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Abstract
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1 Introduction

Trellis automata are one of the simplest, perhaps the simplest kind of cellu-
lar automata, and are known as one-way real-time cellular automata in the
standard nomenclature. The first results on their expressive power are due
to Smith [11], Dyer [2] and Culik et al. [1]. By definition, a trellis automaton
uses space n and makes Θ(n2) transitions, so every language it recognizes is
in P. The existence of a trellis automaton accepting a P-complete language
was demonstrated by Ibarra and Kim [5], though no explicit construction
was presented. A particular automaton solving a P-complete problem was
constructed by the author [8]; it used 45 states and was defined over a 9-letter
alphabet was given.

This paper aims to construct a new trellis automaton solving a different
P-complete problem, this time with the goal of minimizing the number of
states. The problem is the same variant of the Circuit Value Problem as in
the previous paper [10], though this time a new encoding is defined. With
the proposed encoding, the problem may be solved by an 11-state trellis
automaton over a 2-letter alphabet. A full construction will be given and
explained.

2 Trellis automata

Trellis automata can be equally defined by their cellular automata semantics
(using evolution of configurations) and through the trellis representing their
computation. According to the latter approach, due to Culik et al. [1], a
trellis automaton processes an input string of length n > 1 using a uniform
triangular array of n(n+1)
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processor nodes, as presented in the figure below.

Each node computes a value from a fixed finite set Q. The nodes in the bot-
tom row obtain their values directly from the input symbols using a function
I : Σ → Q. The rest of the nodes compute the function δ : Q × Q → Q
of the values in their predecessors. The string is accepted if and only if the
value computed by the topmost node belongs to the set of accepting states
F ⊆ Q. This is formalized in the following definition.

Definition 1. A trellis automaton is a quintuple M = (Σ, Q, I, δ, F ), where:

• Σ is the input alphabet,

• Q is a finite non-empty set of states,

• I : Σ → Q is a function that sets the initial
states,

• δ : Q×Q → Q is the transition function, and

• F ⊆ Q is the set of final states.
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The result of the computation on a string w ∈ Σ+ is denoted by ∆ : Σ+ → Q,
which is defined inductively as ∆(a) = I(a) and ∆(awb) = δ(∆(aw), ∆(wb)),
for any a, b ∈ Σ and w ∈ Σ∗. Then the language recognized by the automaton
is L(A) = {w |∆(w) ∈ F}.

3 Sequential NOR Circuit Value Problem

A circuit is an acyclic directed graph, in which the incoming arcs in every
vertex are considered ordered, every source vertex is labelled with a variable
from a certain set {x1, . . . , xm} with m > 1, each of the rest of the vertices
is labelled with a Boolean function of k variables (where k is its in-degree),
and there is a unique sink vertex. For every Boolean vector of input values
(σ1, . . . , σm) assigned to the variables, the value computed at each gate is
defined as the value of the function assigned to this gate on the values com-
puted in the predecessor gates. The value computed at the sink vertex is the
output value of the circuit on the given input.

The Circuit Value Problem (CVP) is stated as follows: given a circuit
with gates of two types, f1(x) = ¬x and f2(x, y) = x∧ y, and given a vector
(σ1, . . . , σm) of input values assigned to the variables (σi ∈ {0, 1}), determine
whether the circuit evaluates to 1 on this vector. The pair (circuit, vector of
input values) is called an instance of CVP. This is the fundamental problem
complete for P, which was proved by Ladner [6]. A variant of this problem
is the Monotone Circuit Value Problem (MCVP), in which only conjunction
and disjunction gates are allowed. As shown by Goldschlager [3], MCVP
remains P-complete.

A multitude of other particular cases of CVP are known to be P-complete
[4]. Let us consider one particular variant of this standard computational
problem. A sequential NOR circuit is a circuit satisfying the following con-
ditions:

• The notion of an input variable is eliminated, and the circuit is deemed
to have a single source vertex, which, by definition, assumes value 1.

• A single type of gate is used. This gate implements Peirce’s arrow
x ↓ y = ¬(x ∨ y), also known as the NOR function. It is well-known
that every Boolean function can be expressed as a formula over this
function only.

• The first argument of every k-th NOR gate has to be its direct pre-
decessor, the (k − 1)-th gate, while the second argument can be any
previous gate. Because of that, these gates will be called restricted
NOR gates.

The problem of testing whether such a circuit evaluates to 1 is called the
Sequential NOR Circuit Value Problem, and it has recently been proved by
the author [10] that it remains P-complete.
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Theorem 1 ([10]). Sequential NOR CVP is P-complete.

The idea of the proof is to simulate unrestricted conjunction and negation
gates by sequences of restricted NOR gates. An unrestricted negation gate
of the form Ci = ¬Cj can be simulated by two gates: Ci = Ci−1 ↓ C1 and
Ci+1 = Ci ↓ Cj. The gate C1 is assumed to have value 1, so Ci will always
evaluate to 0. Then Ci+1 computes ¬(0 ∨ Cj) = ¬Cj.

Similarly, a conjunction of Cj and Ck is represented by five restricted NOR
gates: Ci = Ci−1 ↓ C1, Ci+1 = Ci ↓ Cj, Ci+2 = Ci+1 ↓ C1, Ci+3 = Ci+2 ↓ Ck

and Ci+4 = Ci+3 ↓ Ci+1. Here Ci and Ci+1 both evaluate to 0, Ci+1 and Ci+3

compute ¬Cj and ¬Ck, respectively, and then the value of Ci+4 is Cj ∧ Ck.

4 Encoding of circuits

Let us now give a simple encoding of sequential NOR circuits as strings over
the alphabet Σ = {a, b}. Consider any sequential NOR circuit

C1 = 1

C2 = C1 ↓ C1

C3 = C2 ↓ Cj3

...

Cn−1 = Cn−2 ↓ Cjn−1

Cn = Cn−1 ↓ Cjn

where n > 2 and 1 6 ji < i for all i. The gates C1 and C2 are represented
by strings a and b, respectively. Every restricted NOR gate Ci = Ci−1 ↓ Cji

with i > 3 is represented as a string baji . The whole circuit is encoded as a
concatenation of these representations in the reverse order, starting from the
gate Cn and ending with . . . C3C2C1. The encoding continues with a letter b
and a suffix bn representing the work space needed by the trellis automaton
to store the computed values of the gates:

bajnajn−1 . . . baj4baj3ba︸ ︷︷ ︸
gate descriptions

b b . . . b︸ ︷︷ ︸
bn: work space

The set of syntactically correct circuit descriptions can be formally defined
as follows:

L = {bajn bajn−1 . . . baj3 b a b bn | n > 2 and 1 6 ji < i for each i}.
The language of correct descriptions of circuits that evaluate to 1 has the
following fairly succinct definition:

L1 = {bajnbajn−1 . . . baj3bab bn | n > 2 and ∃x1, x2, . . . , xn, s.t.

x1 = xn = 1 and for all i (1 6 i 6 n), 1 6 ji < i and xi = ¬(xi−1 ∨ xji
)}.
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This is a P-complete language and it has a simple structure that resembles the
examples common in formal language theory. As it will now be demonstrated,
this set can indeed be very succinctly defined by language-theoretic methods.

5 Construction of a trellis automaton

The goal is to construct a trellis automaton that accepts a string from L if
and only if it is in L1. Thus the behaviour of the automaton on strings from
{a, b}+ \ L is undefined, and the actual language it recognizes is different
from L1. Disregarding the strings not in L results in a simpler construction
and in fewer states.

The automaton uses 11 states, and its set of states is defined as Q = {?,
00, 01, 0↖, 0↗, 0, 10, 11, 1↖, 1↗, 1}. The initial function is defined by
I(a) = 0↗ and I(b) = 0↖, while the set of accepting states is F = {1}.

Figure 1: Sketch of the computation.

The overall structure of the computation of the automaton on a valid
encoding of a circuit is given in Figure 1. The suffix bn of the encoding is
used by the automaton as the “work space”, and the diagonal spawned to
the left from every ith b in this suffix represents the computed value of the
ith gate of the circuit. Each diagonal initially holds the question mark; in
other words, ∆(wbi) = ? for every sufficiently short nonempty suffix of the
circuit description. The value of the ith gate is computed on the substring
starting at the description of the ith gate and ending with bi; formally,

∆(bajibaji−1 . . . baj3babbi) =

{
0, if Ci = 0;
1, if Ci = 1.

This computed value is propagated to the left, so that all subsequent states
in this diagonal are xp ∈ Q, where x ∈ {0, 1} is the value of the gate Ci,
while p ∈ {0, 1,↖,↗, } is a state of an ongoing computation of the trellis
automaton.
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In order to compute the value of each ith gate, the automaton should
read the gate description baji and look up the values of the gates Cji

and
Ci−1, which were computed on shorter substrings of the encoding and are
now being propagated in the diagonals. To be more precise, the value of the
gate Cji

should be brought to the (i− 1)th diagonal in the form of the state
x

xji
i−1, and then the value of Ci is computed and placed in the correct diagonal

by a single transition.

Figure 2: Computing the value of the ith gate.

The exact states of such a computation are given in Figure 2. Assume
that the encoding of the (n + 1)th gate is baj and it is propagated to the
lower left border of Figure 2 in the form of the states 0↗ for each a and
the state 0↖ for b. The diagonals spawned from the bn+1 arrive to the left
as states xi, x0

i or x1
i for each gate i, and as ? for the last (n + 1)-th gate.

Figure 2 illustrates how the value of the (n + 1)-th gate is computed, while
the already computed values of the rest of the gates are preserved.

Furthermore, consider a full computation of the automaton on a string
ba2ba3ba2babb5 ∈ L1, given in Figure 3. This computation contains three
instances of computations of the values of gates, and each case is marked
with dark grey in the same way as in Figure 2.

Now it is time to define all transitions used in this computation. The
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Figure 3: A sample computation of the 11-state trellis automaton.

vertical line of states in {0↖, 1↖} marked with dark grey represents matching
the number of as in the description of the gate to the number of diagonals
with gate values, which allows seeking for the gate Cj. This vertical line is
maintained by transitions of the form

δ(k↗, `) = `↖ (for k, ` ∈ {0, 1}).
There are two cases of how this line can begin, that is, how the bottom state
1↖ is computed. If the previous gate Cn refers to a gate other than C1,
then the above general form of transitions gives δ(0↗, 1) = 1↖. However, if
Cn is defined as Cn−1 = C1, then the state 11 will appear instead of 1 (this
will be explained along with the below construction), and the following extra
transition is needed to handle this case:

δ(0↗, 11) = 1↖.

The states to the left of this vertical line belong to {0↗, 1↗}, and these
states are computed by the following transitions:

δ(k↗, `↗) = `↗ (for k, ` ∈ {0, 1}).
Beside the vertical line the transitions are:

δ(k↗, `↖) = `↗ (for k, ` ∈ {0, 1}).
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Now consider the states to the right of the dark grey vertical line, which
are all from {0, 1}. Beside the vertical line they are computed by the transi-
tions

δ(k↖, `) = ` (for k, ` ∈ {0, 1}),
while further to the right the transitions are

δ(k, `) = ` (for k, ` ∈ {0, 1}).

All actual computations are done in the upper left border of the area in
Figure 2. Assume that the gate referenced by the gate Cn+1 is not C1, that
is, j > 2 (as in the figure). Then the transition in the leftmost corner of the
area is

δ(0↖, 1↗) = 1,

(note that this place is recognized by the automaton because the value of C1

is 1) and the border continues to the up-right by the transitions

δ(k, `↗) = ` (for k, ` ∈ {0, 1}).

Eventually the upper left border meets the dark grey vertical line, which
marks the diagonal corresponding to gate Cj. The transition at this spot is

δ(k, `) = `` (for k, ` ∈ {0, 1}),

and thus the value ` of the j-th gate is put to memory. This memory cell is
propagated in the up-right direction by the transitions

δ(k`,m↖) = m` (for k, `,m ∈ {0, 1}).

This continues until the question mark in the (n + 1)-th diagonal is encoun-
tered, when the value of the (n+1)-th gate can be computed by the following
transition

δ(k`, ?) = ¬(k ∨ `) ∈ {0, 1} (for k, ` ∈ {0, 1}).
Otherwise, if the (n + 1)th gate refers to the gate C1, then the transition

in the left corner of the figure is

δ(0↖, 1↖) = 11,

which immediately concludes the dark grey vertical line. The rest of the
computation is the same as in the above description.

Having described the contents of the upper left border of the area, it is
now easy to give the transitions that compute its lower right border, as these
states are computed on the basis of the upper left border of the computation
for Cn. If Cn refers neither to C1 nor to C2, then, as shown in the figure,
the second state in the lower right border is computed by the transition
δ(1↖, 0) = 0, which has already been defined. If Cn refers to C1, then there
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will be a state 01 instead of 0, and if Cn refers to C2, there will be 00 in this
position, so the following transitions are necessary:

δ(1↖, 0k) = 0 (for k ∈ {0, 1}).
The rest of the states in the lower right border are either computed by the
earlier defined transitions δ(k, `) = `, or by the transitions

δ(k, `m) = ` (for k, `,m ∈ {0, 1}).
This completes the list of transitions used to compute the value of each
gate starting from C3. A few more transitions are required to initialize the
computation and to set the values of C1 and C2.

Each symbol b in a gate description baj is propagated in the right-up
direction by the transition

δ(0↖, 0↗) = 0↖.

The question marks are created from any two subsequent bs by the transition

δ(0↖, 0↖) = ?.

The question marks are reduplicated by the transitions

δ(q, ?) = ? (for q ∈ {?, 0, 1}),
and by one more transition that works in the case of Cn+1 = Cn ↓ Cn:

δ(0↗, ?) = ?.

Figure 4: The beginning of the computation.

The beginning of the computation is illustrated in Figure 4: as every
valid circuit description has a substring babbb, these transitions are needed
in every computation. Here the value of C1 is set by the transition

δ(0↗, ?) = 1↖,

while processing the gate C2 requires the transition

δ(1↖, ?) = ?.
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This concludes the description of the transition function. To make it total,
the rest of the transitions can be defined arbitrarily.

Some transitions defined above will actually never occur. Note that no
sequential NOR circuit may have two consecutive gates with value 1: if Cn =
1, then Cn+1 = ¬(Cn ∨ Cjn+1) = ¬1 = 0. This makes the transitions δ(q, q′)
with q, q′ ∈ {1, 1↗, 1↖, 10, 11} impossible, and as 11 such transitions have
been defined above, they may be safely undefined (or redefined arbitrarily).
With this correction, the transition table of the automaton is given in Table 1.

? 0 1 0↗ 1↗ 0↖ 1↖ 00 01 10 11

? ?
0 ? 0 1 0 1 00 11 0 0 1 1
1 ? 0 0 00 0 0

0↗ 1↖ 0↖ 1↖ 0↗ 1↗ 0↗ 1↗ 1↖

1↗ 0↖ 0↗ 0↗

0↖ ? 0 1 0↖ 1 ? 11

1↖ ? 0 0 0
00 1 00 10

01 0 01 11

10 0 00

11 0 01

Table 1: The transition table of the 11-state trellis automaton.

The correctness of the given construction is stated in the following lemma,
which specifies the state computed on (almost) every substring of a valid
encoding of a circuit.

Lemma 1. Let wbn with w ∈ {a, b}∗ and n > 2 be a description of a circuit
with the values of gates x1, . . . , xn ∈ {0, 1}. Then:

i. ∆(wbi) ∈ {xi, x
0
i , x

1
i } for 1 6 i 6 n, and ∆(wbn) = xn.

ii. ∆(uwbn) ∈ {xn, x
0
n, x1

n, x↖n , x↗n } for every u ∈ {a, b}∗;

iii. ∆(aiwbj) =





x↗i if j < i,

x↖i if j = i,
xi if j > i.

(1 6 i < n, 1 6 j 6 n);

iv. ∆(baiwbj) =

{
xi if j < i,
xxi

j if j > i.
(1 6 i < n, 1 6 j 6 n)

A formal proof is omitted, as every transition has been explained along
with the construction. It could be carried out by an induction on the length
of w.

This establishes the main result of this paper:
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Theorem 2. There exists an 11-state trellis automaton with 50 useful tran-
sitions that recognizes a P-complete language over a 2-letter alphabet.

This automaton can be converted to a linear conjunctive grammar, which
has a nonterminal representing every state and at most 4 rules for each
transition.

Corollary 1. There exists a linear conjunctive grammar with 11 nonter-
minals and at most 200 rules that recognizes a P-complete language over a
2-letter alphabet.

Although this grammar is significantly smaller than the earlier exam-
ple [8], it is still large. However, it is conjectured that the principles of the
operation of this trellis automaton can be implemented in a linear conjunc-
tive grammar much more efficiently, and a much smaller grammar generating
(almost) the same language can be obtained.
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Appendix: Tests

The trellis automaton constructed in this paper is in fact a program that
solves a particular problem, and the correctness of this program has been es-
tablished as a mathematical theorem. Recalling the frequently quoted words
of D. E. Knuth, “Beware of bugs in the above code; I have only proved it cor-
rect, not tried it”, the argument would be more convincing if the correctness
were to be independently verified by running the automaton on sufficiently
many small inputs.

The test was organized as follows. All circuits with 2 to 10 gates of the
form described in Section 4 were considered; there are 1!+2!+3!+ . . .+9! =
409113 of such circuits. Each circuit was evaluated by computing the value
of each gate, and 253883 circuits were found to evaluate to 1. Independently,
each circuit was represented as a string over {a, b} according to Section 4
and the constructed 11-state trellis automaton was simulated on this input.

value 0 value 1
Rejected 253883 0
Accepted 0 155230

These results indicate that every string given to the automaton was ac-
cepted if and only if the circuit it specifies evaluates to 1.
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