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AbstratThe strutured alulational proof format emphasizes struture and readabil-ity by presenting derivations as outlined sequenes of term transformations.The Mathematial Derivation Editor (MathEdit) is an e�ort to develop toolsupport for this format. It is a text editor with built-in support for an ex-tensible mathematial syntax and strutured derivation notations. In thispaper we overview and disuss the features of MathEdit and their implemen-tation: how the editor parses and understands mathematial expressions,determines appliable rules, and how strutured derivations are represented.We demonstrate use of MathEdit through example derivations from proessalgebra.



1 IntrodutionA well-de�ned hierarhial struture for mathematial proofs is importantboth for the author and the readers of a proof [24℄. Struture fores theauthor to think his ideas through thoroughly before ommitting them topaper, and provides the reader with a desription of the proof that is easyto understand and that an be examined at di�erent levels of detail. Thestrutured alulational proof [3℄ format is a proof presentation format thatombines the readability of alulational proofs with the struture of naturaldedution.However, reating and maintaining a strutured layout of omplex deriva-tions an be umbersome without dediated tool support. This raises theneed for an editing environment that aids the author by imposing a well-de�ned struture on douments. But suh a tool should not be overly re-stritive either; authors of mathematial douments frequently need to mixformal notation with bloks of prose-like text.This paper presents MathEdit, a tool developed in an aademi softwarefatory. MathEdit supports editing and orretness heking of struturedalulational proofs in a familiar text-editor like environment. The user anwrite a derivation by manually typing in eah step, or by applying rules ina point-and-lik manner. With the lik of a button, all derivations anbe heked for well-formedness. The mathematial syntax of MathEdit isextensible and there are no built-in restritions on the domains in whihMathEdit an be used.Aside from the simple equation editors integrated into many word pro-essors, there exists a number of high-quality tools for editing mathematis-intensive douments. They enompass a wide range of appliations; somefousing mainly on struture and presentation [27, 11℄, other are full-blownomputer algebra systems [29, 16℄. Proof management tools on the otherhand often target a spei� domain; examples of tools geared towards theformal veri�ation of programs are [6, 23, 15℄. The goal of MathEdit is toprovide a platform supporting general non-domain-spei� mathematis om-bined with the strutured alulational proof paradigm. While this makesMathEdit very general and appliable to a wide range of problems, it alsoinevitably makes it muh less �polished� than speialized tools; we will touhon this aspet further on in the paper.The remainder of this paper is organized as follows: Setion 2 providesan introdutory overview of the strutured alulational proof format. InSetion 3 we disuss the features needed from in an editor for suh proofs.Setion 4 provides an overview of our editor, while Setions 5 and 6 desribe inmore detail how the editor parses and understands mathematial expressions,determines appliable rules, and how strutured derivations are represented.Setion 7 provides onrete examples of using MathEdit. We end with a1



short summary and some disussion on future work.2 Strutured Calulational ProofsThe strutured alulational proof format for writing derivations is based onthe onepts of natural dedution [20℄ and alulational proof [21℄, ombiningand extending them to provide a well-strutured, outlined layout for proofsthat is visually pleasing and allows hierarhial deomposition. The followingexample illustrates the strutured alulational proof format:
A ∧ xB ∧ Ay

≡ { use the �rst onjunt to simplify the seond }
•〈A〉
B ∧ A

≡ { use the assumption to replae A with true }
B ∧ true

≡ { propositional alulus }
B

A ∧ pBq

≡ { ommutativity of ∧ }
B ∧ AA derivation onsists of a number onseutive interleaved term and ommentlines. The �rst term (A∧B∧A) is transformed in a series of redution steps,eah step being based on a rule indiated in the omment line. In ases wherea step transforms a subexpression, orner arets indiate the redex before (xand y) as well as after (p and q) the transformation. The symbol in thebeginning of a omment line desribes the relation between two onseutiveterms (here ≡, sine the goal of this proof is to show that equivalene holdsbetween the �rst and the last terms.) However, proofs are not limited tosymmetri relations�any transitive relation will do�and it is also possibleto use di�erent relations in the same derivation, but in that ase one need toonsider arefully their ombined relation.The example also shows the use of a hierarhial outline and a subderiva-tion with ontextual information. In proving B ∧ A ≡ B a subproof withthe assumption A (enlosed in angle brakets) is set up as an indented sub-derivation under the �rst omment line. This fousing on a subexpression isuseful for avoiding repetition of (potentially long and omplex) unhangedparts of an expression while still maintaining orretness, and its use hasbeen formalized in window inferene rules [25℄.If a subderivation is used in a step to establish a non-symmetri rela-tion, suh as impliation, the monotoniity properties of the expression being2



transformed must be taken into aount. For example, onjuntion is mono-toni in either of its arguments with respet to impliation, whih allows usto write the following derivation to prove (A ∧ P ) ⇒ (A ∧ Q):
A ∧ xPy

⇒ { sine ∧ is monotoni in its right argument }
•P

⇒ { hint why P ⇒ Q }
Q

A ∧ QThere are other onnetives that are not monotoni with respet to implia-tion; impliation itself, for example, is monotoni in its right argument butanti-monotoni in its left. Some operators are neither monotoni nor anti-monotoni. Subderivations that transform the arguments of suh an operatormust preserve equivalene only.Subderivations are also used to prove hypotheses that are side onditionsfor onditional rules. As an example, onsider the following arithmeti sim-pli�ation:
10/10

= { x/x = 1 provided that x 6= 0 with x := 10 }
10 6= 0

= { by omparison }true
1When the �rst step is derived the hypothesis 10 6= 0 is postulated, makingit the responsibility of the proof author to prove this relation in a subderiva-tion. This use of subproofs di�ers from that of fousing rules in that theresulting expression of the subderivation is not inluded in the main deriva-tion. Instead it is a proof obligation of the derivation step that the divisoris non-zero.3 Tool Support for Strutured DerivationsWe believe that a tool for writing mathematis should provide and enforestruture whenever it aids the user in his goal, and otherwise o�er as muhfreedom as possible. We hose the standard graphial text editor or wordproessor as the basi appliation model for MathEdit. The large majorityof users are in some way familiar with this style of appliation, and havea general intuition about the user interfae. A doument ontaining linesof text is edited by moving a ursor, or aret, around the doument while3



issuing ommands. Commands an be simple, suh as typing a single hara-ter, or more powerful, suh as performing a string-based searh and replaeoperation on the entire doument.Outlining editors, sometimes alled outliners, are doument editors thatallow their users to edit text, and possibly other elements, in a hierarhy. Ina line-based outliner, outlined text onsists of many indented lines, followingthe rule that eah line an be indented at most one level to the right fromthe previous line. A line followed by indented lines is alled parent and theindented lines are alled hildren. A line together with all its hildren andsub-hildren is alled an item; atomi items have no hildren. Compositeitems, i.e. items whih have at least one hild in ontrast to atomi items,an be ollapsed and subsequently expanded to hide and show their hildren.An outlining editor provides good overview of a doument by allowingthe user to hide details deep in the hierarhy and get a �bird's eye�-view ofthe doument, while at the same time making it possible to quikly delveinto the deeper branhes of the hierarhy for details. Outliners are usefulwhen reading and writing mathematial proofs for this very reason�a om-plex derivation often ontains several rule appliations with perhaps equallyomplex subderivations. These steps an be ollapsed to hide details thatare not interesting when one is attempting to understand the general idea ofthe proof, and as soon as more information about a partiular step is needed,that step an be unfolded and the subderivation revealed. The author is thusfree to add as muh material as possible to a doument without fear that theresult beomes inomprehensible. The idea of navigating a proof in this wayis known as proof browsing [22℄.Authors of mathematial douments are very onsientious about theorretness of their writings. Yet aording to Lamport [24℄, even proofspublished in mathematial journals frequently ontain errors. As writing isan iterative proess, it is espeially important that hanges and additionsdo not invalidate prior work. Human beings are, however, notoriously badat frequently heking �trivial� things, suh as whether a delaration is validin some spei� language or if a rule appliation is still valid. But thesetasks an be quikly arried out by omputers, whih is why a tool shouldprovide as muh heking as possible of user input, albeit in a unobtrusiveway. Furthermore, whenever the environment (assumptions, rules, lemmas)hanges, the tool should make it possible to run an automated hek on allexisting proofs to ensure that they are still valid.One example of a mathematis-oriented text editor is Math∫ pad [11℄. Itis a strongly syntax-direted editor in whih templates alled stenils areused to de�ne the visual and logial struture of syntati elements in adoument. The editor supports seletion and manipulation based on thisstruture: for example, a spei� stenil an de�ne a ertain mathematialoperator, and liking on that operator in a doument will then selet the4



whole subexpression. Furthermore, it features a number of ommands forrewriting expressions, suh as Reverse, Distribute and Fatorise, but thesework on a purely syntati level.GNU TexMas [27℄ is an editor based on similar ideas as Math∫ pad. Inaddition it supports a few omputer algebra systems, thus making it possibleto inlude the semantis of suh systems into TexMas. Translation layersand interproess ommuniation are used to aess the funtionality of thesesystems from within the TexMas environment, making the integration quiteshallow.We hose not to make MathEdit strongly syntax-direted. While a math-ematial expression, suh as an algebrai formula, has a tree-like miro-struture, we have not seen pressing needs to reate a strutured editingenvironment for suh miro-strutures. In pratie, it is often useful to tem-porarily �break� a struture while doing edits. In MathEdit, derivations andmathematial expressions are treated as delineated setions in a free-formtext doument that have been expliitly indiated by the user to onformto a spei� language; if a setion does not, the error is reported and theuser an orret it. We do, however, appreiate immediate feedbak andMathEdit therefore implements automati parsing during editing and visu-alizes the abstrat syntax trees of expressions.However, for elements suh as formulas and derivations, we want a well-de�ned syntax and a means for inluding semantis. Suh semantis makes itpossible to redue formulas using rules of the mathematial formalism ratherthan on a purely syntati basis. The mathematial language provided byMathEdit is extensible in order to enable users of the tool to work withdi�erent kinds of mathematis. A basi syntax and simple Boolean andarithmeti operators are provided, but users an add new types, operatorsand identi�ers without reprogramming the tool itself. Users are also ableto delare ustom rules and use these seamlessly together with built-in rulesin derivations; this feature is ruial for usability, sine it will get extremelytedious to read and write derivations onsisting only of steps based on a smallnumber of pre-de�ned rules. Furthermore, in more demanding situations,where a user might want to signi�antly hange the mathematial language,this is also possible by writing a new mathematial pro�le (further desribedin Setion 5).It is not a goal of MathEdit itself to typeset formulas�the TEX andLATEX systems are the standard tools used for this purpose, mainly due tothe exellent quality of the douments they produe. MathEdit should thusbe able to export douments for further LATEX proessing and typesetting.However, our goal has not been to reate a LATEX front-end, as several suhappliations already exist. 5



4 Overview of MathEditIn addition to produing the tool itself, an important goal of the MathEditprojet has been to evaluate new software engineering tehniques in pratie.This setion provides a brief overview of the methods and tehnologies usedin the development of MathEdit; we then refer the interested reader to anumber of tehnial reports desribing these methods in more detail. To givethe reader an idea of MathEdit's apabilities, we also brie�y desribe themain features.4.1 DevelopmentThe Mathematial Derivation Editor was developed in the Gaudi SoftwareFatory [8℄, an experimental software fatory in an aademi setting thataims to be a testing ground for new software development methods in pra-tie. More than ten projets have been arried out at Gaudi sine its in-eption in 2001, suh as a basi outlining editor [9℄ and a personal �nanialplanner [7℄. Results from these projets have indiated that it is indeed pos-sible to produe software in a timely manner despite the limitations on someresoures in a university environment, inluding lak of funds and dediatedpersonnel.Programmers employed in Gaudi are omputer siene and omputer en-gineering students guided by graduate students who funtion as oahes.Some projets developed in Gaudi, suh as MathEdit, are also researh toolswhile others are built mainly to study the development proess. A professoror graduate student with a researh interest in the produt being developedtypially ats as the ustomer for a projet.The Gaudi software proess borrows many praties from Extreme Pro-gramming (XP) [13℄. XP is an agile software development proess that hasbeome inreasingly popular for high-risk, high-veloity projets. Its maingoal is to mitigate some of the most ommon risks in software development,inluding delayed shedules, requirements hanges, high defet rates and de-veloper turnover. This is ahieved through a number of praties, inludingbut not limited to:
• keeping an on-site ustomer,
• unit testing,
• pair programming,
• ontinuous integration,
• shared ode ownership. 6



These praties have been implemented in Gaudi and the results so far indi-ate an inreased reliability of the produed software.MathEdit is built in a layered fashion using the Stepwise Feature Intro-dution (SFI) design methodology [4℄. In SFI software is built in layers, suhthat eah layer implements a ertain feature or set of losely related features.Software is built in an inremental fashion so that the bottom layer pro-vides the most basi funtionality, and subsequent layers add more advanedfuntionality. The layers are implemented as lass hierarhies suh that anew layer inherits all funtionality of previous layers by sublassing existinglasses, and adds new features by overriding methods and/or de�ning newmethods. A detailed overview of how SFI was applied in MathEdit an befound in both [5℄ and the master's thesis [17℄.The main programming language used for implementing MathEdit isPython [28℄, an open-soure, interpreted, dynami, and objet-oriented lan-guage with a lean syntax. Python is also fully objet-oriented and has beenused to build very large software projets. While Python exels at ease ofuse and speed of development, it essentially ahieves these advantages bytrading o� exeution speed; Python programs are in general muh slowerthan programs written in ompiled languages. The major part of the soure,about 46 000 lines, is in Python, while some 2 000 lines are C++. The initialplan was to write all ode in Python; C++ was only used out of neessity ina small number of performane-ritial areas.4.2 The ProdutA sreenshot of the running appliation an be seen in Figure 1. MathEditruns on both Windows and Linux/X platforms and an be freely downloadedunder a GPL liense from http://mde.abo.fi .MathEdit implements the basi funtionality of a text editor. The userworks with douments, whih are visible and manipulated through on-sreenviews. A doument an be assoiated with several views, and several do-uments an be open at the same time. Eah view has a ursor whih anbe moved around independently, and text seletion is performed with eitherthe keyboard or mouse. An unlimited undo/redo mehanism makes it pos-sible to undo editing ommands in order to orret mistakes. The lipboardinteration ommands, ut, opy and paste, allows opying text data be-tween appliations. Uniode [1℄ is used for all its internal text proessing, sothat mathematial and other useful symbols (suh as Greek letters) an berepresented.The depth of a line in the outlining hierarhy is indiated by indentation.Collapsible items, i.e. lines with visible hildren, show a minus sign in thesidebar; liking on the sign ollapses the item, hiding the hildren. Con-versely, ollapsed lines show a plus sign whih an be liked to re-expand7



Figure 1: Sreenshotthe line and show the hildren.The user reates a mathematial expression by seleting a range of textand liking a tool button or seleting a menu alternative. The seleted textis then marked up in a speial typefae and is onsidered a mathematial ex-pression and beomes subjet to automati parsing. An aepted expressionis shown in blue olor, while an illegal expression is olored red.Derivations are reated by applying rules to mathematial expressions.Rules are typially Boolean expressions and an be provided by the mathe-matial pro�le (built-in rules) or entered by the user. To perform a redutionstep the user selets a (sub)expression and liks a button, whereby the ed-itor shows all appliable rules. For eah rule a preview of the redution isshown, and the user an selet whih rule to apply. When a rule is applied,a new derivation step (possibly ontaining subderivations) is reated and thetransformed expression is inserted into the doument.For persistent storage of douments, MathEdit uses an XML �le formatonforming to a ustom DTD. For presentation, douments an be exportedto HTML and LATEX formats. Both formats preserve the outlining strutureand HTML �les also implement the folding feature using dynami HTML.5 Mathematial LanguageTo make MathEdit a general tool for writing mathematis, an importantfeature of MathEdit is to allow the user to extend the mathematial lan-guage. The assumptions MathEdit makes about the mathematial language8



are needed to provide support for strutured derivations, see Setion 6. Theseassumptions are de�ned in the mathematial pro�le interfae (MPI): an APIde�ned as a Python module. The main data strutures de�ned in the MPIare Expressions and Rules. The main operations on these data struturesare parsing expressions, seleting subexpressions, applying rules, onstrutingderivations, and heking derivations.There are three ways to make extensions to the mathematial languageof MathEdit. The most powerful way is to provide an implementation of theMPI. This means that the data strutures and operations need to be imple-mented in Python. Therefore, these kind of extensions are for programmersonly.The seond way to extend the mathematial language is to use the Uni-versal Pro�le (UP): an MPI implementation that allows allows the user toadd new mathematial notations. UP itself is an example of an extensionwritten in the �rst way. However, when using UP to extend the mathemati-al language, one is just writing in MathEdit and one does not need to haveany programming experiene.The third way to extend the mathematial language of MathEdit is toombine the �rst two ways. This is useful if the extension writer wants toprovide �built-in� rules whih manipulate expressions in more e�ient waysthan the standard UP built-in rules. For example, there is an extension thatuses the HOL theorem heker to hek (parts of) strutured derivations,see [18℄. The mathematial language of this extension is de�ned in an ordi-nary MathEdit doument using UP. The ommuniation between MathEditand HOL is written as an MPI implementation in Python.5.1 The Universal Pro�leA good way to learn about UP is to open a new doument in MathEdit andselet the UP pro�le for this doument (use the File ⊲Use Pro�le ⊲UP menu).Before typing anything at all, list the grammar of the pro�le (menu Deriva-tion ⊲ Show Grammar). In the Pro�le-tab at the bottom of the MathEditwindow, the grammar and some additional information about everythingthat is prede�ned in UP will be displayed.UP de�nes, among others, the following types: Term, Bool, and Identi�er.The following subtype relations hold:
Bool ⊆ Term (1)

Identifier ⊆ Term (2)There are two atomi (indivisible) Bool expressions: ⊤(true) and ⊥(false).Instead of using these speial symbols, one an use _T_ and _F_, respetively.9



Although these expressions are de�ned internally by UP, they behave as ifthey were de�ned as follows.op TRUE: "⊤|_T_" → Bool .op FALSE: "⊥|_F_" → Bool .1Note that MathEdit does not make a distintion between onstants and op-erators; onstants are just nullary operators, i.e., argument-less operators.The identi�ers TRUE and FALSE are the names of the expressions. Follow-ing the name is a olon and, in this ase, a double-quoted regular expression.The regular expression should be written aording to the syntax of Python'sregular expressions. "⊤|_T_" is the double quoted regular expression thatmathes either one ⊤ symbol, or the three harater string _T_. Similarly,"⊥|_F_" is the double quoted regular expression that mathes either one ⊥symbol, or the three harater string _F_. The result type of these operatorsis Bool.There is one operator in UP that de�nes Identi�ers. It is de�ned asfollows:op Identifier: "[a-zA-Z℄[a-zA-Z0-9_'℄*" → Identifier .The regular expression mathes strings starting with a lower ase or upperase letter and ending in zero or more letters, digits, undersores, or single-quotes. Examples of suh identi�ers are a, B, a_B, a10, a', a�_b, and a_�10a.In addition to these operators, or onstants, UP de�nes an equality andan inequality operator for eah type. For instane, for the types Term, Bool,and Identifier it de�nes the following operators.op EQUAL_Term:Term "≡|=" Term → Bool [pre=0℄ .op NOT_EQUAL_Term:Term "6≡| 6=" Term → Bool [pre=0℄ .op EQUAL_Identifier:Identifier "≡|=" Identifier → Bool [pre=0℄ .op NOT_EQUAL_Identifier:Identifier " 6≡|6=" Identifier → Bool [pre=0℄ .op IDENTICAL_Bool:Bool "≡|=" Bool → Bool [pre=0℄ .op NOT_IDENTICAL_Bool:Bool "6≡| 6=" Bool → Bool [pre=0℄ .1The pre attribute of the operators is not shown here, beause both TRUE and FALSEhave the default value (10) for this attribute.10



The operators EQUAL_Term, EQUAL_Identifier, and IDENTICAL_Bool, areinterpreted as syntati equality.2 However, the user is free to de�ne morerules for any of these operators, thereby making the equality operators lessstrit.UP does not de�ne any rules for the negated operators NOT_EQUAL_Term,NOT_EQUAL_Identifier, and NOT_IDENTICAL_Bool. However, usually theuser will want to de�ne them as the negated form of the equality operators.This is possible by de�ning a rule of the formrule NOT_EQUAL_Term: (t 6≡ s) ≡¬(t ≡ s) .Here, s and t are variables of type Term. Note that to de�ne suh rules,Boolean negation, ¬, is required. This operator is not prede�ned in UP.6 MathEdit Support for Strutured DerivationsIn this setion we onsider the various syntatial elements that make upstrutured derivations. We de�ne a syntax for derivations; the goal being amahine-readable syntax maintaining the larity of the strutured alula-tional proof format. We then disuss how MathEdit uni�es terms and rules,and �nally we present the strategy used to hek derivations.6.1 Elements of Strutured Derivations6.1.1 Term linesEah term line onsists of a term, and a redex indiator (exept for thelast term, whih is not further redued). In ontrast to the notation in [3℄,MathEdit marks redexes with underlining rather than orner arets, and doesnot mark the result of the redution in the sequel term. Also, in MathEditit is possible to redue a subexpression without introduing a subderivation,whih results in dupliation of the unhanged parts of the term. This fea-ture is mainly intended to be used on small terms, sine dupliation anmake proof maintenane unwieldy; in suh ases introduing a subderivation(using, e.g., a fousing rule) is reommended.6.1.2 Comment linesThe relation symbol in the beginning of eah omment line desribes themathematial relation between the term immediately before and the term2The reason IDENTICAL_Bool has a di�erent kind of name than the EQUAL_Type op-erators is unlear. Probably this was needed at some point during development ofUP, but it seems unneessary for the urrent version. The same an be said for theNOT_IDENTICAL_Bool operator. 11



immediately after the omment line. It is followed by a short motivationenlosed in urly brakets. In the original notation the motivations are in-formal or semi-formal English sentenes; MathEdit, however, needs to storeinformation about the derivation step in mahine-readable format to be ableto proess derivations. We impose a simple syntax onsisting of three mainonstruts on the braketed text of a omment line: a rule name, a ruleappliation pattern and a substitution set.As an example onsider the appliation of the following rule:DEMORGAN-1: ¬P ∨ ¬Q ≡ ¬(P ∧ Q)in a simple derivation step, written in MathEdit notation3:
A ∧ (¬A ∨ ¬B)
≡ { DEMORGAN-1 from left with P := A, Q := B }
A ∧ ¬(A ∧ B)Rule name (DEMORGAN-1): The editor identi�es rules are by their names,so we store the name of the rule that was used as a simple text stringwithin the omment line.Appliation pattern (from left): The rule was applied from left-to-right.This means that the left-hand side of the rule ¬P ∨ ¬Q was uni�edwith the indiated subexpression, and the result of the appliation isthe right-hand side of the rule ¬(P ∧Q) with the substitution applied,

¬(A∧B). In another step the rule ould be used the other way around,with the right-hand side being uni�ed with the subexpression and theresult being the left-hand side. In both ases the relation symbol wouldbe the equivalene sign. Left-to-right and right-to-left are the two mostommon rule appliation patterns, but the editor allows any number ofpatterns. The mathematial pro�le provides for a given rule a list ofappliation patterns.Substitution set (with P := A, Q := B): This is a omma-separatedlist of expressions, eah desribing a substitution pair. Speial pro�lefuntions are provided to parse a substitution into a v 7→ e pair, where
v and e are the variable and expression ASTs respetively. If thereare ambiguous substitution pairs in the list, i.e., the same variable issubstituted with two di�erent expressions, the last pair in the list isused.A redution step an ontain any number of subderivations. Subderivationsin MathEdit look similar to those in strutured alulational proofs and take3In MathEdit derivations, omments do not line up with terms, but rather derivationshave a �ushed left margin. This is an implementation issue.12



advantage of the outlining funtionality of the editor. Subderivation areplaed under the omment line of the step to whih they belong and areindented one level deeper. This enables to user to hide all subderivations ofa step by ollapsing the omment line. MathEdit does not support labelingof subderivations, so the order of subderivations should math the order ofrule hypotheses.Potential assumptions are listed within angle brakets in the beginningof a subderivation and are formatted and parsed as rules. These are reatedwhen a onditional or fousing rule provides assumptions that an be used ina subderivation. Suh rules are orret only in the ontext of the hypothesisrequired by the rule, and the sope of appliability is thus restrited to thesubderivation and sub-subderivations down to any level.A simpli�ation step is a speial kind of redution step whih an be usedas an interfae to external, �blak-box� redution tools. The omment lineontains a set of rules, but without details about how to apply them. Theexternal tool is sent a term and the list of rules, and returns a new term whihis redution of the original expression. The rules are applied aording to thetool's own redution strategies. Sine suh strategies an be time-onsuming,a timeout parameter an be given in the omment line as a rough instrumentto ontrol the external tool.6.2 Data Representation of Strutured DerivationsThe BNF grammar for strutured derivations implemented in MathEdit isgiven in �gure 2. Parsing is done in two sequential stages, lexial and synta-ti analysis, by a routine based on the Python parser generator toolkit Spark[2℄. Three di�erent types of tokens are produed during the lexial anal-ysis pass: identi�ers (IDENTIFIER), integers (INTEGER), mathematialexpressions (MATHEXP, RULE, SUBEXP) and speial indentation �deep-ening� tokens ( ). The tokenisation is based on string-mathing regularexpressions and markup information (for mathematial expressions). Deep-ening tokens are inserted into the token stream at points where the indenta-tion level inreases; this information is used in the parsing pass to identifywhere a subderivation starts.Based on the token stream, the syntati analysis pass generates a parsetree storing all elements of a derivation in a format optimized for program-mati aess. Nodes in the tree have zero or more ordered hildren, and anbe of eight di�erent types:DERIVATION Represents a derivation, either top-level or subderivation. Theroot node is of this type. Its hildren are, in order, an optional AS-SUMPTIONLIST node, followed by at least one hild of type TERM.After this omes zero or more repetitions of the following sequene:13



〈derivation〉 ::= 〈steplist〉
| 〈assumptionlist〉 〈steplist〉
| "proof of" IDENTIFIER 〈steplist〉

〈derivationlist〉 ::= 〈derivation〉
| 〈derivation〉 〈derivationlist〉
| "•" 〈derivationlist〉

〈steplist〉 ::= 〈term〉
| 〈term〉 〈omment〉 〈steplist〉
| 〈term〉 〈omment〉 〈term〉
| 〈term〉 〈omment〉 〈derivationlist〉 〈steplist〉

〈assumption〉 ::= "〈" RULE "〉"
〈assumptionlist〉 ::= 〈assumption〉

| 〈assumption〉 〈assumptionlist〉
| "•" 〈assumptionlist〉

〈omment〉 ::= 〈appliation〉 | 〈simpli�ation〉
〈appliation〉 ::= IDENTIFIER { IDENTIFIER }

| IDENTIFIER { IDENTIFIER 〈patterndel〉 }
| IDENTIFIER { IDENTIFIER "with" 〈substlist〉 }
| IDENTIFIER { IDENTIFIER 〈patterndel〉 "with" 〈substlist〉 }

〈simpli�ation〉 ::= IDENTIFIER { "simplifiation using" 〈rulelist〉 "maxsteps" INTEGER }
〈patterndel〉 ::= "from left" | "from right" | "pattern" INTEGER
〈substlist〉 ::= MATHEXP | MATHEXP "," 〈substlist〉
〈term〉 ::= 〈termexp〉 | 〈termexp〉 〈termsubexp〉
〈termexp〉 ::= MATHEXP
〈termsubexp〉 ::= SUBEXP
〈rulelist〉 ::= IDENTIFIER | IDENTIFIER "," 〈rulelist〉Figure 2: BNF grammar for strutured derivations in MathEdit.
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an APPLICATION or SIMPLIFICATION node followed by zero or moreDERIVATION nodes, and a TERM node. This represents a proof (withpossible subderivations), reated using either a regular rule (APPLICATION),or the pro�le's simplify funtion (SIMPLIFICATION). Eah subderiva-tion is represented by a DERIVATION subtree.APPLICATION Represents the �omment� in a derivation step in whih a rulehas been applied to a subexpression of a term to generate a new step.Nodes of this type store the name of the used rule and the appliationpattern (as an integer index into the list returned by the pro�le's getrule patterns method. Its only hild is a single SUBSTLIST node.SIMPLIFICATION A derivation step in whih the pro�le's simplify has beenused. Stores the relation symbol and the n argument sent to the fun-tion. Its only hild is a single RULELIST node.TERM A term in the derivation. Nodes of this type store two ASTs, for boththe expression and subexpression on whih a rule has been applied. Itdoes not have any hild nodes.SUBSTLIST Stores the substitution set as a list of substitution ASTs.RULELIST Stores a list of rule names used in a simpli�ation step.ASSUMPTION Represents an assumption (loal rule), and stores its ruleAST.ASSUMPTIONLIST An ordered set of ASSUMPTION nodes.6.3 Rule AppliationThe editor provides a feature that allows the user to selet a subexpressionand lik a button to get an automatially generated menu of appliable rules.The user an then selet a desired rule appliation and apply it, therebygenerating a new derivation step. Rules an be applied in both forward(starting from the known) and bakward (starting from the goal) diretions.If the rule in use requires subderivations, the editor sets up an outline foreah subderivation.Displaying appliable rules requires gathering all de�ned rules and ameans of testing if a rule is appliable. A rule is alled available at a spei�derivation step in a doument if the editor knows about the rule (i.e., it hasparsed the de�nition) at that point, and it is alled appliable if it is bothavailable and uni�able with the seleted subexpression. Beause rules areparsed into expression AST:s by the mathematial pro�le, a speial methodget rule patterns in the MPI is used to onvert a rule AST into a list15



of patterns. A pattern represents an expliit rule appliation and onsistof a soure expression, a relation symbol, a target expression and a list ofhypotheses.An important question is whether a rule should be available for use inderivations in the whole doument or only in derivations after the line onwhih it was delared. It ould be argued that sine rules must be delaredbefore they are used the sope of availability for a rule should be from theline of de�nition to the end of the doument. A one-pass parsing would thenbe possible, and reading a doument from top to bottom would ensure thatno unknown rule is enountered. Nevertheless, in mathematial papers it isommon to list rules and lemmas at the end or in a separate appendix. It wasthus deided to not generally restrit the sope of rules, so a rule is alwaysavailable everywhere in the doument in whih it was delared. However, oneexeption to the priniple of universal rule sope are the speial loal rulesbased on assumptions in subderivations, as the availability of these rules isrestrited to the subderivation in whih they are delared.MathEdit uses uni�ation of the rule soure expression with the expres-sion being transformed to determine appliability. Uni�ation identi�es twosymboli expressions by binding the ontents of variables to subexpressions.As an example, the expressions s = x + y and t = a + b× c beome identialif the substitution
σ = {x 7→ a, y 7→ b × c}is applied to s, i.e., x is replaed by a and y is replaed by b × c. Thesubstitution set σ is a uni�er of the expressions. Appliation of a uni�er toa term is written using post�x notation, i.e. sσ = t.The MathEdit pro�le typially determines the most general �rst-orderuni�er. A uni�ation funtion in the pro�le is alled with the soure sideexpression of a rule appliation pattern and the expression to be derived asparameters, and produes a result of either nil, meaning that uni�ation wasnot possible, or a (possibly empty) substitution set. In the ase of a non-nilresult the rule pattern is deemed appliable, and the rule itself along withthe target side (with substitutions applied) and the individual substitutionsare displayed in the list of appliable rules. If several patterns of the samerule are appliable (rules may be applied in more than one way, typiallyleft-to-right or right-to-left), all possible appliations are displayed by theeditor.6.4 Derivation ChekingBy derivation heking we mean the proedure in whih the program heksthe well-formedness of a derivation. A derivation is well-formed if it adheres16



to the syntati and semanti requirements on derivations and all rule ap-pliations are valid with the stated substitutions. This heking algorithmexeutes ompletely outside the mathematial pro�le and uses only the pars-ing, unparsing and uni�ation interfae of the pro�le, and thus has no aessto intrinsi information about the mathematis in use. Derivation hekingis not a formal veri�ation of the orretness of the proof. The derivationheker an be likened with a ompiler, whih heks the syntax and seman-tis of soure ode but does not verify that the ompiled program implementsits spei�ations.Implementing a proof system is not the goal of MathEdit. Existing dedi-ated theorem proving assistants with a long-standing reputation of reliabil-ity, suh as PVS and the HOL system, are the most suitable tools for formalproving. Integration with suh tools would be useful to provide an indepen-dent assertion of the orretness of MathEdit derivations, but that is outsidethe sope of this paper. Experiments have been done with HOL integration,but no omplete implementation exists as of yet.The derivation heking algorithm as implemented in MathEdit is shownin Algorithm 1. It proesses a sequene of derivations; a sequene is either theset of top-level derivations in the doument being heked, or the subderiva-tions of some step. The latter ase ours when the algorithm �nds a stepwith subderivations and is applied reursively. If any one of the assertionsfail, the algorithm terminates.In MathEdit it is also possible to assoiate a proof with a spei� rule.A trivial kind of heking is performed to detet yles in suh delarations;existene of a yle is an error, sine a proof of a rule must not rely onthe orretness of the rule being proved. However, it should be noted thatMathEdit does not implement a full proof veri�ation system. The relationbetween terms is only heked on a per-step basis, and there is no attemptto verify that the omposition of relations mathes the relation of the provedrule or hypothesis.7 Working with MathEditIn this setion we �rst give a general outline the MathEdit work�ow, andfollow up with examples whih show how the powerful extensible syntax ofthe UP and Math Lib pro�les makes it possible to de�ne new mathematiallanguages on the �y.7.1 Work�owProduing a MathEdit doument is an iterative proess in whih the useronstantly works within the same framework in a modi�ation-feedbak loop.17



Algorithm 1 Derivation hekingLoop for eah derivation der in the sequene:Parse der. This also requires parsing all subderivations and mathematial expres-sions in der. If a syntax error ours, report it and terminateLoop for eah step step in der:Let tfrom and tto be the terms before and after the transformation re-spetively. Let sfrom be the denoted subexpression of tfromIf step is of type APPLICATION:
step then ontains the 4-tuple 〈α, r, i, σ〉 where α is the relation sym-bol, r is the rule name, i is the rule appliation pattern index and σis the substitution setChek that a rule named r existsGet the i:th rule appliation pattern p of the rule r on sfrom. p =
〈H, rfrom, α′, rto〉. H = [〈h1, A1〉, 〈h2, A2〉, ...] is a list of hypotheses.Let Ak be the set of assumptions available for proving hkFor eah hypothesis hk hek that the mathing subderivation dk usesno other assumptions than those delared in AkApply this algorithm reursively to the list of subderivationsChek that α = α′Unify rfrom with sfrom and let σ′ be the resulting substitution set.Let ω be the set of free variables, i.e. unbound variables in rto. Chekthat {x 7→ e|x 7→ e ∈ σ ∧ x /∈ ω} = σ′Chek that tto = tfrom[sfrom 7→ rtoσ], i.e. the resulting expressionshould be equal to the initial expression where the subexpression
sfrom has been replaed with the result of applying the rule r to
sfromElse if step is of type SIMPLIFICATION:
step then ontains 〈α, m, R〉 where α is a relation symbol, m is themaximum number of steps allowed and R = [r1, ..., rn] is the sequeneof rules used in the simpli�ationChek that rules r1, ..., rn existChek that a simpli�ation an be obtained by alling the pro�le'ssimpli�ation funtion on sfrom with arguments m and R. Let theresult be 〈α′, s′〉Chek that α = α′Chek that tto = tfrom[sfrom 7→ s′]
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Figure 3: Basi MathEdit work�owFigure 3 desribes the basi stages of this proess. The fous is on themathematial features of the editor and not on general text editing, so stageslike formatting, saving, et. are not onsidered.The user starts by reating a new doument and hoosing a mathematialpro�le (1). Currently the hoie is between UP and Math Lib, and onsid-ering that Math Lib is an extension of UP with additional features, usersare reommended to use Math Lib for most purposes. However, a user whowants to de�ne a mathematial language from the ground up might be bettero� with the bare-bones UP to avoid lashes with existing de�nitions in MathLib.The user may want to de�ne a mathematial language (2) and/or a set ofrules (3). The amount of work done in these steps varies depending on theuser's objetive: and advaned user building up a theory from the ground orreating a prelude for others to use might spend a lot of time in these stages,while a user fousing on doing derivations within a ready-made environment,suh as Math Lib, might not.When there is at least one rule available (built-in or user-de�ned), deriva-tions an be performed (4). The user enters a formula and marks it asa mathematial expression, after whih it beomes subjet to parsing andtype-heking. If the expression is valid, the user an selet any subexpres-sion and ask the editor to show a list of appliable rules (menu: Derivation ⊲Derive). Applying a rule starts a new derivation and adds a �rst step. Stepsan also be added manually, although this requires some familiarity with thederivation syntax in �gure 2 from the user.After a number of steps, the user might onlude that the derivationis �nished and proeed to the orretness heking stage (5). Either allderivations in the doument (menu: Derivation ⊲Chek All Derivations) ora spei� derivation (menu: Derivation ⊲Chek Current Derivation) an beheked; the program then applies the algorithm in �gure 1. Erroneouslines in a heked derivation are marked and errors details are reported in a19



window, allowing the user to view the list of errors and go to any one of theo�ending lines.When performing a derivation the need for a new rule may arise. The usermight also want to hange an existing rule, e.g., generalizing it. Similarly,the mathematial language de�ned might not be expressive enough to pro-eed and needs to be hanged, e.g., an operator ould be missing. However,hanges in rules might invalidate derivations, and hanges in mathematiallanguage might invalidate expressions, rules and derivations. The earlier thelevel at whih the hange ours, the more onsequenes it will have: thisis illustrated in the �gure by an inreasing amount exlamation marks onthe paths of the last transition. At the extreme, swithing to another mathe-matial pro�le with a di�erent syntax invalidates every de�nition, expression,rule and derivation in the doument.7.2 Using UPIn this setion we explain how UP an be used to reate you own mathemat-ial language. We will do this by de�ning a theory for parallel proesses inthe style of ACP [14, 12, 19℄. In addition to introduing types and operatorsfor parallel proesses, we de�ne the axioms for the proess theory and showhow these axioms an be used as rules to reate strutured derivations.7.2.1 ACPWe will distinguish three types: Ation, Atom, and Proess. The ations formthe basi building bloks and are usually de�ned with a partiular applia-tion in mind. The atoms inlude the ations and, in addition, a prede�neddeadlok onstant δsymbolizing ination (the absene of an ation). Theproesses inlude all atoms and, in addition, the ompound proesses buildup from atoms and proess operators. The three types are de�ned as follows.op AtionAtom: Ation → Atom .op AtomProess: Atom → Proess .op ProessTerm: Proess → Term .These are three invisible (no syntax) operators that de�ne the following sub-type relations.
Action ⊆ Atom

Atom ⊆ Process

Process ⊆ Term20



As mentioned above, ations are usually de�ned with a partiular appliationin mind. Therefore, we postpone the de�nition of onrete ations for now.The deadlok onstant is de�ned:op Deadlok: "δ" →Atom .The theory has two operators for sequential proesses and three for parallelproesses. The sequential operator are de�ned as follows.op Alt: (Proess) "\+" Proess → Proess [pre=100℄ .op Seq: (Proess) "·" Proess → Proess [pre=101℄ .The Alt operator puts two proesses in alternative omposition. The syntaxof the operator is de�ned by the regular expression "\+" whih mathedthe single harater +. The arguments of this operator should be of typeProess. To redue the number of required parentheses in proesses, wehave enlosed the �rst argument type in parentheses. This means that UPwill add parentheses to the left argument whenever needed to get a orretparse. Consequently, when we write δ+δ+δ, UP will read this as (δ+δ)+δ.The pre-attribute is set to 100.The Seq operator's de�nition is similar to that of Alt. It's syntax is a ·(entered dot), and sine its pre-attribute is 101, it binds stronger than theAlt operator. Therefore, an expression δ · δ + δ is parsed as (δ · δ) + δ.Before we ontinue with the de�nitions of operators to onstrut paral-lel proesses, we �rst give the axioms for the sequential proess operatorsintrodued so far. To de�ne these rules, we need three variables of typeProess:var x,y,z : Proess .Now, x, y, and z stand for arbitrary proesses. In addition to using identi�ersto de�ne variables, it is possible to use double-quoted regular expressions. Forinstane, the following line de�nes an in�nite set of variable onsisting of onelower ase letter followed by zero or more primes:var "[a-z℄'*" : Proess .The axioms of the sequential proess operators are de�ned in the followingrules. rule Alt_Delta: x+δ= x .rule Delta_Seq: δ·x = δ .rule Comm_Alt: x+y = y+x .rule Asso_Alt: (x+y)+z = x+(y+z) .rule Asso_Seq: (x·y)·z = x·(y·z) .rule Alt_Seq_RDistr: x·z + y·z = (x+y)·z .21



Figure 4: Operators and rules for sequential proesses.The Alt_Delta rule says that a hoie, indiated by the + operator, betweendeadlok and another proess is not really having a hoie, beause the dead-lok will never be hosen. In other words, δ is a neutral-element for the + op-erator. The next rule, Delta_Seq, says that nothing follows deadlok, thatis, δ is a left-zero-element for the · operator . Comm_Alt and Asso_Alt de-�ne ommutativity and assoiativity of the + operator and Asso_Seq de�nesassoiativity of the · operator. Finally, Alt_Seq_RDistr de�nes the (right)distributivity of · over +. Figure 4 shows the text anvas of MathEdit withthe operators and rules desribed so far.Next, we introdue the parallel omposition operator, whih is alledMerge.op Merge: (Proess) "‖" Proess →Proess [pre=92℄.The Merge-operator runs two proesses in parallel allowing them to operateautonomously or interatively. This means that the ations of the proessesare interleaved (merged) arbitrarily or they are synhronized into ommuni-ation ations. The merge operator is de�ned by the following rule.22



rule Merge_Def: x‖y = (xy) + (yx) + (x|y) .Intuitively, the parallel omposition of x and y (denoted by x‖ y) an performan ation from x (denoted by xy), an ation from y (denoted by yx),or a ommuniation between x and y (denoted by x|y). The  and the |operators will be de�ned shortly. In addition to this rule, we de�ne two rulesthat express the ommutativity and assoiativity of the Merge-operator.rule Comm_Merge: x‖y = y‖x .rule Asso_Merge: (x‖y)‖y = x‖(y‖y) .The de�nitions of the CommMerge and LeftMerge-operators are as follows.op CommMerge: (Proess) "\|" Proess → Proess [pre=90℄.op LeftMerge: (Proess) "" Proess →Proess [pre=92℄.In ACP, ommuniation is de�ned on the level of ations and ommuniationbetween proesses is de�ned in terms of the ations these proesses are builtup from. Therefore, to give the rules for the CommMerge operator, we needvariables ranging over ations. However, it turns out that the speial atom δbehaves almost as an ation with respet to the CommMerge operator. To keepthe number of rules small, we therefore de�ne variables of type Atom.var "[ab℄'*" →Atom .This de�nes in�nitely many variables of type Atom (= Ation ∪ {δ}) . Thevariables start with an a, b, or , and end with zero or more ' (prime)symbols. The rules for the CommMerge are de�nes as follows.rule CommMerge_Delta: x|δ = δ.rule Delta_CommMerge: δ|x = δ.rule AtomPrefix_CommMerge_AtomPrefix: a·x | b·y = (a|b)·(x‖y) .rule AtomPrefix_CommMerge_Atom: a·x | b = (a|b)·x .rule Atom_CommMerge_AtomPrefix: a | b·y = (a|b)·y .rule Comm_CommMerge: x|y = y|x .rule Asso_CommMerge: (x|y)|z = x|(y|z) .rule Alt_CommMerge: (x+y)|z = (x|y) + (y|z) .The LeftMerge-operator is an auxiliary operator needed to give a �nite ax-iomatisation of the Merge-operator. It behaves essentially equal to the Merge-operator, exept that its �rst ation has to ome from its left argument. Therules for the LeftMerge-operator are as follows.23



rule Atom_LeftMerge: ax = a·x .rule AtomPrefix_LeftMerge: a·xy = a·(x‖y) .rule Alt_LeftMerge: (x+y)z = (xz) + (yz) .A powerful proof tehnique of ACP is basi term indution. Basi terms arede�ned indutively as follows.1. δ is a basi term;2. all a ∈ Ation are basi terms;3. if s is a basi term and a ∈ Ation, then a · s is a basi term;4. if s and t are basi terms and neither of them is δ, then s + t is a basiterm.It an be proved that every Proess built up from the proess operatorsintrodued so far is equal to a basi term. Therefore, by proving propertiesabout basi terms, we an establish properties about all proesses. As basiterms are de�ned indutively, we an use a strutural indution tehniqueto prove properties about basi terms. This tehnique is alled basi termindution:4Basi term indution Let X and Y be two proesses and let x be a sub-proess of X and possibly of Y . If the following properties hold, then
X = Y .1. X[δ/x] = Y [δ/x];2. X[a/x] = Y [a/x] for a an Ation ;3. X[a · s/x] = Y [a · s/x] for a an Ation and s a basi term suh that
X[s/x] = Y [s/x];4. X[(s+t)/x] = Y [(s+t)/x] for s and t a basi terms suh that X[s/x] =
Y [s/x] and X[t/x] = Y [t/x].If we apply this tehnique to prove X = Y , we say we prove X = Y by(basi term) indution on x. Note that it is not stritly needed for x to be asub-proess of X (or Y ); if it is not, proving X = Y by basi term indutionon x boils down to proving X = Y diretly.It is possible to de�ne (strutural) indution in UP, although we do notethat the urrent implementation of UP does not provide all features we would4In general, basi term indution an be used to prove any property P (X1, . . . , Xn) ofproesses X1, . . . , Xn. Here, the property is the binary relation P (X, Y )=̂(X = Y ).24



like it to have as far as indution is onerned. Anyway, the urrent imple-mentation omes a long way and it is worthwhile to illustrate this. Thefollowing rule is a rather diret translation of the basi term indution de�-nition given above.rule BTI: [X[x := δ℄=Y[x := δ℄,X[x := a℄ = Y[x := a℄,[ X[x := s℄ = Y[x := s ℄
⊢ X[x := a·s℄ = Y[x := a·s℄,[ X[x := s℄ = Y[x := s℄,X[x := t℄ = Y[x := t℄ ℄
⊢ X[x := s+t℄ = Y[x := s+t℄,℄⊢X = Y .Although this rule looks �ne, UP annot guarantee that we will use it or-retly. The problem is that when we instantiate this rule, we are not allowedto assume anything about a, s, and t (exept what is given by the basi termindution rule). For instane, if we apply this rule in a derivation in whihany of these three symbols already ours, we run the risk of using propertiesabout those ourrenes and UP will not warn us about it. Suh situationsan easily arise. For instane, when we try to prove X = Y we might �rstdo basi term indution on a x and then a nested basi term indution ona y. In the nested step, we have to make sure a is not equal to the a of theouter step.We will now use UP to prove that x ‖ δ = x · δ by basi term indutionon x. This prove has been done ompletely in MathEdit; it is a derivationof 100 lines. Consequently, MathEdit is able to hek the validity of the proof.Below, we have split up the proof in several parts and omment eah partseparately. The �rst part is the whole proof without the subproofs resultingfrom appliation of the BTI rule. The start and end of the subproofs aregiven, but the details are left out, exatly as MathEdit does when you applya rule with proof obligation (side onditions).x‖δ= {Merge_Def from left with x:=x, y:=δ}(xδ)+(δx)+(x|δ)= {BTI from left with X:=xδ, Y:=x·δ, a:=a, s:=s, t:=t, x:=x}

• (xδ)[x:=δ℄= { ... }(x·δ)[x:=δ℄
• (xδ)[x:=a℄= { ... }(x·δ)[x:=a℄
• 〈assumption2_2_1:(xδ)[x:=s℄ = (x·δ)[x:=s℄〉25



(xδ)[x:=a·s℄= { ... }(x·δ)[x:=a·s℄
• 〈assumption2_3_1:(xδ)[x:=s℄ = (x·δ)[x:=s℄〉

〈assumption2_3_2:(xδ)[x:=t℄ = (x·δ)[x:=t℄〉(xδ)[x:=s+t℄= { ... }(x·δ)[x:=s+t℄
· · · x·δ+(δx)+(x|δ)= { Atom_LeftMerge from left with a:=δ, x:=x }x·δ + δ·x + (x|δ)= { CommMerge_Delta from left with x:=x }x·δ + δ·x + δ= { Alt_Delta from left with x:=x·δ + δ·x }x·δ + δ·x= { Delta_Seq from left with x:=x }x·δ + δ= { Alt_Delta from left with x:=x·δ }x·δWe see from this part that MathEdit reates the expeted subproofs: �rstwe have to prove the property for x=δ, then for x=a, then for x=a·s, and�nally for x=s+t. Furthermore, we get some assumptions for s and t. Theseassumptions an be used as normal rules in their orresponding subproofs,as will be shown later. The steps after the BTI step are rather trivial. Infat, these steps an be done as one simpli�ation step.7.2.2 ACP exampleAs an example, we will de�ne the behavior of a web server as an expressionof the type Proess. The ations for the web server are RevReq, GetPage,SendPage, and SendErrorPage. A rather abstrat view of a web server anbe de�ned as follows.

Server = RecvReq · (Server ‖ HandleRequest)

HandleRequest = GetPage · (SendPage + SendErrorPage)The Server waits for a request for a ertain web page (RevReq). When ithas reeived a request, it starts up a new Server, to deal with following re-quests, and in parallel to that it starts handling the request (HandleRequest).Handling of a request means retrieving the requested web page (GetPage)and, when it exists, sending it bak (SendPage), or, when it does not exist,sending an error page bak (SendErrorPage).To de�ne the Server proess in MathEdit, we �rst de�ne the ations.26



Figure 5: A simple web server.op "RevReq" → Ation .op "GetPage" →Ation .op "SendPage" →Ation .op "SendErrorPage" → Ation .Note that these operator de�nitions are without a name. As the syntax ofthe operators are perfetly good names, it seems unneessary to add namesexpliitly. Behind the senes, UP will reate internal names for these oper-ators. Suh internal names have the form �op_N�, where N is a sequenenumber.Next, we de�ne the ompound proesses Server and HandleRequest. Bothonsist of an operator de�nition and a de�ning rule.op "Server" → Proess .op "HandleRequest"→ Proess .rule ServerDef:Server = RevRequest·(Server ‖ HandleRequest) .rule HandleRequestDef:HandleRequest = GetPage·(SendPage + SendErrorPage) .Note that rules always need a name, even if they are as simple as the two rulesde�ning Server and HandleRequest. The reason for this is that MathEditneeds to refer to these rules while reating or heking derivations. Fig-ure 5 shows the operators and rules of the web server as they appear on theMathEdit text anvas. 27



7.3 Using Math LibMath Lib has built-in support for expressions inluding Boolean onnetives,quanti�ers, and arithmeti expressions. However, no onstruts for reason-ing expliitly about sets is provided, so we desribe how this addition anbe made to the Math Lib pro�le with appropriate delarations ontained inthe same doument as the proof itself. The following example builds a sim-ple mathematial language to desribe sets, and introdues de�nitions of setomprehension and the operators union and intersetion based on set mem-bership. Set omprehension allows us to reason about a Boolean variablequanti�ed over the elements of a set; sine membership is Boolean-valued,we an use the existing Math Lib support for Booleans.We start by introduing two new types, Elem and Set, whih are bothsubtypes of the built-in type Term. This means that they an be used astop-level terms in expressions. We might also wish to make Set a subtype of
Elem, so that it is possible to have sets of sets. This is ahieved by enteringthe following lines in an empty doument using the Math Lib pro�le andformatting eah line as a de�nition:op ElemTerm: Elem→Term .op SetTerm: Set→Term .op SetElem: Set→Elem .The op keyword is also used to de�ne operators. We now de�ne the operatorsfor set membership, union, intersetion and omprehension:op IN: Elem "∈" Set→Bool [pre=50℄ .op UNION: Set "∪" Set→Set [pre=100,ommutative℄ .op INTERSECTON: Set "∧" Set→Set [pre=100,ommutative℄ .op SETCOMP: "{" Elem "\|" Bool "}" → Set .The strings within quotation marks are regular expressions used by MathLib's sanner/parser to reognize operations. Binary operators an be as-soiated with preedene and ommutativity properties, whih enable us toomit super�uous parentheses in expressions. Also note the use of the prede-�ned Bool type.To be able to de�ne rules and expressions with variables, we de�ne anumber of unprimed and primed set, element and Boolean variables:var "S['℄*": Set .var A,B,C: Set .var e,v: Elem .var "b['℄*": Bool . 28



We now de�ne rules for rewriting union/intersetion using Boolean disjun-tion/onjuntion and for introduing set omprehension. Rules are delaredusing a di�erent formatting than de�nitions, and the text is olored blue inthe editor:rule UnionDef: e∈S∪S' ≡ (e∈S)∨(e∈S') .rule IntersetionDef: e∈S∩S' ≡ (e∈S)∧(e∈S') .rule SetComprehension: S = {e|e∈S} .Math Lib does not provide a built-in rule for distributing disjuntion overonjuntion, so we need to de�ne this. To be able to transform only theprediate of a set omprehension onstrut in a subderivation, we also de�nea fousing rule:rule DistrDisjOverConj: b∨(b'∧b�) ≡ (b∨b')∧(b∨b�) .rule FousOnPrediate: {v|b} = {v|b'} if b≡b' .The preondition lause b ≡ b′ in the seond rule triggers the reation of asubderivation when the rule is applied. When applied from left to right, b′ isa free variable whih an be assigned any expression.With these de�nitions, it is now possible to perform the following deriva-tion:
A ∪ (B ∩ C)= { SetComprehension from left with S := A ∪ (B ∩ C), e := v }
{v|v ∈ A ∪ (B ∩ C)}= { FousOnPrediate from left with b′ := v ∈ (A ∪ B) ∩ (A ∪ C),
b := v ∈ A ∪ (B ∩ C), v := v }

• v ∈ A ∪ (B ∩ C)

≡ { UnionDef from left with S′ := B ∩ C, S := A, e := v }
(v ∈ A) ∨ (v ∈ B ∩ C)

≡ { IntersetionDef from left with S′ := C, S := B, e := v }
(v ∈ A) ∨ (v ∈ B) ∧ (v ∈ C)

≡ { DistrDisjOverConj from left with b′′ := v ∈ C, b′ := v ∈ B,
b := v ∈ A }
((v ∈ A) ∨ (v ∈ B)) ∧ ((v ∈ A) ∨ (v ∈ C))

≡ { UnionDef from right with S′ := B, S := A, e := v }
(v ∈ A ∪ B) ∧ ((v ∈ A) ∨ (v ∈ C))

≡ { UnionDef from right with S′ := C, S := A, e := v }
(v ∈ A ∪ B) ∧ (v ∈ A ∪ C)

≡ { IntersetionDef from right with S′ := A ∪ C, S := A ∪ B,
e := v }
v ∈ (A ∪ B) ∩ (A ∪ C) 29



· · · {v|v ∈ (A ∪ B) ∩ (A ∪ C)}= { SetComprehension from right with S := (A∪B)∩ (A∪C), e := v}
(A ∪ B) ∩ (A ∪ C)Eah step in the derivation an be typed in manually or reated by usingMathEdit's �Show appliable rules� button to list the appliable rules in eahstep and seleting the appropriate rule. A sreenshot showing the widgetlisting appliable rules for the FocusOnPredicate step an be seen in �gure6. Top-level nodes in the tree represent rules while the hildren are possibleappliations. An appliation an be further expanded to reveal substitutions.The question marks in the substitution of variable b′ indiate that in orderto apply the fousing rule the user must supply a value for the free variable

b′, whih in this ase is v ∈ (A ∪ B) ∩ (A ∪ C).

Figure 6: MathEdit's appliable rules list
8 Conlusion and Future WorkThis paper has presented MathEdit, a tool for writing mathematial deriva-tions in the strutured alulational proof format. Sine this format is dis-tinguished from ordinary alulational proofs by its ability to hierarhiallydeompose proofs into smaller ones, it makes an outlining editor a natu-ral hoie of editing environment. By de�ning a syntax for derivations theeditor provides a framework for representing and manipulating derivations,and by providing an extensible pro�le interfae, it enables users to reasonabout many di�erent kinds of mathematis. Although the funtionality of-fered by MathEdit is limited ompared to that of more speialized programs,30



the freedom and extensibility o�ered is valuable as a basis for future devel-opment and researh; sine there are no built-in assumptions about a spei�mathematial theory, new ideas an be tested in the editor rather freely.The experiene gathered from developing and using MathEdit has re-sulted in a number of important insights. There are still some improvementsneeded to make it useful for people working with mathematis in pratie.One of high importane is notation; urrently MathEdit is ompletely line-based and does not allow nie-looking multi-tiered typesetting for onstrutssuh as rationals, square roots and matries. It would ertainly be bene-�ial for the usability and aesthetis of MathEdit if suh onstruts ouldbe displayed and edited, and preferably enoded in a standard format suhas MathML [26℄. However, speifying and implementing an intuitive userinterfae for more advaned mathematial onstruts is no small feat. Analternative solution, whih we are urrently pursuing, is to take an existingmathematis editor with an extensible doument struture, suh as TEXmas,and implement an integration layer to either our own parser/proof engine orto a more powerful theorem prover.Currently the user is required to invent the proofs for theorems; the ed-itor only assists in the task of writing them. A future version of MathEditould make use of an advaned theorem proving assistant to reate proofsas well as perform the orretness heking. Progress has been made in thisarea, as integration layers for HOL [18℄ and Simplify [10℄ have been partiallyimplemented.Proof browsing in hypertext media is an interesting tehnique for proofpresentation that is worth developing beyond the limited export �lters thatMathEdit urrently implements. The user should be able to publish a workbook, onsisting of a number of MathEdit douments, in both hypertextand printed formats. A template system ould be devised to ensure thatworkbooks an onform to di�erent styles.Referenes[1℄ The Uniode Standard, Version 4.0. Addison-Wesley Longman Publish-ing Co., In., 2003.[2℄ J. Ayok. Compiling little languages in Python, 1998.[3℄ Ralph Bak, Jim Grundy, and Joakim von Wright. Strutured alula-tional proof. Formal Aspets of Computing, 9(5�6):469�483, 1997.[4℄ Ralph-Johan Bak. Software onstrution by stepwise feature introdu-tion. In ZB '02: Proeedings of the 2nd International Conferene of Band Z Users on Formal Spei�ation and Development in Z and B, pages162�183. Springer-Verlag, 2002. 31
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