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Abstract

In this paper, Information Logic of Galois Connections (ILGC) suited for approx-
imate reasoning about knowledge is introduced. Its axiomatization and Kripke-
style semantics based on information relations is defined, and its completeness is
proved. It is also shown that ILGC is equivalent to the minimal tense logicKt,
and decidability of ILGC follows from this observation. Additionally, relation-
ship of ILGC to the modal logic S4 is studied. Namely, a certain composition
of Galois connection mappings forms a lattice-theoreticalinterior operator, and
this motivates us to axiomatize a logic of these compositions. The axiomatization
resembles the one of S4, except that our logic is not ‘normal’in the sense that
axioms N and K of S4 are not included in the set of axioms. Finally, so-called
interior model is introduced to define semantics and validity, and completeness of
this logic is proved as well.

Keywords: rough sets, fuzzy sets, approximate reasoning, knowledge represen-
tation, modal logic



1 Introduction

The theory of rough sets introduced by Pawlak [25] can be viewed as an extension
of the classical set theory. Its fundamental idea is that ourknowledge about objects
of a given universe of discourseU may be inadequate or incomplete. The objects
can be then observed only with the accuracy restricted by some indiscernibility re-
lation. According to the Pawlak’s original definition, an indiscernibility relationE
onU is an equivalence interpreted so that two elements ofU areE-related if they
cannot be distinguished by their properties. Since there isone-to-one correspon-
dence between equivalences and partitions, each indiscernibility relation induces
a partition onU . In this sense, our ability to distinguish objects can be understood
to be blurred – we cannot distinguish individual objects, only their equivalence
classes.

Each subsetX of U can be approximated by two sets: the lower approxima-
tion XH of X consists ofE-equivalence classes that are included inX, andX ’s
upper approximationXN containsE-classes intersecting withX. The lower ap-
proximationXH can be viewed as a set of elements that are certainly inX and
the upper approximationXN can be considered as a set of elements that possibly
belong toX. Note also that approximations can be viewed to be definable or ex-
act in the sense that they are unions of classes of indistinguishable elements. This
may be interpreted so that definable sets are describable as the conjunction of the
properties of the objects they contain.

The literature, however, contains studies in which rough approximations are
defined by relations that are not necessarily equivalences (see e.g. [10] for further
details). Note also that Järvinen, Kondo and Kortelainen [11, 12] have studied
approximations in a more general setting of complete atomicBoolean lattices.
They have also studied definable sets determined by indiscernibility relations of
different types in [13, 15].

To be as general as possible, in this paper it is allowedR to be any arbitrary
binary relation. We may also define for each subsetX of the universeU the
rough set approximations by the means of the inverseR−1 of R and these sets
are denoted byX▽ andX△. Therefore, for everyX we may attach two lower
approximations,XH andX▽, and two upper approximationsXN andX△. Note
also that the studies appearing in the literature usually consider the pair of rough
approximation mappingsN andH that are mutually dual. However, in this work we
focus on the pair(N,▽) forming a Galois connection. Obviously, even in this more
general case, the setX▽ can be considered as the set of elements that necessarily
are inX, because if an elementy is R-related to some elementx ∈ X▽, then
y must be inX. Similarly, XN may be viewed as the set of elements possibly
belonging toX, since ifx ∈ XN, then there exists an elementy in X to whichx
is R-related.

In this work we also shortly consider Pawlak’s information systems [24]. They
consist of a setU of objects and a set of attributesA. Every attributea ∈ A at-
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taches the valuea(x) of the attributea to the objectx. The key idea in Pawlak’s
information systems is that each subsetB ⊆ A of attributes determines an in-
discernibility relation ind(B) which is defined so that two objectsx andy of the
universeU areB-indiscernible if their values for all attributes in the setB are
equal, that is,a(x) = a(y) for all a ∈ B. Orłowska and Pawlak introduced in
[23] many-valued information systems as a generalization of Pawlak’s original
systems. In a many-valued information system each attribute attaches a set of val-
ues to objects. Therefore, in many-valued systems it is possible to define several
types of information relations reflecting distinguishability or indistinguishability
of objects of the system.

Also L-sets introduced by Goguen [8] determine relations reflecting knowl-
edge about objects. The idea presented by Kortelainen [17, 18] is that eachL-set
ϕ onU determines a binary relation. such thatx . y holds, whenevery belongs
to the set represented byϕ at least at the same extent asx. Now the relation., or
its inverse& as well, can be used to determine the approximation mappings. The
essential connections between modal-like operators, topologies and fuzzy sets are
studied in [14].

In the literature there are several studies on logical foundations of rough sets.
Usually these logics have a semantics similar to the one by Kripke [16]. In the pa-
per [26], Pawlak formulated some notions of rough logics. Based on these ideas,
Rasiowa and Skowron [27] have introduced first-order predicate logic suited for
rough approximations and definability. Orłowska with her coauthors has exten-
sively studied several logics for knowledge representation – see [7, 22, 23], for
example. Also Vakarelov [28, 29] has investigated modal logics for information
relations of many-valued information systems. Many of these mentioned logics
are examined for instance in survey papers [2, 31]. Orłowskahas also introduced
Kripke models with relative accessibility relations in [21] – these are modifica-
tions of the ordinary Kripke structure such that ‘accessibility relations’ are deter-
mined by sets of parameters interpreted as a properties of objects. In addition to
this, Demri and Goré [4] have defined cut-free display calculi for knowledge rep-
resentation logics with relative accessibility relations. It also should be mentioned
that Mattila has considered so-called modifier logics closely related to fuzzy logic
in several works; see e.g. [19], for further details and references. For example, in
[20] a modifier calculi together with relational frame semantics and some ideas for
topological semantics is given. Finally, note that von Karger has developed in [30]
several temporal logics from the theory of complete lattices, Galois connections,
and fixed points.

This paper is presented as follows: In Section 2 we define Galois connections
and recall some of their well-known properties. We also introduce generalized
rough approximation operations based on information relations. We show how
they induce Galois connections and give two examples of approximation operators
determined by information relations of information systems andL-sets. Section 3
introduces Information Logic of Galois Connections (ILGC). ILGC is just the
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standard propositional logic with two modal connectives▽ andN. Concerning
▽ andN, we have two additional rules of inference mimicking the definition of
Galois connection. We also give its semantics and show that the logic is complete.
The final section gives some relationships between ILGC, minimal tense logicKt

and modal logic S4. Also the decidability of ILGC is shown there.

2 Galois Connections of Information Relations

We begin our study by recalling Galois connections and theirbasic properties;
these can be found in [6], for example. For two ordered setsP andQ, a pair(◮,⊳)
of maps◮: P → Q and⊳: Q → P is called aGalois connectionbetweenP and
Q if for all p ∈ P andq ∈ Q,

p◮ ≤ q ⇐⇒ p ≤ q⊳.

The function◮ is called aresiduated mapand the function⊳ is called aresidual
map. The next proposition gives some well-known properties of Galois connec-
tions.

Proposition 2.1 Assume (◮,⊳) is a Galois connection between ordered setsP
andQ. Letp, p1, p2 ∈ P andq, q1, q2 ∈ Q. Then the following assertions hold:

(i) p1 ≤ p2 ⇒ p1
◮ ≤ p2

◮ and q1 ≤ q2 ⇒ q1
⊳ ≤ q2

⊳.

(ii) p ≤ p◮⊳ and q⊳◮ ≤ q.

(iii) p◮ = p◮⊳◮ and q⊳ = q⊳◮⊳.

(iv) ◮ preserves all existing joins and⊳ preserves all existing meets.

(v) The composite◮⊳: P → P is a lattice-theoretical closure operator and the
composite⊳◮: Q → Q is a lattice-theoretical interior operator.

It is known that(◮,⊳) is a Galois connection between two ordered sets if and only
if ◮ and⊳ satisfy (i) and (ii). Notice also that Galois connections were originally
defined with functions that reverse order. We use the above form since it is more
suitable for our purposes.

Proposition 2.1 implies that ifP andQ are bounded lattices, then◮ is a∨-
homomorphism and⊳ is a∧-homomorphism, that is,(a ∨ b)◮ = a◮ ∨ b◮ and
(x∧y)⊳ = x⊳∧y⊳ for all a, b ∈ P andx, y ∈ Q. Additionally,◮ is⊥-preserving
and⊳ is⊤-preserving, that is,⊥◮ = ⊥ and ⊤⊳ = ⊤.

Next we consider generalized rough set approximations. LetU be a set, called
theuniverse of discourseand letR be a binary relation onU . Theupper approxi-
mationof a setX ⊆ U is

XN = {x ∈ U | (∃y ∈ U) xR y & y ∈ X}
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and thelower approximationof X is

XH = {x ∈ U | (∀y ∈ U) xR y ⇒ y ∈ X}.

Obviously, the maps are dual, that is, for anyX ⊆ U ,

XcN = XHc andXcH = XNc,

whereXc = {x ∈ U | x /∈ X} is the complement ofX in the universeU .
We may also define an analogous pair of mappings℘(U) → ℘(U) by reversing

the relationR. For any setX ⊆ U , let us define

X△= {x ∈ U | (∃y ∈ U) y R x & y ∈ X}

and
X▽ = {x ∈ U | (∀y ∈ U) y R x ⇒ y ∈ X}.

Trivially, △and▽ also are dual.
The next result is well-known.

Proposition 2.2 For any binary relation, the pairs(N,▽) and (△,H) are Galois
connections.

We end this section by considering two more concrete examples of approxi-
mation operations.

Information Relations. Many-valued information systems were introduced in
[23], and different types of information relations considered here can be found
in [5], for instance. Amany-valued information systemis a pair(U, A), where
U is a set of objects andA is a set of attributes such that each attribute is a map
a: U → ℘(Va). This means that attributes attach sets of values to objects. For
example, ifa is the attribute ‘knowledge of languages’ and a person denoted byx
knows English and Finnish, thena(x) = {English, Finnish}.

Objects of an information system may be related in differentways with re-
spect to their values of attributes. We recall someinformation relationsreflecting
indistinguishability of objects of an information system(U, A). For anyB ⊆ A,
the following relations may be defined:

(x, y) ∈ ind(B) ⇐⇒ (∀a ∈ B) a(x) = a(y)

(x, y) ∈ sim(B) ⇐⇒ (∀a ∈ B) a(x) ∩ a(y) 6= ∅

(x, y) ∈ inc(B) ⇐⇒ (∀a ∈ B) a(x) ⊆ a(y)

These relations are referred to asB-indiscernibility, B-similarityandB-inclusion,
respectively.

If a is again the attribute ‘knowledge of languages’ andR is thea-similarity
relation, then two objectsx andy areR-related if they have a common language.
The similarity relation is obviously symmetric, which gives thatXN = X△ and
XH = X▽. Obviously,x ∈ XN if there exists a persony ∈ X which has a
common language withx. Similarly, x ∈ X▽ if all persons having a common
language withx are inX.
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Fuzzy Sets. Fuzzy sets were defined first time by Zadeh [32] as mappings from
a non-empty setU into the unit interval[0, 1]. Then, fuzzy sets were generalized to
L-fuzzy sets by Goguen [8] in such a way that anL-fuzzy setϕ onU is a mapping
ϕ: U → L, whereL is equipped with some ordering structure. However, in this
paper, we use the term ‘L-set’ instead of ‘L-fuzzy set’.

Notice that in the literatureL is usually assumed to be at least a complete
lattice. The motivation for this is that in such a setting it is possible to consider
many-valued logics in which some truth values are incomparable. The least el-
ement⊥ and the greatest element⊤ of L may be viewed as the ‘absolute’ truth
valuesfalseandtrue. In the current work,L is always assumed to be a preordered
set, that is, the setL is equipped with a reflexive and transitive binary relation≤.
Typically, L may consist of attributes such as ‘good’, ‘excellent’, ‘poor’ and ‘ad-
equate’, for example. Notice that it is natural to assume that the relation≤ is not
antisymmetric: ifx, y ∈ L are synonyms, that is, words or expressions that are
used with the same meaning, thenx ≤ y andx ≥ y, but still x andy are distinct
words. This more general setting enables us to move towards the methodology
calledcomputing with words[33], in which the objects of computation are given
by a natural language. Computing with words, in general, is inspired by the hu-
man capability to perform a wide variety of tasks without anymeasurements and
any quantizations.

As noted in [17], eachL-setϕ: U → L determines a preorder. onU by

x . y ⇐⇒ ϕ(x) ≤ ϕ(y).

Assume now thatϕ: U → L is anL-set describing the ability of persons inU to
speak Japanese. Furthermore, we denote the inverse relation of . by &. Then,
x & y is true ifx can speak Japanese at least as well asy.

Let us consider the approximations defined by the relation&, that is,

XN = {x ∈ U | (∃y ∈ U) x & y & y ∈ X}

and
X▽ = {x ∈ U | (∀y ∈ U) y & x ⇒ y ∈ X}.

Now, x ∈ XN if and only if x can speak Japanese at least as well as some person
in X. Furthermore,x ∈ X▽ if and only if y & x impliesy ∈ X, that is, there
cannot be a person outsideX speaking Japanese at least as well asx. Thus,
approximations have a nice interpretation also in case of fuzzy sets.

Notice that the other pair of approximation maps(△,H) also forming a Galois
connection is defined byx ∈ X△ if and only if there existsy ∈ U such thatx . y
andy ∈ X, andx ∈ XH whenever for ally ∈ U , y . x impliesy ∈ X.

3 Information Logic of Galois Connections

In this section, we introduce a simple propositional logic ILGC – an acronym for
Information Logic of Galois Connections – with two additional connectivesN and
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▽. We begin with introducing the syntax and the semantics of this language.

3.1 Syntax and Semantics

Let P be an enumerable set, whose elements are calledpropositional variables.
The set ofconnectivesconsists of logical symbols→, ¬, N, and▽. A formulaof
ILGC is defined inductively as follows:

(i) Every propositional variable is a formula.

(ii) If A andB are formulae of ILGC, then so areA → B, ¬A, NA, and▽A.

Let us denote byΦ the set of all formulae of ILGC.
The logical system ILGC has the following threeaxiomsof classical proposi-

tional logic:

(Ax1) A → (B → A)

(Ax2) (A → (B → C)) → ((A → B) → (A → C))

(Ax3) (¬A → ¬B) → (B → A)

Furthermore, ILGC has the following threerules of inference:

(MP)
A A → B

B
(GC1)

A → ▽B

NA → B
(GC2)

NA → B

A → ▽B

The first rule is the classicalmodus ponens, and (GC1) and (GC2) mimic the
conditions appearing in the definition of Galois connections.

An ILGC-formula A is said to beprovable, if there is a finite sequence
A1, A2, . . . , An of ILGC-formulae such thatA = An and for every1 ≤ i ≤ n:

(i) eitherAi is an axiom of ILGC

(ii) or Ai is the conclusion of some inference rules, whose premises are in the
set{A1, . . . , Ai−1}.

ThatA is provable in ILGC is denoted by⊢ A.
For the sake of simplicity the following abbreviations fordisjunction, conjunc-

tion, equivalence, true, andfalseare introduced:

A ∨ B := (A → B) → B

A ∧ B := ¬(¬A ∨ ¬B)

A ↔ B := (A → B) ∧ (B → A)

⊤ := A ∨ ¬A

⊥ := A ∧ ¬A

Our next proposition presents some provable formulae and additional infer-
ence rules of ILGC.
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Proposition 3.1 For all ILGC-formulaeA andB, we have:

(i)
A → B

▽A → ▽B
and

A → B

NA → NB

(ii) ⊢ A → ▽NA and ⊢ N▽A → A

(iii) ⊢ ▽A ↔ ▽N▽A and ⊢ NA ↔ N▽NA

(iv) ⊢ ▽⊤ ↔ ⊤ and ⊢ N⊥ ↔ ⊥

(v)
A

▽A

(vi) ⊢ ▽(A ∧ B) ↔ ▽A ∧ ▽B and ⊢ N(A ∨ B) ↔ NA ∨ NB

(vii) ⊢ ▽(A → B) → (▽A → ▽B)

Proof. Note that we prove only the first claims of (i)–(iv) and (vi), because their
second parts can be proved in an analogous manner.

(i) Suppose that⊢ A → B. Because⊢ ▽A → ▽A holds trivially, we obtain
⊢ N▽A → A by (GC1). Hence⊢ N▽A → B, which gives⊢ ▽A → ▽B by
(GC2).

(ii) Because⊢ NA → NA, we have⊢ A → ▽NA by (GC2).
(iii) Obviously, by (ii), ⊢ ▽A → ▽N▽A. Furthermore, since⊢ N▽A → A,

we get⊢ ▽N▽A → ▽A by (i).
(iv) It is clear that⊢ ▽⊤ → ⊤. Conversely,⊢ N⊤ → ⊤ implies⊢ ⊤ → ▽⊤

by (GC2).
(v) Assume⊢ A. This means⊢ ⊤ → A and we get⊢ ▽⊤ → ▽A by (i).

Because⊤ → ▽⊤ by (iv), we obtain⊢ ⊤ → ▽A. Thus,⊢ ▽A.
(vi) Because⊢ A ∧ B → A and⊢ A ∧ B → B, we have⊢ ▽(A ∧ B) → ▽A

and⊢ ▽(A ∧ B) → ▽B by (i). Hence,⊢ ▽(A ∧ B) → ▽A ∧ ▽B. On the other
hand,⊢ ▽A ∧ ▽B → ▽A yields⊢ N(▽A ∧ ▽B) → A by (GC2). Similarly, we
may show⊢ N(▽A ∧ ▽B) → B. This gives that⊢ N(▽A ∧ ▽B) → A ∧ B and
⊢ ▽A ∧ ▽B → ▽(A ∧ B) by (GC2).

(vii) Since⊢ A ∧ (A → B) → B, we have⊢ ▽(A ∧ (A → B)) → ▽B.
Furthermore, by (vi), we obtain⊢ ▽A ∧ ▽(A → B) → ▽(A ∧ (A → B)). Thus,
⊢ ▽A∧▽(A → B) → ▽B, which is equivalent to⊢ ▽(A → B) → (▽A → ▽B).

�

We may also introduce another pair△andH of connectives. This is done by
defining them as thedualsof ▽ andN. Let us set

△A := ¬▽¬A and HA := ¬N¬A.

For the connectives△andH, we have similar inference rules that we have for the
original connectivesN and▽.

7



Lemma 3.2 For all ILGC-formulaeA andB, we have

A → HB

△A → B
and

△A → B

A → HB
.

Proof. We prove the first rule – the second can be prove in an analogousmanner.
Assume that⊢ A → HB. By (Ax3), ⊢ (A → HB) → (¬HB → ¬A). Therefore,
⊢ ¬HB → ¬A by (MP) and hence⊢ N¬B → ¬A. By applying (GC2), we
obtain⊢ ¬B → ▽¬A and⊢ ¬B → ¬ △ A. This implies⊢△ A → B by (Ax3)
and (MP). �

Note that Lemma 3.2 means that the connectivesH and△have all the properties
listed in Proposition 3.1 for▽ andN.

In the sequel, we introduce the semantics of the language ILGC. A relational
structureF = (U, R), whereU is a nonempty set andR is a binary relation
on U , is called an ILGC-frame. Let v be a functionv: P → ℘(U) assigning to
each propositional variablep in P a subsetv(p) of U . Such functions are called
valuationsand the tripleM = (U, R, v) is called an ILGC-model.

For anyx ∈ U andA ∈ Φ, we define asatisfiability relationM, x |= A ac-
cording the usual Kripke semantics of the formulaA inductively by the following
way:

M, x |= p iff x ∈ v(p)

M, x |= ¬A iff M, x 6|= A

M, x |= A → B iff M, x |= A impliesx |= B

M, x |= NA iff there existsy ∈ U such thatxR y andM, y |= A

M, x |= ▽A iff for all y ∈ U , y R x impliesM, y |= A

We may extend the valuation functionv to all Φ-formulae by setting

v(A) = {x ∈ U | M, x |= A}.

It is then easy to see that for allA, B ∈ Φ:

(i) v(⊥) = ∅ and v(⊤) = U

(ii) v(A ∨ B) = v(A) ∪ v(B) and v(A ∧ B) = v(A) ∩ v(B)

(iii) v(¬A) = v(A)c and v(A → B) = v(A)c ∪ v(B)

(iv) v(NA) = v(A)N and v(▽A) = v(A)▽

(v) v(△A) = v(A)△ and v(HA) = v(A)H
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An ILGC-formula A is said to betrue in an ILGC-modelM = (U, R, v),
written M |= A, if for all x ∈ U , M, x |= A. Furthermore, ifA is true in all
ILGC-models based on(U, R), thenA is valid.

Example 3.3 In classical modal logic necessity and possibility are usually ex-
plained by reference to the notion ofpossible worldsin such a way that a valuation
gives a truth value to each propositional variable for each of the possible worlds.
Hence, the value assigned to a propositional variablep for world w may differ
from the value assigned top for another worldw′. Similarly, in temporal logics,
the same sentence may have different truth values in different times. The logic
ILGC can be interpreted as an information logic in which formulae are viewed to
represent properties that objects of a given restricted universe of discourse may
have.

For example, letU be some set of human beings and letR be a relation re-
flecting similarity of people with respect to some suitable attributes – what those
properties might be is irrelevant for this consideration. Then, the pairF = (U, R)
is clearly an ILGC-frame. LetM = (U, R, v) be a model based on the frameF
and letA be an ILGC-formula such thatv(A) consists of ‘good teachers’. Then,
M, x |= A can be interpreted as a sentence ‘x is a good teacher’, andM, x |= NA
holds if there existsy ∈ U such thatxR y andM, y |= A, that is, there is a good
teachery to which x is similar. Analogously,M, x |= ▽A means thaty R x
impliesM, y |= A, that is, all people similar tox are good teachers.

In case of fuzzy sets, we may consider a situation in which anL-setϕ: U → L
represents how an expert evaluates the suitability of the persons inU to act as a
teacher by using some expressions and attributesL of his own language. Let us
now consider the relation& on U . Thenx & y means simply that the expert has
the opinion thatx is at least as good teacher asy. LetB now be an ILGC-formula
such that people inv(B) as currently acting as teachers. Then,M, x |= NB holds
if there existsy ∈ U such thatx & y andM, y |= B, that is,x is at least as good
as one acting teacher, andM, x |= ▽B if y & x impliesM, y |= B, which may
be interpreted so that all persons who have at least as good teaching abilities asx
are all acting as teachers.

Note also that being a valid formula has the interpretation that all objects in the
universe of discourseU have the property the formula represents.

3.2 Completeness

We conclude Section 3 by showing the completeness of ILGC. Weadopt the stan-
dard techniques that can be found in [3], for example. First,the soundness theorem
of ILGC is presented.

Theorem 3.4 (Soundness Theorem) Each provableILGC-formula is valid.
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Proof. It is enough to show that every axiom is valid and each rule of inference
preserves validity. As an example, we only prove the case that the rule (GC1)
of inference preserves validity. Suppose thatA → ▽B is valid butNA → B is
not. There is an ILGC-modelM = (U, R, v) and an elementx ∈ U such that
M, x 6|= NA → B, that is,M, x |= NA butM, x 6|= B. This means that there
existsy ∈ U such thatxR y andM, y |= A by M, x |= NA. SinceA → ▽B is
valid andM, y |= A, we haveM, y |= ▽B. It follows fromxR y thatM, x |= B,
a contradiction! Thus, the rule (GC1) of inference preserves validity. �

Next we shall show the converse, that is, every valid ILGC-formula is prov-
able. We first recall some notions that will be needed for the proof. A subsetΓ of
ILGC-formulae is calledinconsistentif there are formulaeA1, . . . , An ∈ Γ such
that⊢ ¬(A1 ∧ · · · ∧ An); otherwiseΓ is consistent. We setΓ ⊢ A to denote that
there are formulaeA1, . . . , An ∈ Γ such that⊢ A1 ∧ · · · ∧An → A. Additionally,
a setΓ of ILGC-formulae ismaximal consistentif Γ is consistent, and any set of
formulae properly containingΓ is inconsistent.

The next lemma presents some important properties of maximal consistent
sets.

Lemma 3.5 Let Γ be a maximal consistent set ofILGC-formulae. Then for any
A, B ∈ Φ:

(i) Γ ⊢ A ⇐⇒ A ∈ Γ ⇐⇒ ¬A /∈ Γ.

(ii) Γ is closed under modus ponens, that is, ifA andA → B are inΓ, then also
B is in Γ.

(iii) A ∧ B ∈ Γ ⇐⇒ A ∈ Γ and B ∈ Γ.

(iv) A ∨ B ∈ Γ ⇐⇒ A ∈ Γ or B ∈ Γ.

Proof. (i) Suppose thatΓ ⊢ A, but A /∈ Γ. BecauseΓ ⊂ Γ ∪ {A} andΓ is a
maximal consistent set, we conclude thatΓ ∪ {A} is inconsistent. This means
that there are formulaeA1, . . . , An ∈ Γ such that⊢ ¬(A1 ∧ · · · ∧An ∧ A), which
is equivalent to⊢ A1 ∧ · · · ∧ An → ¬A. Since eachAi ∈ Γ, this implies that
Γ ⊢ ¬A, a contradiction! Therefore,A ∈ Γ.

AssumeA ∈ Γ and¬A ∈ Γ. Then{A,¬A} ⊆ Γ and⊢ ¬(A∧ ¬A), that is,Γ
is inconsistent, a contradiction! Hence,¬A /∈ Γ.

Suppose that¬A /∈ Γ. In this case, the setΓ ∪ {A} must be consistent.
Otherwise, there would be some formulaeA1, . . . , An such that⊢ ¬(A1 ∧ · · · ∧
An∧A). This is equivalent to⊢ A1∧· · ·∧An → ¬A. Thus,Γ ⊢ ¬A and¬A ∈ Γ,
a contradiction! HenceΓ∪{A} is consistent. SinceΓ is a maximal consistent set,
we have thatA ∈ Γ. Trivially, this impliesΓ ⊢ A.

(ii) AssumeA → B ∈ Γ andA ∈ Γ. Then there existsA1, . . . , An ∈ Γ such
that⊢ (A1∧· · ·∧An) → (A → B). This is equivalent to⊢ (A1∧· · ·An∧A) → B.
Since alsoA ∈ Γ, we haveΓ ⊢ B, that is,B ∈ Γ.
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(iii) Let A∧B ∈ Γ. Since⊢ A∧B → A and⊢ A∧B → B, we obtainA ∈ Γ
andB ∈ Γ. Conversely, letA, B ∈ Γ. Because⊢ A → (B → A ∧ B), we first
obtainB → (A ∧ B) ∈ Γ, which impliesA ∧ B ∈ Γ sinceB ∈ Γ.

(iv) Suppose thatA ∨ B ∈ Γ, but A /∈ Γ andB /∈ Γ. This means¬A ∈ Γ,
¬B ∈ Γ, and¬A∧¬B ∈ Γ. Thus,¬(A∨B) ∈ Γ andA∨B /∈ Γ, a contradiction!
Conversely, ifA ∈ Γ or B ∈ Γ, then⊢ A → A ∨ B and⊢ B → A ∨ B imply
A ∨ B ∈ Γ. �

Next we present the result showing that for any consistent set of ILGC-
formulae, there exists a maximal consistent set including it.

Lemma 3.6 (Lindenbaum’s Lemma) Let Γ be a consistent set ofILGC-
formulae. Then there exists a maximal consistent set of formulae Γ+ such that
Γ ⊆ Γ+.

Proof. Since the setP of propositional variables is enumerable, also the setΦ of
ILGC-formulae is enumerable. LetA0, A1, A2, . . . be an enumeration ofΦ. We
define a sequenceΓ0, Γ1, Γ2, . . . of ILGC-formulae by settingΓ0 = Γ and

Γn+1 =

{
Γn ∪ {An} if this is consistent;
Γn ∪ {¬An} otherwise.

It is then easy to prove by the use of Zorn’s Lemma that

Γ+ =
⋃

n≥0

Γn.

�

Next we construct the canonical model which proves the validformulae of
ILGC, and only them. Thecanonical modelfor ILGC is a Kripke modelM∗ =
(U∗, R∗, v∗), where:

(i) U∗ ⊆ ℘(Φ) is the set of maximal consistent sets

(ii) R∗ is a binary relation onU∗ defined by

xR∗ y ⇐⇒ (∀A ∈ Φ) (A ∈ y ⇒ NA ∈ x)

(iii) v∗: P → ℘(U∗) is the valuation defined by

v∗(p) = {x ∈ U∗ | p ∈ x}

The pairF∗ = (U∗, R∗) is called thecanonical frame.
Concerning the canonical relationR∗, it is easy to see that the following con-

dition holds.
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Lemma 3.7 LetM∗ = (U∗, R∗, v∗) be the canonical model forILGC. Then for
all x, y ∈ U∗:

xR∗ y ⇐⇒ (∀A ∈ Φ) (▽A ∈ y ⇒ A ∈ x).

Proof. Suppose thatxR∗ y. Then for allA ∈ Φ, A ∈ y impliesNA ∈ x. Thus,
if ▽A ∈ y, then we haveN▽A ∈ x. Since⊢ N▽A → A by Proposition 3.1(ii),
we must haveA ∈ x, because each maximal consistent set is closed under modus
ponens.

Conversely, assume that for allA ∈ Φ, ▽A ∈ y impliesA ∈ x. Suppose now
thatA ∈ y. Because⊢ A → ▽NA, we have▽NA ∈ y. This clearly givesNA ∈ x
by our assumption, and thereforexR∗ y. �

To prove completeness, we shall also need the following lemma.

Lemma 3.8 (Existence Lemma) Let F∗ = (U∗, R∗) be the canonicalILGC-
frame and letx ∈ U∗. Then the following assertions hold for allA ∈ Φ:

(i) If ▽A /∈ x, then there exists a maximal consistent sety ∈ U∗ such that
y R∗ x andA /∈ y.

(ii) If NA ∈ x, then there is a maximal consistent sety ∈ U∗ such thatxR∗ y
andA ∈ y.

Proof. (i) Let x be a maximal consistent set. Assume▽A /∈ x. We may now
conclude that the setΓ = {B | ▽B ∈ x} ∪ {¬A} is consistent. Otherwise, there
should be some formulaeB1, . . . , Bn such that each▽Bi ∈ x and⊢ ¬(B1 ∧ · · · ∧
Bn ∧ ¬A). Therefore,⊢ B1 ∧ · · · ∧ Bn → A. From Proposition 3.1(i), we obtain
⊢ ▽B1 ∧ · · · ∧ ▽Bn → ▽A. Since each▽Bi is in the maximal consistent setx,
we getx ⊢ ▽A and▽A ∈ x, a contradiction! Thus, the setΓ = {B | ▽B ∈
x} ∪ {¬A} is consistent, and by Lindenbaum’s Lemma, there exists a maximal
consistent sety including Γ = {B | ▽B ∈ x} ∪ {¬A}. By the definition of
Γ, it is clear that if▽B ∈ x, thenB ∈ Γ ⊆ y, which impliesy R∗ x. Further,
¬A ∈ Γ ⊆ y, givingA /∈ y.

The proof for (ii) is similar. �

The next lemma is essential, showing that maximal consistent sets validate
exactly the formulae belonging to them.

Lemma 3.9 (Truth Lemma) LetM∗ = (U∗, R∗, v∗) be the canonical model for
ILGC. Then for any maximal consistent setx ∈ U∗ and formulaA ∈ Φ:

M∗, x |= A if and only if A ∈ x.

12



Proof. We show this by induction. IfA is proposition variablep, thenM∗, x |=
p iff x ∈ v∗(p) iff p ∈ x. In caseA is of the form¬B, we have

M∗, x |= ¬B iff M∗, x 6|= B

iff B /∈ x

iff ¬B ∈ x

If A is of the formB → C, we have

M∗, x |= B → C iff M∗, x 6|= B or M∗, x |= C

iff B /∈ x or C ∈ x

iff ¬B ∈ x or C ∈ x

iff (¬B ∨ C) ∈ x

iff (B → C) ∈ x

In caseA is of the formNB, andB satisfies the required condition, we first
suppose thatM∗, x |= NB. Then, there existsy ∈ U∗ such thatxR∗ y and
M∗, y |= B. By the induction hypothesis, we have thatB ∈ y. Thus, by the
definition ofR∗, we obtainNB ∈ x. Conversely, suppose thatNB ∈ x. By the
Existence Lemma, there is a maximal consistent sety such thatxR∗ y andB ∈ y.
By the induction hypothesis,M∗, y |= B, and this impliesM∗, x |= NB.

The case in whichA is of the form▽B can be proved in a similar way. �

We can now show the completeness of ILGC.

Theorem 3.10 (Completeness Theorem) An ILGC-formula is valid if and only
if it is provable.

Proof. Suppose thatA is valid, but not provable. Since now the set{¬A} is con-
sistent, there is a maximal consistent setΓ including{¬A} by the Lindenbaums’s
Lemma. Thus, we getA /∈ Γ. It follows from the Truth Lemma thatM∗, Γ 6|= A
on the canonical modelM∗. This means thatA is not valid, a contradiction!
Therefore, every valid formula must be provable. The other direction is already
proved (Soundness Theorem). �

4 Relationships to Other Logics

In this section we study how our logic relates to other two well-known logics,
namely, minimal tense logicKt and modal logic S4.
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4.1 Minimal Tense Logic Kt

Here we show that there are essential connections between ILGC and the minimal
tense logicKt. At first, we present the axiom system ofKt; see [9], for example.

As before, letP be an enumerable set of propositional variables. Now the
set of connectives consists of logical symbols→, ¬, G andH. Kt-formulae are
defined inductively as ILGC-formulae, and the set of allKt-formulae is denoted
by Ψ. In distinction, recall that the set of ILGC-formulae is denoted byΦ.

A formula GA is interpreted as ‘it will always be the case thatA’ and HA
has the meaning ‘it has always been the case thatA’. Furthermore, their dual
connectivesP andF are defined by

FA := ¬G¬A and PA := ¬H¬A.

The logicKt has the following seven axioms:

(Ax1) A → (B → A)

(Ax2) (A → (B → C)) → ((A → B) → (A → C))

(Ax3) (¬A → ¬B) → (B → A)

(Ax4) A → HFA

(Ax5) A → GPA

(Ax6) H(A → B) → (HA → HB)

(Ax7) G(A → B) → (GA → GB)

Furthermore,Kt has three rules of inference:

(MP)
A A → B

B
(RH)

A

HA
(RG)

A

GA

That aKt-formulaA is provable is defined as in case of ILGC.
Our purpose is to show that ILGC andKt are equivalent with respect to prov-

ability. Indeed, ILGC appears much simpler thanKt, since ILGC has only three
axioms (Ax1)–(Ax3) and three rules of inference. Therefore, ILGC can also
viewed as a very simple formulation ofKt.

At the first glance the language of our logic ILGC is differentfrom the one of
Kt. However, if we replace for an ILGC-formulaA ∈ Φ every symbolN byF and
every▽ by H, we we obtain aKt-formulaAψ ∈ Ψ. Similarly, anyKt-formula
B ∈ Ψ can be transformed to an ILGC-formulaBφ by replacing the occurrences
of F, G, P, andH by N, H, △, and▽, respectively. Therefore, the languages of
these languages may be considered to be exactly the same.

It is straightforward to prove the next lemma stating that each provable ILGC-
formulaA can be translated to a provableKt-formulaAΨ.
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Lemma 4.1 If an ILGC-formulaA ∈ Φ is ILGC-provable, then the correspond-
ing Kt-formulaAψ ∈ Ψ is Kt-provable.

Proof. AssumeA ∈ Φ is a provable ILGC-formula. We prove the claim by
induction. If A is an ILGC-axiom, then the assertion holds trivially because the
axioms of ILGC are included in the axioms ofKt.

If A is deduced fromB andB → A by (MP), then, by the induction hypothesis
Bψ and(B → A)ψ are provableKt-formulae. Since(B → A)ψ is Bψ → Aψ, Aψ

is a provableKt-formula by (MP).
AssumeA is equal toB → ▽C for someB, C ∈ Φ, andB → ▽C is deduced

from NB → C by (GC2). BecauseFBψ → Cψ is a provableKt-formula by
the induction hypothesis, we have thatHFBψ → HCψ is Kt-provable by (RH).
Additionally,Bψ → HFBψ is Kt-provable by (Ax4). Thus, we obtain thatBψ →
HCψ is a provableKt-formula. This gives thatBψ → (▽C)ψ and(B → ▽C)ψ

areKt-provable.
The case involving (GC1) can be proved in an analogous way. �

Our next lemma states that also the converse statement holds.

Lemma 4.2 If a Kt-formulaA ∈ Ψ is Kt-provable, then theILGC-formulaAφ ∈
Φ is ILGC-provable.

Proof. The proof is clear by Proposition 3.1 and Lemma 3.2. �

Lemmas 4.1 and 4.2 imply that ILGC andKt are equivalent with respect to
provability. It is well-known thatKt is decidable, that is, there exists an algorithm
which for everyKt-formula is capable of deciding in finitely many steps whether
the formula is provable in the system or not. Therefore, we may give the following
theorem.

Theorem 4.3 (Decidability Theorem) ILGC is decidable.

4.2 Modal logic S4

Here we study the relationship between ILGC and the well-known modal logic
S4. Most of so-called ‘normal modal logics’ include thenecessitation rule:

(N)
A

�A
.

Furthermore, thedistribution axiom

(K) �(A → B) → �A → �B

is usually included. The weakest normal modal logic, named Kin honor of Saul
Kripke, is simply the propositional calculus added with an extra connective�, the
rule (N), and the axiom (K). Let us recall also the axioms (T) and (4):
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(T) �A → A
(4) �A → ��A

The logic S4 is characterized by axioms (T), (4) and (K) together with the rule
(N).

If we now come back to ILGC, we may define an additional connective � by
setting for any ILGC-formulaA ∈ Φ,

�A := N▽A.

By cases (ii) and (iii) of Proposition 3.1,⊢ �A → A and⊢ �A → ��A, that
is, the (T) and (4) are provable in ILGC. Similarly, by applying both the rules of
Proposition 3.1(i), we may show that⊢ A → B implies⊢ �A → �B.

Next, we will formalize the above-described setting. Let the formulae of the
logic be built inductively from the connectives→, ¬, and�. The abbreviations
for disjunction, conjunction, equivalence, true, and false can be defined as before.
The axioms of the system consists of (Ax1)–(Ax3) together with the axioms (T)
and (4). Modus Ponens (MP) and Monotonicity

(M)
A → B

�A → �B

are the rules of inference.
So, we may define almost the modal logic S4 in terms of ILGC. Unfortunately,

our logic is not normal in the sense that it does not satisfy (N) nor (K). Therefore,
it seems clear that we cannot define Kripke-style of semantics for our new con-
nective� by the means of a frameF = (U, R) of just one binary relation in a
standard way. Therefore, it is natural to ask what kind of semantics should be
determined.

In topological interpretation of a modal logic initiated byTarski (see e.g. [1],
where further references can be found), each propositionalvariable represents a
region of the topological space, and so does every formula. The connectives¬,
∨ and∧ are interpreted as complement, union and intersection, respectively. The
modal connectives♦ and� become the topological closure and interior operators.
Topological modelsM = (U, T , v) are topological spaces(U, T ) equipped with
a valuation functionv: P → ℘(U).

Here we may proceed similarly. LetR be any binary relation onU and let the
maps▽: ℘(U) → ℘(U) andN: ℘(U) → ℘(U) be defined as in Section 2. We may
now define a mapping�: ℘(U) → ℘(U) by setting for allX ⊆ U ,

X� = X▽N.

The mapX 7→ X� is a lattice-theoretical interior operator, that is,

(Int1) X� ⊆ X,

(Int2) X ⊆ Y impliesX� ⊆ Y �, and
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(Int3) X�� = X�

for all X, Y ⊆ U . The family

I = {X� | X ⊆ U}

is closed under arbitrary unions of its elements, and the pair (U, I) is called an
interior system.

The least element ofI is ∅ and the greatest element ofI is U�. Note that
possiblyU� 6= U , that is,U /∈ I. Interestingly, eachX ∈ I may be interpreted in
such a way thatX consists exactly of elements that are ‘possibly certainly’in X.

For an interior system(U, I), an interior model is a tripleM = (U, I, v),
wherev: P → ℘(U) is a valuation function. Validity of formulae can be defined
inductively as in Section 3, except that

M, x |= �A iff (∃X ∈ I) x ∈ X andM, y |= A for all y ∈ X.

Lemma 4.4 For any formulaA, v(�A) = v(A)�.

Proof. (⊆) Suppose thatx ∈ v(�A). ThenM, x |= �A, which means that there
existsX ∈ I such thatx ∈ X andM, y |= A for all y ∈ X. Thus,y ∈ v(A) for
all y ∈ X, that is,X ⊆ v(A). This impliesx ∈ X = X� ⊆ v(A)�.

(⊇) If x ∈ v(A)� (∈ I), thenv(A)� ⊆ v(A) implies that for ally ∈ v(A)�,
y ∈ v(A) andM, y |= A. Thus,M, x |= �A andx ∈ v(�A) �

A formula A is said to betrue in an interior modelM = (U, I, v), written
M |= A, if for all x ∈ U , M, x |= A. Furthermore, ifA is true in all models
based on the interior systemI onU , thenA is valid.

Theorem 4.5 (Soundness Theorem) Each provable formula is valid.

Proof. We show that axioms (T) and (4) are valid, and that rule (M) preserves
validity. That (MP) preserves validity is trivial.

(T) v(�A → A) = v(�A)c ∪ v(A) = (v(A)�)c ∪ v(A) ⊇ v(A)c ∪ v(A) = U .

(4) v(�A → ��A) = v(�A)c ∪ v(��A) = (v(A)�)c ∪ (v(A)�)� =
(v(A)�)c ∪ v(A)� = U .

(M) Assume thatA → B is valid. Thenv(A) ⊆ v(B). This impliesv(�A) =
v(A)� ⊆ v(B)� = v(�B). Thus, also�A → �B is valid.

�
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Next we construct the canonical interior system and the corresponding canon-
ical model. For that, we denote byU∗ the family of all maximal consistent sets of
formulae. In addition, for any formulaA, we define

Â = {Γ ∈ U∗ | A ∈ Γ}.

The canonical interior systemI∗ is a subfamily of℘(U∗) generated by the all
unions of thebasic sets

{�̂A | A is a formula}.

Clearly,(U∗, I∗) is an interior system.

Thecanonical interior modelis a tripleM∗ = (U∗, I∗, v∗), where

(i) (U∗, I∗) is the canonical interior system

(ii) v∗: P → ℘(U∗) is thecanonical valuationdefined by

v∗(p) = {Γ ∈ U∗ | p ∈ Γ}.

Note thatv∗(p) = p̂ for all variablesp ∈ P . It is clear that for any maximal
consistent setx ∈ U∗ and formulaA,

x ∈ Â ⇐⇒ A ∈ x.

Lemma 4.6 (Truth Lemma) Let M∗ = (U∗, I∗, v∗) be the canonical interior
model. Then for any maximal consistent setx ∈ U∗ and formulaA,

M∗, x |= A iff A ∈ x.

Proof. It suffices to the consider the interesting case of the modal operator�. We
show the directions separately.

(⇐) Suppose�A ∈ x, that is,x ∈ �̂A. By definition, �̂A is a basic set
and hencê�A ∈ I∗. Furthermore, axiom (T) implieŝ�A ⊆ Â. This means that
there existsX = �̂A such thatx ∈ X ∈ I∗ and for ally ∈ X, y ∈ Â. Thus,
for all y ∈ X, A ∈ y, and so by the induction hypothesisM∗, y |= A. Thus,
M∗, x |= �A.

(⇒) Assume thatM∗, x |= �A. Then there existsX ∈ I∗ such thatx ∈ X
andM∗, y |= A for all y ∈ X. SinceX is a union of some basic sets, we
have that there is a basic set̂�B for some formulaB such thatx ∈ �̂B and for
all y ∈ �̂B (⊆ X), M∗, y |= A, that is,A ∈ y andy ∈ Â by the induction
hypothesis. This means that̂�B ⊆ Â. But this implies that we can prove the im-
plication�B → A; namely, if not, then there would be some maximal consistent
set containing�B and¬A, and this would givê�B 6⊆ Â. By rule (M), we can
prove also the implication��B → �A. Therefore, by using axiom (4), we have
�B → �A. This impliesx ∈ �̂B ⊆ �̂A, that is,�A ∈ x. �
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Completeness is now obvious.

Theorem 4.7 (Completeness Theorem) A formula is valid if and only if it is
provable.

We conclude the paper by the following remark.

Remark. We may easily include the axiom

(N) �⊤

to our axiom system. Namely, ifR is serial, that is, for allx ∈ U , there exists
y ∈ U such thatxR y, thenU� = U . This means thatU ∈ I and hence(U, I)
becomes so-calledtopped interior system. Note that the assumption of seriality is
quite natural – it means simply that each element of the universe is ‘comparable’
at least with one element.

This modified logic is sound, becausev(�⊤) = v(⊤)� = U� = U , that is,
the axiom (N) is also valid. Furthermore, the canonical interior system(U∗, I∗)
is now a topped interior system, because (N) implies�⊤ ∈ Γ for all Γ ∈ U∗ and

�̂⊤ = {Γ ∈ U∗ | �⊤ ∈ Γ} = U∗,

which gives directlyU∗ ∈ I∗.
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