
Artur Jeż | Alexander Okhotin

Complexity of solutions of equations
over sets of numbers

TUCS Technical Report
No 847, December 2007

Complexity of solutions of equations
over sets of numbers

Artur Jeż
Institute of Computer Science,
University of WrocÃlaw,
50–383 Wroclaw, Poland
aje@ii.uni.wroc.pl

Alexander Okhotin
Academy of Finland, and
Department of Mathematics, University of Turku, and
Turku Centre for Computer Science
Turku FIN–20014, Finland
alexander.okhotin@utu.fi

TUCS Technical Report

No 847, December 2007

Abstract

Systems of equations of the form Xi = ϕi(X1, . . . , Xn) (1 6 i 6 n) are
considered, in which the unknowns are sets of natural numbers. Expressions
ϕi may contain the operations of union, intersection and pairwise sum Y +
Z = {y + z | y ∈ Y, z ∈ Z}. These equations can be regarded as language
equations or conjunctive grammars over a one-letter alphabet. A system with
an EXPTIME-complete least solution is constructed in the paper, and it is
established that least solutions of all such systems are in EXPTIME. The
general membership problem for these equations is proved to be EXPTIME-
complete.

Keywords: Language equations, integer expressions, conjunctive grammars,
computational complexity

TUCS Laboratory
Discrete Mathematics for Information Technology

1 Introduction

The study of expressions over sets of numbers and of the computational com-
plexity of their properties began in the paper by Stockmeyer and Meyer [17],
who considered subsets of N0 = {0, 1, 2, . . .} as formal languages over a one-
letter alphabet. In this case, concatenation of languages turns into a pairwise
addition of elements of sets: X +Y = {x+y |x ∈ X, y ∈ Y }. Stockmeyer and
Meyer established that the membership problem for expressions with union,
intersection and addition is NP-complete.

Some extensions of this result were obtained by Yang [18], who considered
integer circuits (that is, expressions in which subexpressions may be shared)
with one more operation of pairwise multiplication, and established similar
complexity results. A systematic study of complexity of expressions and
circuits with different sets of operations was carried out by McKenzie and
Wagner [9, 10].

In this paper we consider equations over sets of natural numbers, which
are a more general device than expressions and circuits, and study the com-
putational complexity of their least solutions, as well as of their membership
problem. These equations naturally correspond to language equations over a
one-letter alphabet. Language equations have recently become an active area
of research, see a recent survey by Kunc [8]. In particular, unexpected hard-
ness results on language equations have been obtained by Kunc [7] and by
Okhotin [15, 16], and this connection gives another motivation for our study.
Recent results by Jeż [5] on the expressive power of conjunctive grammars
provide a technical foundation for our results.

We consider equations in the resolved form

X1 = ϕ1(X1, . . . , Xn)
...

Xn = ϕn(X1, . . . , Xn)

(*)

in which every variable Xi assumes value of a set of nonnegative integers.
The right-hand side ϕi of each equation may contain the operations of union,
intersection and +, as well as singleton constants. Every such system has a
least solution with respect to componentwise inclusion, which can be obtained
by fixpoint iteration. Our result, established in Section 3, is a construction
of a system (*), such that testing the membership of numbers in its least
solution is an EXPTIME-hard problem (with the numbers given in binary
notation). The result is obtained by a new kind of arithmetization of an
alternating linear-space Turing machine. It is also shown that for every
system (*) the membership of numbers in its least solution can be tested in
exponential time, which makes the constructed set the hardest.

Let us compare our result to the existing results on expressions and cir-
cuits on sets of numbers. Previous research was concerned with the complex-
ity of the general membership problem, where it was sufficient to encode an

1

instance of some hard problem for numbers in an expression or a circuit. In
our case, the task is to construct a system that represents a class of problems,
while instances of that problem are to be encoded as numbers.

As compared to the research on language equations, our present approach
studies a similar problem of constructing a representation of a hard set
(cf. Kunc [7], Okhotin [15, 14], Jeż [5]). However, while encoding a com-
putation of a Turing machine as a string over {a, b} is an ordinary task, in
our case we have to encode similar objects as numbers, that is, as strings
over a one-letter alphabet. These strings have no apparent structure, and
hence the proposed arithmetization is quite unobvious.

This result allows us to establish the complexity of the general member-
ship problem for equations with {∪,∩, +}, which is stated as follows: “Given
a system and a number n > 0 in binary notation, determine whether n is
in the first component of the least solution of the system”. For integer ex-
pressions and integer circuits with the operations {∪,∩, +}, it is known from
Stockmeyer and Meyer [17] and from McKenzie and Wagner [9, 10] that a
similar problem is PSPACE-complete. Another weaker model are equations
with {∪, +}, that is, without intersection, for which the corresponding prob-
lem is NP-complete due to the result of Huynh [4] on the commutative case
of the context-free grammars. In our case of equations with {∪,∩, +}, the
general membership problem is EXPTIME-complete, which is established in
Section 4. An exponential algorithm for solving this problem is given by a
parsing algorithm on conjunctive grammars [13].

2 Language equations

and conjunctive grammars

While our results are on the complexity of equations in sets of numbers, our
methods are derived from the domain of formal language theory, in particular,
from some recent results on language equations.

In language equations, the unknowns are formal languages over an alpha-
bet Σ. If |Σ| = 1, they coincide with equations over sets of numbers, while for
larger alphabets they constitute a more general notion. The main object of
this study are equations of the resolved form (*), in which variables assume
values of sets of non-negative integers, and the right-hand sides may contain
the operations of union, intersection and addition of sets. These equations
obviously correspond to language equations over a one-letter alphabet with
the operations of union, intersection and concatenation, and the recent re-
sults on language equations of this kind provide a theoretical foundation, as
well as a second motivation, for the present research.

The first type of language equations to be studied were equations of the
same form (*) containing union and concatenation, but no intersection: Gins-
burg and Rice [3] established that these equations provide a natural semantics

2

for the context-free grammars. Equations with added intersection therefore
constitute a generalization of the context-free grammars.

Definition 1 (Okhotin [12]). A conjunctive grammar is a quadruple G =
(Σ, N, P, S), in which Σ and N are disjoint finite non-empty sets of terminal
and nonterminal symbols respectively; P is a finite set of grammar rules, each
of the form

A → α1& . . . &αn (where A ∈ N , n > 1 and α1, . . . , αn ∈ (Σ ∪N)∗)

while S ∈ N is a nonterminal designated as the start symbol.
The semantics of conjunctive grammars is defined by the least solution of

the following system of language equations:

A =
⋃

A→α1&...&αm∈P

m⋂
i=1

αi (for all A ∈ N) (1)

The component corresponding to each A ∈ N is then denoted by LG(A), and
L(G) is defined as LG(S).

The operations used in the right-hand sides of systems (1) are union,
intersection and concatenation. Since they are monotone and continuous, a
least solution always exists and can be obtained by fixpoint iteration as

⊔
i>0

ϕi(∅, . . . ,∅), (2)

where ϕ is the right-hand side of (1) as a vector operator on |N |-tuples of
languages, while t denotes pairwise union of vectors of sets.

An equivalent definition of conjunctive grammars can be given using term
rewriting [12], which generalizes Chomsky’s word rewriting. The importance
of these grammars lies with the fact that their expressive power is substan-
tially greater than that of the context-free grammars, while the generated
languages can still be parsed in time O(n3), and the practical context-free
parsing algorithms, such as recursive descent and generalized LR, admit gen-
eralization to conjunctive grammars without an increase in their complexity.

The question of whether conjunctive grammars can generate any non-
regular unary language has been an open problem for some years, until
recently solved by Jeż [5], who constructed a grammar for the language
{a4n | n > 0}. Let us reformulate this grammar as the following resolved
system of four equations over sets of numbers:

Example 1 (Jeż [5]). The system

X1 =
(
(X2 + X2) ∩ (X1 + X3)

) ∪ {1}
X2 =

(
(X12 + X2) ∩ (X1 + X1)

) ∪ {2}
X3 =

(
(X12 + X12) ∩ (X1 + X2)

) ∪ {3}
X12 =

(
(X3 + X3) ∩ (X1 + X2)

)

has least solution Xi = {` | base-4 notation of ` is i0 . . . 0}, for i = 1, 2, 3, 12.

3

Sets of this kind can be conveniently specified by regular expressions for
the corresponding sets of base-k notations of numbers, which in this case
are 10∗, 20∗, 30∗ and 120∗, respectively. In the following we shall omit some
parentheses in the right-hand sides of equations, and assume the following de-
fault precedence of operations: addition has the highest precedence, followed
by intersection, and then by union with the least precedence.

Using the same technique in a more elaborate construction, a general the-
orem on the expressive power of unary conjunctive grammars was established.
It can be reformulated for equations over sets of numbers as follows:

Theorem 1 (Jeż [5]). For every k > 2 and for every finite automaton M
over the alphabet {0, . . . , k − 1} there exists a system of resolved language
equations over N0 using ∪,∩, +, such that its least solution is

(S1, S2, . . . , Sn),

where Si ⊆ N0 and S1 = {` | k-ary notation of ` is in L(M)}.
Let us note in passing a recent paper by Jeż and Okhotin [6] establishing

a generalization of this result to a larger family of automata recognizing
positional notations.

Though representing sets of numbers with a regular positional notation
using this type of formal grammars was an unexpected and strong result in
terms of language theory, it has no implications on computational complex-
ity, as all these sets are computationally easy. More general representation
theorem of Jeż and Okhotin [6] also does not imply any better complexity re-
sults than P-completeness, which, as the present paper shows, is much below
the actual complexity of these equations.

Therefore, a new method of constructing such equations is needed to
understand their complexity. This step is made in the next section, which
introduces an arithmetization technique based upon addition of sets of num-
bers.

3 Representing an EXPTIME-complete

language

In this section it will be shown that languages defined by least solutions of re-
solved language equations using +, ∪ and ∩ can be EXPTIME-complete, and
this is the hardest language in this family. Denote this family by EQ(∪,∩, +).

Theorem 2. The family EQ(∪,∩, +) is contained in EXPTIME and con-
tains an EXPTIME-complete language.

The proof is by constructing such a system of equations. The given
system encodes a computation of a linear-bounded alternating Turing ma-
chine (ATM) It is known that such machines can recognize some EXPTIME-
complete languages [2].

4

In our case we shall consider ATMs operating on a circular tape and
moving to the right at every step. Its tape originally contains the input word,
and the squares containing it constitute all space available to the machine.
Obviously, such machines are as powerful as linear-bounded ATMs of the
general form.

Formally, such a machine is defined as M = (Ω, Γ, QE, QA, δ, q0, qfin),
where Ω is the input alphabet, Γ = {a0, a1, . . . , amax} ⊃ Ω is the tape alpha-
bet, QE and QA are disjoint sets of existential and universal states, respec-
tively, Q = QE ∪ QA and q0, qfin ∈ Q. Given an input w ∈ Ω+, M starts in
state q0 with the head over the first symbol of w. The transition function is
δ : Q × Γ → 2Q×Γ, and the head is moved one symbol to the right at every
step. Once the head moves beyond the right-most symbol, it is moved back
over the first symbol of w, maintaining its current state; this implements a
circular tape. For technical reasons, assume that (q, a′) /∈ δ(q, a) for all q ∈ Q
and a, a′ ∈ Σ, (that is, the machine never stays in the same state), and that
δ(q, a) 6= ∅ for all q ∈ QA and a ∈ Σ.

Our construction of a system of equations over sets of numbers simulat-
ing a computation is based upon representing instantaneous descriptions of
the ATM as numbers. We shall think of these numbers as written in base-
(8 + |Q|+ max(|Q|+ 7, |Γ|)) positional notation, and the entire argument is
based upon mapping the symbols used by the machine to digits, and then
using addition to manipulate individual digits in the positional notation of
numbers. It must be noted that this positional notation is only a tool for
our understanding of the constructions, while the actual equations deals with
numbers as they are.

Let Σ = {0, 1, . . . , 7 + |Q|+ max(|Q|+ 7, |Γ|)} be the alphabet of digits,
and define the mapping of symbols to digits, 〈·〉 : Q ∪ Γ → Σ, as follows:

〈qi〉 = 7 + i (for qi ∈ Q)

〈ai〉 = 7 + |Q|+ i (for ai ∈ Γ)

Furthermore, let 〈Q〉 = {〈q〉 | q ∈ Q} and 〈Γ〉 = {〈a〉 | a ∈ Γ}. Now the
tape of the ATM containing symbols ai1 . . . ain , with the head over the j-th
symbol and the machine in state q, is represented as the following string of
digits:

0〈ai1〉 . . . 0〈aij−1
〉〈q〉〈aij〉0〈aij+1

〉 . . . 0〈ain〉0 ∈ Σ∗

For technical reasons, configurations in which the head has just moved over
the last symbol but has not yet jumped to the first position are considered
separately, and will be represented as strings of the form

0〈ai1〉 . . . 0〈ain〉〈q〉,

where q is the current state. Note that digits denoting letters are written
only in even positions, while odd positions are reserved for the states of the

5

Turing machine. The set of all strings of digits representing valid encodings
of tapes is specified by the following regular expression over Σ:

Tape = (0〈Γ〉)∗〈Q〉(〈Γ〉0)∗ \ 〈Q〉

The set Tape should be a considered as a formal language over Σ, which will
be used later as a part of representations of some sets of numbers. Subsets
of this set representing tapes with different states will be denoted as follows:

Tapeu = {w | w ∈ Tape, u is a substring of w}
Tape`

u = {w | w ∈ Tape, u is a prefix of w}

Besides the contents of the tape, the encoding for Turing machine con-
figurations uses a counter of rotations of the circular tape. This counter
specifies the number of passes through the tape the machine is still allowed
to make before it must halt. It is represented in binary notation using digits
{0, 1}, and the set of valid counter representations is

Counter = 1{0, 1}∗

Normally the counter uses only digits {0, 1}, but in order to implement the
incrementation of the counter we shall use strings with one digit 2 represent-
ing zero with carry. The set of valid representations of counters with a carry
is

Counter′ = 1{0, 1}∗2{0, 1}∗ ∪ 2{0, 1}∗

For every string ck−1 . . . c0 ∈ Counter∪Counter′, define its value as

Value(ck−1 . . . c0) =
k−1∑
j=0

cj · 2j.

Now define the mapping from configurations of the Turing machine to
numbers. A configuration with the tape contents, head position and current
state given by a string of digits w ∈ Tape, and with the counter value given
by x ∈ Counter is represented by a string of digits

x55w,

where two marker digits 55 separate the values. This string of digits in
base-|Σ| positional notation specifies a certain number, which accordingly
represents the configuration.

The key property of this encoding is that every transition of the ATM
reduces the numerical value of its configuration. Indeed, if the head is moved
to the right, then a digit 〈q〉 is replaced with 0 and all other modifications
are done on less signigicant digits. If the head jumps from the end to the
beginning, then the counter is decremented, and since the counter occupies

6

more significant positions in the number than the tape, this transition de-
creases the value of the configuration as well. This monotonicity allows us
to encode dependence of configurations on each other by using addition of
nonnegative numbers only.

The construction of equations representing the computation of the ATM
begins with some expressions that will be used in the right-hand sides of
equations. These expressions contain some constant sets of numbers given
as regular languages over the alphabet Σ. Every such language represents
the set of all numbers with |Σ|-ary notation of the given form. According
to Theorem 1, every such set can be represented by a separate system of
equations using only singleton constants. All these subsystems are assumed
to be included in the constructed system, and each of the regular expressions
in the system can be formally regarded as a reference to one of the auxiliary
variables.

Definitions of a few of these regular languages incorporate positional no-
tations of numbers obtained by subtracting one number from another. For
convenience, these values are given in the form u ¯ v, with u, v ∈ Σ∗ being
positional notations of two numbers (the former shall be greater or equal to
the latter). One can write, e.g., (u ¯ v)0∗ for the set of all numbers with
their |Σ|-ary notation beginning with fixed digits determined by the given
difference, followed with any number of zeroes.

Step(X) =
(⋃

q∈QE
a∈Γ

⋃

(q′,a′)∈δ(q,a)

Moveq′,a′,q,a(X)
)
∪

(⋃
q∈QA
a∈Γ

⋂

(q′,a′)∈δ(q,a)

Moveq′,a′,q,a(X)
)

Moveq,a,q′,a′(X) =
(
X ∩ Counter 55Tape〈a〉〈q〉

)
+

(〈q′〉〈a′〉0 ¯ 〈a〉〈q〉)(00)∗
∩ Counter 55Tape〈q′〉〈a′〉

Jump(X) =
⋃
q

[(
X ∩ Counter 55Tape`

〈q〉
)

+ (1000 ¯ 〈q〉)(00)+ + 〈q〉
]

∩ (Counter∪Counter′)55Tape〈q〉

Carry(Y) =
[((

Y ∩ {0, 1}∗2{0, 1}∗ 55Tape
)

+ 10∗ ∩ {0, 1}∗3{0, 1}∗ 55Tape
)

+
(
10 ¯ 3

)
0∗

]
∩ ({0, 1}+ ∪ {0, 1}∗2{0, 1}∗) 55Tape

In addition, define the set of final configurations of the machine:

Final = Counter 55Tape〈qfin〉

The construction uses two variables, X and Y . Either variable repre-
sents the set of proper configurations of the machine, starting from which
the machine accepts. The variable X represents configurations belong-
ing to the set Counter 55Tape, while Y represents configurations from
(Counter∪Counter′)55Tape, in which the counter may contain one carry

7

digit 2 that needs to be propagated to higher positions. The equations,
using the above auxiliary functions, are as follows:

X = Final∪ Step(X) ∪ (
Y ∩ Counter 55Tape

)
(3)

Y = Jump(X) ∪ Carry(Y) (4)

In order to determine the least solution of this system, let us first establish
some properties of the auxiliary functions.

The first quite elementary property is their distributivity over infinite
union, which allows us to study these operations as operations on individual
numbers, and then infer their action on sets of numbers.

Lemma 1 (Distributivity). Each function f ∈ {Moveq,a,q′,a′ , Jump, Carry}
is distributive over infinite union, in the sense that f(S) =

⋃
n∈S f({n}) for

every S ⊆ N0.

This follows from the fact that each of these expressions consists of inter-
sections with constant sets, sums with constant sets and unions.

Lemma 2. Let ϕ(X) be an expression defined as a composition of the fol-
lowing operations: (i) the variable X; (ii) constant sets; (iii) union; (iv)
intersection with a constant set; (v) addition of a constant set. Then ϕ is
distributive over infinite union, that is, ϕ(X) =

⋃
n∈X ϕ({n}).

On the other hand, note that if an expression contains intersections or
sums of multiple expressions involving X, then it is not necessarily distribu-
tive over infinite union; in particular, Step need not be distributive.

Proof. Induction on the structure of ϕ.
Basis. If ϕ(X) = X or ϕ(X) = C ⊆ N0, the statement trivially holds.
Induction step I. Let ϕ(X) = ψ(X) ∪ ξ(X). By the induction hy-

pothesis, ψ(X) =
⋃

n∈X ψ({n}) and ξ(X) =
⋃

n∈X ξ({n}). Therefore,
ϕ(X) =

⋃
n∈X

(
ψ({n}) ∪ ξ({n})) =

⋃
n∈X ϕ({n}).

Induction step II. If ϕ(X) = ψ(X) ∩ C for some C ⊆ N0, then, by the
induction hypothesis, ψ(X) =

⋃
n∈X ψ({n}). Since union and intersection

are distributive, ϕ(X) =
⋃

n∈X

(
ψ({n}) ∩ C

)
=

⋃
n∈X ϕ({n}).

Induction step III. The case of ϕ(X) = ψ(X) + C is handled similarly to
the previous case, using the distributivity of union and concatenation.

One of the main technical devices used in these functions is addition of
a constant set of numbers with |Σ|-ary notation u0∗ (that is, a set

{
m ·

|Σ|i
∣∣ i > 0

}
) with one, two or three non-zero digits in u. The following

lemma establishes that this addition can never rewrite the double markers
55, that is, every sum in which these markers are altered does not represent
a valid tape contents. This means that every such addition manipulates the
counter and the tape separately, and the changes do not mix.

8

Lemma 3 (Marker preservation). For every x, x′ ∈ {0, 1, 2, 3}∗ \ 0Σ∗ and
w,w′ ∈ Tape, if x′55w′ ∈ x55w + (Σ3 ∪ Σ2 ∪ Σ)0∗, then |w| = |w′|.
Proof. Let y = ijk0`, with i, j, k ∈ Σ, be a string representing a number,
and assume x′55w′ = x55w + y. The ` least significant digits of x55w and
of x′55w′ are the same.

Consider the (`+4)th digit of x55w, let it be c. Since y has less than `+4
digit, any change at this position can only be due to a carry from position
`+3. As |Σ|− 1 is not a proper encoding, then clearly c < |Σ|− 1. Since the
carry digit is at most 1, the (` + 4)th digit in x′55w′ is less or equal to c + 1,
that is, it is less or equal to |Σ| − 1. Therefore, there is no carry in x55w + y
at position ` + 4. Since y has ` + 3 digits and there is no carry from position
` + 4, all digits in positions greater than ` + 4 in x55w + y are the same as
in x55w. Hence, x′55w′ has at most four digits different from x55w, which
may be at positions ` + 1, ` + 2, ` + 3 and ` + 4.

Assume for the sake of contradiction that |w| 6= |w′|. Since w and w′

are both of odd length, the positions of 5 in words x55w and x′55w′ are
different. Hence x55w and x′55w′ differ at exactly four positions, which are
the positions of 5 in them.

Note that if four digits are modified by adding y, then the digit in position
`+4 can only be incremented by 1 due to a carry from the previous position.
Since one of the words x55w, x′55w′ has digit 5 in position ` + 4, the other
word should have digit 4 or 6 in the same position. Because the latter digits
are not encodings of any symbols, this yields a contradiction.

The next statement describes the operation of Carry: applied to a con-
figuration with the counter having a single carry digit 2, Carry changes this
digit to 0 and increments the next digit, making it 1 or 2. Note that all
operations are in |Σ|-ary notation. The tape contents is not altered.

Lemma 4 (Carry propagation). For every x ∈ Counter′ and for every
w ∈ Tape, Carry

({x55w}) = {x′55w}, where x′ ∈ Counter∪Counter′ and
Value(x′) = Value(x). If x′ ∈ Counter′, then the position of 2 in x′ is greater
than the position of 2 in x.

Proof. It has to be proved that if x = 2x̃ ∈ Counter′ and w ∈ Tape, then

Carry({2x̃55w}) = {10x̃55w},
and if x = x̂c2x̃ ∈ Counter′ and w ∈ Tape, then

Carry({x̂c2x̃55w}) = {x̂(c + 1)0x̃55w}.
If a string x55w, with x ∈ Counter′ ∪Counter and w ∈ Tape, is sub-

stituted into the expression Carry, then the first subexpression contains all
strings of the form

u ∈ x55w+10∗ ∩ {0, 1}∗3{0, 1}∗ 55Tape .

9

Consider the possible changes done to x55w to obtain u. As 1 is added only
to one digit, there cannot be a carry, because the last digit in Σ is not used
for encoding. Therefore, only one digit is modified in x55w. Since x55w
does not contain the digit 3 that occurs in u, the unique digit 2 in x must
be replaced by 3. Denote u = x′′55w.

Consider the string u′ (any such string if it is not unique) obtained from
operation

u′ ∈ u+
(
10 ¯ 3

)
0∗ ∩

(
{0, 1}+ ∪ {0, 1}∗2{0, 1}∗

)
55Tape

Let u′ = u+y, with y ∈ (10¯3)0∗ = (k−3)0∗. By Lemma 3, u′ = x′55w′

and |w′| = |w|.
Consider the changes in x′55w′ as compared to x′′55w. Since in x′′ there

is 3 and in x′ there is none, the position of 3 in x′′ is one of the modified
positions. Denote the number of this position by k. There is only one non-
zero digit in y. Since the addition of y has modified digit 3, this means that
the non-zero digit in y is in position k or k − 1. If it is in position k − 1,
then one can only modify 3 by adding 1 as a carry from position k− 1. This
is a contradiction, as 3 + 1 is not a proper encoding. Otherwise, if it is in
position k, then adding y to x′′55w replaces 3 with 0 and results in a carry,
thus increasing the digit in position k + 1 by 1.

Note, that in particular no changes were applied to w, hence w′ = w.
Also if there is a 2 in x′ then its position is greater than k, as no digits on
positions smaller than k were changed and on position k it has 0.

Consider also the values of the counters x and x′. The value of x is∑
ci2

i. If x has no digit it position k + 1, then assume for the purposes of
calculation that ck+1 = 0 (this does not influence the value of the counter).
In x′, the digit 2 was replaced by 0, hence c′k = 0. On the other hand, ck+1

was replaced with ck+1 + 1. If ck+1 did not exist, then a new digit c′k+1 = 1

has been created. In any case c′k+1 = ck+1+1. All other digits of the counters
are left intact. Then the difference of the values of the counters is determined
by positions k and k + 1, and

Value(x)−Value(x′) = (ck+1 · 2k+1 + 2 · 2k)− ((ck+1 + 1) · 2k+1 + 0 · 2k) = 0,

that is, the value of the counter has been preserved.

According to Lemma 4, Carry moves the carry by one position higher.
The next lemma shows that sufficiently many iterations of Carry always
eliminate the carry digit: given a counter with the notation x = x̃01k−12,
Carryk transforms it to x = x̃10k−10.

Lemma 5 (Termination of carry propagation). For every x ∈
Counter∪Counter′ and w ∈ Tape there exists x′ ∈ Counter and k > 0,
such that Carryk(x55w) = x′55w and Value(x) = Value(x′).

10

Proof. If x ∈ Counter, then k = 0 and x′ = x clearly satisfy the statement
of the lemma.

Let x ∈ Counter′ and construct a sequence {xi}i>0, with xi ∈ Counter′

and Value(xi) = Value(x), as follows. Let x0 := x. For every i > 1,
consider Carry(xi−155w), which, by Lemma 4, equals {y55w} for some
y ∈ Counter′ ∪Counter with Value(y) = Value(xi−1). If y ∈ Counter′, let
xi := y. Otherwise, if y ∈ Counter, then k := i and x′ := y satisfy the
statement of the lemma.

Note that, by Lemma 4, the position of 2 in each xi+1 is greater than in
xi, hence all elements of the sequence are distinct. Since there exist finitely
many elements of Counter′ having the same value, the sequence cannot be
infinite and eventually y ∈ Counter is obtained.

The next lemma states the functionality of Jump, which can be described
as follows. If Jump is applied to a configuration in which the head scans over
the first symbol, then the result of the operation is the previous configuration,
in which the head is at the right-most position beyond the end of the string,
while the value of the counter x is greater by 1.

Lemma 6. Let x = x̃c ∈ Counter with c ∈ {0, 1} and w = 〈q〉w̃0 ∈ Tape
with q ∈ Q, that is, w encodes a configuration with the head over the first
symbol. Then Jump(x55w) = {x̃(c + 1)550w̃〈q〉}.

For any string α ∈ Σ∗ of a different form, Jump(α) = ∅.

Proof. The inner subexpression of Jump(x55w),

{x55w} ∩ Counter 55Tape`
〈q〉,

ensures that w = 〈q〉w̃0 for some w̃ ∈ 〈Γ〉(0〈Γ〉)∗, that is, that the state
symbol is the left-most one. If w is of a different form, then Jump(x55w) = ∅.
Fix an arbitrary state q ∈ Q; as the outermost operation in Jump, a union
over all q will be taken.

The next subexpression performs an addition

x55〈q〉w̃0 + (1000 ¯ 〈q〉)(00)+ + 〈q〉.

Consider an arbitrary y = (1000 ¯ 〈q〉)(00)k + 〈q〉, with k > 0. Denote
u = x55w + y. Assume that

u ∈ (Counter′ ∪Counter)55Tapeq,

as the next operation in Jump is an intersection with this set. In particular,
there are x′ ∈ Counter∪Counter′ and w′ ∈ Tape, such that u = x′55w′. By
Lemma 3, |w| = |w′|.

Notice that w′ = 0w̃′〈q〉, as the right-most digit in y is 〈q〉 and the right-
most digit in w is 0 and w′ has only one state digit.

11

As y has non-zero digits only on positions 2k + 1, 2k + 2, 2k + 3 and the
digit |Σ| − 1 does not encode any symbol, adding y cannot change any digit
in x55w in positions greater than 2k +4. Let 2` = |w̃0|. Then adding y to w
modifies the digit in position 2` + 1, which is 〈q〉. Hence 2` + 1 = 2k + 1 or
2` + 1 = 2k + 3. If 2` + 1 = 2k + 3, then in position 2` + 1 in x55w + y there
is either 〈q〉 or 〈q〉 − 1. And those are clearly not 〈0〉, which is in position
2` + 1 in w′.

Hence 2` + 1 = 2k + 1. Let x = x̃c. Then x55w + y = x̃(c + 1)550w̃〈q〉,
hence x′ = x̃(c + 1) and w′ = 0w̃〈q〉.

It follows from Lemma 6 that Jump is a reversible function, that is, the
previous configuration given by Jump(x55w) corresponds to x55w only. This
is stated as follows:

Lemma 7. Let x′55w′ ∈ Jump(x55w). Then w′ = 0w̃〈q〉 and w = 〈q〉w̃0

for some state q, and Value(x′) = Value(x) + 1.

Proof. Let x′55w′ ∈ Jump(x55w). We use Lemma 6. Let x = x̃c, w = 〈q〉w̃0

for some state q, by Lemma 6 they are of this form. Then x′ = x̃(c + 1),
w′ = 0w̃〈q〉 by the same lemma.

Let us now proceed with specifying the action of Move, which represents
symbol manipulation, head movement and state change of a Turing machine
according to the membership of states and symbols specified in δ. Generally,
when Moveq,a,q′,a′ is applied to a valid configuration, it computes the preceding
configuration of the machine. This configuration is unique because of the
restriction built in Moveq,a,q′,a′ in its subscripts. The symbols and states used
as the subscript restrict its applicability to the following case: in the current
configuration the machine is in state q and the symbol to the left rewritten
at the previous step is a, while in the previous configuration the machine was
in state q′ and scanned the symbol a′. For all other configurations and in all
other cases, the function produces the empty set.

Lemma 8. Let q, q′ ∈ Q and a, a′ ∈ Γ. Let x ∈ Counter and w =
ŵ0〈a〉〈q〉w̃ ∈ Tape for some ŵ ∈ (0〈Γ〉)∗ and w̃ ∈ (〈Γ〉0)∗. Then
Moveq,a,q′,a′(x55w) = x55ŵ〈q′〉〈a′〉0w̃.

For every string α ∈ Σ∗ of a different form, Moveq,a,q′,a′(α) = ∅.

Proof. We deal with fixed a′, q′, a, q. The inner subexpression of Moveq,a,q′,a′ ,

x55w ∩ Counter 55Tapeaq,

ensures that w = ŵ0〈a〉〈q〉w̃ for some ŵ ∈ (0〈Γ〉)∗ and w̃ ∈ (〈Γ〉0)∗ Also
Moveq,a,q′,a′ is empty for w of a different form.

The next subexpression performs the operation

x55w +
(〈q′〉〈a′〉0 ¯ 〈a〉〈q〉)(00)∗ ∩ Counter 55Tapeq′a′

12

Let
y =

(〈q′〉〈a′〉0 ¯ 〈a〉〈q〉)02k ∈ (〈q′〉〈a′〉0 ¯ 〈a〉〈q〉)(00)∗

and consider the string x′55w′ = x55w + y, where x′ ∈ Counter and w′ ∈
Tape. By Lemma 3, |w′| = |w|.

As y has non-zero digits only in positions 2k + 1, 2k +2, 2k + 3, while the
digit |Σ| − 1 is not a valid encoding of any symbol, adding y cannot change
any digit in position greater than 2k + 4 in x55w.

Let 2` = |w̃|. Since q 6= q′, by the technical assumption that the machine
does not stay in the same state, then w and w′ differ at the position 2` + 1.
Therefore, 2` + 1 = 2k + 3 or 2` + 1 = 2k + 1.

Suppose 2`+1 = 2k+3. Then x55w+y on position number 2`+1 = has
digit (〈q′〉+ 〈q〉) mod |Σ| or (〈q′〉+ 〈q〉+ 1) mod |Σ| (+1 is possible due to
carry). Since 〈q〉, 〈q′〉 6 6+ |Q| and q 6= q′, it follows that 〈q〉+〈q′〉 6 11+ |Q|
and 〈q〉+ 〈q′〉+ 1 6 12 + |Q|. Each sum is smaller than |Σ| and is therefore
represented by a single digit. Each of them is greater than 〈q′〉. Hence both
are filtered out by the intersection with Counter 55Tapeq′a′ .

Suppose 2` + 1 = 2k + 1. Then x′ = x and w′ = ŵ〈q′〉〈a′〉0w̃, as stated
in the lemma.

Similarly to Lemma 7, reversibility of Moveq,a,q′,a′ directly follows from
Lemma 8.

Lemma 9. Let x55w ∈ Moveq′,a′,q,a(x
′55w′). Then w = ŵ〈q〉〈a〉0w̃ and

w′ = ŵ0〈a′〉〈q′〉w̃ for some ŵ ∈ (0〈Γ〉)∗ and w̃ ∈ (〈Γ〉0)∗, and x = x′.

Proof. By Lemma 8, w′ = ŵ0〈a′〉〈q′〉w̃ for some ŵ ∈ (0〈Γ〉)∗ and w̃ ∈
(〈Γ〉0)∗, otherwise Moveq′,a′,q,a(x55w

′) = ∅. Then, by the same lemma,
w = ŵ〈q〉〈a〉0w̃ and x = x′.

The flow control of the alternating Turing machine includes existential
and universal nondeterminism in the corresponding states, and a single step
is in fact a disjunction or conjunction of several transitions as specified in
Move. This logic is transcribed in the expression Step(X), which computes
the set of all previous configurations, from which machines in a universal
state make all their transitions to configurations in X and machines in an
existential state make at least one of their transitions to some configuration in
X. This implements one step of the computation of the machine, backwards.

Lemma 10. Let x ∈ Counter and w ∈ Tape, let q ∈ Q be the state encoded
in w. Then x55w ∈ Step(X) if and only if

• the configuration w has the head not in the position beyond the right-
most symbol, that is, w = ŵ〈q〉w̃0 for some ŵ, w̃ ∈ Σ∗.

• if q ∈ QE, then for some string w′ encoding next configuration of the
ATM there holds x55w′ ∈ X.

13

• if q ∈ QA, then for every string w′ encoding next configuration of the
ATM there holds x55w′ ∈ X.

Proof. Let a be the symbol under the head of the machine in the configuration
w.

⇒© Consider the definition of Step:

Step(X) =
(⋃

q̂∈QE ,â∈Γ

⋃

(q′,a′)∈δ(q̂,â)

Moveq′,a′,q̂,â(X)
)
∪

(⋃

q̂∈QA,â∈Γ

⋂

(q′,a′)∈δ(q̂,â)

Moveq′,a′,q̂,â(X)
)
.

Let x55w ∈ Step(X) and first suppose that q is an existential state. By
Lemma 9,

x55w /∈ Moveq′,a′,q̂,â(X)

for (q̂, â) 6= (q, a), and therefore

x55w ∈
⋃

(q′,a′)∈δ(q,a)

Moveq′,a′,q,a(X),

that is, there exist q′ ∈ Q and a′ ∈ Σ with x55w ∈ Moveq′,a′,q,a(X).
Then, since Moveq′,a′,q,a is distributive over infinite union (Lemma 1), there
exists a number n ∈ X with x55w ∈ Moveq′,a′,q,a({n}). By Lemma 8,
n must be of the form x55w′ with w′ ∈ Tape. Applying Lemma 9
to x55w ∈ Moveq′,a′,q,a({x55w′}), one obtains that w = ŵ〈q〉〈a〉0w̃ and
w′ = ŵ0〈a′〉〈q′〉w̃. Since (q′, a′) ∈ δ(q, a), w′ is a configuration next to w, and
x55w′ ∈ X. Clearly, the position of the head in w is left to the right-most
symbol, as w = ŵ〈q〉〈a〉0w̃.

The case of q ∈ QA is similar. It follows from x55w ∈ Step(X) that

x55w ∈
⋂

(q′,a′)∈δ(q,a)

Moveq′,a′,q,a(X),

that is, for all q′ ∈ Q and a′ ∈ Σ with (q′, a′) ∈ δ(q, a) it holds that x55w ∈
Moveq′,a′,q,a(X). As in the previous case, this implies that w = ŵ〈q〉〈a〉0w̃ and
there is x55w′

q′,a′ ∈ X with w′
q′,a′ = ŵ0〈a′〉〈q′〉w̃. These are two consecutive

configurations, and every configuration next to w is of this form for some
(q′, a′) ∈ δ(q, a). Then the required element x55ŵ0〈a′〉〈q′〉w̃ is in X for all
q′ and a′ with (q′, a′) ∈ δ(q, a). Also note that, by assumption, there is at
least one such pair (q′, a′), hence w is of the required form with the head not
beyond the right-most symbol.

⇐© Let w = ŵ〈q〉〈a〉0w̃ and first consider the case of q ∈ QE. Let
w′ be one of the next configurations of the machine with x55w′ ∈ X.
Then w′ = ŵ0〈a′〉〈q′〉w̃ for some (q′, a′) ∈ δ(q, a). By Lemma 8, x55w ∈
Moveq′,a′,q,a(x55w

′). Since Moveq′,a′,q,a(x55w
′) ⊆ Step(X), this shows that

x55w ∈ Step(X).
If q ∈ QA, then, by assumption, x55w′ ∈ X for all configurations w′

immediately following w. That is, for all (q′, a′) ∈ δ(q, a), x55w′
q′,a′ ∈ X,

14

where w′
q′,a′ = ŵ0〈a′〉〈q′〉w̃. For every such pair, by Lemma 8, x55w ∈

Moveq′,a′,q,a(x55w
′
q′,a′). Hence,

x55w ∈
⋂

(q′,a′)∈δ(q,a)

Moveq′,a′,q,a(X),

and therefore x55w ∈ Step(X).

Having established the formal meaning of the auxiliary operations, let us
return to the equations. The equation for X states that a configuration leads
to acceptance if and only if it is accepting itself (Final), or one can directly
proceed from it to a configuration leading to acceptance (Step(X)), or that
it is a configuration obtained in Y . The equation for Y specifies circular
rotation of the tape by Jump(X) and implements iterated carry propagation
as in Lemma 5 by a self-reference Carry(Y). Altogether, the least solution of
these equations corresponds to the computation of the machine as follows:

Lemma 11. Let (LX , LY) be the least solution of the equations (3)–(4).

⇒© Let x ∈ Counter, w ∈ Tape and x55w ∈ LX . Then M accepts starting
from the configuration represented by w.

⇐© Conversely, if M accepts starting from the configuration represented by
w ∈ Tape, and the longest path in the tree of the accepting computation
has length `, then for each x ∈ Counter with Value(x) > `, there holds
x55w ∈ LX .

Proof. The least solution of the system is computed by fixpoint iteration (2),

Denote by L
(k)
X and L

(k)
Y the X- and Y -components of the vector ϕk(∅, . . . ,∅)

obtained after k > 0 iterations. Then x55w ∈ LX if and only if x55w ∈ L
(k)
X

for some k > 1.
⇒© Assume that x55w ∈ LX , that is, x55w ∈ L

(k)
X . It has to be proved

that w encodes a configuration from which the machine accepts. The proof
is an induction on k.

By (3), x55w ∈ L
(k)
X means that either x55w ∈ Final, or x55w ∈

Step(L
(k−1)
X) or x55w ∈ L

(k−1)
Y .

If x55w ∈ Final, then clearly w represents an accepting configuration, as
the Turing machine is already in an accepting state.

Let x55w ∈ Step(L
(k−1)
X), and let w = ŵ〈q〉〈a〉0w̃; the configura-

tion is of this form by Lemma 10. Consider the set of numbers S =
{x55ŵ0〈a′〉〈q′〉w̃ | (q′, a′) ∈ δ(q, a)} representing all next configurations of
the machine. Suppose that q ∈ QA (q ∈ QE, respectively). Then, by Lemma

10, all numbers in S (at least one number from S, respectively) are in L
(k−1)
X .

By the induction hypothesis, all numbers from L
(k−1)
X ∩ S represent configu-

rations that have accepting computations. Hence w also represents a config-
uration with an accepting computation, as all (at least one, respectively) its
consecutive configurations have accepting computations.

15

If x55w ∈ L
(k−1)
Y , then let xk−1 = x and construct a sequence

{xi}i=k−1,k−2,..., where xi55w ∈ L
(i)
Y for all i 6 k − 1 and xi+155w =

Carry(xi55w) for all i < k − 1. For every i 6 k − 2, since xi+155w ∈ L
(i+1)
Y ,

then either xi+155w ∈ Carry(L
(i)
Y) or xi+155w ∈ Jump(L

(i)
X). In the for-

mer case, by Lemma 1, there exists x′55w′ ∈ L
(i)
Y with {xi+155wi+1} =

Carry({x′55w′}). According to Lemma 4, the latter means that w′ = w.
Then xi = x′ forms the next element of the sequence.

In the latter case, if xi+155w ∈ Jump(L
(i)
X), Lemma 1 similarly implies

that there is x′55w′ ∈ L
(i)
X with {xi+155w} = Jump({x′55w′}). According to

Lemma 7, w′ = 〈q〉w̃0 and w = 0w̃〈q〉, that is, the machine jumps from w
to w′. Since, by the induction hypothesis, w′ represents a configuration with
an accepting computation, so does w.

It is left to mention that the case of xi+155w ∈ Jump(L
(i)
X) in the above

proof eventually occurs, since otherwise the sequence would continue until
x055w ∈ L

(0)
Y = ∅, which is impossible.

⇐© Consider the converse statement. That is, we are given a configuration
w that has an accepting computation with the longest path of length ` and
want to prove that x55w ∈ LX for x with value greater than `. We proceed
by induction on `.

If ` = 0, then w represents a configuration in the accepting state and
therefore, by the equation for X in the system, x55w ∈ Final ⊆ LX for all
x ∈ Counter.

Now assume w has an accepting computation with length ` + 1. Suppose
first that w = ŵ〈q〉〈a〉0w̃ with ŵ, w̃ ∈ Σ∗, a ∈ Σ and q ∈ Q, that is, the
configuration denoted by w has the head anywhere except in the position
beyond the right-most symbol. Assume that q ∈ QA (q ∈ QE, respectively).
Then, by definition, all words (at least one word, respectively) representing
next configurations of ATM have accepting computations of length at most `.
Hence all words (at least one word, respectively) of the form x55w′ are in LX ,
where x ∈ Counter represents counter of value at least n and w′ represents
a configuration next to w. Then, by Lemma 10, x55w ∈ Step(LX). By the
equation for X, we obtain x55w ∈ LX , as desired.

Consider the case of the head of the Turing machine in the position beyond
the right-most symbol, and let w = 0w̃〈q〉. Let w′ be the next configuration,
that is, w′ = 〈q〉w̃0. Let x′ ∈ Counter represent a counter of value at least
`. Then, by the induction assumption, x′55w′ ∈ LX . Hence, by Lemma 6,
there is a word x′′55w ∈ Jump(LX) ⊆ LY , where x′′ ∈ Counter′ ∪Counter
and Value(x′′) = Value(x′) + 1. Then, by Lemma 5, x′′′55w ∈ LY , where x′′′

is the unique element of Counter such that Value(x′′) = Value(x′′′). Then,
by (3), also x′′′55w ∈ LX , as desired.

It remains to observe that the number of steps of the machine is exponen-
tially bounded, hence the acceptance of a word by the machine is represented
by the following number in the least solution of the constructed system:

16

Main Lemma. ATM M accepts a string a1 . . . an ∈ Ω+ if and only if

12+log n+log(|Γ|)n+log(|Q|)55〈q0〉〈a1〉0〈a1〉0 . . . 〈an〉0 ∈ LX .

Proof. The initial configuration of M on a1 . . . an is represented by the se-
quence of digits w = 〈q0〉〈a1〉0〈a1〉0 . . . 〈an〉0 ∈ Tape.

⇒© If M accepts starting from this configuration, then the longest path
in the accepting computation consists of at most

|n + 1| · |Q| · |Γ|n 6 2log n+1 · 2log(|Q|)+log(|Γ|)n < 22+log n+log(|Γ|)n+log(|Q|) − 1.

steps, since all configurations forming this path must be different. Then,
by Lemma 11, for x = 12+log(|w|)+log(|Γ|)|w|+log(|Q|) with Value(x) =
22+log(|w|)+log(|Γ|)|w|+log(|Q|) − 1 it holds that x55w ∈ LX .

⇐© Conversely, if there exists x ∈ Counter with x55w ∈ LX , then, accord-
ing to Lemma 11, M accepts starting from the configuration w.

Proof of Theorem 2. The system of equations constructed above has an
EXPTIME-complete least solution.

To see that the least solution of every system is in EXPTIME, it is suffi-
cient to represent it as a conjunctive grammar over a unary alphabet. Then,
given a number n, its membership in the least solution can be tested by sup-
plying the string an to a known cubic-time parsing algorithm for conjunctive
grammars [12]. Its time is cubic in n, hence exponential in the length of the
binary notation of n.

Having established a solution complexity theorem for equations over sets
of numbers, let us discuss its implications on conjunctive grammars over a
one-letter alphabet.

Every conjunctive language is in P [12], and some conjunctive languages
over a multiple-letter alphabet are known to be P-complete [14]. The case of a
unary alphabet is special, as it is known that no sparse language, in particular
no unary language, can be P-complete unless DLOGSPACE = P [11, 1], that
is, unless the notion of P-completeness is trivial. However, from Theorem 2
one can infer the following result slightly weaker than P-completeness:

Corollary 1. There exists a EXPTIME-complete set of numbers S ⊆ N,
such that the language L = {an | n ∈ S} of unary notations of numbers from
S is generated by a conjunctive grammar.

Note that for every unary language generated by a conjunctive grammar,
the corresponding set of numbers is in EXPTIME. The set constructed in
Corollary 1 can thus be regarded as the computationally hardest among
unary conjunctive languages.

A simple consequence of Corollary 1 refers to the complexity of parsing
for conjunctive grammars.

Corollary 2. Unless PSPACE = EXPTIME, there is no logarithmic-space
parsing algorithm for conjunctive languages over a unary alphabet.

17

4 The membership problem

Consider the general membership problem for our equations, stated as fol-
lows: “Given a system Xi = ϕi(X1, . . . , Xm) and a number n in binary
notation, determine whether n is in the first component of the least solution
of the given system”. Its complexity is now easy to establish.

Theorem 3. The membership problem for resolved systems of equations over
sets of numbers with operations {∪,∩, +} is EXPTIME-complete.

Proof. Membership in EXPTIME. The algorithm begins with representing
the given system as a conjunctive grammar over a unary alphabet, with a
linearly bounded blow-up. The given number n is represented as a string
an with an exponential blow-up. Then it is sufficient to apply the known
polynomial-time algorithm for solving the membership problem for conjunc-
tive grammars [13].

The EXPTIME-hardness of the general membership problem immedi-
ately follows from Theorem 2 by fixing the system of equations.

Let us conclude by comparing the complexity of the membership prob-
lem for expressions, circuits and equations, as well as the families of sets
representable by their solutions. All known results are given in Table 1.

Representable sets Membership problem
expressions with {∪, +} Finite NP-complete [17]
circuits with {∪, +} Finite NP-complete [4, 9, 10]
equations with {∪, +} Ultimately periodic NP-complete [4]
expressions with {∪,∩, +} Finite PSPACE-complete [17]
circuits with {∪,∩, +} Finite PSPACE-complete [9, 10]

equations with {∪,∩, +} (EXPTIME, contains
EXPTIME-complete set

EXPTIME-complete

Table 1: Comparison of formalisms over sets of integers.

The new complexity results for the equations over sets of numbers nat-
urally fit into the framework of the existing research. On the other hand,
the new results on the expressive power of equations come in a sharp con-
trast with the previous work: these equations can represent non-trivial sets
of numbers, which are computationally as hard as the general membership
problem for this class.

It remains an open question, what is the exact family of sets of natural
numbers defined by these equations. For instance, is it possible to represent
the set of all primes?

18

Acknowledgements

Research of the first author supported by MNiSW grant number N206
024 31/3826, 2006–2008. Research of the second author supported by the
Academy of Finland under grant 118540.

The research was done during the visit to Turku of the first author, sup-
ported by the European Science Foundation short visit grant as part of the
project “Automata: from Mathematics to Applications”, reference number
1763.

References

[1] J.-Y. Cai, D. Sivakumar, “Sparse hard sets for P: resolution of a con-
jecture of Hartmanis”. Journal of Computer and System Sciences, 58:2
(1999), 280–296.

[2] A. K. Chandra, D. C. Kozen, L. J. Stockmeyer, “Alternation”, Journal
of the ACM, 28:1 (1982) 114–133.

[3] S. Ginsburg, H. G. Rice, “Two families of languages related to ALGOL”,
Journal of the ACM, 9 (1962), 350–371.

[4] D. T. Huynh, “Commutative grammars: the complexity of uniform word
problems”, Information and Control, 57:1 (1983), 21–39.

[5] A. Jeż, “Conjunctive grammars can generate non-regular unary lan-
guages”, DLT 2007 (Turku, Finland, July 3–6, 2007), LNCS 4588, 242–
253.

[6] A. Jeż, A. Okhotin, “Conjunctive grammars over a unary alphabet:
undecidability and unbounded growth”, Computer Science in Russia
(CSR 2007, Ekaterinburg, Russia, September 3–7, 2007), LNCS 4649,
168–181.

[7] M. Kunc, “The power of commuting with finite sets of words”, Theory
of Computing Systems, 40:4 (2007), 521–551.

[8] M. Kunc, “What do we know about language equations?”, Developments
in Language Theory (DLT 2007, Turku, Finland, July 3–6, 2007), LNCS
4588, 23–27.

[9] P. McKenzie, K. Wagner, “The complexity of membership problems for
circuits over sets of natural numbers”, 20th Annual Symposium on The-
oretical Aspects of Computer Science (STACS 2003, Berlin, Germany,
February 27–March 1, 2003), LNCS 2607, 571–582.

19

http://dx.doi.org/10.1145/321127.321132
http://dx.doi.org/10.1016/S0019-9958(83)80022-9
http://dx.doi.org/10.1016/S0019-9958(83)80022-9
http://dx.doi.org/10.1007/978-3-540-73208-2_24
http://dx.doi.org/10.1007/978-3-540-73208-2_24
http://dx.doi.org/10.1007/978-3-540-74510-5_19
http://dx.doi.org/10.1007/978-3-540-74510-5_19
http://dx.doi.org/10.1007/s00224-006-1321-z
http://dx.doi.org/10.1007/978-3-540-73208-2_3

[10] P. McKenzie, K. Wagner, “The complexity of membership problems for
circuits over sets of natural numbers”, Computational Complexity, 16
(2007), to appear.

[11] M. Ogihara, “Sparse hard sets for P yield space-efficient algorithms”,
Chicago J. Theor. Comput. Sci., 1996.

[12] A. Okhotin, “Conjunctive grammars”, Journal of Automata, Languages
and Combinatorics, 6:4 (2001), 519–535.

[13] A. Okhotin, “A recognition and parsing algorithm for arbitrary conjunc-
tive grammars”, Theoretical Computer Science, 302 (2003), 365–399.

[14] A. Okhotin, “The hardest linear conjunctive language”, Information
Processing Letters, 86:5 (2003), 247–253.

[15] A. Okhotin, “Decision problems for language equations with Boolean op-
erations”, Automata, Languages and Programming (ICALP 2003, Eind-
hoven, The Netherlands, June 30–July 4, 2003), LNCS 2719, 239–251.

[16] A. Okhotin, “Unresolved systems of language equations: expressive
power and decision problems”, Theoretical Computer Science, 349:3
(2005), 283–308.

[17] L. J. Stockmeyer, A. R. Meyer, “Word problems requiring exponential
time”, STOC 1973, 1–9.

[18] K. Yang, “Integer circuit evaluation is PSPACE-complete”, Computa-
tional Complexity 2000, 204–211.

20

http://dx.doi.org/10.1007/s00037-007-0229-6
http://dx.doi.org/10.1007/s00037-007-0229-6
http://dx.doi.org/10.1016/S0304-3975(02)00853-8
http://dx.doi.org/10.1016/S0304-3975(02)00853-8
http://dx.doi.org/10.1016/S0020-0190(02)00511-2
http://www.elsevier.com/locate/ipl
http://www.elsevier.com/locate/ipl
http://dx.doi.org/10.1016/j.tcs.2005.07.037
http://dx.doi.org/10.1016/j.tcs.2005.07.037
http://dx.doi.org/10.1145/800125.804029
http://dx.doi.org/10.1145/800125.804029

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematical Sciences

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN 978–952–12–1966–5
ISSN 1239-1891

	Introduction
	Language equations and conjunctive grammars
	Representing an EXPTIME-complete language
	The membership problem

