
Tommi Lehtinen | Alexander Okhotin

Boolean grammars are closed under inverse
homomorphisms

TUCS Technical Report
No 846, October 2007





Boolean grammars are closed under inverse
homomorphisms

Tommi Lehtinen
Department of Mathematics, University of Turku
Turku FIN–20014, Finland
tojleht@utu.fi

Alexander Okhotin
Academy of Finland, and
Department of Mathematics, University of Turku, and
Turku Centre for Computer Science
Turku FIN–20014, Finland
alexander.okhotin@utu.fi

TUCS Technical Report

No 846, October 2007



Abstract

It is proved that for every Boolean grammar G and for every homomorphism
h, the set h−1(L(G)) of pre-images of words generated by G is generated by
a Boolean grammar, which can be effectively constructed. Furthermore, if
G is unambiguous, the constructed grammar is unambiguous as well. These
results extend to conjunctive grammars.

Keywords: Boolean grammars, conjunctive grammars, closure properties,
homomorphism

TUCS Laboratory
Discrete Mathematics for Information Technology



1 Introduction

Boolean grammars [6] are an extension of the context-free grammars, in which
the rules may contain explicit Boolean operations. The extended expressive
power and the intuitive clarity of the new operations make these grammars
a much more powerful tool for specifying languages than the context-free
grammars. Another important fact is that the main context-free parsing
algorithms, such as the Cocke–Kasami–Younger, the recursive descent and
the generalized LR, can be extended to Boolean grammars without increasing
their computational complexity [6, 7].

Though the Boolean grammars easily inherit many good practical prop-
erties of context-free grammars, their theoretical properties present a greater
challenge to a researcher. No methods of proving any limitations of
Boolean grammars are known up to date, and the languages they generate
still could not be separated from their complexity-theoretic upper bound,
DTIME(n3) ∩ DSPACE(n) [6].

Also quite little progress has been made on the closure properties of the
languages generated by Boolean grammars. This is the question of whether
applications of certain operations to these languages always yield languages
generated by Boolean grammars. Boolean grammars are trivially closed un-
der Boolean operations and concatenation, since all these operations are in-
cluded in their formalism. The same can be said with respect to star, which
can be expressed by iterating a single nonterminal, as in the context-free
case.

Unlike the context-free languages, the languages generated by Boolean
grammars are not closed under homomorphisms. In fact, all recursively enu-
merable languages can be obtained as homomorphic images of languages
generated by a subclass of Boolean grammars, the linear conjunctive gram-
mars [2, 5]. The closure under non-erasing homomorphisms remains an open
problem.

This paper considers inverse homomorphism, and it is established that
the family of languages generated by Boolean grammars is closed under this
operation. It is proved that for every Boolean grammar G over an alphabet
Γ and for every homomorphism h : Σ∗ → Γ∗, the set h−1(L(G)) = {w ∈
Σ∗ | h(w) ∈ L(G)} of pre-images of words generated by G is generated by
a Boolean grammar. An effective construction of this grammar is given in
two steps: first, it is done for the case of non-erasing homomorphism; then,
for a projection, that is, for a homomorphism that maps every letter to itself
or to ε. Since every homomorphism is a composition of such mappings,
this construction applies to every given homomorphism. Furthermore, if the
grammar G is unambiguous [8], then the constructed grammar for h−1(L(G))
is unambiguous as well, that is, the family of unambiguous Boolean grammars
is also closed under this operation.

1



2 Definition of Boolean grammars

Definition 1 ([6]). A Boolean grammar is a quadruple G = (Σ, N, P, S),
where Σ and N are disjoint finite nonempty sets of terminal and nonterminal
symbols respectively; P is a finite set of rules of the form

A → α1& . . . &αm&¬β1& . . . &¬βn, (1)

where m+n > 1, αi, βi ∈ (Σ∪N)∗; S ∈ N is the start symbol of the grammar.

For each rule (1), the terms αi and ¬βj (for all i, j) are called conjuncts,
positive and negative respectively. A conjunct with any sign is denoted ±γ.
Occasionally conjuncts will be written together with the left-hand sides of
the rules from which they originate, as A → αi, A → ¬βj or A → ±γ. The
entire right-hand side of a rule (1) will sometimes be denoted by ϕ, and the
whole rule by A → ϕ.

A Boolean grammar is called a conjunctive grammar [4], if negation is
never used, that is, n = 0 for every rule (1). It is a context-free grammar
if neither negation nor conjunction are allowed, that is, m = 1 and n = 0
for each rule. Another important particular case of Boolean grammars is
formed by linear conjunctive grammars, in which every conjunct is of the
form A → uBv or A → w, with u, v, w ∈ Σ∗, A ∈ N . Linear conjunctive
grammars are equal in power to linear Boolean grammars with conjuncts
A → ±uBv or A → w, as well as to trellis automata, also known as one-way
real-time cellular automata [1, 5].

Intuitively, a rule (1) of a Boolean grammar can be read as follows: every
string w over Σ that satisfies each of the syntactical conditions represented
by α1, . . . , αm and none of the syntactical conditions represented by β1, . . . ,
βm therefore satisfies the condition defined by A. Though this is not yet a
formal definition, this understanding is sufficient to construct grammars.

Example 1. The following grammar generates the language {anbncn |n > 0}:
S → AB&DC
A → aA | ε
B → bBc | ε
C → cC | ε
D → aDb | ε

This grammar, which is actually conjunctive, represents this language as
an intersection of two context-free languages:

{anbncn | n > 0}︸ ︷︷ ︸
L(S)

= {aibjck | j = k}︸ ︷︷ ︸
L(AB)

∩{aibjck | i = j}︸ ︷︷ ︸
L(DC)

A related non-context-free language can be specified by inverting the sign
of one of the conjuncts in this grammar.

2



Example 2. The following Boolean grammar generates the language
{ambncn |m,n > 0,m 6= n}:

S → AB&¬DC
A → aA | ε
B → bBc | ε
C → cC | ε
D → aDb | ε

This grammar is based upon the following representation.

{anbmcm |m,n > 0,m 6= n}︸ ︷︷ ︸
L(S)

= {aibjck | j = k and i 6= j} = L(AB) ∩ L(DC)

Example 3. The following Boolean grammar generates the language
{ww | w ∈ {a, b}∗}:

S → ¬AB&¬BA&C
A → XAX | a
B → XBX | b
C → XXC | ε
X → a | b

According to the intuitive semantics of Boolean grammars described
above, the nonterminals A, B, C and X generate context-free languages

L(A) = {uav | u, v ∈ {a, b}∗, |u| = |v|},
L(B) = {ubv | u, v ∈ {a, b}∗, |u| = |v|}.

Then

L(AB) = {uavxby | u, v, x, y ∈ {a, b}∗, |u| = |x|, |v| = |y|},

in other words, L(AB) is the set of all strings of even length with a mismatch
a on the left and b on the right (in any position). Similarly,

L(BA) = {ubvxay | u, v, x, y ∈ {a, b}∗, |u| = |x|, |v| = |y|}

specifies the mismatch formed by b on the left and a on the right. Then the
rule for S specifies the set of strings of even length without such mismatches:

L(S) = L(AB) ∩ L(BA) ∩ {aa, ab, ba, bb}∗ = {ww | w ∈ {a, b}∗}.

A formal definition of the language generated by a Boolean grammar.
can be given in several different ways [3, 6], which ultimately yield the same
class of languages. We shall use the most straightforward of these definitions,
which begins with the interpretation of a grammar as a system of equations
with formal languages as unknowns:

3



Definition 2. Let G = (Σ, N, P, S) be a Boolean grammar. The system
of language equations associated with G is a resolved system of language
equations over Σ in variables N , in which the equation for each variable
A ∈ N is

A =
⋃

A→α1&...&αm&¬β1&...&¬βn∈P

[ m⋂
i=1

αi ∩
n⋂

j=1

βj

]
(2)

Each instance of a symbol a ∈ Σ in such a system defines a constant language
{a}, while each empty string denotes a constant language {ε}. A solution
of such a system is a vector of languages (. . . , LC , . . .)C∈N , such that the
substitution of LC for C, for all C ∈ N , turns each equation (2) into an
equality.

Now the following restriction is imposed upon these equations, so that
their solutions can be used to define the languages generated by grammars:

Definition 3. Let G = (Σ, N, P, S) be a Boolean grammar, let (2) be the as-
sociated system of language equations. Suppose that for every finite language
M ⊂ Σ∗ (such that for every w ∈ M all substrings of w are also in M) there
exists a unique vector of languages (. . . , LC , . . .)C∈N (LC ⊆ M), such that a
substitution of LC for C, for each C ∈ N , turns every equation (2) into an
equality modulo intersection with M .

Then, for every A ∈ N , the language LG(A) is defined as LA, while the
language generated by the grammar is L(G) = LG(S) = LS.

There exists an unambiguous subclass of Boolean grammars, which gen-
eralizes unambiguous context-free grammars.

Definition 4. A Boolean grammar G = (Σ, N, P, S) is unambiguous if

I. Different rules for every single nonterminal A generate disjoint lan-
guages, that is, for every string w there exists at most one rule

A → α1& . . . &αm&¬β1& . . . &¬βn,

such that w ∈ LG(α1) ∩ . . . ∩ LG(αm) ∩ LG(β1) ∩ . . . ∩ LG(βn).

II. All concatenations are unambiguous, that is, for every conjunct A →
±s1 . . . s` and for every string w there exists at most one factorization
w = u1 . . . u`, such that ui ∈ LG(si) for all i.

While the languages generated by Boolean grammars can be recognized
in cubic time [6] and no better upper bound is known, unambiguous Boolean
grammars allow square-time parsing [8]. However, no proofs of inherent
ambiguity of any languages generated by Boolean grammars are known. It
is known that all linear conjunctive languages have unambiguous grammars.

4



The relation between the families of languages generated by Boolean
grammars (Bool), conjunctive grammars (Conj) and linear conjunctive gram-
mars (LinConj), their unambiguous variants (UnambBool and UnambConj), as
well as other common families of formal languages, is shown in Figure 1
[8]. The rest of the classes in the figure are regular (Reg), linear context-
free (LinCF ), context-free (CF ) and deterministic context-sensitive languages
(DetCS).

Figure 1: The hierarchy of language families.

The following normal form for Boolean grammars, which generalizes
Chomsky normal form for the context-free grammars, is known.

Definition 5. A Boolean grammar G = (Σ, N, P, S) is in the binary normal
form if every rule in P is of the form

A → B1C1& . . . &BmCm&¬D1E1& . . . &¬DnEn&¬ε (m > 1, n > 0)

A → a

S → ε (only if S does not appear in right-hand sides of rules)

Every grammar of this form is well-defined in the sense of Definition 3,
as well as according to other definitions of Boolean grammars [3, 6].

Proposition 1 ([6, 8]). For every Boolean grammar there exists and can be
effectively constructed a Boolean grammar in the binary normal form gener-
ating the same language. Furthermore, if the given grammar is unambiguous,
then so is the constructed grammar.

3 Closure under inverse homomorphisms

Let Σ and Γ be finite alphabets and h : Σ∗ → Γ∗ a homomorphism. We shall
prove:

Theorem 1. For every Boolean grammar (conjunctive grammar) G =
(Γ, N, P, S) there exists a Boolean grammar (conjunctive grammar, respec-
tively) G′ = (Σ, N ′, P ′, S ′) with L(G′) = h−1(L(G)). Furthermore if G is
unambiguous, then G′ is unambiguous as well.

5



We will prove the statement in two steps using the representation h =
h1 ◦ h0, where h1 is non-erasing and h0 is a projection. First we divide the
alphabet as Σ = Σ0 ∪ Σ1, where Σ0 = {a ∈ Σ | h(a) = ε} and Σ1 = {a ∈
Σ | h(a) 6= ε}. Then define h0 : Σ∗ → Σ∗

1, where h0(a0) = ε for all a0 ∈ Σ0

and h0(a) = a for all a ∈ Σ1, and h1 : Σ∗
1 → Γ∗, where h1(a) = h(a) for all

a ∈ Σ1. Now h = h1 ◦ h0 is the requested representation.
Since h−1(K) = h−1

0 (h−1
1 (K)), we can prove Theorem 1 by proving the

statement separately for non-erasing homomorphisms and projections. We
shall do this in Sections 3.1 and 3.2, respectively.

All constructions are done for Boolean grammars. However, it can be
observed that if the original grammar has no negative conjuncts, then the re-
sulting grammar has no negative conjuncts besides those of the form X → ¬ε.
The latter can be eliminated by expressing the language Σ+. Thus the results
apply to conjunctive grammars as well.

3.1 Non-erasing homomorphisms

Let G = (Γ, N, P, S) be a Boolean grammar in the binary normal form and h
a non-erasing homomorphism. We construct a grammar G′ = (Σ, N ′, P ′, S ′)
for the language h−1(L(G)) as follows.

First we define few notions we shall use in formulating G′. Define sets

suff(h(Σ)) = {x | x a proper suffix of some h(a), a ∈ Σ} and

pref(h(Σ)) = {x | x a proper prefix of some h(a), a ∈ Σ}.
For all B, C ∈ N , x ∈ suff(h(Σ)) and y ∈ pref(h(Σ)), let Φ(x, B, C, y) be the
union of the following four sets:

{(x′, C, y) | x = x′′x′; x′, x′′ ∈ Σ+; x′′ ∈ L(B)}, (3a)

{(x,B, ε)(ε, C, y)}, (3b)

{(x,B, y′)a(x′, C, y) | a ∈ Σ; h(a) = y′x′; x′, y′ ∈ Σ+}, (3c)

{(x,B, y′) | y = y′y′′; y′, y′′ ∈ Σ+; y′′ ∈ L(C)}. (3d)

The sets correspond to all possible types of factorizations of xh(w)y as in
the figure.

Now we are ready to construct the grammar G′.
As nonterminals we have the set

N ′ = {(x,A, y) | A ∈ N, x ∈ suff(h(Σ)), y ∈ pref(h(Σ))}.
For every rule A → B1C1& . . . &BmCm&¬D1E1& . . . &¬DnEn&¬ε, in P

and for every x ∈ suff(h(Σ)) and y ∈ pref(h(Σ)), define a corresponding set
of rules P ′

x,A→B1C1&...&BmCm&¬D1E1&...&¬DnEn&¬ε,y. For all αi ∈ Φ(x,Bi, Ci, y),
1 6 i 6 m, this set contains a rule

(x, A, y) → α1& . . . &αn&
(

&
β∈Φ(x,D1,E1,y)

¬β
)
& . . . &

(
&

β∈Φ(x,Dn,En,y)
¬β

)
&¬ε.

(4)

6



h(w)

x

y(I)

h(a)

y (IV)

h(u)x y(II) h(v)

h(w)

y

x h(w)(III) x h(u) h(v)

h(w)

Figure 2: Factorizations of xh(w)y.

Next, for all a ∈ Σ, such that h(a) ∈ Γ, and P contains the rule A → h(a),
define the corresponding set of new rules as P ′

ε,A→h(a),ε =
{
(ε, A, ε) → a

}
.

Define a set P ′
ε of additional rules generating ε as follows. If x ∈

suff(h(Σ)), y ∈ pref(h(Σ)) and xy ∈ LG(A), then P ′
ε contains the rule

(x,A, y) → ε; note that in this case |xy| > 0, except maybe in the case
A = S.

Finally, define the entire set of rules of G′ as

P ′ = P ′
ε ∪

⋃
A→ϕ∈P

⋃

x∈suff(h(Σ))
y∈pref(h(Σ))

P ′
x,A→ϕ,y

Its start symbol is S ′ = (ε, S, ε).
First we have to prove that the constructed grammar G′ is compatible

with the chosen semantics to be sure that it defines a language.

Lemma 1. The system of equations corresponding to G′ has a strongly unique
solution.

Proof. Let M be a finite subword-closed language, it has to be proved that
the solution modulo M is unique. Induction on |M |.

Induction basis: M0 = {ε}. The unique solution modulo M0 is
(x,A, y) = {ε} if xy ∈ LG(A), (x, A, y) = ∅ otherwise.

Induction hypothesis: There is a unique solution modulo M ′.
Induction step: Let M = M ′∪{w}, where w /∈ M ′, but all subwords of

w are in M ′. By the induction hypothesis, the solution modulo M ′ is unique.
Suppose it is not unique modulo M . Then there are solutions (x,A, y) =

Lx,A,y (L for the vector) and (x, A, y) = L′x,A,y (L′ for the vector) that differ
on w. Now there is (x, A, y), such that w ∈ Lx,A,y, but w /∈ L′x,A,y. Choose
(x,A, y) with the least |xy|.

If w ∈ Lx,A,y, then, by the equation for (x,A, y), there exists a rule (4),
such that w ∈ Lαi

for 1 6 i 6 m and w /∈ Lβj
for 1 6 j 6 n, or, in case

|w| = 1, x = y = ε and A → h(w) ∈ P , a rule (ε, A, ε) → w. The latter
case is impossible, because then w would be in L′x,A,y by the same rule. In
the former case, since w /∈ L′x,A,y, it follows that w /∈ L′αi

for some 1 6 i 6 m

7



or w ∈ L′βj
for some 1 6 j 6 n, that is, w ∈ γ(L) and w /∈ γ(L′) for some

B, C ∈ N \ {S} and γ ∈ Φ(x,B, C, y). By the definition of Φ, there are four
cases to consider:

1. If γ = (x′, C, y), then |x′y| < |xy| and, by the choice of (x,A, y),
Lx′,C,y = L′x′,C,y.

2. Consider the case of γ = (x,B, ε)(ε, C, y), that is, w ∈ Lx,B,εLε,C,y

and w /∈ L′x,B,εL
′
ε,C,y. Then there exists a factorization w = uv, with

u ∈ Lx,B,ε and v ∈ Lε,C,y.

If u = ε, then x 6= ε and accordingly w ∈ Lε,C,y and w /∈ L′ε,C,y. Since
|ε · y| < |xy|, the solution differ with respect to w on a variable with
narrower margins, which contradicts the choice of (x, A, y). The case
of v = ε is proved symmetrically.

Suppose u, v 6= ε, then u, v ∈ M ′ and we have by the induction hy-
pothesis that w = uv ∈ L′x,B,εL

′
ε,C,y.

3. w ∈ (x,B, y′)a(x′, C, y)(L). Then there is a factorization w = uav,
with u ∈ Lx,B,y′ and v ∈ Lx′,C,y. Since w /∈ (x,B, y′)a(x′, C, y)(L), it
follows that u /∈ L′x,B,y′ or v /∈ L′x′,C,y, and the solutions differ on a
string in M ′, which again contradicts the assumption.

4. If γ = (x, B, y′), then |xy′| < |xy| and, by the choice of (x,A, y),
Lx,B,y′ = L′x,B,y′ .

Now L′G((x, A, y)) is well-defined, and the statement of correctness of the
construction can be formulated. We will first prove the following correspon-
dence between conjuncts BC and the conjuncts in Φ(x,B, C, y), and between
rules A → ϕ and the rules in P ′

x,A→ϕ,y.

Lemma 2. Let ` > 2 and assume that for all w′ ∈ Σ∗, x′ ∈ suff(h(Σ)), y′ ∈
pref(h(Σ)) and A ∈ N , with |x′h(w′)y′| < `, it holds that x′h(w′)y′ ∈ LG(A)
if and only if w′ ∈ LG′((x

′, A, y′)).
Then for all w ∈ Σ∗, x ∈ suff(h(Σ)) and y ∈ pref(h(Σ)), with |xh(w)y| =

k,

I. For every B,C ∈ N , xh(w)y ∈ LG(BC) if and only if w ∈ LG′(α) for
some α ∈ Φ(x,B,C, y).

II. If additionally w 6= ε, then for every rule A → ϕ in P , xh(w)y ∈ LG(ϕ)
if and only if w ∈ LG′(ψ) for some (x,A, y) → ψ ∈ P ′

x,A→ϕ,y.

Proof. Let us begin with the proof of the first claim.
⇒© Suppose xh(w)y ∈ LG(BC). Then there is a factorization xh(w)y =

z1z2, with z1 ∈ LG(B) and z2 ∈ LG(C). Note that z1, z2 6= ε. There are four
cases to consider:

8



1. z1 = x′, z2 = x′′h(w)y, x = x′x′′

2. z1 = xh(u), z2 = h(v)y, w = uv

3. z1 = xh(u)y′, z2 = x′h(v)y, w = uav, h(a) = y′x′

4. z1 = xh(w)y′, z2 = y′′

In each case one can construct a suitable α:

1. By definition, (x′′, C, y) ∈ Φ(x,B, C, y), which implies w ∈
LG′((x

′′, C, y)) by assumption, since |x′′h(w)y| < `.

2. By definition, (x,B, ε)(ε, C, y) ∈ Φ(x,B, C, y). By assumption,
xh(u) ∈ LG(B) implies u ∈ LG′((x,B, ε)), while h(v)y ∈ LG(C) implies
and v ∈ LG′((ε, C, y)), so that w ∈ LG′((x,B, ε)(ε, C, y)).

3. By definition, (x,B, y′)a(x′, C, y) ∈ Φ(x,B,C, y). Using the assump-
tion, xh(u)y′ ∈ LG(B) implies u ∈ LG′((x,B, y′)) and x′h(v)y ∈ LG(C)
implies v ∈ LG′((x

′, C, y)). Therefore, w ∈ LG′((x,B, y′)a(x′, C, y)).

4. By definition, (x, B, y′) ∈ Φ(x,B,C, y). Then, as in the first case,
w ∈ LG′((x,B, y′)).

⇐© Conversely, let us prove that if w ∈ LG′(α) for some α ∈ Φ(x,B, C, y),
then xh(w)y ∈ LG(BC):

1. If α = (x′, C, y), then, by the definition of Φ, x = x′′x′ and x′′ ∈ LG(B).
Since w ∈ LG′

(
(x′, C, y)

)
and |x′h(w)y| < `, by assumption, x′h(w)y ∈

LG(C). Therefore, xh(w)y = x′′x′h(w)y ∈ LG(BC).

2. If α = (x,B, ε)(ε, C, y), then w = uv for some u ∈ LG′
(
(x,B, ε)

)
and v ∈ LG′

(
(ε, C, y)

)
. Since |xh(u)|, |h(v)y| < `, by the assumption,

xh(u) ∈ LG(B) and h(v)y ∈ LG(C). Concatenating these statements,
we obtain xh(w)y = xh(u)h(v)y ∈ LG(BC).

3. If α = (x,B, y′)a(x′, C, y), then w = uav for some u ∈ LG′
(
(x,B, y′)

)
and v ∈ LG′

(
(x′, C, y)

)
. Then, by the assumption, xh(u)y′ ∈ LG(B)

and x′h(v)y ∈ LG(C). Therefore, xh(w)y = xh(u)h(a)h(v)y =
xh(u)y′x′h(v)y ∈ LG(BC).

4. If α = (x,B, y′), then, by the definition of Φ, y = y′y′′ and y′′ ∈ LG(C).
Then, as in the first case, xh(w)y′ ∈ LG(B) by the assumption, so that
xh(w)y = xh(w)y′y′′ ∈ LG(BC).

This proves the first part of the lemma. Let us then prove the second state-
ment.

Suppose xh(w)y ∈ LG(ϕ), where

ϕ = B1C1& . . . &BmCm&¬D1E1& . . . &¬DnEn&¬ε.

9



Then xh(w)y ∈ LG(BiCi) for 1 6 i 6 m and xh(w)y /∈ LG(DjEj) for
1 6 j 6 n. By the first claim of this lemma, this is equivalent to the
following statement: for every i there exists αi ∈ Φ(x,Bi, Ci, y), such that
w ∈ LG′(αi), and for every j and for every βj ∈ Φ(x,Dj, Ej, y), w /∈ LG′(βj).
If this statement holds, then we have α1, . . . , αn, such that

w ∈ LG′

(
α1& . . . &αm&

(
&

β∈Φ(x,D1,E1,y)
¬β

)
& . . . &

(
&

β∈Φ(x,Dn,En,y)
¬β

))
, (5)

And by definition,

A → α1& . . . &αm&
(

&
β∈Φ(x,D1,E1,y)

¬β
)
& . . . &

(
&

β∈Φ(x,Dn,En,y)
¬β

)
&¬ε ∈ P ′

x,A→ϕ,y.

Conversely, let w ∈ LG′(ψ) for some A → ψ ∈ P ′
x,A→ϕ,y. Now

ψ = α1& . . . &αn&
(

&
β∈Φ(x,D1,E1,y)

¬β
)
& . . . &

(
&

β∈Φ(x,Dn,En,y)
¬β

)
&¬ε,

where αi ∈ Φ(x,Bi, Ci, y) and

w ∈ LG′(α1& . . . &αn&
(

&
β∈Φ(x,D1,E1,y)

¬β
)
& . . . &

(
&

β∈Φ(x,Dn,En,y)
¬β

)
&¬ε).

Now by construction

ϕ = B1C1& . . . &BmCm&¬D1E1& . . . &¬DnEn&¬ε,

and by the first claim of this lemma, xh(w)y ∈ LG(BiCi) for 1 6 i 6 m and
xh(w)y /∈ LG(DjEj) for 1 6 j 6 n. Therefore, xh(w)y ∈ LG(ϕ).

And then we proceed to the actual proof for the correctness of the con-
struction.

Lemma 3. Let w ∈ Σ∗, x ∈ suff(h(Σ)) and y ∈ pref(h(Σ)). Then, for every
A ∈ N , xh(w)y ∈ LG(A) if and only if w ∈ LG′((x,A, y)).

Proof. The proof is an induction on |xh(w)y|.
Induction basis: First consider the case |xh(w)y| = 0. By the construc-

tion of the grammar G′, ε ∈ LG′((x,A, y)) if and only if xy ∈ LG(A). Since
xy = xh(w)y = ε and w = ε, the claim is proved.

In the case |xh(w)y| = 1 there are two possibilities.

• If |xy| = 1 and thus w = ε, then, by the construction of G′, xh(w)y =
xy ∈ LG(A) if and only if there is a rule (x,A, y) → ε in P ′.

• Suppose |h(w)| = 1 and thus x = y = ε and w = a for some a ∈ Σ.
If h(a) ∈ LG(A), then there is a rule (ε, A, ε) → a in P ′, hence a ∈
LG′((ε, A, ε)).

10



Conversely, if a ∈ LG′((ε, A, ε)), then there is is rule for (ε, A, ε) in P ′

which generates a. If this is a rule of the form (ε, A, ε) → a, then there
is a rule A → h(a) in P .

Let us show that no long rule of the form (4) for (ε, A, ε) can generate
a with |h(a)| = 1. If there were such a rule, there would be a ∈ LG′(α)
for some α ∈ Φ(ε,B,C, ε), where BC is a positive conjunct in some
rule for A in P . Note that B, C 6= S because of the normal form.
Consider the four possible cases for α:

1. Case α = (x′, C, ε). This is impossible, since x′ would have to be
a proper suffix of ε.

2. Case α = (ε,B, ε)(ε, C, ε). There would have to be ε ∈
LG′((ε,B, ε)) or ε ∈ LG′((ε, C, ε)), which is impossible, since this
would hold only for B = S or C = S.

3. Case α = (ε,B, x′)a(y′, C, ε). In this case one of x′ or y′ would
have to be a nonempty proper substring of h(a), which is impos-
sible by |h(a)| = 1.

4. Case α = (ε, B, y′). This is impossible, since y′ would have to be
a proper suffix of ε.

Induction hypothesis: Suppose the claim holds for strings shorter than
xh(w)y, where |xh(w)y| > 2.

Induction step: Let xh(w)y ∈ LG(A). Now if w = ε, then there is a
rule (x,A, y) → ε in P ′. If w 6= ε, then xh(w)y ∈ LG(ϕ) for some A → ϕ ∈ P
and by Lemma 2(part II) there is a rule (x,A, y) → ψ ∈ P ′

x,A→ϕ,y for which

w ∈ LG′(ψ). This means w ∈ LG′
(
(x,A, y)

)
.

Conversely, let w ∈ LG′
(
(x, A, y)

)
. If w = ε, then xy ∈ LG(A) by con-

struction. If w 6= ε, then there is a rule (x,A, y) → ψ with w ∈ LG′(ψ). Now
(x,A, y) → ψ ∈ P ′

x,A→ϕ,y for some A → ϕ ∈ P and by Lemma 2(part II)
xh(w)y ∈ LG(ϕ). Hence xh(w)y ∈ LG(A).

In particular, w ∈ LG′((ε, S, ε)) = L(G′) if and only if xh(w)y ∈ LG(S) =
L(G). In other words L(G′) = h−1(L(G)). We will then show that the
construction gives an unambiguous grammar if the original grammar is un-
ambiguous.

Lemma 4. If G is unambiguous, then G′ is unambiguous as well.

Proof. Let us first prove that the factorizations in conjuncts of G′ are unique.
Consider each conjunct in each rule. Only conjuncts of the form (3b) and
(3c) that come from ϕ have to be considered, since no other conjuncts in G′

have multiple nonterminals.

(3b) Suppose w ∈ LG′
(
(x,B, ε)

)
LG′

(
(ε, C, y)

)
admits multiple factoriza-

tions. Let w1, w3 ∈ LG′
(
(x,B, ε)

)
and w2, w4 ∈ LG′

(
(ε, C, y)

)
, with

11



w = w1w2 = w3w4. Then, by Lemma 3 four times, xh(w1), xh(w3) ∈
LG(B) and h(w2)y, h(w4)y ∈ LG(C). Concatenating these strings, we
obtain xh(w1)h(w2)y, xh(w3)h(w4)y ∈ LG(B)LG(C). Since xh(w)y =
xh(w1)h(w2)y = xh(w3)h(w4)y, these are two factorizations of the same
string, and as a factorization of a string in LG(B) ·LG(C) is unique by
assumption, xh(w1) must be equal to xh(w3). Because one of w1, w3 is
a prefix of the other and h is nonerasing, it follows that w1 and w3 are
equal.

(3c) Suppose w ∈ LG′
(
(x,B, y′)

)
aLG′

(
(x′, C, y)

)
admits multiple factor-

izations. Let w1, w3 ∈ LG′
(
(x,B, y′)

)
and w2, w4 ∈ LG′

(
(x′, C, y)

)
,

with w = w1aw2 = w3aw4. Then, by Lemma 3 four times,
xh(w1)y

′, xh(w3)y
′ ∈ LG(B) and x′h(w2)y, x′h(w4)y ∈ LG(C). Con-

catenating these strings, we obtain xh(w)y = xh(w1)y
′x′h(w2)y =

xh(w3)y
′x′h(w4)y ∈ LG(B)LG(C). Again, the factorization of every

string into LG(B) · LG(C) is unique, hence xh(w1)y
′ must be equal to

xh(w3)y
′, and, as in the previous case, w1 = w3.

To prove that different rules for (x,A, y) generate disjoint languages, con-
sider a word w in LG′

(
(x,A, y)

)
and suppose there are two different rules of

the form (4) that generate w. Since the original grammar is unambiguous, the
corresponding word xh(w)y ∈ LG(A) is generated by a unique rule A → ϕ
in G. By Lemma 2(part II), all rules in G′ generating w are in P ′

x,A→ϕ,y. The
negative conjuncts of all rules in this set are identical, so the two rules gen-
erating w differ on a pair of positive conjuncts α1, α2 ∈ Φ(x,B, C, y), where
BC is one of the positive conjuncts in A → ϕ.

Thus we have w ∈ LG′(α1) and w ∈ LG′(α2). There is a unique factor-
ization of xh(w)y into z1z2, with z1 ∈ LG(B) and z2 ∈ LG(C).

We have 9 possible cases of distinct α1 and α2.

1. Case α1 = (x′1, C, y) and α2 = (x′2, C, y), with x′1 6= x′2. Now the
definition (3a) and Lemma 3 would give z1 = x · (x′1)−1 = x · (x′2)−1 and
z2 = x′1h(w)y = x′2h(w)y, which is a contradiction since x · (x′1)−1 6=
x · (x′2)−1.

2. Case α1 = (x′1, C, y) and α2 = (x, B, ε)(ε, C, y). Now the definitions
(3a) and (3b), and Lemma 3 would give z1 = x · (x′1)−1 = xh(u) and
z2 = x′1h(w)y = h(v)y, where u and v are subwords of w generated by
(x,B, ε) and (ε, C, y) such that uv = w. Since |x · (x′1)−1| < |xh(u)|,
this is a contradiction.

3. Case α1 = (x′1, C, y) and α2 = (x,B, y′2)a2(x
′
2, C, y). Now the defini-

tions (3a) and (3c), and Lemma 3 would give z1 = x ·(x′1)−1 = xh(u2)y
′
2

and z2 = x′1h(w)y = x′2h(v2)y, where u2 and v2 are subwords of w gen-
erated by (x,B, y′2) and (x′2, C, y) such that u2a2v2 = w. This is a
contradiction, because |x · (x′1)−1| < |xh(u2)y

′
2|.

12



4. Case α1 = (x′1, C, y) and α2 = (x,B, y′2). Now the definitions (3a)
and (3d), and Lemma 3 would give z1 = x · (x′1)−1 = xh(w)y′2 and
z2 = x′1h(w)y = (y′2)

−1 · y, which is a contradiction since |x · (x′1)−1| <
|xh(w)y′2|.

5. Case α1 = (x, B, ε)(ε, C, y) and α2 = (x,B, y′2)a2(x
′
2, C, y). Now the

definitions (3b) and (3c), and Lemma 3 would give z1 = xh(u1) =
xh(u2)y

′
2 and z2 = h(v1)y = x′2h(v2)y, where u1 and v1 are subwords of

w generated by (x,B, ε) and (ε, C, y) such that u1v1 = w, and u2 and
v2 are subwords of w generated by (x,B, y′2) and (x′2, C, y) such that
u2a2v2 = w. Now one of u1 and u2 is a prefix of the other. If |u1| 6 |u2|,
then |xh(u1)| < |xh(u2)y

′
2| and if |u2| < |u1|, then |u2a2| 6 |u1| and

thus |xh(u1)| > |xh(u2)y
′
2|. We have a contradiction.

6. Case α1 = (x,B, ε)(ε, C, y) and α2 = (x,B, y′2): symmetric to case 2.

7. Case α1 = (x,B, y′1)a1(x
′
1, C, y) and α2 = (x,B, y′2)a2(x

′
2, C, y), where

a1 6= a2, x′1 6= x′2 or y′1 6= y′2. Now the definition (3c), and Lemma 3
would give z1 = xh(u1)y

′
1 = xh(u2)y

′
2 and z2 = x′1h(v1)y = x′2h(v2)y,

where, for i ∈ {1, 2}, ui and vi are subwords of w generated by (x,B, y′i)
and (x′i, C, y), such that uiaivi = w. If a1 6= a2, then one of u1 and u2

is a proper prefix of the other, say |u1| < |u2|, and thus xh(u1)y
′
1 <

xh(u2)y
′
2, which forms a contradiction. On the other hand, if a1 = a2

and u1 = u2, then |y′1| 6= |y′2| and |xh(u1)y
′
1| 6= |xh(u2)y

′
2|, which is

again a contradiction.

8. Case α1 = (x,B, y′1)a1(x
′
1, C, y) and α2 = (x,B, y′2). Now the defini-

tions (3b) and (3d), and Lemma 3 would give z1 = xh(u1)y
′
1 = xh(w)y′2

and z2 = x′1h(v1)y = (y′2)
−1y, where u1 and v1 are subwords of w gen-

erated by (x,B, y′1) and (x′1, C, y) such that u1a1v1 = w, which is a
contradiction since |x′1h(v1)y| > |(y′2)−1y|.

9. The case of α1 = (x,B, y′1) and α2 = (x,C, y′2), with y′1 6= y′2, is sym-
metric to case 1.

Thus every word in LG′((x,A, y)) is generated by exactly one rule.

3.2 Projections

Let Σ = Σ0 ∪ Σ1 be an alphabet and h0 : Σ∗ → Σ∗
1 a projection, that is,

h0(a0) = ε for all a0 ∈ Σ0 and h0(a1) = a1 for all a1 ∈ Σ1.

Let G = (Σ1, N, P, S) be a Boolean grammar in binary normal form. We
will construct a grammar G′ = (Σ, N ′, P0, S

′) for the language h−1
0 (L(G)).

13



Let N ′ = N ∪ {S ′, T} be the set of nonterminals. Then P0 contains rules

S ′ → TST (6a)

T → a0T | ε (for all a0 ∈ Σ0) (6b)

A → B1TC1& . . . &BmTCm&¬D1TE1& . . . &¬DnTEn&¬ε

(for all A → B1C1& . . . &BmCm&¬D1E1& . . . &¬DnEn&¬ε ∈ P ) (6c)

A → a (for all A → a ∈ P ) (6d)

It is easy to see that the constructed grammar is well-defined:

Lemma 5. The system of equations corresponding to G′ has a strongly unique
solution.

Sketch of a proof. For every finite subword-closed language M it has to be
proved that the solution modulo M is unique. Induction on |M |.

Induction basis. The unique solution modulo {ε} is has LA = ∅ for all
A ∈ N \ {S}, LT = {ε} and LS = {ε | S → ε ∈ P}.

Induction step. Let M = M ′∪{w}, with w /∈ M ′ and with all subwords
of w in M ′. By the induction hypothesis, the solution modulo M ′ is unique.

Let (LS′ , LS, . . . , LA, . . .) be any solution modulo M . Then the member-
ship of w in LA depends upon its membership in concatenations of the form
LB · LT · LC , with B, C ∈ N . Since ε /∈ LB, LC , this depends upon the
membership of words shorter than w in these languages, which is uniquely
defined by assumption.

In proving the construction correct, we first prove a correspondence of
nonterminals in G and G′.

Lemma 6. For every A ∈ N , w ∈ LG′(A) if and only if h0(w) ∈ LG(A) and
w ∈ Σ1 ∪ Σ1(Σ0 ∪ Σ1)

∗Σ1.

Proof. Induction on |w|.
Basis: |w| = 1. If w = a ∈ Σ1. Now a ∈ LG′(A) if and only if there is a

rule A → a in P ′, which, by (6d) exists if and only if h0(a) = a ∈ LG(A).
On the other hand no a0 ∈ Σ0 can be in LG′(A), since no rule of the form

(6d) generate them, and all words generated by rules of the form (6c) are of
length at least 2.

Induction hypothesis: w′ ∈ LG′(A) if and only if h0(w
′) ∈ LG(A) and

w′ ∈ Σ1 ∪ Σ1(Σ0 ∪ Σ1)
∗Σ1 for |w′| < |w|.

Induction step: Let us first prove that under the induction hypothesis

w ∈ LG′(BTC) if and only if h0(w) ∈ LG(BC). (7)

If w ∈ LG′(BTC), there is a factorization w = uxv, where u ∈ LG′(B),
x ∈ LG′(T ) and v ∈ LG′(C). Then u, v 6= ε, and hence |u|, |v| < |w|. By the

14



induction hypothesis for u and v, h0(u) ∈ LG(B) and h0(v) ∈ LG(C). So
h0(uxv) = h0(u)h0(x)h0(v) = h0(u)h0(v) ∈ LG(BC).

Conversely if h0(w) ∈ LG(BC), there is a factorization w = u′v′, such
that h0(u

′) ∈ LG(B) and h0(v
′) ∈ LG(C). This implies u′, v′ 6= ε and thus

|u′|, |v′| < |w|. Let x ∈ Σ∗
0 be the longest suffix of u′ comprised of symbols

from Σ0, that is, u′ = ux with u ∈ Σ1 ∪ Σ1(Σ0 ∪ Σ1)
∗Σ1. Then, by the

induction hypothesis, u ∈ LG′(B). Similarly, let y ∈ Σ∗
0 be the longest prefix

of v′ containing only symbols from Σ0: we have v′ = yv with v ∈ Σ1∪Σ1(Σ0∪
Σ1)

∗Σ1, and the induction hypothesis gives v ∈ LG′(C). Combining these,
we obtain w = uxyv ∈ LG′(BTC), which completes the proof of (7).

To prove the induction step, first consider that w ∈ LG′(A) is equivalent to
the existence of a rule (6c) in P ′, such that w ∈ LG′(BiTCi) for all applicable
i and w /∈ LG′(DjTEj) for all applicable j. Such a rule exists if and only if
P contains a rule

A → B1C1& . . . &BmCm&¬D1E1& . . . &¬DnEn&¬ε. (8)

On the other hand, h0(w) ∈ LG(A) holds if and only if there exists a rule
(8) with h0(w) ∈ LG(BiCi) and h0(w) /∈ LG(DjEj). Now, by (7), w ∈
LG′(BiTCi) holds if and only if h0(w) ∈ LG(BiCi), and w /∈ LG′(DjTEj)
holds if and only if h0(w) /∈ LG(DjEj). Therefore, w ∈ LG′(A) is equivalent
to h0(w) ∈ LG(A).

Now we are ready to prove the construction correct.

Lemma 7. For the constructed grammar G′ it holds that L(G′) = h−1
0 (L(G)).

Proof. Let w ∈ LG′(S
′). By Lemma 6, this is equivalent with w = xw′y,

where x, y ∈ Σ∗
0, w′ ∈ Σ1∪Σ1(Σ0∪Σ1)

∗Σ1 and h0(w
′) ∈ LG(S). Furthermore,

this is equivalent with h0(w) ∈ LG(S).

We will complete the proof of Theorem 1 by showing that also the con-
struction in this section preserves unambiguity.

Lemma 8. If G is unambiguous, then G′ is also unambiguous.

Proof. If w ∈ LG′(TST ), then w = xw′y, where x, y ∈ Σ∗
0 and w′ ∈ Σ1 ∪

Σ1(Σ0 ∪Σ1)
∗Σ1, is the unique factorization of w with respect to LG′(T ) and

LG′(S).
All the other conjuncts that have multiple nonterminals are of the form

BTC. So, let w ∈ LG′(BTC). Suppose w = u1x1v1 = u2x2v2, with u1, u2 ∈
LG′(B), x1, x2 ∈ LG′(T ) and v1, v2 ∈ LG′(C). Then by Lemma 6, h0(w) =
h0(u1v1) = h0(u2v2) ∈ LG(BC). In addition, u1, u2 ∈ Σ1 ∪ Σ1(Σ0 ∪ Σ1)

∗Σ1.
It follows that if |u1| < |u2|, then also |h0(u1)| < |h0(u2)|. This means there
would be two different factorizations of h0(w) with respect to LG(B) and
LG(C), which contradicts the unambiguity of G. This proves that conjuncts
of G′ yield unique factorizations.

Since the rules (6c) of G′ are in one to one correspondence with long rules
of G, the languages generated by these are disjoint.

15



4 Conclusion

All known closure properties of Boolean grammars and their subfamilies are
given in Table 1. The bottom half of the last column has been established
in this paper. The closure properties of the unambiguous families remain to
be studied. In addition, it remains unknown whether conjunctive languages
are closed under complementation.

∪ ∩ ∼ · ∗ R h hε-free h−1

Reg + + + + + + + + +
LinCF + − − − − + + + +
CF + − − + + + + + +
LinConj + + + [5] − − [5] + − − + [2]
UnambConj ? + ? ? ? + − ? +
UnambBool + + + ? ? + − ? +
Conj + + ? + + + − ? +
Bool + + + + + + − ? +

Table 1: Closure properties of Boolean grammars, compared to other classes.

Acknowledgements

Research supported by the Academy of Finland under grant 118540.

References

[1] K. Culik II, J. Gruska, A. Salomaa, “Systolic trellis automata”, I–II,
International Journal of Computer Mathematics, 15 (1984), 195–212
and 16 (1984), 3–22.

[2] K. Culik II, J. Gruska, A. Salomaa, “Systolic trellis automata: stability,
decidability and complexity”, Information and Control, 71 (1986) 218–
230.

[3] V. Kountouriotis, Ch. Nomikos, P. Rondogiannis, “Well-founded seman-
tics for Boolean grammars”, Developments in Language Theory (DLT
2006, Santa Barbara, USA, June 26–29, 2006), LNCS 4036, 203–214.

[4] A. Okhotin, “Conjunctive grammars”, Journal of Automata, Languages
and Combinatorics, 6:4 (2001), 519–535.

[5] A. Okhotin, “On the equivalence of linear conjunctive grammars to
trellis automata”, RAIRO Informatique Théorique et Applications, 38:1
(2004), 69–88.

16

http://dx.doi.org/10.1007/11779148_19�
http://dx.doi.org/10.1007/11779148_19�
http://dx.doi.org/10.1051/ita:2004004�
http://dx.doi.org/10.1051/ita:2004004�
http://www.edpsciences.org/ita�


[6] A. Okhotin, “Boolean grammars”, Information and Computation, 194:1
(2004), 19–48.

[7] A. Okhotin, “Nine open problems for conjunctive and Boolean gram-
mars”, Bulletin of the EATCS, 91 (2007), 96–119.

[8] A. Okhotin, “Unambiguous Boolean grammars”, TUCS Technical Re-
port No 802, Turku Centre for Computer Science, Turku, Finland, Jan-
uary 2007; also in Proceedings of LATA 2007 (Tarragona, Spain).

17

http://dx.doi.org/10.1016/j.ic.2004.03.006�


Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematical Sciences

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN 978–952–12–1965–8
ISSN 1239-1891


