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Abstra
tThe stru
tured 
al
ulational proof format emphasizes stru
ture and readabil-ity by presenting derivations as outlined sequen
es of term transformations.The Mathemati
al Derivation Editor (MathEdit) is an e�ort to develop toolsupport for this format. It is a text editor with built-in support for an ex-tensible mathemati
al syntax and stru
tured derivation notations. In thispaper we overview and dis
uss the features of MathEdit and their implemen-tation: how the editor parses and understands mathemati
al expressions,determines appli
able rules, and how stru
tured derivations are represented.We demonstrate use of MathEdit through example derivations from pro
essalgebra.



1 Introdu
tionA well-de�ned hierar
hi
al stru
ture for mathemati
al proofs is importantboth for the author and the readers of a proof [24℄. Stru
ture for
es theauthor to think his ideas through thoroughly before 
ommitting them topaper, and provides the reader with a des
ription of the proof that is easyto understand and that 
an be examined at di�erent levels of detail. Thestru
tured 
al
ulational proof [3℄ format is a proof presentation format that
ombines the readability of 
al
ulational proofs with the stru
ture of naturaldedu
tion.However, 
reating and maintaining a stru
tured layout of 
omplex deriva-tions 
an be 
umbersome without dedi
ated tool support. This raises theneed for an editing environment that aids the author by imposing a well-de�ned stru
ture on do
uments. But su
h a tool should not be overly re-stri
tive either; authors of mathemati
al do
uments frequently need to mixformal notation with blo
ks of prose-like text.This paper presents MathEdit, a tool developed in an a
ademi
 softwarefa
tory. MathEdit supports editing and 
orre
tness 
he
king of stru
tured
al
ulational proofs in a familiar text-editor like environment. The user 
anwrite a derivation by manually typing in ea
h step, or by applying rules ina point-and-
li
k manner. With the 
li
k of a button, all derivations 
anbe 
he
ked for well-formedness. The mathemati
al syntax of MathEdit isextensible and there are no built-in restri
tions on the domains in whi
hMathEdit 
an be used.Aside from the simple equation editors integrated into many word pro-
essors, there exists a number of high-quality tools for editing mathemati
s-intensive do
uments. They en
ompass a wide range of appli
ations; somefo
using mainly on stru
ture and presentation [27, 11℄, other are full-blown
omputer algebra systems [29, 16℄. Proof management tools on the otherhand often target a spe
i�
 domain; examples of tools geared towards theformal veri�
ation of programs are [6, 23, 15℄. The goal of MathEdit is toprovide a platform supporting general non-domain-spe
i�
 mathemati
s 
om-bined with the stru
tured 
al
ulational proof paradigm. While this makesMathEdit very general and appli
able to a wide range of problems, it alsoinevitably makes it mu
h less �polished� than spe
ialized tools; we will tou
hon this aspe
t further on in the paper.The remainder of this paper is organized as follows: Se
tion 2 providesan introdu
tory overview of the stru
tured 
al
ulational proof format. InSe
tion 3 we dis
uss the features needed from in an editor for su
h proofs.Se
tion 4 provides an overview of our editor, while Se
tions 5 and 6 des
ribe inmore detail how the editor parses and understands mathemati
al expressions,determines appli
able rules, and how stru
tured derivations are represented.Se
tion 7 provides 
on
rete examples of using MathEdit. We end with a1



short summary and some dis
ussion on future work.2 Stru
tured Cal
ulational ProofsThe stru
tured 
al
ulational proof format for writing derivations is based onthe 
on
epts of natural dedu
tion [20℄ and 
al
ulational proof [21℄, 
ombiningand extending them to provide a well-stru
tured, outlined layout for proofsthat is visually pleasing and allows hierar
hi
al de
omposition. The followingexample illustrates the stru
tured 
al
ulational proof format:
A ∧ xB ∧ Ay

≡ { use the �rst 
onjun
t to simplify the se
ond }
•〈A〉
B ∧ A

≡ { use the assumption to repla
e A with true }
B ∧ true

≡ { propositional 
al
ulus }
B

A ∧ pBq

≡ { 
ommutativity of ∧ }
B ∧ AA derivation 
onsists of a number 
onse
utive interleaved term and 
ommentlines. The �rst term (A∧B∧A) is transformed in a series of redu
tion steps,ea
h step being based on a rule indi
ated in the 
omment line. In 
ases wherea step transforms a subexpression, 
orner 
arets indi
ate the redex before (xand y) as well as after (p and q) the transformation. The symbol in thebeginning of a 
omment line des
ribes the relation between two 
onse
utiveterms (here ≡, sin
e the goal of this proof is to show that equivalen
e holdsbetween the �rst and the last terms.) However, proofs are not limited tosymmetri
 relations�any transitive relation will do�and it is also possibleto use di�erent relations in the same derivation, but in that 
ase one need to
onsider 
arefully their 
ombined relation.The example also shows the use of a hierar
hi
al outline and a subderiva-tion with 
ontextual information. In proving B ∧ A ≡ B a subproof withthe assumption A (en
losed in angle bra
kets) is set up as an indented sub-derivation under the �rst 
omment line. This fo
using on a subexpression isuseful for avoiding repetition of (potentially long and 
omplex) un
hangedparts of an expression while still maintaining 
orre
tness, and its use hasbeen formalized in window inferen
e rules [25℄.If a subderivation is used in a step to establish a non-symmetri
 rela-tion, su
h as impli
ation, the monotoni
ity properties of the expression being2



transformed must be taken into a

ount. For example, 
onjun
tion is mono-toni
 in either of its arguments with respe
t to impli
ation, whi
h allows usto write the following derivation to prove (A ∧ P ) ⇒ (A ∧ Q):
A ∧ xPy

⇒ { sin
e ∧ is monotoni
 in its right argument }
•P

⇒ { hint why P ⇒ Q }
Q

A ∧ QThere are other 
onne
tives that are not monotoni
 with respe
t to impli
a-tion; impli
ation itself, for example, is monotoni
 in its right argument butanti-monotoni
 in its left. Some operators are neither monotoni
 nor anti-monotoni
. Subderivations that transform the arguments of su
h an operatormust preserve equivalen
e only.Subderivations are also used to prove hypotheses that are side 
onditionsfor 
onditional rules. As an example, 
onsider the following arithmeti
 sim-pli�
ation:
10/10

= { x/x = 1 provided that x 6= 0 with x := 10 }
10 6= 0

= { by 
omparison }true
1When the �rst step is derived the hypothesis 10 6= 0 is postulated, makingit the responsibility of the proof author to prove this relation in a subderiva-tion. This use of subproofs di�ers from that of fo
using rules in that theresulting expression of the subderivation is not in
luded in the main deriva-tion. Instead it is a proof obligation of the derivation step that the divisoris non-zero.3 Tool Support for Stru
tured DerivationsWe believe that a tool for writing mathemati
s should provide and enfor
estru
ture whenever it aids the user in his goal, and otherwise o�er as mu
hfreedom as possible. We 
hose the standard graphi
al text editor or wordpro
essor as the basi
 appli
ation model for MathEdit. The large majorityof users are in some way familiar with this style of appli
ation, and havea general intuition about the user interfa
e. A do
ument 
ontaining linesof text is edited by moving a 
ursor, or 
aret, around the do
ument while3



issuing 
ommands. Commands 
an be simple, su
h as typing a single 
hara
-ter, or more powerful, su
h as performing a string-based sear
h and repla
eoperation on the entire do
ument.Outlining editors, sometimes 
alled outliners, are do
ument editors thatallow their users to edit text, and possibly other elements, in a hierar
hy. Ina line-based outliner, outlined text 
onsists of many indented lines, followingthe rule that ea
h line 
an be indented at most one level to the right fromthe previous line. A line followed by indented lines is 
alled parent and theindented lines are 
alled 
hildren. A line together with all its 
hildren andsub-
hildren is 
alled an item; atomi
 items have no 
hildren. Compositeitems, i.e. items whi
h have at least one 
hild in 
ontrast to atomi
 items,
an be 
ollapsed and subsequently expanded to hide and show their 
hildren.An outlining editor provides good overview of a do
ument by allowingthe user to hide details deep in the hierar
hy and get a �bird's eye�-view ofthe do
ument, while at the same time making it possible to qui
kly delveinto the deeper bran
hes of the hierar
hy for details. Outliners are usefulwhen reading and writing mathemati
al proofs for this very reason�a 
om-plex derivation often 
ontains several rule appli
ations with perhaps equally
omplex subderivations. These steps 
an be 
ollapsed to hide details thatare not interesting when one is attempting to understand the general idea ofthe proof, and as soon as more information about a parti
ular step is needed,that step 
an be unfolded and the subderivation revealed. The author is thusfree to add as mu
h material as possible to a do
ument without fear that theresult be
omes in
omprehensible. The idea of navigating a proof in this wayis known as proof browsing [22℄.Authors of mathemati
al do
uments are very 
ons
ientious about the
orre
tness of their writings. Yet a

ording to Lamport [24℄, even proofspublished in mathemati
al journals frequently 
ontain errors. As writing isan iterative pro
ess, it is espe
ially important that 
hanges and additionsdo not invalidate prior work. Human beings are, however, notoriously badat frequently 
he
king �trivial� things, su
h as whether a de
laration is validin some spe
i�
 language or if a rule appli
ation is still valid. But thesetasks 
an be qui
kly 
arried out by 
omputers, whi
h is why a tool shouldprovide as mu
h 
he
king as possible of user input, albeit in a unobtrusiveway. Furthermore, whenever the environment (assumptions, rules, lemmas)
hanges, the tool should make it possible to run an automated 
he
k on allexisting proofs to ensure that they are still valid.One example of a mathemati
s-oriented text editor is Math∫ pad [11℄. Itis a strongly syntax-dire
ted editor in whi
h templates 
alled sten
ils areused to de�ne the visual and logi
al stru
ture of synta
ti
 elements in ado
ument. The editor supports sele
tion and manipulation based on thisstru
ture: for example, a spe
i�
 sten
il 
an de�ne a 
ertain mathemati
aloperator, and 
li
king on that operator in a do
ument will then sele
t the4



whole subexpression. Furthermore, it features a number of 
ommands forrewriting expressions, su
h as Reverse, Distribute and Fa
torise, but thesework on a purely synta
ti
 level.GNU TexMa
s [27℄ is an editor based on similar ideas as Math∫ pad. Inaddition it supports a few 
omputer algebra systems, thus making it possibleto in
lude the semanti
s of su
h systems into TexMa
s. Translation layersand interpro
ess 
ommuni
ation are used to a

ess the fun
tionality of thesesystems from within the TexMa
s environment, making the integration quiteshallow.We 
hose not to make MathEdit strongly syntax-dire
ted. While a math-emati
al expression, su
h as an algebrai
 formula, has a tree-like mi
ro-stru
ture, we have not seen pressing needs to 
reate a stru
tured editingenvironment for su
h mi
ro-stru
tures. In pra
ti
e, it is often useful to tem-porarily �break� a stru
ture while doing edits. In MathEdit, derivations andmathemati
al expressions are treated as delineated se
tions in a free-formtext do
ument that have been expli
itly indi
ated by the user to 
onformto a spe
i�
 language; if a se
tion does not, the error is reported and theuser 
an 
orre
t it. We do, however, appre
iate immediate feedba
k andMathEdit therefore implements automati
 parsing during editing and visu-alizes the abstra
t syntax trees of expressions.However, for elements su
h as formulas and derivations, we want a well-de�ned syntax and a means for in
luding semanti
s. Su
h semanti
s makes itpossible to redu
e formulas using rules of the mathemati
al formalism ratherthan on a purely synta
ti
 basis. The mathemati
al language provided byMathEdit is extensible in order to enable users of the tool to work withdi�erent kinds of mathemati
s. A basi
 syntax and simple Boolean andarithmeti
 operators are provided, but users 
an add new types, operatorsand identi�ers without reprogramming the tool itself. Users are also ableto de
lare 
ustom rules and use these seamlessly together with built-in rulesin derivations; this feature is 
ru
ial for usability, sin
e it will get extremelytedious to read and write derivations 
onsisting only of steps based on a smallnumber of pre-de�ned rules. Furthermore, in more demanding situations,where a user might want to signi�
antly 
hange the mathemati
al language,this is also possible by writing a new mathemati
al pro�le (further des
ribedin Se
tion 5).It is not a goal of MathEdit itself to typeset formulas�the TEX andLATEX systems are the standard tools used for this purpose, mainly due tothe ex
ellent quality of the do
uments they produ
e. MathEdit should thusbe able to export do
uments for further LATEX pro
essing and typesetting.However, our goal has not been to 
reate a LATEX front-end, as several su
happli
ations already exist. 5



4 Overview of MathEditIn addition to produ
ing the tool itself, an important goal of the MathEditproje
t has been to evaluate new software engineering te
hniques in pra
ti
e.This se
tion provides a brief overview of the methods and te
hnologies usedin the development of MathEdit; we then refer the interested reader to anumber of te
hni
al reports des
ribing these methods in more detail. To givethe reader an idea of MathEdit's 
apabilities, we also brie�y des
ribe themain features.4.1 DevelopmentThe Mathemati
al Derivation Editor was developed in the Gaudi SoftwareFa
tory [8℄, an experimental software fa
tory in an a
ademi
 setting thataims to be a testing ground for new software development methods in pra
-ti
e. More than ten proje
ts have been 
arried out at Gaudi sin
e its in-
eption in 2001, su
h as a basi
 outlining editor [9℄ and a personal �nan
ialplanner [7℄. Results from these proje
ts have indi
ated that it is indeed pos-sible to produ
e software in a timely manner despite the limitations on someresour
es in a university environment, in
luding la
k of funds and dedi
atedpersonnel.Programmers employed in Gaudi are 
omputer s
ien
e and 
omputer en-gineering students guided by graduate students who fun
tion as 
oa
hes.Some proje
ts developed in Gaudi, su
h as MathEdit, are also resear
h toolswhile others are built mainly to study the development pro
ess. A professoror graduate student with a resear
h interest in the produ
t being developedtypi
ally a
ts as the 
ustomer for a proje
t.The Gaudi software pro
ess borrows many pra
ti
es from Extreme Pro-gramming (XP) [13℄. XP is an agile software development pro
ess that hasbe
ome in
reasingly popular for high-risk, high-velo
ity proje
ts. Its maingoal is to mitigate some of the most 
ommon risks in software development,in
luding delayed s
hedules, requirements 
hanges, high defe
t rates and de-veloper turnover. This is a
hieved through a number of pra
ti
es, in
ludingbut not limited to:
• keeping an on-site 
ustomer,
• unit testing,
• pair programming,
• 
ontinuous integration,
• shared 
ode ownership. 6



These pra
ti
es have been implemented in Gaudi and the results so far indi-
ate an in
reased reliability of the produ
ed software.MathEdit is built in a layered fashion using the Stepwise Feature Intro-du
tion (SFI) design methodology [4℄. In SFI software is built in layers, su
hthat ea
h layer implements a 
ertain feature or set of 
losely related features.Software is built in an in
remental fashion so that the bottom layer pro-vides the most basi
 fun
tionality, and subsequent layers add more advan
edfun
tionality. The layers are implemented as 
lass hierar
hies su
h that anew layer inherits all fun
tionality of previous layers by sub
lassing existing
lasses, and adds new features by overriding methods and/or de�ning newmethods. A detailed overview of how SFI was applied in MathEdit 
an befound in both [5℄ and the master's thesis [17℄.The main programming language used for implementing MathEdit isPython [28℄, an open-sour
e, interpreted, dynami
, and obje
t-oriented lan-guage with a 
lean syntax. Python is also fully obje
t-oriented and has beenused to build very large software proje
ts. While Python ex
els at ease ofuse and speed of development, it essentially a
hieves these advantages bytrading o� exe
ution speed; Python programs are in general mu
h slowerthan programs written in 
ompiled languages. The major part of the sour
e,about 46 000 lines, is in Python, while some 2 000 lines are C++. The initialplan was to write all 
ode in Python; C++ was only used out of ne
essity ina small number of performan
e-
riti
al areas.4.2 The Produ
tA s
reenshot of the running appli
ation 
an be seen in Figure 1. MathEditruns on both Windows and Linux/X platforms and 
an be freely downloadedunder a GPL li
ense from http://mde.abo.fi .MathEdit implements the basi
 fun
tionality of a text editor. The userworks with do
uments, whi
h are visible and manipulated through on-s
reenviews. A do
ument 
an be asso
iated with several views, and several do
-uments 
an be open at the same time. Ea
h view has a 
ursor whi
h 
anbe moved around independently, and text sele
tion is performed with eitherthe keyboard or mouse. An unlimited undo/redo me
hanism makes it pos-sible to undo editing 
ommands in order to 
orre
t mistakes. The 
lipboardintera
tion 
ommands, 
ut, 
opy and paste, allows 
opying text data be-tween appli
ations. Uni
ode [1℄ is used for all its internal text pro
essing, sothat mathemati
al and other useful symbols (su
h as Greek letters) 
an berepresented.The depth of a line in the outlining hierar
hy is indi
ated by indentation.Collapsible items, i.e. lines with visible 
hildren, show a minus sign in thesidebar; 
li
king on the sign 
ollapses the item, hiding the 
hildren. Con-versely, 
ollapsed lines show a plus sign whi
h 
an be 
li
ked to re-expand7



Figure 1: S
reenshotthe line and show the 
hildren.The user 
reates a mathemati
al expression by sele
ting a range of textand 
li
king a tool button or sele
ting a menu alternative. The sele
ted textis then marked up in a spe
ial typefa
e and is 
onsidered a mathemati
al ex-pression and be
omes subje
t to automati
 parsing. An a

epted expressionis shown in blue 
olor, while an illegal expression is 
olored red.Derivations are 
reated by applying rules to mathemati
al expressions.Rules are typi
ally Boolean expressions and 
an be provided by the mathe-mati
al pro�le (built-in rules) or entered by the user. To perform a redu
tionstep the user sele
ts a (sub)expression and 
li
ks a button, whereby the ed-itor shows all appli
able rules. For ea
h rule a preview of the redu
tion isshown, and the user 
an sele
t whi
h rule to apply. When a rule is applied,a new derivation step (possibly 
ontaining subderivations) is 
reated and thetransformed expression is inserted into the do
ument.For persistent storage of do
uments, MathEdit uses an XML �le format
onforming to a 
ustom DTD. For presentation, do
uments 
an be exportedto HTML and LATEX formats. Both formats preserve the outlining stru
tureand HTML �les also implement the folding feature using dynami
 HTML.5 Mathemati
al LanguageTo make MathEdit a general tool for writing mathemati
s, an importantfeature of MathEdit is to allow the user to extend the mathemati
al lan-guage. The assumptions MathEdit makes about the mathemati
al language8



are needed to provide support for stru
tured derivations, see Se
tion 6. Theseassumptions are de�ned in the mathemati
al pro�le interfa
e (MPI): an APIde�ned as a Python module. The main data stru
tures de�ned in the MPIare Expressions and Rules. The main operations on these data stru
turesare parsing expressions, sele
ting subexpressions, applying rules, 
onstru
tingderivations, and 
he
king derivations.There are three ways to make extensions to the mathemati
al languageof MathEdit. The most powerful way is to provide an implementation of theMPI. This means that the data stru
tures and operations need to be imple-mented in Python. Therefore, these kind of extensions are for programmersonly.The se
ond way to extend the mathemati
al language is to use the Uni-versal Pro�le (UP): an MPI implementation that allows allows the user toadd new mathemati
al notations. UP itself is an example of an extensionwritten in the �rst way. However, when using UP to extend the mathemati-
al language, one is just writing in MathEdit and one does not need to haveany programming experien
e.The third way to extend the mathemati
al language of MathEdit is to
ombine the �rst two ways. This is useful if the extension writer wants toprovide �built-in� rules whi
h manipulate expressions in more e�
ient waysthan the standard UP built-in rules. For example, there is an extension thatuses the HOL theorem 
he
ker to 
he
k (parts of) stru
tured derivations,see [18℄. The mathemati
al language of this extension is de�ned in an ordi-nary MathEdit do
ument using UP. The 
ommuni
ation between MathEditand HOL is written as an MPI implementation in Python.5.1 The Universal Pro�leA good way to learn about UP is to open a new do
ument in MathEdit andsele
t the UP pro�le for this do
ument (use the File ⊲Use Pro�le ⊲UP menu).Before typing anything at all, list the grammar of the pro�le (menu Deriva-tion ⊲ Show Grammar). In the Pro�le-tab at the bottom of the MathEditwindow, the grammar and some additional information about everythingthat is prede�ned in UP will be displayed.UP de�nes, among others, the following types: Term, Bool, and Identi�er.The following subtype relations hold:
Bool ⊆ Term (1)

Identifier ⊆ Term (2)There are two atomi
 (indivisible) Bool expressions: ⊤(true) and ⊥(false).Instead of using these spe
ial symbols, one 
an use _T_ and _F_, respe
tively.9



Although these expressions are de�ned internally by UP, they behave as ifthey were de�ned as follows.op TRUE: "⊤|_T_" → Bool .op FALSE: "⊥|_F_" → Bool .1Note that MathEdit does not make a distin
tion between 
onstants and op-erators; 
onstants are just nullary operators, i.e., argument-less operators.The identi�ers TRUE and FALSE are the names of the expressions. Follow-ing the name is a 
olon and, in this 
ase, a double-quoted regular expression.The regular expression should be written a

ording to the syntax of Python'sregular expressions. "⊤|_T_" is the double quoted regular expression thatmat
hes either one ⊤ symbol, or the three 
hara
ter string _T_. Similarly,"⊥|_F_" is the double quoted regular expression that mat
hes either one ⊥symbol, or the three 
hara
ter string _F_. The result type of these operatorsis Bool.There is one operator in UP that de�nes Identi�ers. It is de�ned asfollows:op Identifier: "[a-zA-Z℄[a-zA-Z0-9_'℄*" → Identifier .The regular expression mat
hes strings starting with a lower 
ase or upper
ase letter and ending in zero or more letters, digits, unders
ores, or single-quotes. Examples of su
h identi�ers are a, B, a_B, a10, a', a�_b, and a_�10a.In addition to these operators, or 
onstants, UP de�nes an equality andan inequality operator for ea
h type. For instan
e, for the types Term, Bool,and Identifier it de�nes the following operators.op EQUAL_Term:Term "≡|=" Term → Bool [pre
=0℄ .op NOT_EQUAL_Term:Term "6≡| 6=" Term → Bool [pre
=0℄ .op EQUAL_Identifier:Identifier "≡|=" Identifier → Bool [pre
=0℄ .op NOT_EQUAL_Identifier:Identifier " 6≡|6=" Identifier → Bool [pre
=0℄ .op IDENTICAL_Bool:Bool "≡|=" Bool → Bool [pre
=0℄ .op NOT_IDENTICAL_Bool:Bool "6≡| 6=" Bool → Bool [pre
=0℄ .1The pre
 attribute of the operators is not shown here, be
ause both TRUE and FALSEhave the default value (10) for this attribute.10



The operators EQUAL_Term, EQUAL_Identifier, and IDENTICAL_Bool, areinterpreted as synta
ti
 equality.2 However, the user is free to de�ne morerules for any of these operators, thereby making the equality operators lessstri
t.UP does not de�ne any rules for the negated operators NOT_EQUAL_Term,NOT_EQUAL_Identifier, and NOT_IDENTICAL_Bool. However, usually theuser will want to de�ne them as the negated form of the equality operators.This is possible by de�ning a rule of the formrule NOT_EQUAL_Term: (t 6≡ s) ≡¬(t ≡ s) .Here, s and t are variables of type Term. Note that to de�ne su
h rules,Boolean negation, ¬, is required. This operator is not prede�ned in UP.6 MathEdit Support for Stru
tured DerivationsIn this se
tion we 
onsider the various synta
ti
al elements that make upstru
tured derivations. We de�ne a syntax for derivations; the goal being ama
hine-readable syntax maintaining the 
larity of the stru
tured 
al
ula-tional proof format. We then dis
uss how MathEdit uni�es terms and rules,and �nally we present the strategy used to 
he
k derivations.6.1 Elements of Stru
tured Derivations6.1.1 Term linesEa
h term line 
onsists of a term, and a redex indi
ator (ex
ept for thelast term, whi
h is not further redu
ed). In 
ontrast to the notation in [3℄,MathEdit marks redexes with underlining rather than 
orner 
arets, and doesnot mark the result of the redu
tion in the sequel term. Also, in MathEditit is possible to redu
e a subexpression without introdu
ing a subderivation,whi
h results in dupli
ation of the un
hanged parts of the term. This fea-ture is mainly intended to be used on small terms, sin
e dupli
ation 
anmake proof maintenan
e unwieldy; in su
h 
ases introdu
ing a subderivation(using, e.g., a fo
using rule) is re
ommended.6.1.2 Comment linesThe relation symbol in the beginning of ea
h 
omment line des
ribes themathemati
al relation between the term immediately before and the term2The reason IDENTICAL_Bool has a di�erent kind of name than the EQUAL_Type op-erators is un
lear. Probably this was needed at some point during development ofUP, but it seems unne
essary for the 
urrent version. The same 
an be said for theNOT_IDENTICAL_Bool operator. 11



immediately after the 
omment line. It is followed by a short motivationen
losed in 
urly bra
kets. In the original notation the motivations are in-formal or semi-formal English senten
es; MathEdit, however, needs to storeinformation about the derivation step in ma
hine-readable format to be ableto pro
ess derivations. We impose a simple syntax 
onsisting of three main
onstru
ts on the bra
keted text of a 
omment line: a rule name, a ruleappli
ation pattern and a substitution set.As an example 
onsider the appli
ation of the following rule:DEMORGAN-1: ¬P ∨ ¬Q ≡ ¬(P ∧ Q)in a simple derivation step, written in MathEdit notation3:
A ∧ (¬A ∨ ¬B)
≡ { DEMORGAN-1 from left with P := A, Q := B }
A ∧ ¬(A ∧ B)Rule name (DEMORGAN-1): The editor identi�es rules are by their names,so we store the name of the rule that was used as a simple text stringwithin the 
omment line.Appli
ation pattern (from left): The rule was applied from left-to-right.This means that the left-hand side of the rule ¬P ∨ ¬Q was uni�edwith the indi
ated subexpression, and the result of the appli
ation isthe right-hand side of the rule ¬(P ∧Q) with the substitution applied,

¬(A∧B). In another step the rule 
ould be used the other way around,with the right-hand side being uni�ed with the subexpression and theresult being the left-hand side. In both 
ases the relation symbol wouldbe the equivalen
e sign. Left-to-right and right-to-left are the two most
ommon rule appli
ation patterns, but the editor allows any number ofpatterns. The mathemati
al pro�le provides for a given rule a list ofappli
ation patterns.Substitution set (with P := A, Q := B): This is a 
omma-separatedlist of expressions, ea
h des
ribing a substitution pair. Spe
ial pro�lefun
tions are provided to parse a substitution into a v 7→ e pair, where
v and e are the variable and expression ASTs respe
tively. If thereare ambiguous substitution pairs in the list, i.e., the same variable issubstituted with two di�erent expressions, the last pair in the list isused.A redu
tion step 
an 
ontain any number of subderivations. Subderivationsin MathEdit look similar to those in stru
tured 
al
ulational proofs and take3In MathEdit derivations, 
omments do not line up with terms, but rather derivationshave a �ushed left margin. This is an implementation issue.12



advantage of the outlining fun
tionality of the editor. Subderivation arepla
ed under the 
omment line of the step to whi
h they belong and areindented one level deeper. This enables to user to hide all subderivations ofa step by 
ollapsing the 
omment line. MathEdit does not support labelingof subderivations, so the order of subderivations should mat
h the order ofrule hypotheses.Potential assumptions are listed within angle bra
kets in the beginningof a subderivation and are formatted and parsed as rules. These are 
reatedwhen a 
onditional or fo
using rule provides assumptions that 
an be used ina subderivation. Su
h rules are 
orre
t only in the 
ontext of the hypothesisrequired by the rule, and the s
ope of appli
ability is thus restri
ted to thesubderivation and sub-subderivations down to any level.A simpli�
ation step is a spe
ial kind of redu
tion step whi
h 
an be usedas an interfa
e to external, �bla
k-box� redu
tion tools. The 
omment line
ontains a set of rules, but without details about how to apply them. Theexternal tool is sent a term and the list of rules, and returns a new term whi
his redu
tion of the original expression. The rules are applied a

ording to thetool's own redu
tion strategies. Sin
e su
h strategies 
an be time-
onsuming,a timeout parameter 
an be given in the 
omment line as a rough instrumentto 
ontrol the external tool.6.2 Data Representation of Stru
tured DerivationsThe BNF grammar for stru
tured derivations implemented in MathEdit isgiven in �gure 2. Parsing is done in two sequential stages, lexi
al and synta
-ti
 analysis, by a routine based on the Python parser generator toolkit Spark[2℄. Three di�erent types of tokens are produ
ed during the lexi
al anal-ysis pass: identi�ers (IDENTIFIER), integers (INTEGER), mathemati
alexpressions (MATHEXP, RULE, SUBEXP) and spe
ial indentation �deep-ening� tokens ( ). The tokenisation is based on string-mat
hing regularexpressions and markup information (for mathemati
al expressions). Deep-ening tokens are inserted into the token stream at points where the indenta-tion level in
reases; this information is used in the parsing pass to identifywhere a subderivation starts.Based on the token stream, the synta
ti
 analysis pass generates a parsetree storing all elements of a derivation in a format optimized for program-mati
 a

ess. Nodes in the tree have zero or more ordered 
hildren, and 
anbe of eight di�erent types:DERIVATION Represents a derivation, either top-level or subderivation. Theroot node is of this type. Its 
hildren are, in order, an optional AS-SUMPTIONLIST node, followed by at least one 
hild of type TERM.After this 
omes zero or more repetitions of the following sequen
e:13



〈derivation〉 ::= 〈steplist〉
| 〈assumptionlist〉 〈steplist〉
| "proof of" IDENTIFIER 〈steplist〉

〈derivationlist〉 ::= 〈derivation〉
| 〈derivation〉 〈derivationlist〉
| "•" 〈derivationlist〉

〈steplist〉 ::= 〈term〉
| 〈term〉 〈
omment〉 〈steplist〉
| 〈term〉 〈
omment〉 〈term〉
| 〈term〉 〈
omment〉 〈derivationlist〉 〈steplist〉

〈assumption〉 ::= "〈" RULE "〉"
〈assumptionlist〉 ::= 〈assumption〉

| 〈assumption〉 〈assumptionlist〉
| "•" 〈assumptionlist〉

〈
omment〉 ::= 〈appli
ation〉 | 〈simpli�
ation〉
〈appli
ation〉 ::= IDENTIFIER { IDENTIFIER }

| IDENTIFIER { IDENTIFIER 〈patternde
l〉 }
| IDENTIFIER { IDENTIFIER "with" 〈substlist〉 }
| IDENTIFIER { IDENTIFIER 〈patternde
l〉 "with" 〈substlist〉 }

〈simpli�
ation〉 ::= IDENTIFIER { "simplifi
ation using" 〈rulelist〉 "maxsteps" INTEGER }
〈patternde
l〉 ::= "from left" | "from right" | "pattern" INTEGER
〈substlist〉 ::= MATHEXP | MATHEXP "," 〈substlist〉
〈term〉 ::= 〈termexp〉 | 〈termexp〉 〈termsubexp〉
〈termexp〉 ::= MATHEXP
〈termsubexp〉 ::= SUBEXP
〈rulelist〉 ::= IDENTIFIER | IDENTIFIER "," 〈rulelist〉Figure 2: BNF grammar for stru
tured derivations in MathEdit.
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an APPLICATION or SIMPLIFICATION node followed by zero or moreDERIVATION nodes, and a TERM node. This represents a proof (withpossible subderivations), 
reated using either a regular rule (APPLICATION),or the pro�le's simplify fun
tion (SIMPLIFICATION). Ea
h subderiva-tion is represented by a DERIVATION subtree.APPLICATION Represents the �
omment� in a derivation step in whi
h a rulehas been applied to a subexpression of a term to generate a new step.Nodes of this type store the name of the used rule and the appli
ationpattern (as an integer index into the list returned by the pro�le's getrule patterns method. Its only 
hild is a single SUBSTLIST node.SIMPLIFICATION A derivation step in whi
h the pro�le's simplify has beenused. Stores the relation symbol and the n argument sent to the fun
-tion. Its only 
hild is a single RULELIST node.TERM A term in the derivation. Nodes of this type store two ASTs, for boththe expression and subexpression on whi
h a rule has been applied. Itdoes not have any 
hild nodes.SUBSTLIST Stores the substitution set as a list of substitution ASTs.RULELIST Stores a list of rule names used in a simpli�
ation step.ASSUMPTION Represents an assumption (lo
al rule), and stores its ruleAST.ASSUMPTIONLIST An ordered set of ASSUMPTION nodes.6.3 Rule Appli
ationThe editor provides a feature that allows the user to sele
t a subexpressionand 
li
k a button to get an automati
ally generated menu of appli
able rules.The user 
an then sele
t a desired rule appli
ation and apply it, therebygenerating a new derivation step. Rules 
an be applied in both forward(starting from the known) and ba
kward (starting from the goal) dire
tions.If the rule in use requires subderivations, the editor sets up an outline forea
h subderivation.Displaying appli
able rules requires gathering all de�ned rules and ameans of testing if a rule is appli
able. A rule is 
alled available at a spe
i�
derivation step in a do
ument if the editor knows about the rule (i.e., it hasparsed the de�nition) at that point, and it is 
alled appli
able if it is bothavailable and uni�able with the sele
ted subexpression. Be
ause rules areparsed into expression AST:s by the mathemati
al pro�le, a spe
ial methodget rule patterns in the MPI is used to 
onvert a rule AST into a list15



of patterns. A pattern represents an expli
it rule appli
ation and 
onsistof a sour
e expression, a relation symbol, a target expression and a list ofhypotheses.An important question is whether a rule should be available for use inderivations in the whole do
ument or only in derivations after the line onwhi
h it was de
lared. It 
ould be argued that sin
e rules must be de
laredbefore they are used the s
ope of availability for a rule should be from theline of de�nition to the end of the do
ument. A one-pass parsing would thenbe possible, and reading a do
ument from top to bottom would ensure thatno unknown rule is en
ountered. Nevertheless, in mathemati
al papers it is
ommon to list rules and lemmas at the end or in a separate appendix. It wasthus de
ided to not generally restri
t the s
ope of rules, so a rule is alwaysavailable everywhere in the do
ument in whi
h it was de
lared. However, oneex
eption to the prin
iple of universal rule s
ope are the spe
ial lo
al rulesbased on assumptions in subderivations, as the availability of these rules isrestri
ted to the subderivation in whi
h they are de
lared.MathEdit uses uni�
ation of the rule sour
e expression with the expres-sion being transformed to determine appli
ability. Uni�
ation identi�es twosymboli
 expressions by binding the 
ontents of variables to subexpressions.As an example, the expressions s = x + y and t = a + b× c be
ome identi
alif the substitution
σ = {x 7→ a, y 7→ b × c}is applied to s, i.e., x is repla
ed by a and y is repla
ed by b × c. Thesubstitution set σ is a uni�er of the expressions. Appli
ation of a uni�er toa term is written using post�x notation, i.e. sσ = t.The MathEdit pro�le typi
ally determines the most general �rst-orderuni�er. A uni�
ation fun
tion in the pro�le is 
alled with the sour
e sideexpression of a rule appli
ation pattern and the expression to be derived asparameters, and produ
es a result of either nil, meaning that uni�
ation wasnot possible, or a (possibly empty) substitution set. In the 
ase of a non-nilresult the rule pattern is deemed appli
able, and the rule itself along withthe target side (with substitutions applied) and the individual substitutionsare displayed in the list of appli
able rules. If several patterns of the samerule are appli
able (rules may be applied in more than one way, typi
allyleft-to-right or right-to-left), all possible appli
ations are displayed by theeditor.6.4 Derivation Che
kingBy derivation 
he
king we mean the pro
edure in whi
h the program 
he
ksthe well-formedness of a derivation. A derivation is well-formed if it adheres16



to the synta
ti
 and semanti
 requirements on derivations and all rule ap-pli
ations are valid with the stated substitutions. This 
he
king algorithmexe
utes 
ompletely outside the mathemati
al pro�le and uses only the pars-ing, unparsing and uni�
ation interfa
e of the pro�le, and thus has no a

essto intrinsi
 information about the mathemati
s in use. Derivation 
he
kingis not a formal veri�
ation of the 
orre
tness of the proof. The derivation
he
ker 
an be likened with a 
ompiler, whi
h 
he
ks the syntax and seman-ti
s of sour
e 
ode but does not verify that the 
ompiled program implementsits spe
i�
ations.Implementing a proof system is not the goal of MathEdit. Existing dedi-
ated theorem proving assistants with a long-standing reputation of reliabil-ity, su
h as PVS and the HOL system, are the most suitable tools for formalproving. Integration with su
h tools would be useful to provide an indepen-dent assertion of the 
orre
tness of MathEdit derivations, but that is outsidethe s
ope of this paper. Experiments have been done with HOL integration,but no 
omplete implementation exists as of yet.The derivation 
he
king algorithm as implemented in MathEdit is shownin Algorithm 1. It pro
esses a sequen
e of derivations; a sequen
e is either theset of top-level derivations in the do
ument being 
he
ked, or the subderiva-tions of some step. The latter 
ase o

urs when the algorithm �nds a stepwith subderivations and is applied re
ursively. If any one of the assertionsfail, the algorithm terminates.In MathEdit it is also possible to asso
iate a proof with a spe
i�
 rule.A trivial kind of 
he
king is performed to dete
t 
y
les in su
h de
larations;existen
e of a 
y
le is an error, sin
e a proof of a rule must not rely onthe 
orre
tness of the rule being proved. However, it should be noted thatMathEdit does not implement a full proof veri�
ation system. The relationbetween terms is only 
he
ked on a per-step basis, and there is no attemptto verify that the 
omposition of relations mat
hes the relation of the provedrule or hypothesis.7 Working with MathEditIn this se
tion we �rst give a general outline the MathEdit work�ow, andfollow up with examples whi
h show how the powerful extensible syntax ofthe UP and Math Lib pro�les makes it possible to de�ne new mathemati
allanguages on the �y.7.1 Work�owProdu
ing a MathEdit do
ument is an iterative pro
ess in whi
h the user
onstantly works within the same framework in a modi�
ation-feedba
k loop.17



Algorithm 1 Derivation 
he
kingLoop for ea
h derivation der in the sequen
e:Parse der. This also requires parsing all subderivations and mathemati
al expres-sions in der. If a syntax error o

urs, report it and terminateLoop for ea
h step step in der:Let tfrom and tto be the terms before and after the transformation re-spe
tively. Let sfrom be the denoted subexpression of tfromIf step is of type APPLICATION:
step then 
ontains the 4-tuple 〈α, r, i, σ〉 where α is the relation sym-bol, r is the rule name, i is the rule appli
ation pattern index and σis the substitution setChe
k that a rule named r existsGet the i:th rule appli
ation pattern p of the rule r on sfrom. p =
〈H, rfrom, α′, rto〉. H = [〈h1, A1〉, 〈h2, A2〉, ...] is a list of hypotheses.Let Ak be the set of assumptions available for proving hkFor ea
h hypothesis hk 
he
k that the mat
hing subderivation dk usesno other assumptions than those de
lared in AkApply this algorithm re
ursively to the list of subderivationsChe
k that α = α′Unify rfrom with sfrom and let σ′ be the resulting substitution set.Let ω be the set of free variables, i.e. unbound variables in rto. Che
kthat {x 7→ e|x 7→ e ∈ σ ∧ x /∈ ω} = σ′Che
k that tto = tfrom[sfrom 7→ rtoσ], i.e. the resulting expressionshould be equal to the initial expression where the subexpression
sfrom has been repla
ed with the result of applying the rule r to
sfromElse if step is of type SIMPLIFICATION:
step then 
ontains 〈α, m, R〉 where α is a relation symbol, m is themaximum number of steps allowed and R = [r1, ..., rn] is the sequen
eof rules used in the simpli�
ationChe
k that rules r1, ..., rn existChe
k that a simpli�
ation 
an be obtained by 
alling the pro�le'ssimpli�
ation fun
tion on sfrom with arguments m and R. Let theresult be 〈α′, s′〉Che
k that α = α′Che
k that tto = tfrom[sfrom 7→ s′]
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Figure 3: Basi
 MathEdit work�owFigure 3 des
ribes the basi
 stages of this pro
ess. The fo
us is on themathemati
al features of the editor and not on general text editing, so stageslike formatting, saving, et
. are not 
onsidered.The user starts by 
reating a new do
ument and 
hoosing a mathemati
alpro�le (1). Currently the 
hoi
e is between UP and Math Lib, and 
onsid-ering that Math Lib is an extension of UP with additional features, usersare re
ommended to use Math Lib for most purposes. However, a user whowants to de�ne a mathemati
al language from the ground up might be bettero� with the bare-bones UP to avoid 
lashes with existing de�nitions in MathLib.The user may want to de�ne a mathemati
al language (2) and/or a set ofrules (3). The amount of work done in these steps varies depending on theuser's obje
tive: and advan
ed user building up a theory from the ground or
reating a prelude for others to use might spend a lot of time in these stages,while a user fo
using on doing derivations within a ready-made environment,su
h as Math Lib, might not.When there is at least one rule available (built-in or user-de�ned), deriva-tions 
an be performed (4). The user enters a formula and marks it asa mathemati
al expression, after whi
h it be
omes subje
t to parsing andtype-
he
king. If the expression is valid, the user 
an sele
t any subexpres-sion and ask the editor to show a list of appli
able rules (menu: Derivation ⊲Derive). Applying a rule starts a new derivation and adds a �rst step. Steps
an also be added manually, although this requires some familiarity with thederivation syntax in �gure 2 from the user.After a number of steps, the user might 
on
lude that the derivationis �nished and pro
eed to the 
orre
tness 
he
king stage (5). Either allderivations in the do
ument (menu: Derivation ⊲Che
k All Derivations) ora spe
i�
 derivation (menu: Derivation ⊲Che
k Current Derivation) 
an be
he
ked; the program then applies the algorithm in �gure 1. Erroneouslines in a 
he
ked derivation are marked and errors details are reported in a19



window, allowing the user to view the list of errors and go to any one of theo�ending lines.When performing a derivation the need for a new rule may arise. The usermight also want to 
hange an existing rule, e.g., generalizing it. Similarly,the mathemati
al language de�ned might not be expressive enough to pro-
eed and needs to be 
hanged, e.g., an operator 
ould be missing. However,
hanges in rules might invalidate derivations, and 
hanges in mathemati
allanguage might invalidate expressions, rules and derivations. The earlier thelevel at whi
h the 
hange o

urs, the more 
onsequen
es it will have: thisis illustrated in the �gure by an in
reasing amount ex
lamation marks onthe paths of the last transition. At the extreme, swit
hing to another mathe-mati
al pro�le with a di�erent syntax invalidates every de�nition, expression,rule and derivation in the do
ument.7.2 Using UPIn this se
tion we explain how UP 
an be used to 
reate you own mathemat-i
al language. We will do this by de�ning a theory for parallel pro
esses inthe style of ACP [14, 12, 19℄. In addition to introdu
ing types and operatorsfor parallel pro
esses, we de�ne the axioms for the pro
ess theory and showhow these axioms 
an be used as rules to 
reate stru
tured derivations.7.2.1 ACPWe will distinguish three types: A
tion, Atom, and Pro
ess. The a
tions formthe basi
 building blo
ks and are usually de�ned with a parti
ular appli
a-tion in mind. The atoms in
lude the a
tions and, in addition, a prede�neddeadlo
k 
onstant δsymbolizing ina
tion (the absen
e of an a
tion). Thepro
esses in
lude all atoms and, in addition, the 
ompound pro
esses buildup from atoms and pro
ess operators. The three types are de�ned as follows.op A
tionAtom: A
tion → Atom .op AtomPro
ess: Atom → Pro
ess .op Pro
essTerm: Pro
ess → Term .These are three invisible (no syntax) operators that de�ne the following sub-type relations.
Action ⊆ Atom

Atom ⊆ Process

Process ⊆ Term20



As mentioned above, a
tions are usually de�ned with a parti
ular appli
ationin mind. Therefore, we postpone the de�nition of 
on
rete a
tions for now.The deadlo
k 
onstant is de�ned:op Deadlo
k: "δ" →Atom .The theory has two operators for sequential pro
esses and three for parallelpro
esses. The sequential operator are de�ned as follows.op Alt: (Pro
ess) "\+" Pro
ess → Pro
ess [pre
=100℄ .op Seq: (Pro
ess) "·" Pro
ess → Pro
ess [pre
=101℄ .The Alt operator puts two pro
esses in alternative 
omposition. The syntaxof the operator is de�ned by the regular expression "\+" whi
h mat
hedthe single 
hara
ter +. The arguments of this operator should be of typePro
ess. To redu
e the number of required parentheses in pro
esses, wehave en
losed the �rst argument type in parentheses. This means that UPwill add parentheses to the left argument whenever needed to get a 
orre
tparse. Consequently, when we write δ+δ+δ, UP will read this as (δ+δ)+δ.The pre
-attribute is set to 100.The Seq operator's de�nition is similar to that of Alt. It's syntax is a ·(
entered dot), and sin
e its pre
-attribute is 101, it binds stronger than theAlt operator. Therefore, an expression δ · δ + δ is parsed as (δ · δ) + δ.Before we 
ontinue with the de�nitions of operators to 
onstru
t paral-lel pro
esses, we �rst give the axioms for the sequential pro
ess operatorsintrodu
ed so far. To de�ne these rules, we need three variables of typePro
ess:var x,y,z : Pro
ess .Now, x, y, and z stand for arbitrary pro
esses. In addition to using identi�ersto de�ne variables, it is possible to use double-quoted regular expressions. Forinstan
e, the following line de�nes an in�nite set of variable 
onsisting of onelower 
ase letter followed by zero or more primes:var "[a-z℄'*" : Pro
ess .The axioms of the sequential pro
ess operators are de�ned in the followingrules. rule Alt_Delta: x+δ= x .rule Delta_Seq: δ·x = δ .rule Comm_Alt: x+y = y+x .rule Asso
_Alt: (x+y)+z = x+(y+z) .rule Asso
_Seq: (x·y)·z = x·(y·z) .rule Alt_Seq_RDistr: x·z + y·z = (x+y)·z .21



Figure 4: Operators and rules for sequential pro
esses.The Alt_Delta rule says that a 
hoi
e, indi
ated by the + operator, betweendeadlo
k and another pro
ess is not really having a 
hoi
e, be
ause the dead-lo
k will never be 
hosen. In other words, δ is a neutral-element for the + op-erator. The next rule, Delta_Seq, says that nothing follows deadlo
k, thatis, δ is a left-zero-element for the · operator . Comm_Alt and Asso
_Alt de-�ne 
ommutativity and asso
iativity of the + operator and Asso
_Seq de�nesasso
iativity of the · operator. Finally, Alt_Seq_RDistr de�nes the (right)distributivity of · over +. Figure 4 shows the text 
anvas of MathEdit withthe operators and rules des
ribed so far.Next, we introdu
e the parallel 
omposition operator, whi
h is 
alledMerge.op Merge: (Pro
ess) "‖" Pro
ess →Pro
ess [pre
=92℄.The Merge-operator runs two pro
esses in parallel allowing them to operateautonomously or intera
tively. This means that the a
tions of the pro
essesare interleaved (merged) arbitrarily or they are syn
hronized into 
ommuni-
ation a
tions. The merge operator is de�ned by the following rule.22



rule Merge_Def: x‖y = (x
y) + (y
x) + (x|y) .Intuitively, the parallel 
omposition of x and y (denoted by x‖ y) 
an performan a
tion from x (denoted by x
y), an a
tion from y (denoted by y
x),or a 
ommuni
ation between x and y (denoted by x|y). The 
 and the |operators will be de�ned shortly. In addition to this rule, we de�ne two rulesthat express the 
ommutativity and asso
iativity of the Merge-operator.rule Comm_Merge: x‖y = y‖x .rule Asso
_Merge: (x‖y)‖y = x‖(y‖y) .The de�nitions of the CommMerge and LeftMerge-operators are as follows.op CommMerge: (Pro
ess) "\|" Pro
ess → Pro
ess [pre
=90℄.op LeftMerge: (Pro
ess) "
" Pro
ess →Pro
ess [pre
=92℄.In ACP, 
ommuni
ation is de�ned on the level of a
tions and 
ommuni
ationbetween pro
esses is de�ned in terms of the a
tions these pro
esses are builtup from. Therefore, to give the rules for the CommMerge operator, we needvariables ranging over a
tions. However, it turns out that the spe
ial atom δbehaves almost as an a
tion with respe
t to the CommMerge operator. To keepthe number of rules small, we therefore de�ne variables of type Atom.var "[ab
℄'*" →Atom .This de�nes in�nitely many variables of type Atom (= A
tion ∪ {δ}) . Thevariables start with an a, b, or 
, and end with zero or more ' (prime)symbols. The rules for the CommMerge are de�nes as follows.rule CommMerge_Delta: x|δ = δ.rule Delta_CommMerge: δ|x = δ.rule AtomPrefix_CommMerge_AtomPrefix: a·x | b·y = (a|b)·(x‖y) .rule AtomPrefix_CommMerge_Atom: a·x | b = (a|b)·x .rule Atom_CommMerge_AtomPrefix: a | b·y = (a|b)·y .rule Comm_CommMerge: x|y = y|x .rule Asso
_CommMerge: (x|y)|z = x|(y|z) .rule Alt_CommMerge: (x+y)|z = (x|y) + (y|z) .The LeftMerge-operator is an auxiliary operator needed to give a �nite ax-iomatisation of the Merge-operator. It behaves essentially equal to the Merge-operator, ex
ept that its �rst a
tion has to 
ome from its left argument. Therules for the LeftMerge-operator are as follows.23



rule Atom_LeftMerge: a
x = a·x .rule AtomPrefix_LeftMerge: a·x
y = a·(x‖y) .rule Alt_LeftMerge: (x+y)
z = (x
z) + (y
z) .A powerful proof te
hnique of ACP is basi
 term indu
tion. Basi
 terms arede�ned indu
tively as follows.1. δ is a basi
 term;2. all a ∈ A
tion are basi
 terms;3. if s is a basi
 term and a ∈ A
tion, then a · s is a basi
 term;4. if s and t are basi
 terms and neither of them is δ, then s + t is a basi
term.It 
an be proved that every Pro
ess built up from the pro
ess operatorsintrodu
ed so far is equal to a basi
 term. Therefore, by proving propertiesabout basi
 terms, we 
an establish properties about all pro
esses. As basi
terms are de�ned indu
tively, we 
an use a stru
tural indu
tion te
hniqueto prove properties about basi
 terms. This te
hnique is 
alled basi
 termindu
tion:4Basi
 term indu
tion Let X and Y be two pro
esses and let x be a sub-pro
ess of X and possibly of Y . If the following properties hold, then
X = Y .1. X[δ/x] = Y [δ/x];2. X[a/x] = Y [a/x] for a an A
tion ;3. X[a · s/x] = Y [a · s/x] for a an A
tion and s a basi
 term su
h that
X[s/x] = Y [s/x];4. X[(s+t)/x] = Y [(s+t)/x] for s and t a basi
 terms su
h that X[s/x] =
Y [s/x] and X[t/x] = Y [t/x].If we apply this te
hnique to prove X = Y , we say we prove X = Y by(basi
 term) indu
tion on x. Note that it is not stri
tly needed for x to be asub-pro
ess of X (or Y ); if it is not, proving X = Y by basi
 term indu
tionon x boils down to proving X = Y dire
tly.It is possible to de�ne (stru
tural) indu
tion in UP, although we do notethat the 
urrent implementation of UP does not provide all features we would4In general, basi
 term indu
tion 
an be used to prove any property P (X1, . . . , Xn) ofpro
esses X1, . . . , Xn. Here, the property is the binary relation P (X, Y )=̂(X = Y ).24



like it to have as far as indu
tion is 
on
erned. Anyway, the 
urrent imple-mentation 
omes a long way and it is worthwhile to illustrate this. Thefollowing rule is a rather dire
t translation of the basi
 term indu
tion de�-nition given above.rule BTI: [X[x := δ℄=Y[x := δ℄,X[x := a℄ = Y[x := a℄,[ X[x := s℄ = Y[x := s ℄
⊢ X[x := a·s℄ = Y[x := a·s℄,[ X[x := s℄ = Y[x := s℄,X[x := t℄ = Y[x := t℄ ℄
⊢ X[x := s+t℄ = Y[x := s+t℄,℄⊢X = Y .Although this rule looks �ne, UP 
annot guarantee that we will use it 
or-re
tly. The problem is that when we instantiate this rule, we are not allowedto assume anything about a, s, and t (ex
ept what is given by the basi
 termindu
tion rule). For instan
e, if we apply this rule in a derivation in whi
hany of these three symbols already o

urs, we run the risk of using propertiesabout those o

urren
es and UP will not warn us about it. Su
h situations
an easily arise. For instan
e, when we try to prove X = Y we might �rstdo basi
 term indu
tion on a x and then a nested basi
 term indu
tion ona y. In the nested step, we have to make sure a is not equal to the a of theouter step.We will now use UP to prove that x ‖ δ = x · δ by basi
 term indu
tionon x. This prove has been done 
ompletely in MathEdit; it is a derivationof 100 lines. Consequently, MathEdit is able to 
he
k the validity of the proof.Below, we have split up the proof in several parts and 
omment ea
h partseparately. The �rst part is the whole proof without the subproofs resultingfrom appli
ation of the BTI rule. The start and end of the subproofs aregiven, but the details are left out, exa
tly as MathEdit does when you applya rule with proof obligation (side 
onditions).x‖δ= {Merge_Def from left with x:=x, y:=δ}(x
δ)+(δ
x)+(x|δ)= {BTI from left with X:=x
δ, Y:=x·δ, a:=a, s:=s, t:=t, x:=x}

• (x
δ)[x:=δ℄= { ... }(x·δ)[x:=δ℄
• (x
δ)[x:=a℄= { ... }(x·δ)[x:=a℄
• 〈assumption2_2_1:(x
δ)[x:=s℄ = (x·δ)[x:=s℄〉25



(x
δ)[x:=a·s℄= { ... }(x·δ)[x:=a·s℄
• 〈assumption2_3_1:(x
δ)[x:=s℄ = (x·δ)[x:=s℄〉

〈assumption2_3_2:(x
δ)[x:=t℄ = (x·δ)[x:=t℄〉(x
δ)[x:=s+t℄= { ... }(x·δ)[x:=s+t℄
· · · x·δ+(δ
x)+(x|δ)= { Atom_LeftMerge from left with a:=δ, x:=x }x·δ + δ·x + (x|δ)= { CommMerge_Delta from left with x:=x }x·δ + δ·x + δ= { Alt_Delta from left with x:=x·δ + δ·x }x·δ + δ·x= { Delta_Seq from left with x:=x }x·δ + δ= { Alt_Delta from left with x:=x·δ }x·δWe see from this part that MathEdit 
reates the expe
ted subproofs: �rstwe have to prove the property for x=δ, then for x=a, then for x=a·s, and�nally for x=s+t. Furthermore, we get some assumptions for s and t. Theseassumptions 
an be used as normal rules in their 
orresponding subproofs,as will be shown later. The steps after the BTI step are rather trivial. Infa
t, these steps 
an be done as one simpli�
ation step.7.2.2 ACP exampleAs an example, we will de�ne the behavior of a web server as an expressionof the type Pro
ess. The a
tions for the web server are Re
vReq, GetPage,SendPage, and SendErrorPage. A rather abstra
t view of a web server 
anbe de�ned as follows.

Server = RecvReq · (Server ‖ HandleRequest)

HandleRequest = GetPage · (SendPage + SendErrorPage)The Server waits for a request for a 
ertain web page (Re
vReq). When ithas re
eived a request, it starts up a new Server, to deal with following re-quests, and in parallel to that it starts handling the request (HandleRequest).Handling of a request means retrieving the requested web page (GetPage)and, when it exists, sending it ba
k (SendPage), or, when it does not exist,sending an error page ba
k (SendErrorPage).To de�ne the Server pro
ess in MathEdit, we �rst de�ne the a
tions.26



Figure 5: A simple web server.op "Re
vReq" → A
tion .op "GetPage" →A
tion .op "SendPage" →A
tion .op "SendErrorPage" → A
tion .Note that these operator de�nitions are without a name. As the syntax ofthe operators are perfe
tly good names, it seems unne
essary to add namesexpli
itly. Behind the s
enes, UP will 
reate internal names for these oper-ators. Su
h internal names have the form �op_N�, where N is a sequen
enumber.Next, we de�ne the 
ompound pro
esses Server and HandleRequest. Both
onsist of an operator de�nition and a de�ning rule.op "Server" → Pro
ess .op "HandleRequest"→ Pro
ess .rule ServerDef:Server = Re
vRequest·(Server ‖ HandleRequest) .rule HandleRequestDef:HandleRequest = GetPage·(SendPage + SendErrorPage) .Note that rules always need a name, even if they are as simple as the two rulesde�ning Server and HandleRequest. The reason for this is that MathEditneeds to refer to these rules while 
reating or 
he
king derivations. Fig-ure 5 shows the operators and rules of the web server as they appear on theMathEdit text 
anvas. 27



7.3 Using Math LibMath Lib has built-in support for expressions in
luding Boolean 
onne
tives,quanti�ers, and arithmeti
 expressions. However, no 
onstru
ts for reason-ing expli
itly about sets is provided, so we des
ribe how this addition 
anbe made to the Math Lib pro�le with appropriate de
larations 
ontained inthe same do
ument as the proof itself. The following example builds a sim-ple mathemati
al language to des
ribe sets, and introdu
es de�nitions of set
omprehension and the operators union and interse
tion based on set mem-bership. Set 
omprehension allows us to reason about a Boolean variablequanti�ed over the elements of a set; sin
e membership is Boolean-valued,we 
an use the existing Math Lib support for Booleans.We start by introdu
ing two new types, Elem and Set, whi
h are bothsubtypes of the built-in type Term. This means that they 
an be used astop-level terms in expressions. We might also wish to make Set a subtype of
Elem, so that it is possible to have sets of sets. This is a
hieved by enteringthe following lines in an empty do
ument using the Math Lib pro�le andformatting ea
h line as a de�nition:op ElemTerm: Elem→Term .op SetTerm: Set→Term .op SetElem: Set→Elem .The op keyword is also used to de�ne operators. We now de�ne the operatorsfor set membership, union, interse
tion and 
omprehension:op IN: Elem "∈" Set→Bool [pre
=50℄ .op UNION: Set "∪" Set→Set [pre
=100,
ommutative℄ .op INTERSECTON: Set "∧" Set→Set [pre
=100,
ommutative℄ .op SETCOMP: "{" Elem "\|" Bool "}" → Set .The strings within quotation marks are regular expressions used by MathLib's s
anner/parser to re
ognize operations. Binary operators 
an be as-so
iated with pre
eden
e and 
ommutativity properties, whi
h enable us toomit super�uous parentheses in expressions. Also note the use of the prede-�ned Bool type.To be able to de�ne rules and expressions with variables, we de�ne anumber of unprimed and primed set, element and Boolean variables:var "S['℄*": Set .var A,B,C: Set .var e,v: Elem .var "b['℄*": Bool . 28



We now de�ne rules for rewriting union/interse
tion using Boolean disjun
-tion/
onjun
tion and for introdu
ing set 
omprehension. Rules are de
laredusing a di�erent formatting than de�nitions, and the text is 
olored blue inthe editor:rule UnionDef: e∈S∪S' ≡ (e∈S)∨(e∈S') .rule Interse
tionDef: e∈S∩S' ≡ (e∈S)∧(e∈S') .rule SetComprehension: S = {e|e∈S} .Math Lib does not provide a built-in rule for distributing disjun
tion over
onjun
tion, so we need to de�ne this. To be able to transform only thepredi
ate of a set 
omprehension 
onstru
t in a subderivation, we also de�nea fo
using rule:rule DistrDisjOverConj: b∨(b'∧b�) ≡ (b∨b')∧(b∨b�) .rule Fo
usOnPredi
ate: {v|b} = {v|b'} if b≡b' .The pre
ondition 
lause b ≡ b′ in the se
ond rule triggers the 
reation of asubderivation when the rule is applied. When applied from left to right, b′ isa free variable whi
h 
an be assigned any expression.With these de�nitions, it is now possible to perform the following deriva-tion:
A ∪ (B ∩ C)= { SetComprehension from left with S := A ∪ (B ∩ C), e := v }
{v|v ∈ A ∪ (B ∩ C)}= { Fo
usOnPredi
ate from left with b′ := v ∈ (A ∪ B) ∩ (A ∪ C),
b := v ∈ A ∪ (B ∩ C), v := v }

• v ∈ A ∪ (B ∩ C)

≡ { UnionDef from left with S′ := B ∩ C, S := A, e := v }
(v ∈ A) ∨ (v ∈ B ∩ C)

≡ { Interse
tionDef from left with S′ := C, S := B, e := v }
(v ∈ A) ∨ (v ∈ B) ∧ (v ∈ C)

≡ { DistrDisjOverConj from left with b′′ := v ∈ C, b′ := v ∈ B,
b := v ∈ A }
((v ∈ A) ∨ (v ∈ B)) ∧ ((v ∈ A) ∨ (v ∈ C))

≡ { UnionDef from right with S′ := B, S := A, e := v }
(v ∈ A ∪ B) ∧ ((v ∈ A) ∨ (v ∈ C))

≡ { UnionDef from right with S′ := C, S := A, e := v }
(v ∈ A ∪ B) ∧ (v ∈ A ∪ C)

≡ { Interse
tionDef from right with S′ := A ∪ C, S := A ∪ B,
e := v }
v ∈ (A ∪ B) ∩ (A ∪ C) 29



· · · {v|v ∈ (A ∪ B) ∩ (A ∪ C)}= { SetComprehension from right with S := (A∪B)∩ (A∪C), e := v}
(A ∪ B) ∩ (A ∪ C)Ea
h step in the derivation 
an be typed in manually or 
reated by usingMathEdit's �Show appli
able rules� button to list the appli
able rules in ea
hstep and sele
ting the appropriate rule. A s
reenshot showing the widgetlisting appli
able rules for the FocusOnPredicate step 
an be seen in �gure6. Top-level nodes in the tree represent rules while the 
hildren are possibleappli
ations. An appli
ation 
an be further expanded to reveal substitutions.The question marks in the substitution of variable b′ indi
ate that in orderto apply the fo
using rule the user must supply a value for the free variable

b′, whi
h in this 
ase is v ∈ (A ∪ B) ∩ (A ∪ C).

Figure 6: MathEdit's appli
able rules list
8 Con
lusion and Future WorkThis paper has presented MathEdit, a tool for writing mathemati
al deriva-tions in the stru
tured 
al
ulational proof format. Sin
e this format is dis-tinguished from ordinary 
al
ulational proofs by its ability to hierar
hi
allyde
ompose proofs into smaller ones, it makes an outlining editor a natu-ral 
hoi
e of editing environment. By de�ning a syntax for derivations theeditor provides a framework for representing and manipulating derivations,and by providing an extensible pro�le interfa
e, it enables users to reasonabout many di�erent kinds of mathemati
s. Although the fun
tionality of-fered by MathEdit is limited 
ompared to that of more spe
ialized programs,30



the freedom and extensibility o�ered is valuable as a basis for future devel-opment and resear
h; sin
e there are no built-in assumptions about a spe
i�
mathemati
al theory, new ideas 
an be tested in the editor rather freely.The experien
e gathered from developing and using MathEdit has re-sulted in a number of important insights. There are still some improvementsneeded to make it useful for people working with mathemati
s in pra
ti
e.One of high importan
e is notation; 
urrently MathEdit is 
ompletely line-based and does not allow ni
e-looking multi-tiered typesetting for 
onstru
tssu
h as rationals, square roots and matri
es. It would 
ertainly be bene-�
ial for the usability and aestheti
s of MathEdit if su
h 
onstru
ts 
ouldbe displayed and edited, and preferably en
oded in a standard format su
has MathML [26℄. However, spe
ifying and implementing an intuitive userinterfa
e for more advan
ed mathemati
al 
onstru
ts is no small feat. Analternative solution, whi
h we are 
urrently pursuing, is to take an existingmathemati
s editor with an extensible do
ument stru
ture, su
h as TEXma
s,and implement an integration layer to either our own parser/proof engine orto a more powerful theorem prover.Currently the user is required to invent the proofs for theorems; the ed-itor only assists in the task of writing them. A future version of MathEdit
ould make use of an advan
ed theorem proving assistant to 
reate proofsas well as perform the 
orre
tness 
he
king. Progress has been made in thisarea, as integration layers for HOL [18℄ and Simplify [10℄ have been partiallyimplemented.Proof browsing in hypertext media is an interesting te
hnique for proofpresentation that is worth developing beyond the limited export �lters thatMathEdit 
urrently implements. The user should be able to publish a workbook, 
onsisting of a number of MathEdit do
uments, in both hypertextand printed formats. A template system 
ould be devised to ensure thatworkbooks 
an 
onform to di�erent styles.Referen
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