
Oscar H. Ibarra | Juhani Karhumäki | Alexander Okhotin

On stateless multihead automata:

hierarchies and the emptiness problem

TUCS Technical Report
No 848, December 2007

On stateless multihead automata:
hierarchies and the emptiness problem

Oscar H. Ibarra
Department of Computer Science
University of California
Santa Barbara, CA 93106, USA
ibarra@cs.ucsb.edu

Juhani Karhumäki
Department of Mathematics, University of Turku, and
Turku Centre for Computer Science
Turku FIN–20014, Finland
karhumak@utu.fi

Alexander Okhotin
Academy of Finland, and
Department of Mathematics, University of Turku, and
Turku Centre for Computer Science
Turku FIN–20014, Finland
alexander.okhotin@utu.fi

TUCS Technical Report

No 848, December 2007

Abstract

We look at stateless multihead finite automata in their two-way and one-way,
deterministic and nondeterministic variations. The transition of a k-head
automaton depends solely on the symbols currently scanned by its k heads,
and every such transition moves each head one cell left or right, or instructs
it to stay. We show that stateless (k + 4)-head two-way automata are more
powerful than stateless k-head two-way automata. In the one-way case, we
prove a tighter result: stateless (k + 1)-head one-way automata are more
powerful than stateless k-head one-way automata. Finally, we show that the
emptiness problem for stateless 2-head two-way automata is undecidable.

Keywords: Multihead automata, stateless automata

TUCS Laboratory
Discrete Mathematics for Information Technology

1 Introduction

Inspired by biologically-motivated models of computing [3, 4, 6], stateless
multihead two-way finite automata and stateless multicounter machines were
recently introduced by Yang, Dang and Ibarra [7]. These stateless machines
are essentially one-state machines. The previous results [7] are mostly con-
cerned with decidability/undecidability of decision problems such as empti-
ness and reachability. In this paper, we investigate the language accepting
power of stateless multihead finite automata.

Denote two-way nondeterministic (deterministic) finite automata by 2NFA
(2DFA), similarly denote their one-way variants by 1NFA (1DFA). We con-
sider stateless k-head 2NFAs and define them as pairs of an alphabet Σ and
a set of transitions δ. Let c, $ /∈ Σ, be the left and right end markers. Each
transition in δ is of the form a1 . . . ak → d1 . . . dk, where ai ∈ Σ∪{c, $} is the
symbol scanned by i-th head, while di ∈ {`, s, r} tells where each i-th head is
to be moved (`, s and r stand for left, stay and right, respectively). If there
is at most one transition for every collection of symbols a1, . . . , ak ∈ Σk, we
refer to such an automaton as a stateless k-head 2DFA. If none of the tran-
sitions move any heads to the left, such an automaton is called a stateless
k-head 1NFA (1DFA).

For an input string w ∈ Σ∗, machines work on a tape containing cw$ and
start with all heads on the left end marker. At every step of the computation,
the symbols a1, . . . , ak currently scanned by all k heads are considered, any
corresponding transition a1 . . . ak → d1 . . . dk ∈ δ is chosen, and each i-th
heads is moved according to di. If no such transition exists, the automaton
rejects. If any of the heads falls off the tape, the automaton rejects as well.
If the transition instructs all heads to stay, the automaton halts and accepts.
The string is accepted if there exists a computation resulting in acceptance.
As an example, the stateless 2-head 1DFA with instructions cc → sr, ca →
sr, cb → rr, ab → rr, and b$ → ss recognizes the language L = {anbn+1 |n >
0}.

We shall also consider the well-known k-head 2NFAs (2DFAs) with states,
which use a finite set of states Q, and in which transitions are quintuples
(q, a1, . . . , ak, q

′, d1, . . . , dk), with ai ∈ Σ ∪ {c, $} and di ∈ {`, s, r}, and with
q, q′ ∈ Q being the current and the next states of the automaton. The
automaton starts on a tape containing cw$ with all heads over c and having
an internal state q0 ∈ Q. At every step of the computation such an automaton
may apply only transitions labelled by the current state q, and along with
moving the heads it enters state q′. The automaton accepts by entering a
designated state qf ∈ Q.

It is known that for both for multihead 2NFAs with states and for 2DFAs
with states, k + 1 heads are better than k heads [2]. For stateless machines,
we would like to be able to show a similar result, i.e., that for k > 1, stateless
(k + 1)-head 2NFAs (resp., 2DFAs) are better than those with only k heads.

1

Although the case k = 1 is obvious, we are not able to give a proof for
the general case at this time. Proving such a result using diagonalization
(as in the case of automata with states [2]) seems quite difficult, as this
would involve constructing a stateless multihead 2-NFA M that is capable
of diagonalizing over all stateless k-head 2NFAs. However, it is not at all
clear how M can accomplish this without states. Nevertheless, in Section 2,
we show how to reduce the hierarchy problem for stateless multihead 2NFAs
(resp., 2DFAs) to the hierarchy for multihead 2NFAs (resp. 2DFAs) with
states. But the resulting hierarchy we obtain is not as tight, as we are only
able to prove that stateless (k + 4)-head 2NFAs (resp., 2DFAs) are better
than those with k heads.

In Section 3, we consider stateless multihead one-way machines. We
show that stateless (k + 1)-head 1NFAs (resp., 1DFAs) are more powerful
than stateless k-head 1NFAs (resp., 1DFAs), matching the known hierarchy
for one-way machines with states. In Section 4, we show that the emptiness
problem (deciding if the language accepted is empty) for stateless 2-head
2DFAs is undecidable, strengthening a recent result [7]. It remains an inter-
esting open question whether this result can be shown to hold for stateless
2-head 1DFAs (or 1NFAs).

2 Hierarchy of two-way automata

We shall mainly establish hierarchies of stateless automata by simulating
automata with states and using known hierarchy theorems for the latter
automata. However, a rough infinite hierarchy of languages recognized by
stateless multihead automata (with respect to heads) can be established di-
rectly, without using any previous work:

Proposition 2.1. There is an infinite head-hierarchy of stateless multihead
1DFAs (resp., 1NFAs, 2NFAs, 2DFAs) over a unary alphabet.

Proof. It is sufficient to show that for every k > 1, there is a language that
cannot be accepted by any stateless k-head 2NFA but can be accepted by a
stateless k′-head 1DFA for some k′ > k.

For k > 1, define the singleton language Lk = {ak}. Lk can be accepted
by the stateless (k + 1)-head 1DFA with the following transitions:

ck+1 → skr, cka → sk−1rr, ck−1a2 → sk−2rsr, ck−2a3 → sk−3rssr, . . . ,
cak → rsk−1r, ak$ → sk+1.

Clearly, for every k, there are at most a finite number of stateless k-head
2NFAs that we can define and, hence, only a finite number of distinct unary
languages that can be accepted by such machines, and this number depends
only on k. Let this number be f(k). It follows that there is an 1 6 i 6 f(k)+1
such that Li cannot be accepted by any stateless k-head 2NFA, but Li can

2

be accepted by a stateless (i + 1)-head 1DFA and, hence, also by a stateless
(f(k) + 1)-head 1DFA.

Let us now establish more precise separations. Our first hierarchy relies
upon the following simulation:

Lemma 2.1. Let M1 be a k-head 2DFA (2NFA) with states, where k > 1.
Let Σ be the input alphabet of M1. Then there exists a stateless (k + 3)-head
2DFA (2NFA, respectively) M2 over Γ ⊃ Σ and a string x ∈ Γ∗, such that
L(M2) ∩ xΣ∗ = x · L(M1).

Proof. Let M1 have states q1, . . . , qn, with initial state q1 and unique halt-
ing/accepting state qn. We assume that none of qi’s is in Σ. An input to M1

is of the form ca1 . . . am$, with m > 0 and ai ∈ Σ.
We show how to construct from M1 a stateless (k + 3)-head 2DFA or

2NFA M2, which, when given cq1 . . . qna1 . . . an$, accepts if and only if M1

accepts ca1 . . . an$, that is, the string x in the statement of the theorem is
q1 . . . qn. Given cq1 . . . qna1 . . . an$, M2 simulates M1 on the input ca1 . . . an$.

In the beginning, heads k +1 and k +2 stand over q1, head k +3 remains
at the left end marker, while heads 1, . . . , k proceed to the beginning of the
input. This is done by the following transitions:

ckccc → rkrrs

(qi)
kq1q1c → rksss (1 6 i < n)

To simplify the notation, assume that the symbol qn is the left end marker
used by M1 (instead of c). Then heads 1, . . . , k assume their initial position
at qn.

Three extra heads of M2 are used as follows. Head k +3 will stand either
at c or at q1, thus storing a single bit, the number of steps of the simulated
computation modulo 2. At the first step (as well as at every odd step), when
head k + 3 sees c, head k + 1 scans the current state of M1, while head k + 2
is moving to the next state of M1. At every even step, when head k + 3 sees
q1, the roles of heads k + 1 and k + 2 are reversed: k + 2 stands over the
current state, while k + 1 looks for the next state.

The behaviour at odd steps is implemented as follows. For each transition
(qi, a1, . . . , ak, qi′ , d1, . . . , dk) of M1, where qi, qj ∈ Q, a1, . . . , ak ∈ Σ ∪ {qn, $}
and d1, . . . , dk ∈ {`, s, r}, define the following transition of M2:

a1 . . . akqiqjc →

sksrs if qj < qi′

sks`s if qj > qi′

d1 . . . dkssr if qj = qi′

That is, while head k + 2 scans a state other than qi′ , it moves towards
qi′ , while other heads wait and continue scanning their symbols. This allows
us to know the exact state of M1 during the entire movements of head k +2.

3

Once head k +2 reaches qi′ , the transition of M1 is simulated in a single step
of M2, and at the same time head k+3 is moved from c to q1, thus indicating
that it is head k +2 that currently sees the state of M1, while head k +1 can
be anywhere and should move towards the next state of M1.

The behaviour at even steps of the computation of M1 is implemented in
M2 symmetrically:

a1 . . . akqjqiq1 →

skrss if qj < qi′

sk`ss if qj > qi′

d1 . . . dkss` if qj = qi′

Finally, once M1 enters the accepting state qn, M2 should accept as well,
that is, and for all qj ∈ Q and a1, . . . , ak ∈ Σ ∪ {qn, $},

a1 . . . akqnqjc → sksss

a1 . . . akqjqnq1 → sksss

This completes the construction of M2, which is applicable both to deter-
ministic and nondeterministic cases.

It is known that (k + 1)-head 2DFAs are more powerful than k-head
2DFAs [2], and the same result holds for 2NFAs. This gives an infinite
hierarchy (with respect to heads) of stateless multihead two-way DFAs.

Theorem 2.1. For k > 1, stateless (k + 4)-head 2DFAs (2NFAs) are more
powerful than stateless k-head 2DFAs (2NFAs, respectively).

Proof. Let L ⊆ a∗ be a language defined by Monien [2], which is accepted
by a (k + 1)-head 2DFA M1 with states (2NFA, respectively), but cannot
be accepted by any k-head 2DFA with states (2NFA, respectively). Let
M2 be the corresponding (k + 4)-head two-way stateless machine defined in
Lemma 2.1, which recognizes L′ ⊆ Γ∗ with L′ ∩ xΣ∗ = xL ⊆ xa∗.

Suppose L′ can be accepted by a stateless k-head 2DFA (2NFA) M3.
We can then construct from M3 a k-head 2DFA (2NFA) with states M4

accepting the original language L. The input to M4 is cad$. M4 simulates
the computation of M3 on cxad$, but since x is not on its input, M4 simulates
the moves of the k heads on x in its finite-state control. Hence, L can be
accepted by a k-head 2DFA (2NFA) with states. This is a contradiction,
which shows that L′ is a desired example.

It is an interesting open question whether Theorem 2.1 can be made
tighter. Note that if one can improve the simulation in Lemma 2.1 so that
M2 needs less than k + 3 heads, one can do this.

Next, we show that any language accepted by a multihead 2DFA (resp.,
2NFA) with states can be accepted by a stateless multihead 2DFA (resp.,
2NFA) at the price of more heads. The proof is based upon the following
simulation, which is similar to the one by Yang, Dang and Ibarra [7].

4

Lemma 2.2. Every language accepted by a k-head 2DFA (resp., 2NFA) with
n states is accepted by a stateless (k + dlog2 ne)-head 2DFA (resp., 2NFA).

Proof. Consider an arbitrary k-head 2DFA (resp., 2NFA) M with states
q0, . . . , qn−1. We construct a stateless DFA (resp., 2NFA) M ′ to simulate
the k-head 2DFA M . The automaton M ′ has k + dlog2 ne heads: heads
1, . . . , k operate exactly as the corresponding heads of M , while the addi-
tional heads k + 1, . . . , k + dlog2(n + 1)e are used to keep track of the state.
At every moment, the position of heads k + 1, . . . , k + dlog2(n + 1)e repre-
sents a number between 0 and n− 1 in binary notation: if head k + i, with
1 ≤ i ≤ dlog2 ne, is at the left end marker marker, we consider the i-th bit
as 0, and if it is at the next symbol to the left (whether it is the first symbol
of the input, or the right end marker if the input is empty), we consider this
bit as 1. This number represents the index of the current state of M .

The automaton M ′ starts with all heads on the left end marker; the
position of heads k + 1, . . . , k + dlog2(n + 1)e represents the state q0, that
is, the initial state of M . At every step of the computation, M ′ simulates a
single transition of M . It can see the current state of M from the symbols
observed by heads k + 1, . . . , k + dlog2(n + 1)e. Then M ′ moves its heads
1, . . . , k with all its hends on the left end marker according to the transition
table of M , and at the same time moves its heads k +1, . . . , k + dlog2(n+1)e
to encode the next state of M . We omit the details of the simulation of the
instructions of M .

Theorem 2.2. Stateless multihead 2DFAs (resp., 2NFAs) are equivalent to
multihead 2DFAs (resp., 2NFAs) with states, which are, in turn, equivalent to
log n space-bounded deterministic (resp., nondeterministic) Turing machines.

Since over a unary alphabet, (k + 1)-head 1DFAs (resp., 1NFAs) with
states are better than k-head 1DFAs (resp, 1NFAs) with states [2], we again
obtain, as a corollary, that there is an infinite head-hierarchy of stateless
multihead 2DFAs (resp., 2NFAs) over a unary alphabet.

3 Stateless Multihead One-way Automata

We now look at stateless multihead 1DFAs (resp., 1NFAs) and show a tight
hierarchy. Our starting point is the result of Rosenberg [5], who showed that
the language

Lk = {u k(k−1)
2

#u k(k−1)
2

−1
. . . #u2#u1#v1#v2# . . . #u k(k−1)

2
−1

#u k(k−1)
2

|
ui, vi ∈ {a, b}∗, ui = vi}

is recognized by a k-head 1DFA with states. Yao and Rivest [8] have further
established that this language cannot be recognized by any (k−1)-head 1NFA
with states. Using a variant of this language, we show a tight hierarchy for
stateless multihead one-way automata.

5

Theorem 3.1. There is a language that is accepted by a stateless k-head
1DFA that cannot be accepted by any (k − 1)-head 1NFA with states.

Proof. Let m = k(k−1)
2

. Consider the language

L′k = {um†m−1um−1†m−2 . . . †1u1‡1v1‡2v2‡3 . . . ‡mvm | ui, vi ∈ {a, b}∗, ui = vi}
over the alphabet Σk = {a, b, †1, . . . , †m−1, ‡1, . . . , ‡m}.

We construct a stateless k-head 1DFA M1 which accepts all the strings in
L′k plus some extraneous strings not in L′k. This is because M1 cannot check
the number, locations, and the markings (symbols different from a, b). How-
ever, as we shall see, these extraneous strings will not affect the correctness
of the proof.

The construction, which is done inductively on k, is an adaptation of
the method of Rosenberg [5]. While Rosenberg essentially relies on internal
states, in our stateless construction the automaton is guided by the numbers
attached to the markers.

Basis k = 2: the language {w‡1w |w ∈ {a, b}∗} is recognized by a 2-head
1-DFA with the following transitions: cc → rs, ac → rs, bc → rs, ‡1c → rr,
aa → rr, bb → rr, $‡1 → ss.

Induction step. The computation proceeds as follows. At the first phase,
heads are moved to their initial positions: head k goes to ‡m−k+2, each head i
(2 6 i 6 k−1) proceeds to †m−i+1, while head 1 stays at the start marker. At
the second phase, head k moves across the substrings vm−k+2, . . . , vm, and as
it starts from each ‡m−i+1 to read vm−i+1, head i simultaneously starts from
†m−i+1 and reads um−i+1. Finally, at the third phase heads 1, . . . , k − 1 are
moved to †m−k+1, from where the inner part of the string will be tested for
membership in L′k−1 as claimed in the induction hypothesis. The third phase
has a special form for k = 3.

The first phase is implemented by moving heads 2, . . . , k together, and
once the destination of each head is reached, this head is left behind and
the rest of the heads continue their movement, until k reaches its final point.
This is done using following transitions:

cck−1 → srk−1,

c†m−1 . . . †m−i+2xxk−i → si−1rrk−i
(
i ∈ {2, . . . , k − 1}, x ∈ {†m−i+2, a, b}),

c†m−1 . . . †m−k+2x → sk−1r
(
x ∈ {†m−k+1, . . . , †1, ‡1, . . . , ‡m−k+1, a, b}).

Note that the sequence †m−1 . . . †m−i+2 is empty when i = 2. After these
transitions are applied, the heads stand as follows:

The movement of heads in phase two is defined in the following way:

c†m−1 . . . †m−i+2x†m−i−1 . . . †m−k+1y → si−1rsk−i−1r

(for all i ∈ {2, . . . , k − 1} and xy ∈ {†m−i+1‡m−i+1, aa, bb}),
x†m−2 . . . †m−k+1y → rsk−2r (for all xy ∈ {c‡m, aa, bb}),

6

Let us first define the third phase for the case k = 3. The tape contains
cu3†2u2†1u1‡1v1‡2v2‡3v3$, and after the second phase head 1 is over †2, head
2 is over †1 and head 3 is over $. Now head 2 is to be moved to ‡1, which
is done by transitions †2x$ → srs with x ∈ {†1, a, b}, and then head 1 is
moved to †1 using transitions x‡1$ → rss with x ∈ {†2, a, b}. It remains to
compare u1 to v1. Instead of applying the induction hypothesis, for k = 3
it is easier to implement this comparison again using transitions xy$ → rrs,
for all xy ∈ {†1‡1, aa, bb}. Acceptance is done by ‡1‡2$ → sss.

Let us now define phase three for k > 4. All heads should catch up with
head k− 1, which is currently over †m−k+1. The heads are moved one by one
in the following order: first k − 2, then k − 3, and so on until head 1. The
following transitions implement this:

†m−1 . . . †m−i+1x(†m−k+1)
k−i−2$ → si−1rsk−i−1

(for all i ∈ {1, . . . , k − 2} and x ∈ {†m−i+1, . . . , †m−k+2, a, b})
Once the first three phases check the conditions ui = vi for all i ∈ {m,m−

1, . . . , m−k +2} and put heads 1, . . . , k− 1 over †m−k+1, it remains to check
the membership of the string um−k+1†m−k+2 . . . †1u1‡1v1 . . . ‡m−k+1vm−k+1 in
L′k−1, By the induction hypothesis, there exists a (k−1)-head DFA recogniz-
ing this language. Let T ⊆ (Σk−1)

k−1×{s, r}k−1 be its set of transitions. For
every transition c1 . . . ck−1 → d1 . . . dk−1 in this automaton, the constructed
automaton contains the transition c′1 . . . c′k−1$ → d1 . . . dk−1s, where

c′i =

†m−k+1, if ci = c
‡m−k+2, if ci = $

ci, otherwise

The resulting automaton recognizes L′k.
Now suppose L(M1) is accepted by a (k− 1)-head 1NFA M2 with states.

Then, we can construct from M2 a (k−1)-head 1NFA M3 with states accept-
ing the original language Lk as follows: When M3 is given cw$ (note that
the † and ‡ markings are not in w), M3 simulates the computation of M2,
but uses its finite-state to remember the markings and their order and insert
these markings at the appropriate places for the heads to simulate. Note also
that M3 can make sure that it is only simulating the computation of M2 on
strings with valid format. Hence L can be accepted by a (k− 1)-head 1NFA
with states. This is impossible. It follows that there is a language accepted
by a stateless k-head 1DFA that cannot be accepted by k-head 1NFA.

Corollary 3.1. Stateless k-head 1DFAs (resp, 1NFAs) are strictly more pow-
erful than stateless (k − 1)-head 1DFAs (resp., 1NFAs).

Let us now recall another result by Yao and Rivest [8], who constructed a
language recognized by a 2-head 1NFA with states but not recognized by a k-
head 1DFA with states for any k. The following stronger statement involving
stateless 1NFAs can be established:

7

Theorem 3.2. There exists a language recognized by a stateless 2-head 1NFA,
which is not recognized by any k-head 1DFA with states for any k.

Proof. Yao and Rivest [8] give the following example:

L = {#w1x1 . . . #wnxn|n > 0, wi ∈ {a, b}∗, xi ∈ {0, 1}∗, ∃i∃j : wi = wj, xi 6= xj}

Let Σ = {†, ‡, a, b, 0, 1, c, $} and consider a variant of the above language:

L′ = {†‡w1x1 . . . †‡wnxn|n > 0, wi ∈ {a, b}∗, xi ∈ {0, 1}∗,∃i∃j : wi = wj, xi 6= xj}

Let us prove that this language is also not recognized by any k-head 1DFA
with states. Suppose the contrary; then, given a k-head 1DFA with states
for this language, one can easily construct a k-head 1DFA for L, which con-
tradicts the result of Yao and Rivest [8, Th.4].

Construct a stateless 2-head 1NFA that recognizes L′ modulo intersec-
tion with (†‡{a, b}∗{0, 1}∗)∗. In general, this automaton operates similarly
to the 2-head 1NFA with states sketched by Yao and Rivest, and uses double
markers to simulate a few internal states. In the beginning, head 1 nonde-
terministically chooses an instance of ‡, using transitions

σc → rs (for all σ ∈ {c, †, ‡, 0, 1, a, b}).

Next, head 1 waits over ‡, while head 2 nondeterministically chooses another
instance of ‡ as follows:

‡σ → sr (for all σ ∈ {c, †, ‡, 0, 1, a, b}).

Once head 1 scans ‡ in front of wixi, while head 2 scans ‡ before wjxj, both
heads synchronously move to the right, ensuring that wi = wj:

‡‡ → rr,

aa → rr,

bb → rr.

Once the symbols from xi and xj are encountered, the heads proceed further
as long as these strings remain identical:

00 → rr,

11 → rr.

If any symbols in xi and xj do not match, the string is immediately accepted:

01 → ss,

10 → ss.

8

If one of these substrings is shorter than the other, then one head arrives to †,
while the other still reads symbols; in this case the automaton also accepts:

†0 → ss,

†1 → ss,

0† → ss,

1† → ss.

If xi and xj are identical, then both heads come to † simultaneously, and
since the transition by †† is undefined, the automaton rejects.

Let L′′ be the language recognized by this automaton and suppose it is
recognized by a k-head 1DFA with states for some k > 1. Then one can
construct a k-head 1DFA with states for L′′ ∩ (†‡{a, b}∗{0, 1}∗)∗ = L′, which
contradicts the claim proved above.

Next we show, that even for unary inputs, multihead 1DFAs are surpris-
ingly powerful:

Theorem 3.3. For every m > 1, the singleton language Lm = { a2m−1 } can
be accepted by a stateless (2m + 1)-head 1DFA.

Proof. Of 2m + 1 heads used by the automaton, head 1 is the main head,
and the rest of the heads form m pairs (i, i + m). At the first step, heads
1, 2, . . . , m + 1 (that is, the main head and the first head from each pairs)
are moved to position 1, while heads m + 2, . . . , 2m + 1 (second components
of all pairs) remain in position 0.

Then heads (m + 1, 2m + 1) (that is, the last pair), which are only one
position apart, are moved towards the end of the string, until m + 1 sees
the end marker. From here, heads 1, 2, . . . , m (the main head and the first
components of all unused pairs) move synchronously with head 2m+1, until
head 2m+1 sees the end marker. For the last pair, this will take only one step,
and after that heads 1, 2, . . . ,m will be at position 2, heads m + 2, . . . , 2m
will be at the start marker, while heads m + 1 and 2m + 1 will be at the end
marker.

Then the next pair (m, 2m) is taken, and the same sequence of steps is
repeated. Note that the distance between these heads is now 2. The result is
that heads m and 2m are moved to the end, while heads 1, 2, . . . , m− 1 are
moved to position 4. This is continued with the rest of the pairs, until the
following configuration is reached: heads 1 and 2 are in position 2m−1, head
m + 2 is in position 0, the rest of the heads are at the end marker.

From here, heads 2 and m + 2 are moved towards the end of the string,
until head 2 sees the end marker. At this point, heads 1 and m + 2 are at
the same position if and only if the length of the string is 2m− 1. After that
head m + 2 is moved together with head 1, and the input is accepted if and
only if these two heads arrive to the end at the same time. This happens if
and only if the input has length 2m − 1.

9

4 The Emptiness Problem

It has been shown by Yang, Dang and Ibarra [7] that the emptiness problem
(is the language accepted by a given machine empty?) for stateless 3-head
1DFAs is undecidable. It remains open whether this result holds for stateless
2-head 1DFAs (or 1NFAs). In this section, we show that the emptiness
problem for stateless 2-head machines is undecidable if two-way movement
is allowed.

Theorem 4.1. The emptiness problem for stateless 2-head 2DFAs is unde-
cidable, even when each head makes only one reversal on the input tape.

The proof is by reduction from the emptiness problem for a restricted
class of 2-head 1DFAs with states. Let us define this class.

Definition 4.1. A 2-head 1DFA with states, with initial offset and with
simultaneous movement of heads is a sextuple (Σ, #, Q, q0, δ, qf), where # ∈
Σ is a designated symbol, q0, qf ∈ Q are the initial and the accepting states,
δ : Q× Σ× Σ → Q is the transition function.

Given an input of the form u#v, with u ∈ Σ+ \ {#}∗ and v ∈ Σ∗, the
automaton starts in state q0 with head 1 over the first symbol of u and head
2 over # in front of v. If the automaton is in state q, the first head scans a
and the second head scans b, the automaton goes to state δ(q, a, b) and both
heads are moved to the right by one square. The input is accepted if and only
if the state when head 2 reaches the end of the string is qf .

In a typical case, u will be much shorter than v, and eventually head 1
will reach the marker #. It will process it uniformly with the rest of the
symbols, according to the transition function.

Lemma 4.1. The emptiness problem for the class of 2-head 1DFAs with
states given in Definition 4.1 is undecidable.

Proof. Let us define a variant of the language of valid accepting computations
of a Turing machine T operating over the input alphabet Γ. The configura-
tion of T on the input w ∈ Γ∗ at step i using workspace s is given by a string
of length s over some auxiliary alphabet Ω. Denote this string by CT (w, s, i).
Then the language of computation histories is defined as

VALC(T) = {CT (w, s, 0)#CT (w, s, 1)\ . . . \CT (w, s, n) |
at each i-th step T uses at most s squares

CT (w, s, n) is an accepting configuration}
The exact form of CT can be defined so that this language can be recog-
nized by a two-head automaton as is Definition 4.1. On the other hand,
VALC(T) = ∅ if and only if L(T) = ∅. Since the emptiness of a Turing
machine is undecidable, so is the given decision problem.

10

Proof of Theorem 4.1. The proof is a reduction from the emptiness problem
for the automata given in Definition 4.1.

Let A = (Σ, #, Q, qinit, δ, qf) be such an automaton, let Σ′ = Σ × Q ×
Q × {1, 2}. Let w = a1 . . . am−1#am+1 . . . an be a string given to A, let qi

(m 6 i 6 n) be the state of A after 2nd head reads ai. Then qm = qinit.
For convenience, define q0 = q1 = . . . = qm−1 = qinit (though head 2 never
reads a0, . . . am−1). Then the computation of A on w is represented by the
following string over Σ′:

x(1)
n x(2)

n x
(1)
n−1x

(2)
n−1 . . . x

(1)
1 x

(2)
1 , with x

(j)
i = (ai, qi−1, qi, j) (1)

Each quadruple (ai, qi−1, qi, j) represents A with its heads 1 and 2 in positions
i − m and i, respectively, with symbol ai under head 2, currently being in
state qi−1 and about to enter state qi. Note that the order of symbols is
reversed, and each symbol of w is represented by an “odd” and an “even”
symbol, which differ only in the last component.

Construct a stateless 2-head 2DFA B over Σ′ to accept the language of all
strings of this form corresponding to the strings accepted by A. At the first
stage of the computation of B, its heads go together to the end of the input,
with head 2 always being one square ahead of head 1. While travelling like
this, the heads check the general form (1) of the computation. This behaviour
is implemented by the following transitions:

cc → sr (2)

c(a, qf , q
′, 1) → rr (a ∈ Σ; q, q′ ∈ Q) (3)

(a, q, q′, 1)(a, q, q′, 2) → rr (a ∈ Σ; q, q′ ∈ Q) (4)

(a, q′, q′′, 1)(b, q, q′, 2) → rr (a, b ∈ Σ; q, q′, q′′ ∈ Q) (5)

Transition (3) checks the last state for being accepting. If an odd and an
even symbol in some pair have different data, then (4) will not be applicable
and the input will be rejected. Similarly, if two consecutive pairs violate the
sequence of states, then (5) is not applicable.

Once head 2 reaches the end marker, with head 1 lagging behind by one
symbol, the heads exchange their positions using the transition

(a, qinit, qinit, 2)$ → r`, (6)

and then head 1 stays over the end marker, while head 2 proceeds to the left
until it encounters #:

$(a, qinit, qinit, i) → s` (a ∈ Σ \ {#}, i ∈ {1, 2})
$(#, qinit, q, 2) → `s (q ∈ Q)

At this point, head 1 is over the last symbol before $, which should be of the
form (a, qinit, qinit, 2), while head 2 scans the leftmost symbol (#, qinit, q, 2).

11

At this time, both heads are reading even symbols, and they start simulta-
neously moving left, maintaining equal parity of the symbols they scan. This
allows the transitions in this phase to be distinct from the previously defined
transitions. The following transitions simulate the operation of A:

(b, q′′, q′′′, i)(a, q, q′, i) → `` (a, b ∈ Σ; q, q′, q′′, q′′′ ∈ Q; δ(q, a, b) = q′; i ∈ {1, 2})

If all transitions are correct, head 2 will eventually reach the start marker,
where B accepts:

(b, q′′, q′′, 2)c → ss (b ∈ Σ; q′′, q′′′ ∈ Q)

It remains to consider the cases when the input is ill-formed. Suppose
the general form (1) is violated, that is, let the string be of the form

x(1)
n x(2)

n x
(1)
n−1x

(2)
n−1 . . . x

(j)
i y . . . (7)

where symbols up to x
(j)
i are as in (1), while y is not as required. Then B

eventually reaches a configuration with head 1 over x
(j)
i and head 2 over y.

Suppose it is the alternation of even and odd symbols that has been
violated. Then x

(j)
i = (ai, qi−1, q, j) and y = (b, q′, q′′, j), and the transition

is either undefined, or it is of the form (a, q, q′, i)(b, q′′, q′′′, i) → ``. In the
latter case, both heads move left by one symbol and reach their previous
configuration, from which they will again move over x

(j)
i and y. Thus the

computation goes into an infinite loop.

If the string prematurely ends with an odd symbol, then eventually head
1 will scan (a, q, q′, 1), while head 2 will scan $. The transition (6) will not be
applicable, and the input will be rejected. In this way the syntax of the input
string will be checked before the simulation of A starts, and hence syntactic
garbage will not cause mistakes in the simulation.

Although we are not able to resolve at this time the question of whether
or not the emptiness problem for stateless 2-head 1DFAs (or 1NFAs) is un-
decidable, we can show an interesting result using the following lemma.

Lemma 4.2 (Domaratzki [1]). Let Σ be an alphabet, let Σ′ = {a′ | a ∈ Σ}
be its copy and define a homomorphism h : Σ∗ → (Σ′)∗ by h(a) = a′ for
all a ∈ Σ∗. Then the language

⋃
w∈Σ∗ w h(w) is recognized by a stateless

2-head 1DFA.

Theorem 4.2. There is a fixed stateless 2-head 1DFA M1 over a 4-letter
alphabet, such that it is undecidable to determine, given a DFA M2, whether
or not L(M1) ∩ L(M2) = ∅.

12

Proof. Let Σ = {a, b} and consider the twin shuffle language L1 as in Lemma 4.2,
defined over the alphabet {a, b, a′, b′}. Let {(u1, v1), . . . , (um, vm)} be an in-
stance of PCP over {a, b}, and consider the regular language

L2 =
(m⋃

i=1

uih(vi)
)+

.

The intersection L1 ∩ L2 is empty if and only if this is a yes-instance. Since
PCP is undecidable, this proves undecidability of the emptiness of intersec-
tion.

It remains an interesting open question whether the emptiness problem
for stateless 2-head 1DFAs (or 1NFAs) is undecidable.

References

[1] M. Domaratzki, Personal communication, August 2007.

[2] B. Monien. Two-way multihead automata over a one-letter alphabet.
RAIRO Informatique theoretique, 14(1): 67–82, 1980.

[3] Gh. Păun. Computing with membranes. Journal of Computer and
System Sciences, 61(1):108–143, 2000.

[4] Gh. Păun. Membrane Computing, An Introduction. Springer-Verlag,
2002.

[5] A. L. Rosenberg. On multi-head finite automata. IBM Journal of Re-
search and Development, 10:5 (1966), 388–394.

[6] L. Yang, Z. Dang, and O. H. Ibarra. Bond computing systems: a bio-
logically inspired and high-level dynamics model for pervasive comput-
ing. Proceedings of the 6th International Conference on Unconventional
Computation (UC’07), Lecture Notes in Computer Science, 2007.

[7] L. Yang, Z. Dang, and O. H. Ibarra. On stateless automata and P
systems. Pre-Proceedings of Workshop on Automata for Cellular and
Molecular Computing, August 2007.

[8] A. C. Yao and R. L. Rivest. k + 1 heads are better than k. Journal of
the ACM, 25:2 (1978), 337–340.

13

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematical Sciences

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN 978–952–12–1967–2
ISSN 1239-1891

