
Alexander Okhotin

On the state complexity of
scattered substrings and superstrings

TUCS Technical Report
No 849, October 2007

On the state complexity of
scattered substrings and superstrings

Alexander Okhotin
Department of Mathematics, University of Turku, and
Turku Centre for Computer Science
Turku FIN–20014, Finland, and
Academy of Finland
alexander.okhotin@utu.fi

TUCS Technical Report

No 849, October 2007

Abstract

It is proved that the set of scattered substrings of a language recognized by
an n-state DFA requires at least 2n/2−2 states (the known upper bound is
2n), with witness languages given over an exponentially growing alphabet.
For a 3-letter alphabet, scattered substrings are shown to require at least
2
√

2n−6 states. A similar state complexity function for scattered superstrings
is shown to be 2n−2 + 1 for an alphabet of at least n− 2 letters, and strictly
less for any smaller alphabet. For a 3-letter alphabet, the state complexity

of scattered superstrings is at least 1
5
4
√

n
2 n−

3
4 .

Keywords: descriptional complexity, finite automata, state complexity, sub-
string, subword, subsequence, Higman–Haines sets

TUCS Laboratory
Discrete Mathematics for Information Technology

1 Introduction

This paper contributes to the active research on the state complexity of
operations on deterministic finite automata [1, 2, 5, 6, 7, 8, 9, 10, 11] by
investigating the following operations. Let L be a language over the alphabet
Σ∗. The language of scattered substrings of L is defined as

f1(L) = {a1 . . . an | x0a1x1 . . . anxn ∈ L for some xi ∈ Σ∗}.
The language of scattered superstrings of L is

f2(L) = {x0a1x1 . . . anxn | xi ∈ Σ∗ and a1 . . . an ∈ L}.
The state complexity of these operations with respect to nondeterminis-
tic automata (NFA) has recently been determined by Gruber, Holzer and
Kutrib [4], who established that for a language L given by an n-state NFA,
n states in an NFA are necessary and sufficient to represent f1(L) or f2(L).

If L is recognized by an n-state DFA, then a DFA with 2n states is clearly
sufficient to represent f1(L) and f2(L). The question is, whether this number
of states is necessary?

For a related operation of taking ordinary (contiguous) substrings, defined
as

f3(L) = {w | xwy ∈ L for some x, y ∈ Σ∗},
it was established by Shallit [11] that 2n−1 states are sufficient to represent
f3(L) for all n-state languages L, and that this bound is tight already for a
2-letter alphabet.

The state complexity of scattered substrings has recently been studied by
Gruber, Holzer and Kutrib [4], who have shown, in particular, that the set of
scattered substrings of an n-state language over a

√
n-letter alphabet requires

at least 2Θ(
√

n log2 n) states. Two related results are obtained in the present
paper. First, for an exponentially growing alphabet it is proved that the set
of scattered substrings of an n-state language requires at least 2

n
2
−2 states,

which yields a 2Θ(n) estimation of the state complexity of this operation.
Second, it is shown that for a fixed 3-letter alphabet, the state complexity is
at least 2

√
2n+30−6.

The cited paper by Gruber, Holzer and Kutrib [4] also mentions the
state complexity of scattered superstrings: it is stated that, again, for a

√
n-

letter alphabet the state complexity is at least 2Θ(
√

n log2 n). This estimation
is improved in the present paper: it is established that 2n−2 + 1 states are
sufficient to represent the set of scattered substrings of any n-state language,
and that this number of states is necessary for every alphabet of at least n−2
letters. Furthermore, it is proved that if the number of letters is reduced,
then this upper bound cannot be reached. At the same time, for a fixed 3-
letter alphabet it is shown that this operation requires at least Cb

√
n
2
c states,

where Ck is the k-th Catalan number; this is at least 1
5
4
√

n
2 n−

3
4 .

1

2 Definitions

A deterministic finite automaton (DFA) is a quintuple (Σ, Q, δ, q0, F), in
which Σ is an input alphabet, Q is a finite set of states, δ : Q× Σ → Q is a
total transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of
accepting states. A state of a DFA is called dead if no strings are accepted
starting from it.

A nondeterministic finite automaton (NFA) is a quintuple (Σ, Q, δ,Q0, F)
with a set of initial states Q0 ⊆ Q and with a nondeterministic transition
function δ : Q × Σ → 2Q. Any NFA can be converted to an equivalent
DFA with the set of states 2Q; this transformation is known as the subset
construction.

The state complexity of a regular language L, denoted sc(L), is the least
number of states in any DFA accepting L.

Consider a k-ary operation on languages f : (2Σ∗)k → 2Σ∗ that pre-
serves regularity in the sense that for all regular L1, . . . , Lk the language
f(L1, . . . , Lk) is regular as well. Define the state complexity function of
f as scf : Nk → N, so that scf (n1, . . . , nk) equals the greatest value of
sc(f(L1, . . . , Lk)) over all vectors of languages (L1, . . . , Lk) with sc(Li) = ni

for all i.

3 Scattered substrings

The set of scattered substrings of a given NFA can be recognized by an NFA
with the same number of states. Essentially the following construction has
been given by Gruber et al. [3]:

Lemma 1. Let A = (Σ, Q, q0, δ, F) be a DFA and consider an NFA B =(
Σ, Q, {δ(q0, u) | u ∈ Σ∗}, δ′, F ′), where δ′(q, a) = {δ(q, au) | u ∈ Σ∗} and

F ′ = {q′ | ∃u ∈ Σ∗ : δ(q′, u) ∈ F}. Then B recognizes the set of scattered
substrings of L(A).

The strings u in the definition correspond to the contiguous substrings
erased from w ∈ L(A) to obtain a scattered substring of w.

This, in particular, gives a 2n upper bound on the state complexity of this
operation. This upper bound can be closely approached by a lower bound
using a growing alphabet of an exponential size:

Lemma 2. Let Ak be a (2k + 2)-state DFA over the (2k + 1)-symbol al-
phabet

{
aX

∣∣ X ⊆ {0, 1, . . . , k − 1} } ∪ {c} and with the set of states
{q0, . . . , qk−1, r0, . . . , rk−1, qacc, qdead}, of which q0 is the initial state and qacc

is the sole accepting state. The transitions of Ak are defined as follows (un-

2

defined transitions go to qdead):

δ(qi, aX) =

{
ri, if i ∈ X
∅, otherwise

δ(qi, c) = qi+1 (mod k)

δ(ri, a{i}) = qacc

Then every DFA for the language of all scattered substrings of L(Ak) requires
at least 2k states.

The automaton A3 over the alphabet {a∅, a{0}, a{1}, a{2}, a{0,1}, a{0,2},
a{1,2}, a{0,1,2}, c} is given in Figure 1.

Figure 1: DFA Ak from Lemma 2, for k = 3; undefined transitions go to
qdead.

The strongly connected component {q0, . . . , qk−1} constitutes a “switch-
box”, while the states r0, . . . , rk−1 are “memory cells”. The idea of the con-
struction is that a transition by aX sets all cells corresponding to the numbers
in X (or, to be more precise, clears all cells corresponding to the numbers
not in X), and then the symbols a{i} are used to probe the values in these
cells.

Proof. Consider the NFA constructed for the set of scattered substrings of
L(Ak) according to Lemma 1. The corresponding DFA obtained by the subset
construction has the set of all states as the initial subset. By each symbol aX ,
the DFA goes to the subset SX = {ri | i ∈ X}∪S ′X , where S ′X ⊆ {qacc, qdead}.

Consider any two subsets of this form. If SX and SY with X 6= Y , then
there exists i ∈ X ∆ Y . Assume, without loss of generality, that i ∈ X and
i /∈ Y . Then ri ∈ SX and ri /∈ SY , and the one-symbol string a{i} is accepted
from SX and is not accepted from SY .

Hence, 2k reachable and pairwise inequivalent subsets have been con-
structed, which establishes the lemma.

3

At the same time, a superpolynomial upper bound can be achieved using
a fixed 3-letter alphabet:

Lemma 3. Let k > 1 and let k′ = 2dlog2 ke be k rounded up to the next power
of 2. Let A′

k be a DFA over Σ = {a, b, c} with the set of states Q ∪ R ∪ P ∪
{qdead}, where

Q = {qi | 0 6 i 6 k − 1} ∪ {q′i | 0 6 i 6 k − 2},
R = {ri,j | 0 6 i < j 6 k − 1}
P = {pi | 1 6 i < k′ + k},

of which q0 is the initial state and p1 is the sole accepting state. The transi-
tions of A′

k are defined as follows (with the rest of transitions going to qdead):

δ(qi, c) = q′i (0 6 i 6 k − 2)

δ(q′i, c) = qi (0 6 i 6 k − 2)

δ(qi, a) = ri,i+1 (0 6 i 6 k − 1)

δ(q′i, s) = qi+1 (0 6 i 6 k − 2, s ∈ {a, b})
δ(ri,j, s) = ri,j+1 (0 6 i < j 6 k − 1, s ∈ {a, b})

δ(ri,k−1, s) = pk′+i (0 6 i 6 k − 2, s ∈ {a, b})
δ(qk−1, a) = pk′+k−1

δ(p2i, a) = pi (1 < 2i < k′ + k)

δ(p2i+1, b) = pi (1 < 2i + 1 < k′ + k)

Then A′
k contains at most k2+9k−4

2
states, while every DFA for the language

of all scattered substrings of L(A′
k) requires at least 2k states.

These automata are illustrated in Figure 2. This construction simulates
the operation of the automata from Lemma 2 by using long “wires” to trans-
fer values (instead of an instant transfer by the means of exponentially many
symbols). Now each strongly connected component {qi, q

′
i} is a “switch-box”,

while pk′+i is the corresponding “memory cell”. The value of every i-th cell
is determined in the i-th switch-box, and for different cells this is done at a
different time. The determined values move towards the memory cells along
the wires ri,i+1, . . . ri,k−1, and the values reach the cells synchronously.

The states from P represent wires of equal length used to probe the values
of the memory cells. The transitions between these states form a binary tree,
so that from each state pi ∈ P the automaton A′

k accepts a unique string of
length log2 k′ representing the binary notation of the number i.

Proof. Consider the number of states in A′
k: obviously, |Q| = 2k − 1 and

|R| = k(k−1)
2

. The number k′ = 2dlog2 ke equals at most 2k − 2, hence |P | 6
3k − 2. With the addition of the dead state, the total number of states is at
most 5k − 2 + k(k−1)

2
= k2+9k−4

2
.

4

Figure 2: DFA A′
k from Lemma 3; undefined transitions go to qdead.

5

As in the proof of the previous lemma, consider the NFA for the set of
scattered substrings of L(A′

k) given in Lemma 1. Construct an equivalent
DFA using the subset construction. Its initial subset is the set of all states.

Consider any string s1 . . . sk with si ∈ {a, b}. Let Ss1...sk
be the subset

reached from the initial subset by this string. Then

Ss1...sk
= {pk′+i | si+1 = a} ∪ S ′s1...sk

,

for some irrelevant set S ′s1...sk
⊆ {p1, . . . , pk′−1}.

Now consider the subsets Ss1...sk
and Ss′1...s′k corresponding to distinct

strings s1 . . . sk and s′1 . . . s′k, with sm, s′m ∈ {a, b}. Then there exists some
(m + 1)-th position, such that sm+1 6= s′m+1. Assume, without loss of gener-
ality, that sm+1 = a and s′m+1 = b. Then pk′+m ∈ Ss1...sk

and pk′+m /∈ Ss′1...s′k .
Consider a string wm = s1 . . . slog2 k′ , where each i-th symbol is defined as

a if the i-th digit in the binary representation of m is 0, and si = b if this
digit is 1. This string is accepted from pk′+m, since the automaton can read
it passing through the states pb(k′+m)/2ic for i = 1, 2, . . . , log2 k′, where the
last state is p1. However, for any other state pk′+` with 0 6 ` < k and ` 6= m,
the unique path of length log2 k′ from pk′+` to p1 has labels forming a string
different from wm, and hence the string wm is not accepted from pk′+`.

It has thus been shown that the DFA contains 2k reachable and pairwise
inequivalent subsets corresponding to different binary strings of length k,
which proves the lemma.

Altogether the following results have been obtained:

Theorem 1. State complexity of taking scattered substrings is at least 2
n
2
−2

(over an unbounded alphabet) and at most 2n. For a 3-letter alphabet, it is
at least 2

√
2n+30−6.

Proof. The upper bound of 2n is due to Gruber et al. [3] and it is stated in
Lemma 1.

For every n > 1, Lemma 2 defines an automaton Ak with k = bn
2
c −

1, which contains at most n states. It is stated that the set of scattered
substrings of L(Ak) requires at least 2k = 2b

n
2
c−1 > 2

n
2
−2 states.

For a 3-letter alphabet, note that the DFA A′
k constructed in Lemma 3

contains at most k2+9k−4
2

6 (k+5)2−k−29
2

6 (k+5)2−30
2

states, and hence for

every number n the automaton A′
k with k = b√2n + 30c − 5 contains at

most n states. By Lemma 3, the set of scattered substrings of L(A′
k) requires

at least 2k = 2b
√

2n+30c−5 > 2
√

2n+30−6 states.

It remains open whether a lower bound of 2Θ(n) can be established using a
fixed alphabet. Also, the given lower bound for an unbounded alphabet still
leaves room for improvement: it is an open question whether Θ(2n) states
are necessary to represent the set of scattered substrings.

6

4 Scattered superstrings

A string x ∈ Σ∗ is a scattered superstring of a string w ∈ Σ∗ if w = w1 . . . wk

and x ∈ Σ∗w1Σ
∗ . . . wkΣ

∗. It is known that the set of scattered substrings
of a language generated by an n-state NFA can be recognized by another
n-state NFA. The following construction is adapted from Gruber et al. [3]:

Lemma 4. Let A = (Σ, Q, q0, δ, F) be a DFA. Then the NFA B =
(Σ, Q, {q0}, δ′, F), where δ′(q, a) = {δ(q, a), q}, recognizes the set of scattered
superstrings of L(A).

This gives an 2n upper bound on the state complexity of this operation.
The actual state complexity is lower, since some of the subsets are unreach-
able and some are equivalent:

Lemma 5. Consider the NFA B with states {0, . . . , n − 1} constructed in
Lemma 4, and consider the DFA obtained out of B using the subset construc-
tion. Then

1. If a subset Y is reachable from a subset X, then X ⊆ Y . In particular,
every reachable subset contains state 0.

2. All subsets containing an accepting state are equivalent.

Proof. Let δ′′ be the transition function of the DFA. It is sufficient to show
that X ⊆ δ′′(X, a) for every a ∈ Σ. Indeed, for every i ∈ X, since i ∈ δ′(i, a)
for every a ∈ Σ, there holds i ∈ δ′′(i,X).

Since the initial subset is {0}, all reachable subsets contain 0.
Suppose a subset X contains an accepting state i ∈ F . Then i ∈ δ′′(X, w)

for every w ∈ Σ∗, that is, every string is accepted from X. This makes all
such subsets equivalent.

Therefore, at most 2n−1 subsets are reachable. If k is the number of
accepting states, then at most 2n−1−k subsets containing 0 and not containing
any accepting states can be pairwise inequivalent, while the rest of the subsets
can always be merged into a single equivalence class. Setting k = 1, this gives
an upper bound of 2n−2 + 1 states in a DFA recognizing the set of scattered
superstrings. This bound is actually precise, which can be shown using a
linearly growing alphabet:

Lemma 6. Let An be a DFA over Σ = {a1, . . . , an−2}, with the set of states
{0, . . . , n− 1}, of which 0 is the initial state and n− 1 is the sole accepting
state, and with transitions δ(0, ai) = i and δ(i, ai) = n − 1; the rest of the
transitions are defined as δ(i, aj) = i. This DFA is depicted in Figure 3. Then
every DFA for the language of all scattered superstrings of L(An) requires
2n−2 + 1 states.

7

Figure 3: DFA An from Lemma 6; undefined transitions are self-loops.

Proof. Consider the n-state NFA for the language of scattered superstrings
of L(An) and the DFA obtained out of it by the subset construction.

Let us first show that for every X ⊆ {1, . . . , n − 2}, the subset {0} ∪X
is reachable. Let X = {i1, . . . ik}, with k > 0 and 1 6 ij 6 n − 2. Then
{0} ∪ X is reachable from the initial subset {0} by the string ai1 . . . aik . In
addition, the set of all states is reachable from {0, 1, . . . , n− 2} by a1.

Having presented 2n−2 + 1 reachable subsets, it remains to show their
pairwise inequivalence. The set of all states is the only subset from which ε is
accepted. For every two states {0}∪X and {0}∪Y , with X,Y ⊆ {1, . . . , n−2}
and X 6= Y , let i ∈ X ∆ Y , and assume without loss of generality that i ∈ X
and i /∈ Y . Then the string ai is accepted from X and is not accepted from
Y . This completes the proof.

Lemma 6 uses an alphabet of size n − 2 to establish the precise value
of the state complexity. It is natural to ask whether this bound could be
established using a smaller alphabet, such as an alphabet of a fixed size or a
slower growing alphabet. The answer is negative: n−2 symbols are necessary
to reach all 2n−2 + 1 states.

Lemma 7. Let A be any n-state DFA over an (n−3)-symbol alphabet. Then
the set of scattered superstrings of L(A) can be represented using strictly less
than 2n−2 + 1 states.

Proof. Let {0, 1, . . . , n − 1} be the set of states of A, with 0 as the initial
state. If A has multiple accepting states, then the statement follows from
Lemma 5, so assume A has a unique accepting state n− 1.

Consider the NFA for this language given in Lemma 4, and then the
corresponding subset DFA. Its initial subset is {0}. Due to the monotonicity
property given by Lemma 5, if a subset of the form {0, i}, with 1 6 i 6 n−2,
is reachable, it must be reachable by a direct transition from {0}. Since there
are n− 2 such subsets but only n− 3 symbols, at least one of these subsets
remains unreachable. The number of states in the minimal DFA for this
language is accordingly less than the upper bound 2n−2 + 1.

8

On the other hand, like in the case of scattered substrings, a fixed 3-letter
alphabet is sufficient to obtain a relatively high lower bound.

Lemma 8. Let k > 1 and define k′ = 2dlog2
k2−k

2
e. Define a DFA A′

k over
Σ = {a, b, c} with the set of states Q ∪R ∪ P , where

Q = {qi | 0 6 i 6 k − 2}
R = {ri,j | 0 6 i 6 k − 2, 1 6 j 6 k − i− 1}
P = {pi | 1 6 i < k′ + |R|},

of which q0 is the initial state and p1 is the sole accepting state. Let π : R →
{pi | k′ 6 i < k′ + |R|} be any bijective mapping and define the transitions of
A′

k as follows (undefined transitions are assumed to be self-loops):

δ(qi, a) = ri,1 (0 6 i 6 k − 2)

δ(qi, b) = qi+1 (0 6 i < k − 2)

δ(ri,j) = ri,j+1 (0 6 i 6 k − 2, 1 6 j < k − i− 1)

δ(rij, c) = π(rij) (rij ∈ R)

δ(p2i, a) = pi (1 < i < 2k′)

δ(p2i+1, b) = pi (1 < i < 2k′)

Then A′
k contains at most 2k2−k−3 states, while every DFA for the language

of all scattered superstrings of L(A′
k) requires at least Ck states, where Ck =

(2k)!
k!(k+1)!

is the k-th Catalan number.

An automaton of this form is shown in Figure 4. Consider its upper part
formed by the states from Q and R. Each column can be regarded as a
counter, and if state qi is reached, let us say that the i-th counter has been
activated. Initially, only counter 0 is activated. A transition by b activates
one more counter. A transition by a adds 1 to the values of all currently
active counters. By using a different number of as between bs, one can assign
different combinations of values to the counters.

The values of the counters are probed in the lower part of the automaton,
which is exactly the same as in Lemma 3. The transitions between states in
P form a binary tree, and a unique string of length log2 k′ is accepted from
each state pi ∈ P ; this string represents the binary notation of the number i.

Proof. Note that k′ equals |R| rounded up to the next power of two. Then
k′ 6 k2 − k − 2, and the number of states in A′

k is at most (k − 1) + k2−k
2

+

(k2 − k − 2 + k2−k
2

) = 2k2 − k − 3.
As in all lower bound proofs in this paper, consider the NFA for the

set of scattered superstrings of L(A′
k) (as in Figure 4, with the addition

of the remaining self-loops) and the DFA obtained from it by the subset
construction. Its initial subset is {q0}. The first step is to construct a family

9

Figure 4: DFA A′
k from Lemma 8; undefined transitions are self-loops.

10

of reachable subsets corresponding to vectors of integers (i0, . . . , ik−1), with
k − 1 > i0 > i1 > . . . > ik−2 > ik−1 = 0 and with ij 6 k − j − 1. It is
well-known that there are exactly Ck such vectors [12].

Define the subset Si0...ik−1
corresponding to a vector (i0, . . . , ik−1)

as the set of states reached from the initial state by the string
ai0−i1bai1−i2b . . . baik−2−ik−3baik−2−ik−1 . It is easy to see that

Si0...ik−1
= Q ∪ {rj,` | 1 6 ` 6 ij} ⊆ Q ∪R

Let (i0, . . . , ik−1) and (i′0, . . . , i
′
k−1) be any two different vectors of this form.

Then there exists a number j0, such that ij0 6= i′j0 and ij = i′j for all j with
j0 < j 6 k−2. Therefore the state rj0,max(ij0 ,i′j0) is contained either in Si0...ik−1

or in Si′0...i′k−1
, but not in both.

This proves that the subsets {Si0...ik−1
} are pairwise distinct. In order

to show that these subsets are pairwise inequivalent, it is sufficient to prove
that for every state r ∈ R there exists a string accepted by the NFA from
r, but from no other state in R. Let π(r) = pm. Then this string is defined
as wr = cs1 . . . slog2 k′ , where, for each i, si = a if the i-th digit in the binary
representation of m is 0, and si = b if this digit is 1. The automaton can
read this string, passing through the states pbm/2ic for i = 1, 2, . . . , log2 k′,
where the last state is p1. For any other state r′ ∈ R, the unique path of
length log2 k′ + 1 from r′ to p1 has labels forming a string different from wr,
and hence the string wr is not accepted from r′.

This shows that the minimal DFA for the language of scattered substrings
of L(A′

k) must have at least Ck states corresponding to the constructed sub-
sets.

It remains to represent the given lower bound for a (2k2 − k − 3)-state
DFA in the form of f(n) states for an n-state DFA. Using n states, one can
represent a DFA A′

k from Lemma 8, with

k =

⌊√
n

2
+

25

16
+

1

4

⌋
>

√
n

2
− 1.

For the final step, it is convenient to use the following lower bound on
Catalan numbers (a proof is included in the appendix):

Proposition 1. For every k > 1, Ck > 4k

(k+1)3/2
√

π
.

Then the state complexity of scattered superstrings must be at least

4
√

n
2
−1

(
√

n
2
)3/2

√
π

=
2

3
4

4
√

π

4
√

n
2

n
3
4

> 1

5
4
√

n
2 n−

3
4 .

All results on scattered substrings obtained in this section are put together
in the following theorem:

11

Theorem 2. State complexity of taking scattered superstrings is exactly
2n−2 + 1. The bound is reached for a growing (n − 2)-letter alphabet. For
alphabets of n− 3 symbols or fewer this bound is not reached. For a 3-letter

alphabet the state complexity is at least 1
5
4
√

n/2n−
3
4 .

It remains unknown whether the state complexity of scattered super-
strings for a fixed alphabet is 2Θ(n) or 2o(n).

Acknowledgements

I am grateful to Géraud Sénizergues for pointing out these problems to me. I
wish to thank Markus Holzer and Hermann Gruber for an interesting discus-
sion. I am indebted to Galina Jirásková for her comments on the manuscript.
Thanks are due to Michael Domaratzki for alerting me of some related work,
and to Michal Kunc and Tommi Lehtinen for advising me how to prove
Proposition 1.

Research supported by the Academy of Finland under grant 118540.

References

[1] J.-C. Birget, “Intersection and union of regular languages and state
complexity”, Information Processing Letters, 43 (1992), 185–190.

[2] C. Câmpeanu, K. Salomaa, S. Yu, “Tight lower bound for the state com-
plexity of shuffle of regular languages”, Journal of Automata, Languages
and Combinatorics, 7 (2002), 303–310.

[3] H. Gruber, M. Holzer, M. Kutrib, “The size of Higman–Haines sets”,
Theoretical Computer Science, 2007, to appear.

[4] H. Gruber, M. Holzer, M. Kutrib, “More on the size of Higman–Haines
sets: effective constructions”, Machines, Computations and Universality
(MCU 2007, Orléans, France, September 10–14, 2007), LNCS 4664, 193–
204.

[5] G. Jirásková, “State complexity of some operations on binary regular
languages”, Theoretical Computer Science, 330 (2005) 287–298.

[6] G. Jirásková, A. Okhotin, “State complexity of cyclic shift”, RAIRO
Informatique Théorique et Applications, to appear; preliminary version
presented at DCFS 2005.

[7] A. N. Maslov, “Estimates of the number of states of finite automata”,
Soviet Mathematics Doklady, 11 (1970), 1373–1375.

12

http://dx.doi.org/10.1016/0020-0190(92)90198-5�
http://dx.doi.org/10.1016/0020-0190(92)90198-5�
http://dx.doi.org/10.1016/j.tcs.2007.07.036�
http://dx.doi.org/10.1007/978-3-540-74593-8_17�
http://dx.doi.org/10.1007/978-3-540-74593-8_17�
http://dx.doi.org/10.1016/j.tcs.2004.04.011�
http://dx.doi.org/10.1016/j.tcs.2004.04.011�

[8] N. Rampersad, “The state complexity of L2 and Lk”, Information Pro-
cessing Letters, 98 (2006), 231–234.

[9] A. Salomaa, K. Salomaa, S. Yu, “State complexity of combined opera-
tions”, Theoretical Computer Science, 383:2–3 (2007), 140–152.

[10] A. Salomaa, D. Wood, S. Yu, “On the state complexity of reversals of
regular languages”, Theoretical Computer Science, 320 (2004), 315–329.

[11] J. Shallit, “New directions in state complexity”, DCFS 2006.

[12] R. P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University
Press, 1999.

13

http://dx.doi.org/10.1016/j.ipl.2005.06.011�
http://dx.doi.org/10.1016/j.tcs.2007.04.015�
http://dx.doi.org/10.1016/j.tcs.2007.04.015�
http://dx.doi.org/10.1016/j.tcs.2004.02.032�
http://dx.doi.org/10.1016/j.tcs.2004.02.032�

Appendix: lower bound on Catalan numbers

Proposition 1. For every k > 1, Ck > 4k

(k+1)3/2
√

π
.

Proof. Using Stirling’s approximation of the factorial in the form

√
2πnn+ 1

2 e−n+ 1
12n+1 < n! <

√
2πnn+ 1

2 e−n+ 1
12n ,

the following lower bound on Catalan number Ck = (2k)!
k!(k+1)!

can be obtained:

Ck >

√
2π(2k)2k+ 1

2 e−2k+ 1
24k+1

√
2πkk+ 1

2 e−k+ 1
12k · √2π(k + 1)k+1+ 1

2 e−k−1+ 1
12(k+1)

=
1√
2π

22k+ 1
2

k2k+ 1
2

kk+ 1
2 (k + 1)k+ 3

2

e−2k

e−2k−1
e

1
24k+1

− 1
12k

− 1
12k+12

=
e√
π

4k kk

(k + 1)k+ 3
2

e
1

24k+1
− 1

12k
− 1

12k+12

=
e√
π

4k

(k + 1)
3
2

(
k

k + 1

)k

e
1

24k+1
− 1

12k
− 1

12k+12

>
1√
π

4k

(k + 1)
3
2

e(
1 + 1

k

)k
e−

1
6k

It remains to prove that
e(

1 + 1
k

)k
e−

1
6k > 1.

This statement can be equivalently rewritten as

(
1 +

1

k

) 6k2

6k−1

6 e

Since 6k2

6k−1
= k + 1

6
+ 1

6(6k−1)
< k + 1

5
, it is sufficient to establish the following

stronger statement for each k > 2:

(
1 +

1

k

)k+ 1
5

6 e.

To establish this, take the logarithm of both sides and substitute x = 1
k
,

so that it remains to prove the following statement for all x ∈ (0, 1):

(
1

x
+

1

5

)
ln(1 + x) 6 1

14

Expanding the logarithm into a Taylor series, one obtains

(
1

x
+

1

5

) ∞∑
n=0

(−1)n

n + 1
xn+1 =

∞∑
n=0

(−1)n

n + 1
xn +

∞∑
n=1

(−1)n+1

5n
xn =

1 +
∞∑

n=1

(−1)n 4n− 1

5n(n + 1)
xn,

and hence the statement to be proved takes the form

∞∑
n=1

(−1)n+1 4n− 1

5n(n + 1)
xn > 0.

Grouping pairs of consecutive terms, the series can be expressed as

∞∑
n=1

x2n

(
8n− 5

10n(2n− 1)
− x

8n− 1

10n(2n + 1)

)

Now every term of the series is positive, because

8n− 5

10n(2n− 1)
>

8n− 1

10n(2n + 1)
> x

8n− 1

10n(2n + 1)
,

where the first inequality is easy to verify, while the second one holds true
because x < 1. This completes the proof.

15

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematical Sciences

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN 978–952–12–1968–9
ISSN 1239–1891

