a word with k holes such that (global) partial periods p and q imply a
(global) partial period gcd(p, q) [18]. These periods’ interaction bounds of partial
words depend on the number of holes and in this respect show that finding good
formulations for periods’ interaction in the case of arbitrary relational periods is
not possible except for equivalence relations. Namely, any non-transitive compati-
bility relation R must have letter relations (x1, x2), (x2, x3) ∈ R, but (x1, x3) 6∈ R

for some letters x1, x2, x3. Then the role of the letter x2 in R is exactly the same
as the role of holes in partial words and all binary counter examples of Fine and
Wilf’s theorem for partial words apply to words with compatibility relation R over
the alphabet {x1, x2, x3}. For instance, we have the following example.

Example 2. Let R = 〈{(a, b)(b, c)}〉. There exists an infinite (not necessarily
ultimately periodic) word

w = w1w2w3 · · · = acb6i1−2acb6i2−2 · · · ,

where the numbers ij ≥ 1 are chosen freely. Now w has global R-periods 2 and 3.
Namely, w1w3w5 · · · ∈ {a, b}∗, w2w4w6 · · · ∈ {b, c}∗ and w1w4w7 · · · ∈ {a, b}∗,
w2w5w8 · · · ∈ {b, c}∗, w3w6w9 · · · ∈ {b}∗. However, 1 is not a period, not even
an R-period of the word w. For example, (w1, w2) = (a, c) 6∈ R.

On the other hand, it is possible to get some new interesting variations of the
Fine and Wild theorem by assuming that one of the periods is pure while the other
is relational by a relation R 6= ι. We define the following bound.

Definition 3. Let P ≥ 2 and Q ≥ 3 be positive integers with gcd(P, Q) = d. A
positive integer B = B(P, Q) is called the bound of relational interaction for P

and Q, if it satisfies the following conditions:
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(i) The bound B is sufficient, i.e., for any similarity relation R and for any word
w with length |w| ≥ B having a (pure) period Q and an R-period P , the
number gcd(P, Q) = d is an R-period of w.

(ii) The bound is strict, i.e., there exist a similarity relation R and a word w

with length |w| = B − 1 having a (pure) period Q and an R-period P such
that gcd(P, Q) = d is not an R-period of w.

Note that in the definition we exclude trivial cases by assuming that P ≥ 2
and Q ≥ 3. Namely, if Q ≤ 2, then the word contains at most two letters and
the compatibility relation must be transitive. Furthermore, it is easy to show that
it suffices to consider the case where gcd(P, Q) = 1; see [16, Lemma 2]. In [15]
Halava, Harju and Kärki obtained the following theorem for the bound B.

Theorem 1. Let p and q be positive integers with gcd(p, q) = 1. The bound of
relational interaction for p and q is B(p, q) given by Table 1.

B(p, q) p < q p > q

p, q odd
p + 1

2
q q +

q − 1

2
p

p odd, q even
p + 1

2
q

p + 1

2
q

p even, q odd q +
q − 1

2
p q +

q − 1

2
p

Table 1: Table of bounds B(p, q)

5 Extremal words

Let p ≥ 2 and q ≥ 3 be positive integers with gcd(p, q) = 1 and let R be a
similarity relation. From here on we consider only words with R-period p and
pure period q. If such word is sufficiently long, then it has R-period gcd(p, q) = 1
by Theorem 1. Like in the case of original Fine and Wilf theorem, it seems natural
to ask, what properties do those words have which are of maximal length but do
not have relational period equal to 1. Hence, let us study the structure of the
extremal words mentioned in condition (ii) of Definition 3.

Definition 4. For positive integers p ≥ 2 and q ≥ 3 satisfying gcd(p, q) = 1, we
define the set of extremal relational Fine and Wilf words FW (p, q). A word w is
in FW (p, q) if |w| = B(p, q)− 1 and there exists a similarity relation R such that
w has an R-period p and a (pure) period q but gcd(p, q) = 1 is not an R-period of
w. Denote by Rw the similarity relation with minimal number of pairs of letters
such that w ∈ FW (p, q) has Rw-period p.
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Note that the relation Rw is well defined: For each letter a occurring in w, let
Ia be the set of positions i such that wi = a. Consider letters Ba in the positions
{j | ∃ i ∈ Ia : i ≡ j (mod p)}. The letter a must be R-compatible with the letters
in Ba. All other pairs involving a are unnecessary. In other words, a Rw b ⇐⇒
b ∈ Ba.

Note also that by the q periodicity only q different letters can occur in FW (p, q).
Moreover, both bounds p+1

2
q and q + q−1

2
p with p ≥ 2 and q ≥ 3 are greater than

p + q − 1, which implies that the words must have at least three letters. Indeed,
words over a binary alphabet {a, b} with a relational R-period p and a pure pe-
riod q and length greater than p + q − 2, are either unary by the theorem of Fine
and Wilf or a R b. In both cases, gcd(p, q) is a relational period. Therefore, for
w ∈ FW (p, q), we have

3 ≤ |Alph(w)| ≤ q,

where Alph(w) denotes the set of all letters occurring in w. Note that, in general,
w ∈ FW (p, q) is not unique, not even up to renaming of letters.

Example 3. Consider the set FW (3, 7). For p = 3 and q = 7, we have the
following bound

B(p, q) =
p + 1

2
q = 14.

Hence, the length of the words in FW (3, 7) is 13. For a ternary alphabet {a, b, c}
and the relation R = 〈(a, b), (b, c)〉, we notice that u = babbabcbabbab is in
FW(3,7). On the other hand, for the alphabet {a, b, c, d}, we have
v = abcacadabcaca ∈ FW (3, 7) with the relation

Rv = 〈(a, b), (a, c), (a, d), (b, c), (c, d)〉.

Even if we restrict our considerations to words having the smallest possible num-
ber of different letters we do not have uniqueness. For example, in addition to u,
w = babbbbcbabbbb ∈ FW (3, 7).

Despite the previous examples, we show that all words in FW (p, q) share in
some sense unique structure. We need the following definitions.

Definition 5. Let R be a similarity relation on A∗. We say that two letters a

and b are relationally isomorphic, more precisely, R-isomorphic if, for each letter
x ∈ A, we have

a R x ⇐⇒ b R x.

A letter a is relationally universal, more precisely, R-universal if a R x for all
x ∈ A.

In the sequel we consider words in FW (p, q) such that they do not have any
distinct relationally isomorphic letters and the number of occurrences of a rela-
tionally universal letter is minimal. This restriction is justified, since these words
are sort of templates for other extremal relational Fine and Wilf words. Namely,
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all the words in FW (p, q) can be obtained up to renaming of letters from the word
w described in the next theorem by two operations, namely changing some sym-
bols to universal symbols and replacing a letter with two Rw-isomorphic letters.
In this respect, w ∈ FW (p, q) with no distinct Rw-isomorphic letters and with
minimal number of occurrences of an Rw-universal letter can be called minimal.

We use the notation [n]q for the least positive residue of an integer n (mod q),
i.e., [n]q is the positive integer m satisfying 1 ≤ m ≤ q and m ≡ n (mod q). For
simplicity, denote also B = B(p, q). We have the following theorem.

Theorem 2. Let w be a word in FW (p, q) with no distinct Rw-isomorphic letters
and with minimal number of occurrences of an Rw-universal letter. This word is
unique up to renaming of letters. Furthermore, it is of the form uc−1, where

u =



















(

(

b[B]p−1abp−[B]p
)b q

p
c
b
q−1−b q

p
cp

c
)

p+1
2

if B = p+1
2

q and p < q,
(

b[B]p−1abq−1−[B]pc
)

p+1
2 if B = p+1

2
q and p > q,

(b[B]q−1cbq−[B]q−1a)
B−[B]q

q b[B]q−1c otherwise,

and the relation Rw = 〈(a, b), (b, c)〉.

Proof. Consider a word u with a pure period q and an R-period p. Hence u is
determined by its prefix of length q and the total length of the word. Let m and n

be integers in the interval [1, q]. Consider solutions (i, j) for the equation

m + iq ≡ n + jq (mod p). (1)

If there exists a solution such that max(m + iq, n + jq) ≤ |u|, then um R un by
the periods p and q. Hence, Equation (1) defines necessary relations on letters. It
suffices to consider minimal solutions, i.e., solutions where max(m + iq, n + jq)
is as small as possible. Note that if i > j for some solution, then m + (i− j) ≡ n

(mod p) gives a smaller solution. Similarly, if j > i, then m ≡ n + (j − i)q
(mod p) gives a smaller solution. Thus, a minimal solution is of the form where
either i = 0 or j = 0.

Since the relational interaction bound B = B(p, q) is sufficient, there exists a
minimal solution satisfying max(m + iq, n + jq) ≤ B for each m and n. On the
other hand, for some m′ and n′, there must be a minimal solution with max(m′ +
iq, n′ + jq) = B, since B is strict. Without loss of generality, we may assume that
j = 0 and m′ + iq = B. This implies that

m′ = [B]q and n′ ≡ B (mod p).

Consider now a word w in FW (p, q) with no distinct Rw-isomorphic letters
and with minimal number of occurrences of an Rw-universal letter. The above
considerations imply that if a letter in w1 · · ·wq is not w[B]q and not in a position
congruent to B modulo p, then it is related to all letters occurring in the word. Let
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us denote these positions by U . Note that this set is not empty. The Rw-universal
letter is here denoted by b. Hence, for all i ∈ U , we have wi = b.

Let us now consider the position [B]q. If w[B]q = b, then letters in positions
n ≡ B (mod p) are Rw-compatible with all the letters in w, i.e., with each other
and with the universal letter b. Thus gcd(p, q) = 1 is an Rw-period. This is a
contradiction. Hence, the letter in position [B]q is different from b, say w[B]q = c.
Since gcd(p, q) = 1 is not an Rw-period, there must exist a letter a in some of the
positions n ≡ B (mod p) such that (a, c) 6∈ Rw. If a position n is such that the
minimal solution of (1) for all m ∈ [1, q] satisfies max(m + iq, n + jq) ≤ |w|,
then the letter wn is related to all the letters in Alph(w), i.e., wn = b. If this
is not the case, then the smallest solution of (1) for m = [B]q and n must satisfy
max([B]q+iq, n+jq) > |w|. Since in w there is a minimal number of occurrences
of the universal letter, this means that wn 6= b. More precisely, wn Rw wm for
m ∈ [1, q] \ [B]q and (wn, w[B]q) 6∈ Rw. Since w does not have any distinct Rw-
isomorphic letters, we may define wn = a. This shows us that all the letters wl

where l ∈ [1, q] are determined by the minimal solutions of the Equation (1), and
the word w is unique.

In order to find out the positions of the letter a more precisely, we must deter-
mine which of the positions 1 ≤ n ≤ q satisfying n ≡ B (mod p) do not have a
solution (i, j) for

[B]q + iq ≡ n + jq (mod p) (2)

such that max([B]q + iq, n + jq) ≤ B − 1. Again, it suffices to consider minimal
solutions. Since gcd(p, q) = 1, we know that {[B]q + iq | i = 0, 1, . . . , p− 1} and
{n+jq | j = 0, 1, . . . , p−1} are complete residue systems modulo p. Hence there
exists exactly one i ∈ {0, 1, . . . , p − 1} satisfying [B]q + iq ≡ n (mod p) and
exactly one j ∈ {0, 1, . . . , p − 1} satisfying [B]q ≡ n+jq (mod p). Furthermore,
for i ∈ {1, 2, . . . , p − 1}, we have

[B]q + iq ≡ n (mod p) =⇒ [B]q ≡ n + (p − i)q (mod p),

and p − i ∈ {1, 2, . . . p − 1}. Hence, the minimal solution of (2) is either of the
form (i, 0) or (0, p − i).

Consider first those cases where B(p, q) = p+1
2

q and assume that n ≡ B

(mod p). For a solution (i, j) = ( p−1
2

q, 0) we have [B]q + iq = q + p−1
2

q = B.
For the other solution (0, p − i), we have

n + (p − i)q = n + pq −
p − 1

2
q =

p + 1

2
q + n = B + n.

This proves that letters in the position 1 ≤ n ≤ q satisfying n ≡ B (mod p) are
non universal, i.e., all the letters are a’s. Note that if B = p+1

2
q and p > q, then

q is even by Table 1 and B ≡ q

2
(mod p). Hence, n ∈ [1, q], n ≡ B (mod p)

really exists.
Consider then the cases where B(p, q) = q + q−1

2
p. Now n = q − kp for

some k = 0, 1, . . . , b q

p
c. Like above, (i, j) = (B−[B]q

q
, 0) is a solution where
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[B]q + iq = B. For the other solution (0, p − i), we have

n + (p − i)q = n + pq − B + [B]q = q − kp + pq − q −
q − 1

2
p + [B]q

= B + [B]q + (p − q) − kp.

If p > q, then k = 0 and p − q > 0. Hence, n + (p − i)q > B. If p < q, then p is
even by Table 1. Hence, [B]q = q − p

2
. We get n + (p − i)q = B + p

2
− kp > B

if and only if k = 0. Hence, the only position n ∈ [1, q] \ [B]q where wn = a is
n = q. These calculations imply the words of the statement.

We note that the relation Rw = 〈(a, b), (b, c)〉 in Theorem 2 which was used
in defining the minimal extremal words in FW (p, q) corresponds to the compati-
bility relation of partial words.

Like in the case of normal extremal Fine and Wilf words [12, 19], the mini-
mal extremal relational Fine and Wilf words given in Theorem 2 have nice palin-
dromic properties. A word w = w1 · · ·wn is a palindrome if w = w, where
w = wnwn−1 · · ·w1. A generalization of palindromic words are so called pseudo-
palindromic words.

Definition 6. Let ϕ : A → A be a morphism satisfying ϕ2 = id. A word w =
w1 · · ·wn is a ϕ-pseudo-palindrome if w = ϕ(w).

For more information on palindromes and pseudo-palindromes, see [1,6,7,11]. In
the present paper we prove:

Theorem 3. Let w ∈ A = {a, b, c} be a word in FW (p, q) with no distinct Rw-
isomorphic letters and with minimal number of occurrences of an Rw-universal
letter. Let Rw = 〈(a, b), (b, c)〉. If B(p, q) = p+1

2
q, then w is a palindrome.

Otherwise, it is a ϕ-pseudo-palindrome, where ϕ : A → A is defined by ϕ(a) = c

and ϕ(b) = b.

Proof. The word w is given by the formula of Theorem 2. Consider first w ∈
FW (p, q) such that B(p, q) = p+1

2
q. Suppose that wm = a. By Theorem 2,

m = n + iq for some i and 1 ≤ n ≤ q satisfying n ≡ B (mod p). Since B ≡ 0
(mod q), wB−n−iq = wq−n by the period q. Since n ≡ B (mod p), we have
q − n ≡ q − B + pq = p+1

2
q = B (mod p). This means that wB−m = wq−n = a.

Then consider occurrences of c in w. Suppose now that wm = c. By Theo-
rem 2, m ≡ 0 (mod q). Since B = p+1

2
q, B − m ≡ 0 (mod q). This implies

that wB−m = c and we have shown that wm = wB−m = w|w|+1−m if wm = a or
wm = c. Hence, this is true also for wm = b and the word w is a palindrome.

Next consider w ∈ FW (p, q) such that B(p, q) = q + q−1
2

p. By Theorem 2
we know that if wm = a, then m ≡ 0 (mod q). Now B − m ≡ B (mod q).
Hence, wB−m = w[B]q = c. On the other hand, if wm = c, then m ≡ B (mod q)
and B − m ≡ 0 (mod q). Thus, wB−m = wq = a. This means that wm =
ϕ(wB−m) = ϕ(w|w|+1−m), i.e., w is a ϕ-pseudo-palindrome.
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Finally, we note that more relational variations of Fine and Wilf’s theorem can
be found in [16]. For example, the local period of partial words [2], is general-
ized using similarity relations and new interaction bounds concerning this local
relational period are proved.
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