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Abstract

The concatenation of formal languages has a logical dual (A. Okhotin, “The
dual of concatenation”, Theoret. Comput. Sci., 320 (2005), 425–447), which
is particularly important in the study of Boolean operations in formal lan-
guage theory. In this paper, the closure or nonclosure of common language
families under dual concatenation with finite, co-finite and regular languages
is determined. In addition, language equations with union, linear concatena-
tion and dual concatenation with co-finite constants are shown to be almost
equal in power to linear conjunctive grammars.
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1 Introduction

The idea of writing words one after another is common to all languages.
In mathematical models of languages it is represented by the operation of
concatenation.

Many variants of this operation have been considered recently, inspired
in part by processes occurring in genome evolution, which are modelled as
operations on words representing DNA strands. In particular, a few such
operations were introduced and studied in the context of formal language
theory by Dassow et al. [2] and by Dassow, Mitrana and A. Salomaa [3].
An important unifying work on many variants of concatenation is the the-
ory of trajectory-based operations proposed by Mateescu, Rozenberg and A.
Salomaa [12] and further developed by Domaratzki [4, 5].

These operations resemble concatenation in that the symbols of one or
two words are combined in a certain order to form another word, but the
rules under which the symbols are combined are different from sequential
composition. Once such a word operation is defined, it is extended to lan-
guages similarly to the standard concatenation, as a union of applications of
this operation to individual words.

This paper concerns with another operation closely related to concate-
nation, which, on the contrary, maintains sequential composition of words,
but defines a different operation on languages on its basis. Consider that the
concatenation is

K · L = {w | there exists a factorization w = uv,

such that u ∈ K and v ∈ L},

where the condition of membership uses an existential quantifier and con-
junction. Replacing them with a universal quantifier and disjunction, the
following logical dual of concatenation is obtained [17]:

K ¯ L = {w | for every factorization w = uv

it holds that u ∈ K or v ∈ L} = K · L.

Note that there is no such thing as dual concatenation of two words: the un-
derlying operation on words is the standard concatenation, and it is the way
the words in two languages determine the words in their dual concatenation
which has been dualized.

This paper continues the study of this operation with the question of the
closure of common language families under dual concatenation with co-finite,
finite and regular languages, investigated in Sections 3–5. Linear context-free
and context-free languages are not closed under any of them. Deterministic
context-free languages are closed under dual concatenation with regular lan-
guages from the right, while dually concatenating finite or co-finite languages
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from the left leads out of this class. Finite intersections of context-free lan-
guages are closed under dual concatenation with co-finite languages, but not
with finite languages. Finally, conjunctive languages [13] are closed under
dual concatenation with arbitrary regular languages.

The second result of this paper is about language equations. Language
equations have been occasionally studied since the 1960s, and in the last
years they became an object of a systematic research. In particular, language
equations with different variants of concatenation were studied by Kari [8]
and by Domaratzki and K. Salomaa [6]. The research on equations with
all Boolean operations led to unexpected characterizations of computability
[14], as well as to the notion of a Boolean grammar [16], which completes
the formalism of context-free grammars by allowing the use of all Boolean
operations. The power of dual concatenation in language equations is a
natural topic [17], and the findings of this paper are used to contribute a
new result: in Section 6 it is shown that equations using union, concatenation
with singletons and dual concatenations with co-finite constants can specify
linear conjunctive languages [13, 18] almost precisely.

2 Language families

Let us define the families of languages used in this paper. We will consider,
among others, regular languages, linear context-free languages, context-free
languages, linear conjunctive languages and conjunctive languages. The lat-
ter are generated by conjunctive grammars [13], which are an extension of
context-free grammars with an explicit conjunction operation; the rest of the
families are defined by restricted subclasses of conjunctive grammars, so let
us give the most general definition.

Definition 1. A conjunctive grammar [13] is a quadruple G = (Σ, N, P, S),
in which Σ and N are disjoint finite nonempty sets of terminal and nonter-
minal symbols, respectively; P is a finite set of grammar rules, each of the
form

A → α1& . . . &αn (where A ∈ N , n > 1 and α1, . . . , αn ∈ (Σ ∪N)∗) (1)

S ∈ N is a nonterminal designated as the start symbol.

Informally, a rule (1) states that if a word is generated by each αi, then
it is generated by A. This semantics can be formalized using term rewriting,
which generalizes Chomsky’s word rewriting.

Definition 2. Given a grammar G = (Σ, N, P, S), consider terms built from
symbols in Σ ∪N using conjunction and concatenation. The relation =⇒ of
immediate derivability on the set of such terms
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1. Using a rule A → α1& . . . &αn, a subterm A of any term ϕ(A) can be
rewritten as follows: ϕ(A) =⇒ ϕ(α1& . . . &αn).

2. A conjunction of several identical terminal words can be rewritten by
one such word: ϕ(w& . . . &w) =⇒ ϕ(w), for every w ∈ Σ∗.

The language generated by a term A is the set of all words over Σ derivable
from it in a finite number of steps: LG(α) = {w | w ∈ Σ∗, A =⇒∗ w}. The
language generated by the grammar is L(G) = LG(S) = {w |w ∈ Σ∗, S =⇒∗

w}.
Let us give a example of a conjunctive grammar for a language that is

known to be inexpressible as a finite intersection of context-free languages,
see Wotschke [19].

Example 1 ([13, 18]). The following conjunctive grammar generates the
language {wcw | w ∈ {a, b}∗}:

S → C&D
C → aCa | aCb | bCa | bCb | c
D → aA&aD | bB&bD | cE
A → aAa | aAb | bAa | bAb | cEa
B → aBa | aBb | bBa | bBb | cEb
E → aE | bE | ε

The key part of this grammar is the nonterminal D, which generates
{uczu | u, z ∈ {a, b}∗}. Its rules match a symbol in the left part to the
corresponding symbol in the right part using A or B; the recursive reference
of D to aD or bD makes the remaining symbols be compared in the same
way.

It remains to define subclasses of conjunctive grammars we shall consider.
A conjunctive grammar is called context-free, if every every rule (1) contains a
single conjunct, that is, n = 1. A conjunctive grammar is linear conjunctive,
if each αi in every rule (1) is in Σ∗∪Σ∗NΣ∗. A conjunctive grammar is linear
context-free, if it is at the same time linear conjunctive and context-free. We
shall also consider finite intersections of context-free and of linear context-free
languages, which were studied by Liu and Weiner [10], by Wotschke [19] and
by Kutrib, Malcher and Wotschke [9]; these families are properly contained
in conjunctive and linear conjunctive languages, respectively. Finally, reg-
ular languages are those recognized by finite automata, while deterministic
context-free languages are recognized by deterministic pushdown automata,
see Harrison [7].

The largest family to be mentioned is the family defined by Boolean
grammars [16]. Boolean grammars further extend conjunctive gram-
mars by allowing negation in their rules, which are of the form A →
α1& . . . &αm&¬β1& . . . &¬βn. Their semantics is defined using language
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equations by interpreting logical connectives as Boolean operations on lan-
guages [16]. This family can express dual concatenation directly, as a com-
position of concatenation and complementation [17]. For more information
about this family the reader is referred to a recent survey [18].

3 Dual concatenation with co-finite lan-

guages

Dual concatenation with co-finite languages is dual to concatenation with
finite languages. It is known [17] that the language Σ∗ is a zero for dual
concatenation, that is, L ¯ Σ∗ = Σ∗ ¯ L = Σ∗ for every L ⊆ Σ∗. The
language Σ+ is an identity: L ¯ Σ+ = Σ+ ¯ L = L. It is also known that
L¯ a = La ∪ Σ∗a; in other words, dual concatenation with a co-singleton is
the same as concatenation with a singleton plus some regular garbage.

Let us consider dual concatenation with co-finite languages in general,
starting from the language {u, v}, with u, v ∈ Σ∗. If one of these two words
is a prefix of the other, the dual concatenation with such a co-finite language
represents intersection:

Lemma 1. Let Σ be an alphabet, let x ∈ Σ+ be a nonempty word. Then, for
every L ⊆ Σ∗,

L¯ {ε, x} = L ∩ (Lx ∪ Σ∗x).

Proof. L¯{ε, x} = L · {ε, x} = L ∪ Lx = L∩Lx = L∩ (L¯ x) = L∩ (Lx∪
Σ∗x).

This equality can be regarded as a formal dual of L · {ε, x} = L ∪ Lx. It
can be used to define intersection of any two languages known not to contain
words ending with a particular symbol as follows:

Lemma 2. Let Σ be an alphabet, let † /∈ Σ, let K, L ⊆ (Σ∪{†})∗\(Σ∪{†})∗†.
Then

(L ∪K†)¯ {ε, †} = (L ∩K)† ∪ L and therefore(
(L ∪K†)¯ {ε, †}) · {†}−1 = L ∩K.

Proof. By Lemma 1, (L∪K†)¯{ε, †} = (L∪K†)∩(
L†∪K††∪(Σ ∪ {†})∗†) =

»»»»»
(L ∩ L†) ∪ »»»»»»

(L ∩K††) ∪ (L ∩ (Σ ∪ {†})∗†) ∪ (K† ∩ L†) ∪ (((((((
(K† ∩K††) ∪

((((((((((
(K† ∩ (Σ ∪ {†})∗†) = L ∪ (K ∩ L)†, where four intersections are empty be-
cause no words ending with † are in K and in L. The second statement
follows.

This construction leads to the following theorem in the style of the theory
of abstract families of languages, see Mateescu and A. Salomaa [11].
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Theorem 1. Every family of languages closed under (1) union, (2) concate-
nation with singletons, (3) quotient with singletons and (4) dual concatena-
tion with co-finite languages is closed under intersection.

This result allows us to identify some language families not closed under
dual concatenation with co-finite languages. These are the linear context-free
and the context-free languages: since both are closed under union, concate-
nation with singletons and quotient with singletons, the hypothetical closure
under dual concatenation with co-finite languages would imply that they are
closed under intersection, which is known to be untrue.

It was shown how dual concatenation with a co-finite language can ex-
press intersection. Let us now see how intersection can in turn be used to
represent dual concatenation with a co-finite constant. First factorize dual
concatenation as follows:

Lemma 3. Let Σ = {a1, . . . , am} be an alphabet, let K, L ⊆ Σ∗ with ε /∈ K,
and consider the decomposition K = K1a1 ∪ . . . ∪Kmam. Then

L¯K = L¯K1a1 ∪ . . . ∪Kmam = (L¯K1)a1 ∪ . . . ∪ (L¯Km)am ∪ {ε}.

Proof. Transform the left-hand side as follows: L ¯ ⋃m
i=1 Kiai =

L ·⋃m
i=1 Kiai =

⋃m
i=1 LKiai. Pushing the complementation downwards, we

obtain
⋂m

i=1 L ¯ Ki ¯ ai, which is equal to
⋂m

i=1

(
(L ¯ Ki)ai ∪ Σ∗ai

)
. Us-

ing the distributivity of union and intersection, this can be represented
as a union of 2m intersections of m terms each. Any intersection that
includes (L ¯ Ki)ai and (L ¯ Kj)aj for i 6= j is bound to be empty,
and therefore there are only m + 1 potentially nonempty intersections:
Σ∗a1 ∩ . . . ∩ Σ∗ai−1 ∩ (L ¯ Ki)ai ∩ Σ∗ai+1 ∩ . . . ∩ Σ∗am = (L ¯ Ki)ai for
i = 1, . . . , m and Σ∗a1∩ . . .∩Σ∗am = {ε}. Their union is exactly the expres-
sion in the right-hand side of the proposed equality.

Now dual concatenation with every co-finite language can be decomposed
as follows:

Lemma 4. For every finite language K ⊂ Σ∗ there exists and can be effec-
tively constructed an expression ϕ(X) using union, intersection, concatena-
tion with singletons and constants {ε}, Σ∗, such that ϕ(L) = L¯K for every
language L ⊆ Σ∗.

Proof. Induction on the least nonnegative integer, for which no words of this
or greater length are in K.

Basis, K = ∅. Then L¯K = Σ∗ and ϕ(X) can be defined as Σ∗.
Induction step, the case ε /∈ K. Let the longest word in K be of length

`. Represent K as K1a1 ∪ . . . ∪ Kmam, where Σ = {a1, . . . , am}. Then,
by Lemma 3, L ¯ K =

⋃m
i=1(L ¯ Ki)ai ∪ {ε}. Since the longest word in

each Ki is of length at most ` − 1, by the induction hypothesis, there is an
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expression ϕi(X), such that ϕi(L) = L ¯ Ki. It is then sufficient to define
ϕ(X) = ϕ1(X)a1 ∪ . . . ∪ ϕm(X)am ∪ {ε}.

Induction step, the case ε ∈ K. Then L ¯ K = L ¯ K \ {ε} ∩ L,
and the previous case is applicable. The resulting expression is ϕ(X) =(
ϕ1(X)a1 ∪ . . . ∪ ϕm(X)am ∪ {ε}

) ∩X.

Lemma 4 immediately implies the following theorem:

Theorem 2. Every family of languages containing {ε} and Σ∗ and closed
under (1) union, (2) intersection and (3) concatenation with singletons is
closed under dual concatenation with co-finite languages.

Consider finite intersections of context-free [10, 19] or linear context-free
languages [9]: both families have the closure properties required by Theo-
rem 2, and they are therefore closed under dual concatenation with co-finite
languages.

4 Dual concatenation with finite languages

The basic case of dual concatenation with a finite language is dual concatena-
tion with the empty set. This operation has first been considered by Birget [1],
who attributed it to J.-E. Pin, defined it as

Σ∗L = {w | every suffix of w is in L}

and studied its descriptional complexity. In our terminology, this operation
is ∅ ¯ L. As one can easily see, it is dual to concatenation with Σ∗, which
can be represented as follows:

Σ∗L = {w | some suffix of w is in L}.

The operation L ¯ ∅ can be considered as well: it similarly defines the
language of all words w, such that every prefix of w is in L. While these
operations obviously preserve regularity, applying them to simple nonregular
languages yields nontrivial results:

Example 2. Consider linear context-free languages L = {aucxav, bucxbv |
u, v, x ∈ {a, b}∗, |u| = |v|}∪c{a, b}∗ and K = {ucv |u, v ∈ {a, b}∗, |u| = |v|}.
Then L¯∅ = {ucxu |u, x ∈ {a, b}∗} and (L¯∅)∩K = {wcw |w ∈ {a, b}∗}.

Recall the conjunctive grammar from Example 1: there L = LG(aA∪bB),
K = LG(C) and the rules for nonterminal D implement dual concatenation
with the empty set. This construction holds in general, providing the closure
of the conjunctive languages under dual concatenation with the empty set.
For any conjunctive grammar G = (Σ, N, P, S), such that ε ∈ L(G), the
grammar G′ = (Σ, N ∪ {S ′}, P ∪ {S ′ → aS ′&S | a ∈ Σ} ∪ {S ′ → ε}, S ′),
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generates the language L(G) ¯ ∅; a conjunctive grammar for ∅ ¯ L(G) is
constructed symmetrically. A more general closure property will be formally
proved in the next section.

Example 2 is a good source of nonclosure results. It immediately follows
that neither the linear context-free nor the context-free languages are closed
under dual concatenation with the empty set. In addition, finite intersections
of linear context-free and of context-free languages are also not closed under
this operation, because the language {wcw | w ∈ {a, b}∗}, as demonstrated
by Wotschke [19], is not representable by such a intersection.

5 Dual concatenation with regular languages

We have already seen that context-free and linear context-free languages, as
well as their finite intersections, are not closed under dual concatenation with
regular languages, ¯Reg. On the other hand, linear conjunctive languages
are closed under ¯Reg, because they are closed under complementation and
under concatenation with regular languages. Let us show that conjunctive
languages, which are not known to be closed under dual concatenation or
under complementation, are nevertheless closed under ¯Reg.

Theorem 3. For every conjunctive language L and regular language R, the
languages L ¯ R and R ¯ L are conjunctive. Given a conjunctive grammar
for L and a finite automaton for R, conjunctive grammars for L ¯ R and
R¯ L can be effectively constructed.

Proof. Given a conjunctive grammar G = (Σ, N, P, S) and a finite automaton

A = (Σ, Q, q0, δ, F ), construct a conjunctive grammar Ĝ = (Σ, N ∪ {Tq | q ∈
Q}, P ∪ P ′, Tq0), where P ′ consists of the following rules:

Tq → aTδ(q,a) (for all q ∈ F and a ∈ Σ) (2a)

Tq → aTδ(q,a)&S (for all q /∈ F and a ∈ Σ) (2b)

Tq → ε (for all q ∈ F ) (2c)

Tq → ε&S (for all q /∈ F ) (2d)

It is sufficient to establish the following claim: For every word w ∈ Σ∗

and for every state q ∈ Q, w ∈ LĜ(Tq) if and only if for every factorization
w = uv, δ(q, u) ∈ F or v ∈ L(G). The proof is an induction on the length
of w.

Basis w = ε. Then there exists only one factorization of w = uv, the one
with u = v = ε. If q ∈ F , then ε ∈ LĜ(Tq) and δ(q, u) = q ∈ F . If q /∈ F ,
then the condition δ(q, u) ∈ F is false, and both conditions w ∈ LĜ(Tq) and
v ∈ L(G) are equivalent to ε ∈ L(G).

Induction step: let w = aw′ and denote q′ = δ(q, a).
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L1 · L2 + − − − − + − ? + ? +
L1 ¯ L2 + − − − − − + − ? + +
·Fin/Fin· + + − + +/− + − + + + +

¯coF in/coF in¯ + − + + +/− − + + + + +
·Σ∗/Σ∗· + + − + +/− + − ? + + +
¯∅/∅¯ + − + + +/− − + − + + +
·Reg/Reg· + + − + +/− + − ? + + +
¯Reg/Reg¯ + − + + +/− − + − + + +

Table 1: Closure and nonclosure under the operations studied and their duals.

⇒© Suppose aw′ ∈ LĜ(Tq). Then w′ ∈ LĜ(Tq′) and, if q /∈ F , then also
aw′ ∈ L(G). The former, by the induction hypothesis, implies that for
every factorization w′ = u′v, δ(q′, u′) ∈ F or v ∈ L(G).

Consider any factorization aw′ = uv; it has to be proved that δ(q, u) ∈
F or v ∈ L(G). If u = ε, then v = aw′ and we know that δ(q, ε) = q ∈ F
or aw′ ∈ L(G). If u = au′, then δ(q, u) = δ(q′, u′) and, as inferred
from the induction hypothesis above, δ(q′, u′) ∈ F or v ∈ L(G), which
completes the proof in this direction.

⇐© Conversely, assume that for every factorization aw′ = uv it holds that
δ(q, u) ∈ F or v ∈ L(G). It follows that for every factorization w′ = u′v,
δ(q′, u′) ∈ F or v ∈ L(G): it is sufficient to consider the factorization
aw′ = au′ · v and to note that δ(q′, u′) = δ(q, au′). Then, by the
induction hypothesis, w′ ∈ LĜ(Tq′).

Consider the factorization aw′ = ε · aw′, for which we know that
δ(q, ε) = q ∈ F or aw′ ∈ L(G). In the former case, Ĝ contains the rule
(2a), and, by this rule, aw′ ∈ LĜ(Tq′). In the latter case, aw′ ∈ LĜ(S)
and the rule (2b) can produce aw′.

Substituting q = q0 into this statement, one obtains LĜ(Tq0) =

{u | δ(q0, u) ∈ F} ¯ L(G), that is, L(Ĝ) = L(A)¯ L(G).

Let us put together the closure properties studied in this paper. The first
three rows of Table 1 are already known [7, 17]. The next three pairs of rows
refer to the operations investigated in this paper and their formal duals.

The case of deterministic context-free languages needs comments. Since
they are closed under complementation and right-concatenation with regular
languages [7], they are therefore closed under right-dual-concatenation with
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regular languages. On the other hand, they are not closed under concatena-
tion of a two-element set from the left [7], and under left-concatenation of
Σ∗ either:

Proposition 1. For the deterministic context-free language L = {canbn |
n > 0} ∪ {ccanb2n | n > 0} over the alphabet Σ = {a, b, c}, the concatenation
Σ∗L is not deterministic context-free.

It is sufficient to note that

{a, b, c}∗L ∩ cc{a, b}∗ = cc
({anbn | n > 0} ∪ {anb2n | n > 0}),

where the latter is not a deterministic context-free language [7, Theorem
11.8.4]. This implies the nonclosure of deterministic context-free languages
under dual concatenation with co-finite languages and with ∅ on the left.

The problem of whether the dual concatenation of any two conjunctive
languages is always conjunctive [17] remains open, and is proposed for future
research.

6 Language equations with ∪, lin· and lin¯
Using the results of Section 3, it will be demonstrated that two particular
families of language equations can simulate each other. These are systems of
the following form: 




X1 = ϕ1(X1, . . . , Xn)
...

Xn = ϕn(X1, . . . , Xn)

(3)

In the first family, each ϕi may contain union, intersection, concatenation
with singletons and {ε}. Least solutions of such systems represent linear
conjunctive languages [13, 18].

The other kind of systems to be considered allows expressions ϕi to con-
tain union, concatenation with singletons and {ε}. Least solutions of such
systems define a certain new family of languages. Recalling Lemma 4 above,
dual concatenation with co-finite languages can be represented using inter-
section, and hence these systems can be simulated by systems from the for-
mer class, showing the containment of the new language family in the linear
conjunctive languages. A reverse simulation will now be demonstrated.

Theorem 4. Let Σ be an alphabet, let † /∈ Σ and let the homomorphism
h : Σ∗ → (Σ∪ {†})∗ be defined by h(a) = a† for every a ∈ Σ. Then for every
linear conjunctive grammar G there exists and can be effectively constructed
a system of language equations of the form Xi = ϕi(X1, . . . , Xn) (1 6 i 6 n),
where ϕi contains (1) union, (2) concatenation with singleton constants and
(3) dual concatenation with co-finite constants, such that the first component
of its unique solution equals h(L(G)) modulo intersection with (Σ†)∗ = h(Σ∗).
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Proof. Let G = (Σ, N, P, S) be a linear conjunctive grammar in the shortened
linear normal form [15], that is, all rules in P are of the form A → bB&Cc

or A → a, where A,B, C ∈ N and a, b, c ∈ Σ. Let
−→
N = {−→A | A ∈ N} and←−

N = {←−A |A ∈ N}, and construct the following system of language equations

in variables
−→
N ∪←−N :

−→
A =

⋃

A→bB&Cc∈P

(b
←−
B ∪ −→C c†)¯ {ε, †} ∪

⋃
A→a∈P

a† (4a)

←−
A =

⋃

A→bB&Cc∈P

{ε, †} ¯ (b
←−
B ∪ †−→C c) ∪

⋃
A→a∈P

†a (4b)

This system belongs to a class of strict systems which are guaranteed to

have a unique solution. Let (
−→
A =

−→
LA,

←−
A =

←−
LA)A∈N be this solution.

The first claim is that
−→
LA contains no words starting with †. Suppose the

contrary, and let x ∈ (Σ ∪ {†})∗ be the shortest word, such that †x ∈ −→LA.

Then, by (4a), †x is in (b
←−
LB ∪−→LCc†)¯ {ε, †} for some b, c, B and C. Since

ε /∈ {ε, †}, then, †x ∈ b
←−
LB ∪ −→LCc†, which implies †x ∈ −→LCc†, and thus

−→
LC

contains a shorter word starting with † than †x. The contradiction obtained

establishes the claim. Symmetrically, no words ending with † are in
←−
LA.

Define another homomorphism h′ : Σ∗ → (Σ∪{†})∗ as h′(a) = †a for each

a ∈ Σ. It is now claimed that
−→
LA ∩ (Σ†)∗ = h(LG(A)) and

←−
LA ∩ (†Σ)∗ =

h′(LG(A)), and from this the statement of the theorem will follow. First,

assume w ∈ LG(A) and let us show by induction on |w| that h(w) ∈ −→LA and

h′(w) ∈ ←−LA.

Basis w = a. If a ∈ LG(A), then A → a ∈ P and the equation (4a) explicitly

contains a† = h(a) ∈ −→LA. Similarly, (4b) gives †a = h′(a) ∈ ←−LA.

Induction step. Let w = buc, where b, c ∈ Σ and u ∈ Σ∗. If buc ∈ LG(A),
then there is a rule A → bB&Cc ∈ P , such that uc ∈ LG(B) and bu ∈
LG(C). By the induction hypothesis, h′(uc) ∈ ←−

LB and h(bu) ∈ −→
LC .

Since h(buc) = bh′(uc)† = h(bu)c†, we obtain

h(buc) ∈ (b
←−
LB ∩ −→LCc)† ⊆ (b

←−
LB ∩ −→LCc)† ∪ b

←−
LB =

= (b
←−
LB ∪ −→LCc†)¯ {ε, †} ⊆ −→

LA,

where the equality is by Lemma 2, used for L = b
←−
LB and K =

−→
LCc

and applicable because
←−
LB ∩ (Σ ∪ {†})∗† = ∅.

The case h′(buc) ∈ −→LA is proved symmetrically.

It remains to prove the converse, that is, if x ∈ (Σ†)∗ ∪ (†Σ)∗ is in
−→
LA

(or in
−→
LA), then x = h(w) (x = h′(w), respectively) for some w ∈ LG(A).

Induction on |x|.
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Basis |x| = 2. The shortest words in
−→
LA are of the form x = a†, where

A → a ∈ P . Then x = h(a) and a ∈ LG(A). Similarly, if x = †a ∈ ←−LA,
then x = h′(a) and a ∈ LG(A).

Induction step. Let x ∈ (Σ†)∗ ∪ (†Σ)∗, with |x| > 4, be in
←−
LA. By the

equation (4a), there exists a rule A → bB&Cc ∈ P , such that x ∈
(b
←−
LB ∪ −→LCc†) ¯ {ε, †}. Then, according to Lemma 2, x ∈ (b

←−
LB ∩−→

LCc)†∪ b
←−
LB. The case x ∈ b

←−
LB is impossible, because then

←−
LB would

contain a word ending with †.
Assume x ∈ (b

←−
LB ∩−→LCc)†; then x = b†yc†, where y ∈ (Σ†)∗, †yc ∈ ←−LB

and b†y ∈ −→
LC . Let u ∈ Σ∗ be a word, such that h(u) = y. Since

we know that h′(uc) = †h(u)c ∈ ←−
LB and h(bu) = b†u ∈ −→

LC , by the
induction hypothesis, uc ∈ LG(B) and bu ∈ LG(C). Then, by the rule
A → bB&Cc, w = buc ∈ LG(A).

Finally, note that
−→
LS ∩h(Σ∗) = h(L(G)), which completes the proof.

This last result leaves two questions to ponder. First, can these equations
specify every linear conjunctive language precisely, without a homomorphic
encoding and an intersection with a regular language? If so, these two lan-
guage families will coincide. Second, do any similar results hold for equa-
tions with union, concatenation and dual concatenation? Are they powerful
enough to simulate Boolean grammars?
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