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Abstract

In this paper, Information Logic of Galois Connections (IC{suited for approx-
imate reasoning about knowledge is introduced. Its axia@bn and Kripke-
style semantics based on information relations is definedl jta completeness is
proved. It is also shown that ILGC is equivalent to the miritease logickK;,
and decidability of ILGC follows from this observation. Aitidnally, relation-
ship of ILGC to the modal logic S4 is studied. Namely, a cart@damposition
of Galois connection mappings forms a lattice-theoreticgdrior operator, and
this motivates us to axiomatize a logic of these composstidime axiomatization
resembles the one of S4, except that our logic is not ‘normathe sense that
axioms N and K of S4 are not included in the set of axioms. Kinab-called
interior model is introduced to define semantics and validihd completeness of
this logic is proved as well.

Keywords: rough sets, fuzzy sets, approximate reasoning, knowlegjgesen-
tation, modal logic



1 Introduction

The theory of rough sets introduced by Pawlak [25] can be @tkas an extension
of the classical set theory. Its fundamental idea is thaknawledge about objects
of a given universe of discouréé may be inadequate or incomplete. The objects
can be then observed only with the accuracy restricted by sodiscernibility re-
lation. According to the Pawlak’s original definition, amiacernibility relation®
onU is an equivalence interpreted so that two elements$ afe £-related if they
cannot be distinguished by their properties. Since theomésto-one correspon-
dence between equivalences and partitions, each indibdgyrrelation induces
a partition onlU. In this sense, our ability to distinguish objects can beausitod
to be blurred — we cannot distinguish individual objectdydheir equivalence
classes.

Each subseX of U can be approximated by two sets: the lower approxima-
tion XY of X consists ofF-equivalence classes that are includeXinand X's
upper approximatiotX * containsE-classes intersecting wit. The lower ap-
proximation XY can be viewed as a set of elements that are certainly and
the upper approximatioX 4 can be considered as a set of elements that possibly
belong to.X. Note also that approximations can be viewed to be definatda-o
act in the sense that they are unions of classes of indissihglle elements. This
may be interpreted so that definable sets are describaliie asnjunction of the
properties of the objects they contain.

The literature, however, contains studies in which rougbraximations are
defined by relations that are not necessarily equivalerseesg.g. [10] for further
details). Note also that Jarvinen, Kondo and Kortelainkh [L2] have studied
approximations in a more general setting of complete atddoiclean lattices.
They have also studied definable sets determined by indibdéy relations of
different typesin [13, 15].

To be as general as possible, in this paper it is alloWdd be any arbitrary
binary relation. We may also define for each sub¥ebf the universel the
rough set approximations by the means of the invétsé of R and these sets
are denoted byXV and X“ Therefore, for everyX we may attach two lower
approximations XY and XV, and two upper approximations* and X2 Note
also that the studies appearing in the literature usualhgicer the pair of rough
approximation mappingsand? that are mutually dual. However, in this work we
focus on the paif#,”) forming a Galois connection. Obviously, even in this more
general case, the sa&t¥ can be considered as the set of elements that necessarily
are in X, because if an elementis R-related to some element € XV, then
y must be inX. Similarly, X* may be viewed as the set of elements possibly
belonging toX, since ifx € X4, then there exists an elemenin X to whichx
is R-related.

In this work we also shortly consider Pawlak’s informatigstems [24]. They
consist of a set/ of objects and a set of attributes Every attributex € A at-
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taches the value(z) of the attribute: to the objectz. The key idea in Pawlak’s
information systems is that each subsetC A of attributes determines an in-
discernibility relation indB) which is defined so that two objectsandy of the
universeU are B-indiscernible if their values for all attributes in the detare
equal, that isa(x) = a(y) for all @ € B. Ortowska and Pawlak introduced in
[23] many-valued information systems as a generalizatioRawlak’s original
systems. In a many-valued information system each at&istaches a set of val-
ues to objects. Therefore, in many-valued systems it isilples® define several
types of information relations reflecting distinguishékibr indistinguishability
of objects of the system.

Also L-sets introduced by Goguen [8] determine relations refigdkinowl-
edge about objects. The idea presented by Kortelainen g]7s that each.-set
@ onU determines a binary relatiof such that: < y holds, whenevey belongs
to the set represented byat least at the same extentaasNow the relations, or
its inversez as well, can be used to determine the approximation mappings
essential connections between modal-like operators|dgpes and fuzzy sets are
studied in [14].

In the literature there are several studies on logical fatinds of rough sets.
Usually these logics have a semantics similar to the one ipkK(16]. In the pa-
per [26], Pawlak formulated some notions of rough logicssé@bon these ideas,
Rasiowa and Skowron [27] have introduced first-order pegditogic suited for
rough approximations and definability. Ortowska with heauathors has exten-
sively studied several logics for knowledge represematicsee [7, 22, 23], for
example. Also Vakarelov [28, 29] has investigated modaidedor information
relations of many-valued information systems. Many of éhesentioned logics
are examined for instance in survey papers [2, 31]. Ortovinsisaalso introduced
Kripke models with relative accessibility relations in [24these are modifica-
tions of the ordinary Kripke structure such that ‘acceditjbielations’ are deter-
mined by sets of parameters interpreted as a propertieg@éteb In addition to
this, Demri and Goré [4] have defined cut-free display dafon knowledge rep-
resentation logics with relative accessibility relatiolislso should be mentioned
that Mattila has considered so-called modifier logics diossated to fuzzy logic
in several works; see e.g. [19], for further details andregfees. For example, in
[20] a modifier calculi together with relational frame seriesiand some ideas for
topological semantics is given. Finally, note that von Kagas developed in [30]
several temporal logics from the theory of complete lastji¢galois connections,
and fixed points.

This paper is presented as follows: In Section 2 we definei&atmnections
and recall some of their well-known properties. We alsoodtrce generalized
rough approximation operations based on informationiceiat We show how
they induce Galois connections and give two examples ofequpiation operators
determined by information relations of information syssesnd/l-sets. Section 3
introduces Information Logic of Galois Connections (ILGA)GC is just the
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standard propositional logic with two modal connectivesind A. Concerning
v and A, we have two additional rules of inference mimicking the nigbn of
Galois connection. We also give its semantics and showltledogic is complete.
The final section gives some relationships between ILGCimahtense logid<,
and modal logic S4. Also the decidability of ILGC is shownrhe

2 Galois Connections of | nformation Relations

We begin our study by recalling Galois connections and thasgic properties;
these can be found in [6], for example. For two ordered Beaad(), a pair(*,<)
of maps>: P — @ and<: Q) — P is called aGalois connectiorfbetweenP and
Qifforall p € Pandq € Q,

P <q = p<q~

The function® is called aresiduated mam@nd the functiort is called aresidual
map The next proposition gives some well-known properties afdis connec-
tions.

Proposition 2.1 Assume (*,<) is a Galois connection between ordered sEts
andQ. Letp, p;,p2 € P andq, ¢, ¢ € Q. Then the following assertions hold:

() p<p=p®><p> and g <gp=q"<e"
(i) p<p* and ¢ < q.
(i) p”» =p>™ and ¢< = ¢,
(iv) * preserves all existing joins artéipreserves all existing meets.

(v) The composit&<: P — P is a lattice-theoretical closure operator and the
composite™: ) — (@ is a lattice-theoretical interior operator.

It is known that(>,<') is a Galois connection between two ordered sets if and only
if » and< satisfy (i) and (ii). Notice also that Galois connectiongeveriginally
defined with functions that reverse order. We use the abawe $ince it is more
suitable for our purposes.

Proposition 2.1 implies that i and () are bounded lattices, thehis a /-
homomorphism and' is a A-homomorphism, that iSa Vv b)* = «* Vv 0* and
(xAy)Y =xIAyTforalla,b € Pandz,y € Q. Additionally,” is | -preserving
and< is T-preserving, thatis|> = 1 and T< = T.

Next we consider generalized rough set approximationsULs a set, called
theuniverse of discoursand letR be a binary relation ofy. Theupper approxi-
mationof a setX C U is

Xt={zeU|(3ByelU)zrRy&kye X}
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and thelower approximatiorof X is
={zelU|(VWwel)zRy=yec X}
Obviously, the maps are dual, that is, for akyC U,
XCA — XVC anchV — XAC,

whereX® = {z € U | x ¢ X} is the complement ok in the universd’.
We may also define an analogous pair of mappin@s) — ¢(U) by reversing
the relationRz. For any setX C U, let us define

={reU|(FyelU)yRx&kyec X}
and
V={zeU|(VyelU)yRx=yec X}.
Trivially, “and" also are dual.
The next result is well-known.

Proposition 2.2 For any binary relation, the pairg*,”) and (") are Galois
connections.

We end this section by considering two more concrete exargilapproxi-
mation operations.

Information Relations. Many-valued information systems were introduced in
[23], and different types of information relations consete here can be found

in [5], for instance. Amany-valued information systeisa pair(U, A), where

U is a set of objects and is a set of attributes such that each attribute is a map
a:U — p(V,). This means that attributes attach sets of values to objéas
example, ifa is the attribute ‘knowledge of languages’ and a person aehloyx
knows English and Finnish, theiixz) = {English, Finnish.

Objects of an information system may be related in differgays with re-
spect to their values of attributes. We recall sanfermation relationgeflecting
indistinguishability of objects of an information systéi, A). For anyB C A,
the following relations may be defined:

(r,y) €ind(B) <= (Va € B)a(zr)=a(y)
(x,y) €sim(B) <= (Va € B)a(r)Naly) #
(x,y) €inc(B) <= (VYa € B)a(z) Ca(y)

These relations are referred toasndiscernibility, B-similarity and B-inclusion
respectively.

If a is again the attribute ‘knowledge of languages’ dhds the a-similarity
relation, then two objects andy are R-related if they have a common language.
The similarity relation is obviously symmetric, which gs&/éhatX* = X*and
XY = XV. Obviously,z € X* if there exists a person € X which has a
common language with. Similarly, z € XV if all persons having a common
language with: are in X



Fuzzy Sets. Fuzzy sets were defined first time by Zadeh [32] as mappings fro
anon-empty st into the unitinterval0, 1]. Then, fuzzy sets were generalized to
L-fuzzy sets by Goguen [8] in such a way that/afuzzy sefp onU is a mapping
0:U — L, whereL is equipped with some ordering structure. However, in this
paper, we use the terni-set’ instead of L-fuzzy set’.

Notice that in the literaturd. is usually assumed to be at least a complete
lattice. The motivation for this is that in such a settingsitpiossible to consider
many-valued logics in which some truth values are incomgaraThe least el-
ementL and the greatest elementof L may be viewed as the ‘absolute’ truth
valuesfalseandtrue. In the current work/, is always assumed to be a preordered
set, that is, the sdt is equipped with a reflexive and transitive binary relation
Typically, L. may consist of attributes such as ‘good’, ‘excellent’, ‘pand ‘ad-
equate’, for example. Notice that it is natural to assumetti@relation< is not
antisymmetric: ifx,y € L are synonyms, that is, words or expressions that are
used with the same meaning, ther< y andx > y, but still z andy are distinct
words. This more general setting enables us to move towhedsethodology
calledcomputing with word$33], in which the objects of computation are given
by a natural language. Computing with words, in generahspired by the hu-
man capability to perform a wide variety of tasks without amyasurements and
any guantizations.

As noted in [17], eacli-sety: U — L determines a preordef on U by

TSy = pr) < ey)
Assume now thap: U — L is an L-set describing the ability of personsihto
speak Japanese. Furthermore, we denote the inverse medditio by =. Then,
x 2 yis true ifx can speak Japanese at least as well as
Let us consider the approximations defined by the relgtipthat is,

Xt={eeU|Fyel)zzy&kyec X}

and
XV={zeU|(Wwel)yzrx=ye X}

Now, x € X4 if and only if z can speak Japanese at least as well as some person
in X. Furthermoregy € XV ifand only ify = = impliesy € X, that is, there
cannot be a person outsidé speaking Japanese at least as wellrasThus,
approximations have a nice interpretation also in casezzyfsets.

Notice that the other pair of approximation mgps ) also forming a Galois
connection is defined hy € X “if and only if there existy € U such that: < y
andy € X, andz € XY whenever forally € U, y < z impliesy € X.

3 Information Logic of Galois Connections

In this section, we introduce a simple propositional logiGC — an acronym for
Information Logic of Galois Connections — with two additadiconnectivea and
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V. We begin with introducing the syntax and the semanticsisfltmguage.

3.1 Syntax and Semantics

Let P be an enumerable set, whose elements are catlgabsitional variables
The set ofconnectivegsonsists of logical symbols-, —, A, andv. A formulaof
ILGC is defined inductively as follows:

(i) Every propositional variable is a formula.
(i) If AandB are formulae of ILGC, then so aré — B, A, AA, andV A.

Let us denote by the set of all formulae of ILGC.
The logical system ILGC has the following thragiomsof classical proposi-
tional logic:

(Ax1) A— (B — A)
(Ax2) (A= (B—=C)) = (A= B)=(A=0C))
(AX3) (WA — -B) — (B — A)

Furthermore, ILGC has the following threeles of inference

A A— B A— VB AA — B
—5 (GC1) A8 (GC2) 1598

The first rule is the classicahodus ponensand (GC1) and (GC2) mimic the
conditions appearing in the definition of Galois connection

An ILGC-formula A is said to beprovable if there is a finite sequence
Aq, Ay, ..., A, Of ILGC-formulae such thatl = A,, and for everyl < i < n:

(MP)

(i) eitherA; is an axiom of ILGC

(i) or A; is the conclusion of some inference rules, whose premigesahe
set{A;,..., A1}

That A is provable in ILGC is denoted by A.
For the sake of simplicity the following abbreviations fbsjunction conjunc-
tion, equivalencetrue, andfalseare introduced:

AvB = (A—-B)— B
ANB = —(-AV-B)
A—B = (A= B)AN(B— A)
T = AV-A
1 = AAN-A

Our next proposition presents some provable formulae addiadal infer-
ence rules of ILGC.



Proposition 3.1 For all ILGC-formulaeA and B, we have:

A—B an A— B
VA —- VB AA — AB

()

(i) FA—VAA and- AVA — A
(i) FVA«< VAVA and - AA < AVAA

(iv) FVT < T and - Al < L
A
(v) VA
(Vi) FV(AAB) - VAANVB and - A(AV B) < AAV AB
(vii) F V(A — B) - (VA — VB)

Proof. Note that we prove only the first claims of (i)—(iv) and (vigdause their
second parts can be proved in an analogous manner.

(i) Suppose that A — B. Becausé- VA — VA holds trivially, we obtain
- AVA — A by (GC1). Hencé- AVA — B, which gives- VA — VB by
(GC2).

(i) Because- AA — AA, we have- A — VA A by (GC2).

(iif) Obviously, by (i), - VA — VAVA. Furthermore, since AVA — A,
we get- VAVA — VA by (i).

(iv) Itis clear that- vT — T. Converselyl- AT — T impliesk T — VT
by (GC2).

(v) Assumer- A. This means- T — A and we get- VT — VA by (i).
Becausel — VT by (iv), we obtain- T — VA. Thus,- VA.

(vi) Because- AN B — Aand- AN B — B,we have- V(AN B) — VA
and- V(A A B) — VB by (i). Hence}- V(A A B) — VA A VB. On the other
hand,- VAA VB — VAyields- A(VAA VB) — A by (GC2). Similarly, we
may show- A(VA A VB) — B. This gives that- A(VAA VB) — AA B and
FVAAVB — V(AA B) by (GC2).

(vii) Since- AN (A — B) — B, we have- V(AA (A — B)) — VB.
Furthermore, by (vi), we obtain VAA V(A — B) — V(AA (A — B)). Thus,
F VAAV(A — B) — VB, whichis equivalentté- V(A — B) — (VA — VB).

0]

We may also introduce another paiand v of connectives. This is done by
defining them as thdualsof v anda. Let us set

AA:=-V-4A and VA :=-4a-A.

For the connectives and v, we have similar inference rules that we have for the
original connectivea andv.



Lemma 3.2 For all ILGC-formulaeA and B, we have

A— VB and ANA — B
ANA — B A—VB '

Proof. We prove the first rule — the second can be prove in an analaganser.
Assume that- A — vB. By (Ax3),F (A — ¥B) — (=¥B — —A). Therefore,
+F -vB — —A by (MP) and hencé- A—~B — —A. By applying (GC2), we
obtaink =B — v—-A and- =B — = A A. This implies-=A A — B by (Ax3)
and (MP). O

Note that Lemma 3.2 means that the connectwesd A have all the properties
listed in Proposition 3.1 fov anda.

In the sequel, we introduce the semantics of the languag€I1AGrelational
structure¥ = (U, R), whereU is a nonempty set an® is a binary relation
onU, is called an ILGCrame Letv be a functionv: P — p(U) assigning to
each propositional variablein P a subset(p) of U. Such functions are called
valuationsand the tripleM = (U, R, v) is called an ILGCmodel

For anyx € U andA € &, we define asatisfiability relationM, x = A ac-
cording the usual Kripke semantics of the formulénductively by the following
way:

M,z E=piff ©€v(p)

M,z E=-Aiff M,z lEA

M,z =A— Biff M,z = Aimpliesz = B

M,z = AA iff there existsy € U such thatt Ry and M,y = A
M,z = VA Iff forall y e U,y Rz impliesM,y = A

We may extend the valuation functierto all #-formulae by setting
v(A)={zeU| M,z = A}

It is then easy to see that for all, B € o:

(i) v(L)=0 andv(T)=U

(i) v(AV B)=v(A)Uv(B) and v(AA B) =v(A) Nuv(B)

v(A) and v(A — B) = v(A)*Uv(B)

)
(iv) v(AA) = v(A)A and v(VA) = v(A)"

(
(
(iii) v(=A)
(
(

(V) v(AA) =v(A)* and v(VA) =v(A)Y
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An ILGC-formula A is said to betrue in an ILGC-modelM = (U, R, v),
written M = A, iffor all x € U, M,z = A. Furthermore, ifA is true in all
ILGC-models based ofU, R), thenA is valid.

Example 3.3 In classical modal logic necessity and possibility are Uguex-
plained by reference to the notionpdssible worldsn such a way that a valuation
gives a truth value to each propositional variable for eddhe possible worlds.
Hence, the value assigned to a propositional variakiier world w may differ
from the value assigned ofor another worldw’. Similarly, in temporal logics,
the same sentence may have different truth values in diffénmes. The logic
ILGC can be interpreted as an information logic in which fatae are viewed to
represent properties that objects of a given restrictedeunse of discourse may
have.

For example, let/ be some set of human beings and &be a relation re-
flecting similarity of people with respect to some suitalitellautes — what those
properties might be is irrelevant for this consideratioheft, the paitr = (U, R)
is clearly an ILGC-frame. LetMM = (U, R,v) be a model based on the framte
and letA be an ILGC-formula such thatA) consists of ‘good teachers’. Then,
M, x = Acan be interpreted as a sentencés'a good teacher’, ant, = = A A
holds if there existy € U such thatt Ry and M,y |= A, that is, there is a good
teachery to which x is similar. Analogously,M,z = VA means thay Rx
implies M,y = A, that is, all people similar to are good teachers.

In case of fuzzy sets, we may consider a situation in which-aety: U — L
represents how an expert evaluates the suitability of tiheops inU to act as a
teacher by using some expressions and attriblteshis own language. Let us
now consider the relatiog on U. Thenz 2 y means simply that the expert has
the opinion that: is at least as good teacher;ad et B now be an ILGC-formula
such that people in(B) as currently acting as teachers. Than, x = A B holds
if there existyy € U such thatr > y and M,y |= B, thatis,z is at least as good
as one acting teacher, and, =z = VB if y = = implies M,y = B, which may
be interpreted so that all persons who have at least as gacking abilities as
are all acting as teachers.

Note also that being a valid formula has the interpretatiat &ll objects in the
universe of discours€ have the property the formula represents.

3.2 Completeness

We conclude Section 3 by showing the completeness of ILGCadfgpt the stan-
dard techniques that can be found in [3], for example. Rinstsoundness theorem
of ILGC is presented.

Theorem 3.4 (Soundness Theorem) Each provabldLGC-formula is valid.
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Proof. It is enough to show that every axiom is valid and each rulenfdrence
preserves validity. As an example, we only prove the casktfigarule (GC1)
of inference preserves validity. Suppose tHat~ VB is valid butaAA — B is
not. There is an ILGC-modeM = (U, R,v) and an element € U such that
M,z |~ AA — B, thatis, M,z = AA but M,z [~ B. This means that there
existsy € U such thatt Ry and M,y = Aby M,z = AA. SinceA — VBis
validandM, y = A, we haveM, y = VB. Itfollows fromx Ry thatM, x = B,

a contradiction! Thus, the rule (GC1) of inference presemadidity. OJ

Next we shall show the converse, that is, every valid ILG@rigla is prov-
able. We first recall some notions that will be needed for tie®p A subsel” of
ILGC-formulae is callednconsistentf there are formulaed,, ..., A, € I' such
thatt- —(A; A --- A A,); otherwisel is consistent We setl” - A to denote that
there are formuladl;, ..., A, € I'suchthat A; A---A A, — A. Additionally,

a setl” of ILGC-formulae ismaximal consistenf I' is consistent, and any set of
formulae properly containing is inconsistent.

The next lemma presents some important properties of madaresistent
sets.

Lemma3.5 LetI' be a maximal consistent set tfGC-formulae. Then for any
A B e :

() THFA << Acl < -A¢T.

(i) T'is closed under modus ponens, thatisiiind A — B are inT’, then also
BisinT.

(i) ANBell «<—= AcTland BeT.
(v A vBel <= AecTlorBel.

Proof. (i) Suppose thal' - A, but A ¢ T'. Becausd” ¢ I' U {A} andI' is a
maximal consistent set, we conclude tlhat) { A} is inconsistent. This means
that there are formulag,, ..., A, € I' such that- =(A; A--- A A, A A), which

is equivalentta- A; A --- A A, — —A. Since eachd; € T, this implies that
I' = =A, a contradiction! Therefored € I'.

AssumeA € I'and—A € T'. Then{A,-A} C T"and- —(A A —A), thatis,I"
is inconsistent, a contradiction! Henced ¢ T'.

Suppose thatA ¢ I'. In this case, the sdt U {A} must be consistent.
Otherwise, there would be some formulde ..., A, such that- —=(A; A --- A
A, NA). Thisis equivalentte- A;A---AA, — —A. Thus,I' F =Aand—-A €T,

a contradiction! Henc€ U { A} is consistent. SincE is a maximal consistent set,
we have thatd € I'. Trivially, this impliesI” - A.

(i) AssumeA — B € I'andA € I'. Then there existdl;,..., A, € I' such
that- (A;A---AA,) — (A — B). Thisisequivalentte (A;A--- A,NA) — B.
Since alsa4 € I', we havel' - B, thatis,B € T.
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(i)Let ANB €T'. Since ANB — Aand- AANB — B, we obtaind € I’
andB € I'. Conversely, letd, B € I". Because- A — (B — A A B), we first
obtainB — (A A B) € I', which impliesA A B € I" sinceB € T..

(iv) Suppose thatl vV B € T, but A ¢ I"and B ¢ I'. This means-A € T,
-Bel,and—AA-B €I'. Thus,~(AVB) e I'andAV B ¢ T', a contradiction!
Conversely, ifA e "'or B € ', then A — AV Band- B — AV B imply
AV BeT. O

Next we present the result showing that for any consistenoséLGC-
formulae, there exists a maximal consistent set including i

Lemma 3.6 (Lindenbaum’sLemma) Let I' be a consistent set ofLGC-
formulae. Then there exists a maximal consistent set ofulaei such that
rcr.

Proof. Since the seP of propositional variables is enumerable, also thelset
ILGC-formulae is enumerable. Let,, A, A,, ... be an enumeration ¢b. We
define a sequendg), I';,I',, ... of ILGC-formulae by settindg’y = I" and

oo I, U{4,} if this is consistent;
" T, U{-A4,} otherwise.

It is then easy to prove by the use of Zorn’s Lemma that

I = Urn.

n>0

O

Next we construct the canonical model which proves the Valithulae of
ILGC, and only them. Theanonical modefor ILGC is a Kripke modelM* =
(U*, R*,v*), where:

(i) U* C p(P) is the set of maximal consistent sets
(i) R*is a binary relation o/* defined by
rR'y < (VA€ d)(Acy= AAcx)
(iii) v*: P — p(U") is the valuation defined by
vi(p) ={z €U |pex}
The pairF* = (U*, R*) is called thecanonical frame
Concerning the canonical relatidtr, it is easy to see that the following con-

dition holds.
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Lemma3.7 Let M* = (U*, R*,v*) be the canonical model fdLGC. Then for
all z,y € U™:

TRy < (VA€ ®d)(VAcy= Acu).

Proof. Suppose that R*y. Then for allA € &, A € y impliesAA € z. Thus,
if VA € y, then we havaaVA € z. Since- AVA — A by Proposition 3.1(ii),
we must haved € z, because each maximal consistent set is closed under modus
ponens.

Conversely, assume that for alle ¢, VA € y implies A € x. Suppose now
thatA € y. Becausé- A — VA A, we haveVA A € y. Thisclearly giveso A € x
by our assumption, and therefore?* . O

To prove completeness, we shall also need the following lamm

Lemma 3.8 (ExistenceLemma) Let 7* = (U*, R*) be the canonicalLGC-
frame and letz € U*. Then the following assertions hold for all € ®:

(i) If VA ¢ =z, then there exists a maximal consistent get U* such that
yR*zandA ¢ y.

(i) If AA € x, then there is a maximal consistent get U* such thatz R* y
andA € y.

Proof. (i) Let x be a maximal consistent set. Assumd ¢ x. We may now
conclude that the sét = {B | VB € =} U {—A} is consistent. Otherwise, there
should be some formulag, , . . ., B,, such that eaci B; € z and- —(B; A+ - A
B, AN —A). Therefore}- By A --- A B,, — A. From Proposition 3.1(i), we obtain
HVB; A---ANVB, — VA. Since eachy B; is in the maximal consistent set
we getx - VA andVA € z, a contradiction! Thus, the s€t= {B | VB €
x} U {—A} is consistent, and by Lindenbaum’s Lemma, there exists amax
consistent sey includingl’ = {B | VB € z} U {—A}. By the definition of
I, itis clear that ifvB € z, thenB € I' C y, which impliesy R* x. Further,
—Ael Cy,qgivingA ¢ y.

The proof for (ii) is similar. O

The next lemma is essential, showing that maximal congistets validate
exactly the formulae belonging to them.

Lemma 3.9 (Truth Lemma) Let M* = (U*, R*,v*) be the canonical model for
ILGC. Then for any maximal consistent se€ U* and formulaA € :

M* z = Aifandonlyif A € .

12



Proof. We show this by induction. If1 is proposition variable, then M* x =
p iff x € v*(p) iff p € z. In caseA is of the form—B, we have

M x=-B iff M zWEB
iff Béux
iff —-Beux

If Ais ofthe formB — C, we have

MeEB—-C iff MY zpEBor MizEC
iff BédxzorCex
iff -BecxorCex
iff (-BVvC)ex
iff (B—C)ex

In caseA is of the formaA B, and B satisfies the required condition, we first
suppose thatm*; = = AB. Then, there existy € U* such thatr R*y and
M* y = B. By the induction hypothesis, we have thate y. Thus, by the
definition of R*, we obtaina B € z. Conversely, suppose thatB € x. By the
Existence Lemma, there is a maximal consisteny setch thatr R* y andB € y.

By the induction hypothesis\1*, y = B, and this impliesM*, = = AB.
The case in whici! is of the formv B can be proved in a similar way. [J

We can now show the completeness of ILGC.

Theorem 3.10 (Completeness Theorem) An ILGC-formula is valid if and only
if it is provable.

Proof. Suppose thatl is valid, but not provable. Since now the getA} is con-
sistent, there is a maximal consistentSécluding{—A} by the Lindenbaums’s
Lemma. Thus, we get ¢ T. It follows from the Truth Lemma that1*, T" |~ A
on the canonical modeM*. This means tha#l is not valid, a contradiction!
Therefore, every valid formula must be provable. The otheaction is already
proved (Soundness Theorem). O

4 Relationshipsto Other Logics

In this section we study how our logic relates to other twolwabwn logics,
namely, minimal tense logik; and modal logic S4.
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4.1 Minimal Tense Logic K;

Here we show that there are essential connections betw&d énd the minimal
tense logid<;. At first, we present the axiom systemlef; see [9], for example.

As before, letP be an enumerable set of propositional variables. Now the
set of connectives consists of logical symbels —, G andH. K;-formulae are
defined inductively as ILGC-formulae, and the set ofl§{formulae is denoted
by W. In distinction, recall that the set of ILGC-formulae is dégd byd.

A formula G A is interpreted as ‘it will always be the case thitand HA
has the meaning ‘it has always been the case thatFurthermore, their dual
connective® andF are defined by

FA:=-G-A and PA:=-H-A.
The logicK; has the following seven axioms:
(Ax1) A— (B— A)
(AX2) (A — (B —C)) = ((A— B) — (A — ()
(Ax3) (WA — —=B) — (B — A)
(Ax4) A — HFA
(Ax5) A — GPA
(Ax6) H(A — B) — (HA — HB)
(Ax7) G(A — B) — (GA — GB)

FurthermoreK, has three rules of inference:

A A— B A A
— 5 (RH) H4 RCG) G4

That aK;-formula A is provable is defined as in case of ILGC.

Our purpose is to show that ILGC ahd are equivalent with respect to prov-
ability. Indeed, ILGC appears much simpler than since ILGC has only three
axioms (Ax1)—(Ax3) and three rules of inference. Therefdt&sC can also
viewed as a very simple formulation &f,.

At the first glance the language of our logic ILGC is differ&im the one of
K;. However, if we replace for an ILGC-formul& € ¢ every symbol by F and
every v by H, we we obtain &,-formula A¥ € ¥. Similarly, anyK,-formula
B € ¥ can be transformed to an ILGC-formulz? by replacing the occurrences
of F, G, P, andH by A, v, A, andV, respectively. Therefore, the languages of
these languages may be considered to be exactly the same.

It is straightforward to prove the next lemma stating thahegarovable ILGC-
formula A can be translated to a provatie-formula AY.

(MP)
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Lemma4.1l If an ILGC-formulaA € & is ILGC-provable, then the correspond-
ing K,-formulaA¥ € ¥ is K,-provable.

Proof. AssumeA € ¢ is a provable ILGC-formula. We prove the claim by
induction. If A is an ILGC-axiom, then the assertion holds trivially be@atise
axioms of ILGC are included in the axioms Kf.

If Aisdeduced fronBandB — A by (MP), then, by the induction hypothesis
BY and(B — A)Y are provablé;-formulae. Sincé B — A)¥ is BY — AY, AV
is a provabld<;-formula by (MP).

AssumeA is equal toB — v for someB, C' € ¢, andB — V('is deduced
from AB — C by (GC2). Becaus&BY — (" is a provableK,-formula by
the induction hypothesis, we have tiaF B¥ — HCY is K,-provable by (RH).
Additionally, BY — HF BV is K,-provable by (Ax4). Thus, we obtain thB —
HCY is a provableK;-formula. This gives thaB¥ — (vC)¥ and(B — vC)¥
areK;-provable.

The case involving (GC1) can be proved in an analogous way. O

Our next lemma states that also the converse statement holds
Lemma4.2 If aK,-formulaA € ¥ is K,-provable, then thé_GC-formulaA® ¢
® is ILGC-provable.

Proof. The proof is clear by Proposition 3.1 and Lemma 3.2. O

Lemmas 4.1 and 4.2 imply that ILGC aid are equivalent with respect to
provability. It is well-known thak; is decidablethat is, there exists an algorithm
which for everyK;-formula is capable of deciding in finitely many steps whethe
the formulais provable in the system or not. Therefore, we gige the following
theorem.

Theorem 4.3 (Decidability Theorem) ILGC is decidable.

4.2 Modal logic A

Here we study the relationship between ILGC and the welllknenodal logic
S4. Most of so-called ‘normal modal logics’ include thecessitation rule

(N) %

Furthermore, thdistribution axiom
(K) 0OA—B)—0OA—-0OB

is usually included. The weakest normal modal logic, named Konor of Saul
Kripke, is simply the propositional calculus added with atr&connectivé ], the
rule (N), and the axiom (K). Let us recall also the axioms (fd &4):
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(M OA— A
(4) 0A —0O0A

The logic S4 is characterized by axioms (T), (4) and (K) tbgetwith the rule
(N).

If we now come back to ILGC, we may define an additional conmect by
setting for any ILGC-formul&A € ©,

OA := AVA.

By cases (ii) and (iii) of Proposition 3.1, [JA — A and- OA — [OOA, that
is, the (T) and (4) are provable in ILGC. Similarly, by applgiboth the rules of
Proposition 3.1(i), we may show thatA — B impliest 0JA — OB.

Next, we will formalize the above-described setting. Let tbrmulae of the
logic be built inductively from the connectives, —, andJ. The abbreviations
for disjunction, conjunction, equivalence, true, anddaian be defined as before.
The axioms of the system consists of (Ax1)—(Ax3) togethehwhe axioms (T)
and (4). Modus Ponens (MP) and Monotonicity

A— B
(M) 0A —- OB

are the rules of inference.

So, we may define almost the modal logic S4 in terms of ILGC odnhately,
our logic is not normal in the sense that it does not satisjyndt (K). Therefore,
it seems clear that we cannot define Kripke-style of semaifdicour new con-
nectived by the means of a fram& = (U, R) of just one binary relation in a
standard way. Therefore, it is natural to ask what kind of atios should be
determined.

In topological interpretation of a modal logic initiated bgrski (see e.g. [1],
where further references can be found), each propositiarable represents a
region of the topological space, and so does every formultee cbnnectives,

Vv andA are interpreted as complement, union and intersectiopeotisely. The
modal connective$ and(] become the topological closure and interior operators.
Topological models\t = (U, 7, v) are topological spac€é/, 7) equipped with

a valuation function: P — o(U).

Here we may proceed similarly. L& be any binary relation off and let the
maps’: p(U) — p(U) and*: p(U) — p(U) be defined as in Section 2. We may
now define a mapping: p(U) — o(U) by setting for allX C U,

XP =X
The mapX — X is alattice-theoretical interior operatqrthat is,
(Int1) XP C X,
(Int2) X C Y impliesXY C YH, and
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(Int3) X9 = xU
forall X, Y C U. The family
IT={X"| X CU}

is closed under arbitrary unions of its elements, and the (paiz) is called an
interior system

The least element of is () and the greatest element Bfis U”. Note that
possiblyU™ £ U, thatis,U ¢ Z. Interestingly, eaclX € Z may be interpreted in
such a way thak consists exactly of elements that are ‘possibly certaiimyX .

For an interior systenjU, Z), aninterior modelis a triple M = (U,Z,v),
wherev: P — o(U) is a valuation function. Validity of formulae can be defined
inductively as in Section 3, except that

M,z E0AIff (3X e€Z)ze XandM,y | Aforally € X.
Lemma 4.4 For any formulad, v(A) = v(A)".

Proof. (C) Suppose that € v(A). ThenM, x = OA, which means that there
existsX € 7 such thatr € X and M,y = Aforally € X. Thus,y € v(A) for
ally € X, thatis,X C v(A). Thisimpliesz € X = XY C v(A)".

(D) If x € v(A) (€ 7), thenv(A)Z C v(A) implies that for ally € v(A)",
y€v(A)andM,y = A. Thus M,z = 0A andx € v(JA) O

A formula A is said to betrue in an interior modelM = (U, Z,v), written
M = A ifforall x € U, M,z = A. Furthermore, ifA is true in all models
based on the interior systemon U, then A is valid.

Theorem 4.5 (Soundness Theorem) Each provable formula is valid.

Proof. We show that axioms (T) and (4) are valid, and that rule (Msprees
validity. That (MP) preserves validity is trivial.

(T) v(OA — A) = v(dA)¢ Uv(A) = (v(A))Uv(d) Dv(A)*Uv(A) =U.

(4) v(OA — 00A) = v(0A)° Uv(d04) = (v(A)Y)eu (wA)DE =
(v(A)P)euv(A)Y =U.

(M) Assume thatd — B is valid. Thenv(A) C v(B). This impliesv(A) =
v(A)Y C v(B)Y = v(OB). Thus, alsdJA — OB is valid.
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Next we construct the canonical interior system and theesponding canon-
ical model. For that, we denote by the family of all maximal consistent sets of
formulae. In addition, for any formuld, we define

A={leU|AecT}.

The canonical interior systeri* is a subfamily ofp(U*) generated by the all
unions of thebasic sets -
{OA | Ais aformulg.

Clearly,(U*,Z*) is an interior system.
Thecanonical interior modeis a triple M* = (U*, Z*, v*), where

(i) (U*,Z%)isthe canonical interior system

(i) v*: P — p(U*) is thecanonical valuatiordefined by

vi(p)={T'eU" [peTl}.

Note thatv*(p) = p for all variablesp € P. It is clear that for any maximal
consistent set € U* and formulaA,

r€A == Acu.

Lemma4.6 (Truth Lemma) Let M* = (U*,Z*,v*) be the canonical interior
model. Then for any maximal consistentset U* and formulaA,

M e = Aiff Aeux.

Proof. It suffices to the consider the interesting case of the maokdador]. We
show the directions separately.

(<) SupposélA € z, thatis,z € OA. By definition, 0A is a basic set
and hencé&lA e 7. Furthermore, axiom (T) |mpI|d§A C A. This means that
there existsY = 1A such thatr € X € Z* and for ally € X,y € A. Thus,
forally € X, A € y, and so by the induction hypothesig* y = A. Thus,
M* o | DA

(=) Assume thatM*, = |= JA. Then there existX € Z* such thatr € X
and M*)y = Aforally € X. SinceX is a union of some basic sets, we
have that there is a basic $81 for some formulaB such thatr € OB and for
aly € OB (C X), M*,y E A, thatis,A € y andy € A by the induction
hypothesis. This means tHats C A. Butthis implies that we can prove the im-
plicationJB — A; namely, if not, then there would be some maximal consistent
set containind1B and—A, and this would giv@ Z A. By rule (M), we can
prove also the implicationlC]B — [JA. Therefore, by using axiom (4), we have
OB — OA. This impliesz € OB C OA, thatis,JA € z. O
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Completeness is now obvious.

Theorem 4.7 (Completeness Theorem) A formula is valid if and only if it is
provable.

We conclude the paper by the following remark.
Remark. We may easily include the axiom

(N) OT

to our axiom system. Namely, i® is serial, that is, for allx € U, there exists
y € U such thatr Ry, thenU"” = U. This means thal/ € 7 and hencéU, T)
becomes so-callepped interior systenNote that the assumption of seriality is
quite natural — it means simply that each element of the usévis ‘comparable’
at least with one element.

This modified logic is sound, becauséT) = v(T)Y = U” = U, that is,
the axiom (N) is also valid. Furthermore, the canonicalriotesystem(U*, Z*)
is now a topped interior system, because (N) impligs e I" forall " € U* and

OT ={T' eU* |OT €T} = U,

which gives directlyU* € Z*.
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