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Abstract

The structured calculational proof format emphasizes structure and readabil-
ity by presenting derivations as outlined sequences of term transformations.
The Mathematical Derivation Editor (MathEdit) is an effort to develop tool
support for this format. It is a text editor with built-in support for an ex-
tensible mathematical syntax and structured derivation notations. In this
paper we overview and discuss the features of MathEdit and their implemen-
tation: how the editor parses and understands mathematical expressions,
determines applicable rules, and how structured derivations are represented.
We demonstrate use of MathEdit through example derivations from process
algebra.



1 Introduction

A well-defined hierarchical structure for mathematical proofs is important
both for the author and the readers of a proof |24]. Structure forces the
author to think his ideas through thoroughly before committing them to
paper, and provides the reader with a description of the proof that is easy
to understand and that can be examined at different levels of detail. The
structured calculational proof |3| format is a proof presentation format that
combines the readability of calculational proofs with the structure of natural
deduction.

However, creating and maintaining a structured layout of complex deriva-
tions can be cumbersome without dedicated tool support. This raises the
need for an editing environment that aids the author by imposing a well-
defined structure on documents. But such a tool should not be overly re-
strictive either; authors of mathematical documents frequently need to mix
formal notation with blocks of prose-like text.

This paper presents MathEdit, a tool developed in an academic software
factory. MathEdit supports editing and correctness checking of structured
calculational proofs in a familiar text-editor like environment. The user can
write a derivation by manually typing in each step, or by applying rules in
a point-and-click manner. With the click of a button, all derivations can
be checked for well-formedness. The mathematical syntax of MathEdit is
extensible and there are no built-in restrictions on the domains in which
MathEdit can be used.

Aside from the simple equation editors integrated into many word pro-
cessors, there exists a number of high-quality tools for editing mathematics-
intensive documents. They encompass a wide range of applications; some
focusing mainly on structure and presentation |27, 11|, other are full-blown
computer algebra systems [29, 16]. Proof management tools on the other
hand often target a specific domain; examples of tools geared towards the
formal verification of programs are |6, 23, 15]. The goal of MathEdit is to
provide a platform supporting general non-domain-specific mathematics com-
bined with the structured calculational proof paradigm. While this makes
MathEdit very general and applicable to a wide range of problems, it also
inevitably makes it much less “polished” than specialized tools; we will touch
on this aspect further on in the paper.

The remainder of this paper is organized as follows: Section 2 provides
an introductory overview of the structured calculational proof format. In
Section 3 we discuss the features needed from in an editor for such proofs.
Section 4 provides an overview of our editor, while Sections 5 and 6 describe in
more detail how the editor parses and understands mathematical expressions,
determines applicable rules, and how structured derivations are represented.
Section 7 provides concrete examples of using MathEdit. We end with a



short summary and some discussion on future work.

2 Structured Calculational Proofs

The structured calculational proof format for writing derivations is based on
the concepts of natural deduction [20] and calculational proof [21], combining
and extending them to provide a well-structured, outlined layout for proofs
that is visually pleasing and allows hierarchical decomposition. The following
example illustrates the structured calculational proof format:

ANLBA AL
{ use the first conjunct to simplify the second }
o(A)
BANA
{ use the assumption to replace A with true }
B A true
= { propositional calculus }
B
ANTBT
{ commutativity of A }
BAA

A derivation consists of a number consecutive interleaved term and comment
lines. The first term (AA B A A) is transformed in a series of reduction steps,
each step being based on a rule indicated in the comment line. In cases where
a step transforms a subexpression, corner carets indicate the redex before (L
and ) as well as after (" and 7) the transformation. The symbol in the
beginning of a comment line describes the relation between two consecutive
terms (here =, since the goal of this proof is to show that equivalence holds
between the first and the last terms.) However, proofs are not limited to
symmetric relations any transitive relation will do and it is also possible
to use different relations in the same derivation, but in that case one need to
consider carefully their combined relation.

The example also shows the use of a hierarchical outline and a subderiva-
tion with conteztual information. In proving B A A = B a subproof with
the assumption A (enclosed in angle brackets) is set up as an indented sub-
derivation under the first comment line. This focusing on a subexpression is
useful for avoiding repetition of (potentially long and complex) unchanged
parts of an expression while still maintaining correctness, and its use has
been formalized in window inference rules [25].

If a subderivation is used in a step to establish a non-symmetric rela-
tion, such as implication, the monotonicity properties of the expression being



transformed must be taken into account. For example, conjunction is mono-
tonic in either of its arguments with respect to implication, which allows us
to write the following derivation to prove (AA P) = (AN Q):

ANLP,
= { since A is monotonic in its right argument }
oP
= { hint why P = Q }
Q
ANQ

There are other connectives that are not monotonic with respect to implica-
tion; implication itself, for example, is monotonic in its right argument but
anti-monotonic in its left. Some operators are neither monotonic nor anti-
monotonic. Subderivations that transform the arguments of such an operator
must preserve equivalence only.

Subderivations are also used to prove hypotheses that are side conditions
for conditional rules. As an example, consider the following arithmetic sim-
plification:

10/10
= { z/x =1 provided that x # 0 with x := 10 }
10#£0
= { by comparison }
true

When the first step is derived the hypothesis 10 # 0 is postulated, making
it the responsibility of the proof author to prove this relation in a subderiva-
tion. This use of subproofs differs from that of focusing rules in that the
resulting expression of the subderivation is not included in the main deriva-
tion. Instead it is a proof obligation of the derivation step that the divisor
is non-zero.

3 Tool Support for Structured Derivations

We believe that a tool for writing mathematics should provide and enforce
structure whenever it aids the user in his goal, and otherwise offer as much
freedom as possible. We chose the standard graphical text editor or word
processor as the basic application model for MathEdit. The large majority
of users are in some way familiar with this style of application, and have
a general intuition about the user interface. A document containing lines
of text is edited by moving a cursor, or caret, around the document while



issuing commands. Commands can be simple, such as typing a single charac-
ter, or more powerful, such as performing a string-based search and replace
operation on the entire document.

Outlining editors, sometimes called outliners, are document editors that
allow their users to edit text, and possibly other elements, in a hierarchy. In
a line-based outliner, outlined text consists of many indented lines, following
the rule that each line can be indented at most one level to the right from
the previous line. A line followed by indented lines is called parent and the
indented lines are called children. A line together with all its children and
sub-children is called an item; atomic items have no children. Composite
items, i.e. items which have at least one child in contrast to atomic items,
can be collapsed and subsequently expanded to hide and show their children.

An outlining editor provides good overview of a document by allowing
the user to hide details deep in the hierarchy and get a “bird’s eye™-view of
the document, while at the same time making it possible to quickly delve
into the deeper branches of the hierarchy for details. Outliners are useful
when reading and writing mathematical proofs for this very reason—a com-
plex derivation often contains several rule applications with perhaps equally
complex subderivations. These steps can be collapsed to hide details that
are not interesting when one is attempting to understand the general idea of
the proof, and as soon as more information about a particular step is needed,
that step can be unfolded and the subderivation revealed. The author is thus
free to add as much material as possible to a document without fear that the
result becomes incomprehensible. The idea of navigating a proof in this way
is known as proof browsing [22].

Authors of mathematical documents are very conscientious about the
correctness of their writings. Yet according to Lamport |24], even proofs
published in mathematical journals frequently contain errors. As writing is
an iterative process, it is especially important that changes and additions
do not invalidate prior work. Human beings are, however, notoriously bad
at frequently checking “trivial” things, such as whether a declaration is valid
in some specific language or if a rule application is still valid. But these
tasks can be quickly carried out by computers, which is why a tool should
provide as much checking as possible of user input, albeit in a unobtrusive
way. Furthermore, whenever the environment (assumptions, rules, lemmas)
changes, the tool should make it possible to run an automated check on all
existing proofs to ensure that they are still valid.

One example of a mathematics-oriented text editor is Math [pad [11]. Tt
is a strongly syntax-directed editor in which templates called stencils are
used to define the visual and logical structure of syntactic elements in a
document. The editor supports selection and manipulation based on this
structure: for example, a specific stencil can define a certain mathematical
operator, and clicking on that operator in a document will then select the

4



whole subexpression. Furthermore, it features a number of commands for
rewriting expressions, such as Reverse, Distribute and Factorise, but these
work on a purely syntactic level.

GNU TexMacs [27] is an editor based on similar ideas as Math [pad. In
addition it supports a few computer algebra systems, thus making it possible
to include the semantics of such systems into TexMacs. Translation layers
and interprocess communication are used to access the functionality of these
systems from within the TexMacs environment, making the integration quite
shallow.

We chose not to make MathEdit strongly syntax-directed. While a math-
ematical expression, such as an algebraic formula, has a tree-like micro-
structure, we have not seen pressing needs to create a structured editing
environment for such micro-structures. In practice, it is often useful to tem-
porarily “break” a structure while doing edits. In MathEdit, derivations and
mathematical expressions are treated as delineated sections in a free-form
text document that have been explicitly indicated by the user to conform
to a specific language; if a section does not, the error is reported and the
user can correct it. We do, however, appreciate immediate feedback and
MathEdit therefore implements automatic parsing during editing and visu-
alizes the abstract syntax trees of expressions.

However, for elements such as formulas and derivations, we want a well-
defined syntax and a means for including semantics. Such semantics makes it
possible to reduce formulas using rules of the mathematical formalism rather
than on a purely syntactic basis. The mathematical language provided by
MathEdit is extensible in order to enable users of the tool to work with
different kinds of mathematics. A basic syntax and simple Boolean and
arithmetic operators are provided, but users can add new types, operators
and identifiers without reprogramming the tool itself. Users are also able
to declare custom rules and use these seamlessly together with built-in rules
in derivations; this feature is crucial for usability, since it will get extremely
tedious to read and write derivations consisting only of steps based on a small
number of pre-defined rules. Furthermore, in more demanding situations,
where a user might want to significantly change the mathematical language,
this is also possible by writing a new mathematical profile (further described
in Section 5).

It is not a goal of MathEdit itself to typeset formulas the TEX and
KETEX systems are the standard tools used for this purpose, mainly due to
the excellent quality of the documents they produce. MathEdit should thus
be able to export documents for further IXTEX processing and typesetting.
However, our goal has not been to create a IXTEX front-end, as several such
applications already exist.



4 QOverview of MathEdit

In addition to producing the tool itself, an important goal of the MathEdit
project has been to evaluate new software engineering techniques in practice.
This section provides a brief overview of the methods and technologies used
in the development of MathEdit; we then refer the interested reader to a
number of technical reports describing these methods in more detail. To give
the reader an idea of MathEdit’s capabilities, we also briefly describe the
main features.

4.1 Development

The Mathematical Derivation Editor was developed in the Gaudi Software
Factory |8|, an experimental software factory in an academic setting that
aims to be a testing ground for new software development methods in prac-
tice. More than ten projects have been carried out at Gaudi since its in-
ception in 2001, such as a basic outlining editor [9] and a personal financial
planner |7]. Results from these projects have indicated that it is indeed pos-
sible to produce software in a timely manner despite the limitations on some
resources in a university environment, including lack of funds and dedicated
personnel.

Programmers employed in Gaudi are computer science and computer en-
gineering students guided by graduate students who function as coaches.
Some projects developed in Gaudi, such as MathEdit, are also research tools
while others are built mainly to study the development process. A professor
or graduate student with a research interest in the product being developed
typically acts as the customer for a project.

The Gaudi software process borrows many practices from Fzxtreme Pro-
gramming (XP) [13]. XP is an agile software development process that has
become increasingly popular for high-risk, high-velocity projects. Its main
goal is to mitigate some of the most common risks in software development,
including delayed schedules, requirements changes, high defect rates and de-
veloper turnover. This is achieved through a number of practices, including
but not limited to:

e keeping an on-site customer,

unit testing,

e pair programming,

continuous integration,

shared code ownership.



These practices have been implemented in Gaudi and the results so far indi-
cate an increased reliability of the produced software.

MathEdit is built in a layered fashion using the Stepwise Feature Intro-
duction (SFI) design methodology [4]. In SFI software is built in layers, such
that each layer implements a certain feature or set of closely related features.
Software is built in an incremental fashion so that the bottom layer pro-
vides the most basic functionality, and subsequent layers add more advanced
functionality. The layers are implemented as class hierarchies such that a
new layer inherits all functionality of previous layers by subclassing existing
classes, and adds new features by overriding methods and/or defining new
methods. A detailed overview of how SFI was applied in MathEdit can be
found in both |5] and the master’s thesis |17].

The main programming language used for implementing MathEdit is
Python |28, an open-source, interpreted, dynamic, and object-oriented lan-
guage with a clean syntax. Python is also fully object-oriented and has been
used to build very large software projects. While Python excels at ease of
use and speed of development, it essentially achieves these advantages by
trading off execution speed; Python programs are in general much slower
than programs written in compiled languages. The major part of the source,
about 46 000 lines, is in Python, while some 2 000 lines are C+-. The initial
plan was to write all code in Python; C++ was only used out of necessity in
a small number of performance-critical areas.

4.2 The Product

A screenshot of the running application can be seen in Figure 1. MathEdit
runs on both Windows and Linux/X platforms and can be freely downloaded
under a GPL license from http://mde.abo.fi

MathEdit implements the basic functionality of a text editor. The user
works with documents, which are visible and manipulated through on-screen
views. A document can be associated with several views, and several doc-
uments can be open at the same time. Each view has a cursor which can
be moved around independently, and text selection is performed with either
the keyboard or mouse. An unlimited undo/redo mechanism makes it pos-
sible to undo editing commands in order to correct mistakes. The clipboard
interaction commands, cut, copy and paste, allows copying text data be-
tween applications. Unicode [1] is used for all its internal text processing, so
that mathematical and other useful symbols (such as Greek letters) can be
represented.

The depth of a line in the outlining hierarchy is indicated by indentation.
Collapsible items, i.e. lines with visible children, show a minus sign in the
sidebar; clicking on the sign collapses the item, hiding the children. Con-
versely, collapsed lines show a plus sign which can be clicked to re-expand
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Figure 1: Screenshot

the line and show the children.

The user creates a mathematical expression by selecting a range of text
and clicking a tool button or selecting a menu alternative. The selected text
is then marked up in a special typeface and is considered a mathematical ex-
pression and becomes subject to automatic parsing. An accepted expression
is shown in blue color, while an illegal expression is colored red.

Derivations are created by applying rules to mathematical expressions.
Rules are typically Boolean expressions and can be provided by the mathe-
matical profile (built-in rules) or entered by the user. To perform a reduction
step the user selects a (sub)expression and clicks a button, whereby the ed-
itor shows all applicable rules. For each rule a preview of the reduction is
shown, and the user can select which rule to apply. When a rule is applied,
a new derivation step (possibly containing subderivations) is created and the
transformed expression is inserted into the document.

For persistent storage of documents, MathEdit uses an XML file format
conforming to a custom DTD. For presentation, documents can be exported
to HTML and IXTEX formats. Both formats preserve the outlining structure
and HTML files also implement the folding feature using dynamic HTML.

5 Mathematical Language

To make MathEdit a general tool for writing mathematics, an important
feature of MathEdit is to allow the user to extend the mathematical lan-
guage. The assumptions MathEdit makes about the mathematical language



are needed to provide support for structured derivations, see Section 6. These
assumptions are defined in the mathematical profile interface (MPI): an API
defined as a Python module. The main data structures defined in the MPI
are Fxpressions and Rules. The main operations on these data structures
are parsing erpressions, selecting subexpressions, applying rules, constructing
derivations, and checking derivations.

There are three ways to make extensions to the mathematical language
of MathEdit. The most powerful way is to provide an implementation of the
MPI. This means that the data structures and operations need to be imple-
mented in Python. Therefore, these kind of extensions are for programmers
only.

The second way to extend the mathematical language is to use the Uni-
versal Profile (UP): an MPI implementation that allows allows the user to
add new mathematical notations. UP itself is an example of an extension
written in the first way. However, when using UP to extend the mathemati-
cal language, one is just writing in MathEdit and one does not need to have
any programming experience.

The third way to extend the mathematical language of MathEdit is to
combine the first two ways. This is useful if the extension writer wants to
provide “built-in” rules which manipulate expressions in more efficient ways
than the standard UP built-in rules. For example, there is an extension that
uses the HOL theorem checker to check (parts of) structured derivations,
see [18|. The mathematical language of this extension is defined in an ordi-
nary MathEdit document using UP. The communication between MathEdit
and HOL is written as an MPI implementation in Python.

5.1 The Universal Profile

A good way to learn about UP is to open a new document in MathEdit and
select the UP profile for this document (use the Filer Use Profiler> UP menu).
Before typing anything at all, list the grammar of the profile (menu Deriva-
tion> Show Grammar). In the Profile-tab at the bottom of the MathEdit
window, the grammar and some additional information about everything
that is predefined in UP will be displayed.

UP defines, among others, the following types: Term, Bool, and Identifier.
The following subtype relations hold:

Bool C Term (1)
Identifier C Term (2)

There are two atomic (indivisible) Bool expressions: T (true) and L (false).
Instead of using these special symbols, one can use _T_ and _F_, respectively.



Although these expressions are defined internally by UP, they behave as if
they were defined as follows.

op TRUE: "T|_T_" — Bool
op FALSE: "1 |_F_" — Bool .'

Note that MathEdit does not make a distinction between constants and op-
erators; constants are just nullary operators, i.e., argument-less operators.
The identifiers TRUE and FALSE are the names of the expressions. Follow-
ing the name is a colon and, in this case, a double-quoted regular expression.
The regular expression should be written according to the syntax of Python’s
regular expressions. " T|_T_" is the double quoted regular expression that
matches either one T symbol, or the three character string _T_. Similarly,
"1 |_F_"is the double quoted regular expression that matches either one L
symbol, or the three character string _F_. The result type of these operators
is Bool.

There is one operator in UP that defines Identifiers. It is defined as
follows:

op Identifier: "[a-zA-Z][a-zA-Z0-9_’]*" — Identifier

The regular expression matches strings starting with a lower case or upper
case letter and ending in zero or more letters, digits, underscores, or single-
quotes. Examples of such identifiers are a, B, a_B, a10, a’, a’’_b, and a_"’10a.

In addition to these operators, or constants, UP defines an equality and
an inequality operator for each type. For instance, for the types Term, Bool,
and Identifier it defines the following operators.

op EQUAL_Term:

Term "=|=" Term — Bool [prec=0]
op NOT_EQUAL_Term:

Term "#|#" Term — Bool [prec=0]
op EQUAL_Identifier:

Identifier "=|=" Identifier — Bool [prec=0]
op NOT_EQUAL_Identifier:

Identifier "#|#" Identifier — Bool [prec=0]
op IDENTICAL_Bool:

Bool "=|=" Bool — Bool [prec=0]
op NOT_IDENTICAL_Bool:

Bool "#|#" Bool — Bool [prec=0]

!The prec attribute of the operators is not shown here, because both TRUE and FALSE
have the default value (10) for this attribute.
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The operators EQUAL_Term, EQUAL_Identifier, and IDENTICAL_Bool, are
interpreted as syntactic equality.? However, the user is free to define more
rules for any of these operators, thereby making the equality operators less
strict.

UP does not define any rules for the negated operators NOT_EQUAL_Term,
NOT_EQUAL_Identifier, and NOT_IDENTICAL_Bool. However, usually the
user will want to define them as the negated form of the equality operators.
This is possible by defining a rule of the form

rule NOT_EQUAL_Term: (t # s) =—-(t = s)

Here, s and t are variables of type Term. Note that to define such rules,
Boolean negation, —, is required. This operator is not predefined in UP.

6 MathEdit Support for Structured Derivations

In this section we consider the various syntactical elements that make up
structured derivations. We define a syntax for derivations; the goal being a
machine-readable syntax maintaining the clarity of the structured calcula-
tional proof format. We then discuss how MathEdit unifies terms and rules,
and finally we present the strategy used to check derivations.

6.1 Elements of Structured Derivations
6.1.1 Term lines

Each term line consists of a term, and a redex indicator (except for the
last term, which is not further reduced). In contrast to the notation in 3],
MathEdit marks redexes with underlining rather than corner carets, and does
not mark the result of the reduction in the sequel term. Also, in MathEdit
it is possible to reduce a subexpression without introducing a subderivation,
which results in duplication of the unchanged parts of the term. This fea-
ture is mainly intended to be used on small terms, since duplication can
make proof maintenance unwieldy; in such cases introducing a subderivation
(using, e.g., a focusing rule) is recommended.

6.1.2 Comment lines

The relation symbol in the beginning of each comment line describes the
mathematical relation between the term immediately before and the term

2The reason IDENTICAL_Bool has a different kind of name than the EQUAL_ Type op-
erators is unclear. Probably this was needed at some point during development of
UP, but it seems unnecessary for the current version. The same can be said for the
NOT_IDENTICAL_Bool operator.
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immediately after the comment line. It is followed by a short motivation
enclosed in curly brackets. In the original notation the motivations are in-
formal or semi-formal English sentences; MathEdit, however, needs to store
information about the derivation step in machine-readable format to be able
to process derivations. We impose a simple syntax consisting of three main
constructs on the bracketed text of a comment line: a rule name, a rule
application pattern and a substitution set.
As an example consider the application of the following rule:

DEMORGAN-1: =PV —Q = ~(P A Q)

in a simple derivation step, written in MathEdit notation?:

AN (-AV-B)
= { DEMORGAN-1 from left with P := A, Q := B }
AN—=(ANB)

Rule name (DEMORGAN-1): The editor identifies rules are by their names,
so we store the name of the rule that was used as a simple text string
within the comment line.

Application pattern (from left): The rule was applied from left-to-right.
This means that the left-hand side of the rule =P VvV —() was unified
with the indicated subexpression, and the result of the application is
the right-hand side of the rule =(P A @) with the substitution applied,
—(AAB). In another step the rule could be used the other way around,
with the right-hand side being unified with the subexpression and the
result being the left-hand side. In both cases the relation symbol would
be the equivalence sign. Left-to-right and right-to-left are the two most
common rule application patterns, but the editor allows any number of
patterns. The mathematical profile provides for a given rule a list of
application patterns.

Substitution set (with P := A, Q := B): This is a comma-separated
list of expressions, each describing a substitution pair. Special profile
functions are provided to parse a substitution into a v +— e pair, where
v and e are the variable and expression ASTs respectively. If there
are ambiguous substitution pairs in the list, i.e., the same variable is
substituted with two different expressions, the last pair in the list is
used.

A reduction step can contain any number of subderivations. Subderivations
in MathEdit look similar to those in structured calculational proofs and take

3In MathEdit derivations, comments do not line up with terms, but rather derivations
have a flushed left margin. This is an implementation issue.
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advantage of the outlining functionality of the editor. Subderivation are
placed under the comment line of the step to which they belong and are
indented one level deeper. This enables to user to hide all subderivations of
a step by collapsing the comment line. MathEdit does not support labeling
of subderivations, so the order of subderivations should match the order of
rule hypotheses.

Potential assumptions are listed within angle brackets in the beginning
of a subderivation and are formatted and parsed as rules. These are created
when a conditional or focusing rule provides assumptions that can be used in
a subderivation. Such rules are correct only in the context of the hypothesis
required by the rule, and the scope of applicability is thus restricted to the
subderivation and sub-subderivations down to any level.

A simplification step is a special kind of reduction step which can be used
as an interface to external, “black-box” reduction tools. The comment line
contains a set of rules, but without details about how to apply them. The
external tool is sent a term and the list of rules, and returns a new term which
is reduction of the original expression. The rules are applied according to the
tool’s own reduction strategies. Since such strategies can be time-consuming,
a timeout parameter can be given in the comment line as a rough instrument
to control the external tool.

6.2 Data Representation of Structured Derivations

The BNF grammar for structured derivations implemented in MathEdit is
given in figure 2. Parsing is done in two sequential stages, lezical and syntac-
tic analysis, by a routine based on the Python parser generator toolkit Spark
[2|. Three different types of tokens are produced during the lexical anal-
ysis pass: identifiers (IDENTIFIER), integers (INTEGER), mathematical
expressions (MATHEXP, RULE, SUBEXP) and special indentation “deep-
ening” tokens (L_J). The tokenisation is based on string-matching regular
expressions and markup information (for mathematical expressions). Deep-
ening tokens are inserted into the token stream at points where the indenta-
tion level increases; this information is used in the parsing pass to identify
where a subderivation starts.

Based on the token stream, the syntactic analysis pass generates a parse
tree storing all elements of a derivation in a format optimized for program-
matic access. Nodes in the tree have zero or more ordered children, and can
be of eight different types:

DERIVATION Represents a derivation, either top-level or subderivation. The
root node is of this type. Its children are, in order, an optional AS-
SUMPTIONLIST node, followed by at least one child of type TERM.
After this comes zero or more repetitions of the following sequence:

13



{

{

{

{

(assumptionlist)

{
{

{
{
{
{
{
{
{

derivation)

derivationlist)

steplist)

assumption)

comment)
application)

simplification)
patterndecl)
substlist)
term)

termsubexp)
rulelist)

(steplist)
| (assumptionlist) (steplist)

| "proof of" IDENTIFIER | | (steplist)

(derivation)

| (derivation) (derivationlist)

| "e" (derivationlist)

(term)

| (term) (comment) (steplist)

| (term) (comment) (term)

| (term) (comment) || (derivationlist) (steplist)

(" RULE ")"

(assumption)

| (assumption) (assumptionlist)

| "e" (assumptionlist)

(application) | (simplification)

IDENTIFIER { IDENTIFIER }

| IDENTIFIER { IDENTIFIER (patterndecl) }

| IDENTIFIER { IDENTIFIER "with" (substlist) }

| IDENTIFIER { IDENTIFIER (patterndecl) "with" (substlist) }
IDENTIFIER { "simplification using" (rulelist) "maxsteps" INTEGER }
"from left" | "from right" | "pattern" INTEGER
MATHEXP | MATHEXP "," (substlist)

(termexp) | (termexp) (termsubexp)

MATHEXP

SUBEXP

IDENTIFIER | IDENTIFIER "," (rulelist)

Figure 2: BNF grammar for structured derivations in MathEdit.
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an APPLICATION or SIMPLIFICATION node followed by zero or more
DERIVATION nodes, and a TERM node. This represents a proof (with

possible subderivations), created using either a regular rule (APPLICATION),

or the profile’s simplify function (SIMPLIFICATION). Each subderiva-
tion is represented by a DERIVATION subtree.

APPLICATION Represents the “comment” in a derivation step in which a rule
has been applied to a subexpression of a term to generate a new step.
Nodes of this type store the name of the used rule and the application
pattern (as an integer index into the list returned by the profile’s get
rule patterns method. Its only child is a single SUBSTLIST node.

SIMPLIFICATION A derivation step in which the profile’s simplify has been
used. Stores the relation symbol and the n argument sent to the func-
tion. Its only child is a single RULELIST node.

TERM A term in the derivation. Nodes of this type store two ASTs, for both
the expression and subexpression on which a rule has been applied. It
does not have any child nodes.

SUBSTLIST Stores the substitution set as a list of substitution ASTs.
RULELIST Stores a list of rule names used in a simplification step.

ASSUMPTION Represents an assumption (local rule), and stores its rule
AST.

ASSUMPTIONLIST An ordered set of ASSUMPTION nodes.

6.3 Rule Application

The editor provides a feature that allows the user to select a subexpression
and click a button to get an automatically generated menu of applicable rules.
The user can then select a desired rule application and apply it, thereby
generating a new derivation step. Rules can be applied in both forward
(starting from the known) and backward (starting from the goal) directions.
If the rule in use requires subderivations, the editor sets up an outline for
each subderivation.

Displaying applicable rules requires gathering all defined rules and a
means of testing if a rule is applicable. A rule is called available at a specific
derivation step in a document if the editor knows about the rule (i.e., it has
parsed the definition) at that point, and it is called applicable if it is both
available and unifiable with the selected subexpression. Because rules are
parsed into expression AST:s by the mathematical profile, a special method
get rule patterns in the MPI is used to convert a rule AST into a list
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of patterns. A pattern represents an explicit rule application and consist
of a source expression, a relation symbol, a target expression and a list of
hypotheses.

An important question is whether a rule should be available for use in
derivations in the whole document or only in derivations after the line on
which it was declared. It could be argued that since rules must be declared
before they are used the scope of availability for a rule should be from the
line of definition to the end of the document. A one-pass parsing would then
be possible, and reading a document from top to bottom would ensure that
no unknown rule is encountered. Nevertheless, in mathematical papers it is
common to list rules and lemmas at the end or in a separate appendix. It was
thus decided to not generally restrict the scope of rules, so a rule is always
available everywhere in the document in which it was declared. However, one
exception to the principle of universal rule scope are the special local rules
based on assumptions in subderivations, as the availability of these rules is
restricted to the subderivation in which they are declared.

MathEdit uses unification of the rule source expression with the expres-
sion being transformed to determine applicability. Unification identifies two
symbolic expressions by binding the contents of variables to subexpressions.
As an example, the expressions s = x +y and ¢t = a 4+ b X ¢ become identical
if the substitution

o={x—a,y—bxc}

is applied to s, i.e., x is replaced by a and y is replaced by b x c¢. The
substitution set o is a unifier of the expressions. Application of a unifier to
a term is written using postfix notation, i.e. so =t.

The MathEdit profile typically determines the most general first-order
unifier. A unification function in the profile is called with the source side
expression of a rule application pattern and the expression to be derived as
parameters, and produces a result of either nil, meaning that unification was
not possible, or a (possibly empty) substitution set. In the case of a non-nil
result the rule pattern is deemed applicable, and the rule itself along with
the target side (with substitutions applied) and the individual substitutions
are displayed in the list of applicable rules. If several patterns of the same
rule are applicable (rules may be applied in more than one way, typically
left-to-right or right-to-left), all possible applications are displayed by the
editor.

6.4 Derivation Checking

By derivation checking we mean the procedure in which the program checks
the well-formedness of a derivation. A derivation is well-formed if it adheres
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to the syntactic and semantic requirements on derivations and all rule ap-
plications are walid with the stated substitutions. This checking algorithm
executes completely outside the mathematical profile and uses only the pars-
ing, unparsing and unification interface of the profile, and thus has no access
to intrinsic information about the mathematics in use. Derivation checking
is not a formal verification of the correctness of the proof. The derivation
checker can be likened with a compiler, which checks the syntax and seman-
tics of source code but does not verify that the compiled program implements
its specifications.

Implementing a proof system is not the goal of MathEdit. Existing dedi-
cated theorem proving assistants with a long-standing reputation of reliabil-
ity, such as PVS and the HOL system, are the most suitable tools for formal
proving. Integration with such tools would be useful to provide an indepen-
dent assertion of the correctness of MathEdit derivations, but that is outside
the scope of this paper. Experiments have been done with HOL integration,
but no complete implementation exists as of yet.

The derivation checking algorithm as implemented in MathEdit is shown
in Algorithm 1. It processes a sequence of derivations; a sequence is either the
set of top-level derivations in the document being checked, or the subderiva-
tions of some step. The latter case occurs when the algorithm finds a step
with subderivations and is applied recursively. If any one of the assertions
fail, the algorithm terminates.

In MathEdit it is also possible to associate a proof with a specific rule.
A trivial kind of checking is performed to detect cycles in such declarations;
existence of a cycle is an error, since a proof of a rule must not rely on
the correctness of the rule being proved. However, it should be noted that
MathEdit does not implement a full proof verification system. The relation
between terms is only checked on a per-step basis, and there is no attempt
to verify that the composition of relations matches the relation of the proved
rule or hypothesis.

7 Working with MathEdit

In this section we first give a general outline the MathEdit workflow, and
follow up with examples which show how the powerful extensible syntax of
the UP and Math Lib profiles makes it possible to define new mathematical
languages on the fly.

7.1 Workflow

Producing a MathEdit document is an iterative process in which the user
constantly works within the same framework in a modification-feedback loop.
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Algorithm 1 Derivation checking

Loop for each derivation der in the sequence:

Parse der. This also requires parsing all subderivations and mathematical expres-
sions in der. If a syntax error occurs, report it and terminate

Loop for each step step in der:

Let t¢rom and t:, be the terms before and after the transformation re-
spectively. Let st.om be the denoted subexpression of £ 7,0,

If step is of type APPLICATION:

step then contains the 4-tuple (a,r,i,0) where « is the relation sym-
bol, r is the rule name, ¢ is the rule application pattern index and o
is the substitution set

Check that a rule named r exists

Get the i:th rule application pattern p of the rule r on sfrom. p =
(H, T from, &, r0). H = [(h1, A1), (ha, A2),...] is a list of hypotheses.
Let Ay be the set of assumptions available for proving hy

For each hypothesis hy check that the matching subderivation dy, uses
no other assumptions than those declared in Ay

Apply this algorithm recursively to the list of subderivations

Check that a = o’

Unify 7from With Sfrom and let o’ be the resulting substitution set.
Let w be the set of free variables, i.e. unbound variables in r;,. Check
that {x —elz—e€co Az ¢w} =0

Check that ¢, = tfrom[Sfrom F Tio0], 1.6. the resulting expression
should be equal to the initial expression where the subexpression
S¢rom has been replaced with the result of applying the rule r to
S from

Else if step is of type SIMPLIFICATION:

step then contains («,m, R) where « is a relation symbol, m is the
maximum number of steps allowed and R = [rq, ..., 7] is the sequence
of rules used in the simplification

Check that rules rq, ..., 7, exist

Check that a simplification can be obtained by calling the profile’s
simplification function on s¢,on with arguments m and R. Let the
result be (o, s')

Check that a = o’

Check that i, = tfrom[S from = §']
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Figure 3: Basic MathEdit workflow

Figure 3 describes the basic stages of this process. The focus is on the
mathematical features of the editor and not on general text editing, so stages
like formatting, saving, etc. are not considered.

The user starts by creating a new document and choosing a mathematical
profile (1). Currently the choice is between UP and Math Lib, and consid-
ering that Math Lib is an extension of UP with additional features, users
are recommended to use Math Lib for most purposes. However, a user who
wants to define a mathematical language from the ground up might be better
off with the bare-bones UP to avoid clashes with existing definitions in Math
Lib.

The user may want to define a mathematical language (2) and/or a set of
rules (3). The amount of work done in these steps varies depending on the
user’s objective: and advanced user building up a theory from the ground or
creating a prelude for others to use might spend a lot of time in these stages,
while a user focusing on doing derivations within a ready-made environment,
such as Math Lib, might not.

When there is at least one rule available (built-in or user-defined), deriva-
tions can be performed (4). The user enters a formula and marks it as
a mathematical expression, after which it becomes subject to parsing and
type-checking. If the expression is valid, the user can select any subexpres-
sion and ask the editor to show a list of applicable rules (menu: Derivation >
Derive). Applying a rule starts a new derivation and adds a first step. Steps
can also be added manually, although this requires some familiarity with the
derivation syntax in figure 2 from the user.

After a number of steps, the user might conclude that the derivation
is finished and proceed to the correctness checking stage (5). Either all
derivations in the document (menu: Derivation>Check All Derivations) or
a specific derivation (menu: Derivation>Check Current Derivation) can be
checked; the program then applies the algorithm in figure 1. Erroneous
lines in a checked derivation are marked and errors details are reported in a
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window, allowing the user to view the list of errors and go to any one of the
offending lines.

When performing a derivation the need for a new rule may arise. The user
might also want to change an existing rule, e.g., generalizing it. Similarly,
the mathematical language defined might not be expressive enough to pro-
ceed and needs to be changed, e.g., an operator could be missing. However,
changes in rules might invalidate derivations, and changes in mathematical
language might invalidate expressions, rules and derivations. The earlier the
level at which the change occurs, the more consequences it will have: this
is illustrated in the figure by an increasing amount exclamation marks on
the paths of the last transition. At the extreme, switching to another mathe-
matical profile with a different syntax invalidates every definition, expression,
rule and derivation in the document.

7.2 Using UP

In this section we explain how UP can be used to create you own mathemat-
ical language. We will do this by defining a theory for parallel processes in
the style of ACP [14, 12, 19]. In addition to introducing types and operators
for parallel processes, we define the axioms for the process theory and show
how these axioms can be used as rules to create structured derivations.

7.2.1 ACP

We will distinguish three types: Action, Atom, and Process. The actions form
the basic building blocks and are usually defined with a particular applica-
tion in mind. The atoms include the actions and, in addition, a predefined
deadlock constant dsymbolizing inaction (the absence of an action). The
processes include all atoms and, in addition, the compound processes build
up from atoms and process operators. The three types are defined as follows.

op ActionAtom: Action — Atom .
op AtomProcess: Atom — Process
op ProcessTerm: Process — Term .

These are three invisible (no syntax) operators that define the following sub-
type relations.

Action C  Atom
Atom C  Process
C

Process Term

[\]
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As mentioned above, actions are usually defined with a particular application
in mind. Therefore, we postpone the definition of concrete actions for now.
The deadlock constant is defined:

op Deadlock: "0" —Atom .

The theory has two operators for sequential processes and three for parallel
processes. The sequential operator are defined as follows.

op Alt: (Process) "\+" Process — Process [prec=100]
op Seq: (Process) "-" Process — Process [prec=101]

The Alt operator puts two processes in alternative composition. The syntax
of the operator is defined by the regular expression "\+" which matched
the single character +. The arguments of this operator should be of type
Process. To reduce the number of required parentheses in processes, we
have enclosed the first argument type in parentheses. This means that UP
will add parentheses to the left argument whenever needed to get a correct
parse. Consequently, when we write §+d+ 9, UP will read this as (0 +0) + 0.
The prec-attribute is set to 100.

The Seq operator’s definition is similar to that of Alt. It’s syntax is a -
(centered dot), and since its prec-attribute is 101, it binds stronger than the
Alt operator. Therefore, an expression § - 0 4 ¢ is parsed as (0 - §) + 6.

Before we continue with the definitions of operators to construct paral-
lel processes, we first give the axioms for the sequential process operators
introduced so far. To define these rules, we need three variables of type
Process:

var x,y,z : Process

Now, z, y, and z stand for arbitrary processes. In addition to using identifiers
to define variables, it is possible to use double-quoted regular expressions. For
instance, the following line defines an infinite set of variable consisting of one
lower case letter followed by zero or more primes:

var "[a-z]’*" : Process

The axioms of the sequential process operators are defined in the following
rules.

rule Alt_Delta: x+d= x .

rule Delta_Seq: 0x = § .

rule Comm_Alt: x+y = y+x .

rule Assoc_Alt: (x+y)+z = x+(y+z)

rule Assoc_Seq: (xy)-z = x-(y-z)

rule Alt_Seq_RDistr: xz + y-z = (x+y)-z .
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Sequential Processes

op ProcessTerm: Process — Term .
op ActionAtom: Action — Atom .
op AtomProcess: Atom — Process .

op Deadlock: "&" —+ Atom .
op Alt (Process) "+" Process —+ Process [prec=100] .
op Seq. (Frocess) "-" Process — Process [prec=101].

var x,y,z - Process .
var "[a-z]™" : Process .

rule Alf Delfa: x+& = x .

rule Della_Seq: 6-x =0 .

rule Comm_All x+y = y+x .

rule Assoc All (x+y)+z = x+{y+z) .

rule Assoc_Seq. (x-y)-Z2 = x-(¥-2) .

rule Alf_Seq RDislr x.z + y-Z = (x+y)-Z.

Figure 4: Operators and rules for sequential processes.

The Alt_Delta rule says that a choice, indicated by the + operator, between
deadlock and another process is not really having a choice, because the dead-
lock will never be chosen. In other words, d is a neutral-element for the + op-
erator. The next rule, Delta_Seq, says that nothing follows deadlock, that
is, 0 is a left-zero-element for the - operator . Comm_Alt and Assoc_Alt de-
fine commutativity and associativity of the + operator and Assoc_Seq defines
associativity of the - operator. Finally, A1t_Seq_RDistr defines the (right)
distributivity of - over +. Figure 4 shows the text canvas of MathEdit with
the operators and rules described so far.

Next, we introduce the parallel composition operator, which is called
Merge.

op Merge: (Process) "||" Process —Process [prec=92].
The Merge-operator runs two processes in parallel allowing them to operate
autonomously or interactively. This means that the actions of the processes

are interleaved (merged) arbitrarily or they are synchronized into communi-
cation actions. The merge operator is defined by the following rule.
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rule Merge_Def: x|y = (xlFy) + (ylkx) + (xly)

Intuitively, the parallel composition of x and y (denoted by x|| y) can perform
an action from x (denoted by xlFy), an action from y (denoted by ylFx),
or a communication between x and y (denoted by x|y). The IF and the |
operators will be defined shortly. In addition to this rule, we define two rules
that express the commutativity and associativity of the Merge-operator.

rule Comm_Merge: x|y = y|x
rule Assoc_Merge: (x[|y)|ly = x|/ (y|ly)

The definitions of the CommMerge and LeftMerge-operators are as follows.

op CommMerge: (Process) "\|" Process — Process [prec=90].
op LeftMerge: (Process) "IF" Process —Process [prec=92].

In ACP, communication is defined on the level of actions and communication
between processes is defined in terms of the actions these processes are built
up from. Therefore, to give the rules for the CommMerge operator, we need
variables ranging over actions. However, it turns out that the special atom ¢
behaves almost as an action with respect to the CommMerge operator. To keep
the number of rules small, we therefore define variables of type Atom.

var '"[abc]’*" —Atom .
This defines infinitely many variables of type Atom (= Action U {0}) . The

variables start with an a, b, or ¢, and end with zero or more ’ (prime)
symbols. The rules for the CommMerge are defines as follows.

rule CommMerge_Delta: x|d = .

rule Delta_CommMerge: dlx = .

rule AtomPrefix_CommMerge_AtomPrefix: a-x | by = (alb)-(x|y)
rule AtomPrefix_CommMerge_Atom: a-x | b = (alb)-x

rule Atom_CommMerge_AtomPrefix: a | by = (alb).y .

rule Comm_CommMerge: x|y = ylx

rule Assoc_CommMerge: (x|y)lz = x|(ylz)

rule Alt_CommMerge: (x+y)lz = (xly) + (yl=z)

The LeftMerge-operator is an auxiliary operator needed to give a finite ax-
iomatisation of the Merge-operator. It behaves essentially equal to the Merge-
operator, except that its first action has to come from its left argument. The
rules for the LeftMerge-operator are as follows.
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rule Atom_LeftMerge: alFx = ax .
rule AtomPrefix_LeftMerge: a-xlFy = a-(x||y)
rule Alt_LeftMerge: (x+y)lFz = (xlFz) + (ylFz)

A powerful proof technique of ACP is basic term induction. Basic terms are
defined inductively as follows.

1. ¢ is a basic term;
2. all a € Action are basic terms;
3. if s is a basic term and a € Action, then a - s is a basic term;

4. if s and t are basic terms and neither of them is §, then s+ ¢ is a basic
term.

It can be proved that every Process built up from the process operators
introduced so far is equal to a basic term. Therefore, by proving properties
about basic terms, we can establish properties about all processes. As basic
terms are defined inductively, we can use a structural induction technique
to prove properties about basic terms. This technique is called basic term
induction:*

Basic term induction Let X and Y be two processes and let x be a sub-
process of X and possibly of Y. If the following properties hold, then
X=Y.

1. X[0/z] =Y[d/x];
2. Xla/z] =Y[a/x] for a an Action;

3. Xla-s/z| =Y]a-s/z| for a an dction and s a basic term such that
Xls/a) =Y[s/x];

4. X|[(s+1t)/z] = Y[(s+t)/x] for s and t a basic terms such that X[s/x] =
Y[s/x] and X[t/z] =Y[t/z].

If we apply this technique to prove X =Y, we say we prove X =Y by
(basic term) induction on z. Note that it is not strictly needed for z to be a
sub-process of X (or Y); if it is not, proving X =Y by basic term induction
on x boils down to proving X =Y directly.

It is possible to define (structural) induction in UP, although we do note
that the current implementation of UP does not provide all features we would

“In general, basic term induction can be used to prove any property P(X1,...,X,) of
processes X1, ..., X,. Here, the property is the binary relation P(X,Y)=(X =Y).
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like it to have as far as induction is concerned. Anyway, the current imple-
mentation comes a long way and it is worthwhile to illustrate this. The
following rule is a rather direct translation of the basic term induction defi-
nition given above.

rule BTI: [X[x = d]=Y[x = 4],
X[x = al] = Y[x = al,
[ X[x = s8] = Y[x = s ]
F X[x = as] = Y[x = a-s],
[ X[x = s8] =Y[x = s],
X[lx = t] = Y[x = t] ]
F X[x = s+t] = Y[x := s+t],

IFX = Y .

Although this rule looks fine, UP cannot guarantee that we will use it cor-
rectly. The problem is that when we instantiate this rule, we are not allowed
to assume anything about a, s, and t (except what is given by the basic term
induction rule). For instance, if we apply this rule in a derivation in which
any of these three symbols already occurs, we run the risk of using properties
about those occurrences and UP will not warn us about it. Such situations
can easily arise. For instance, when we try to prove X =Y we might first
do basic term induction on a x and then a nested basic term induction on
a y. In the nested step, we have to make sure a is not equal to the a of the
outer step.

We will now use UP to prove that z || 6 = z - § by basic term induction
on x. This prove has been done completely in MathEdit; it is a derivation
of 100 lines. Consequently, MathEdit is able to check the validity of the proof.
Below, we have split up the proof in several parts and comment each part
separately. The first part is the whole proof without the subproofs resulting
from application of the BTI rule. The start and end of the subproofs are
given, but the details are left out, exactly as MathEdit does when you apply
a rule with proof obligation (side conditions).

x||0

= {Merge_Def from left with x:=x, y:=0}
(xlF)+(OIFx) +(x19)

= {BTI from left with X:=xlFd, Y:=x-, a:=a, s:=s, t:=t, x:=x}
o (xIFd) [x:=0]

={ ...}
(x-0) [x:=4]
o (xlF9) [x:=al
={ ...}
(x-0) [x:=a]
e (assumption2_2_1:(xlFd) [x:=s] = (x-0) [x:=s])
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(xlF0) [x:=a-s]

=4{ ...}
(x+9) [x:=a-s]

e (assumption2_3_1:(xlFd) [x:=s] = (x-0) [x:=s])
(assumption2_3_2: (xIFJ) [x:=t] = (x-0) [x:=t])

(xlF9) [x:=s+t]

{ ...}

(x:0) [x:=s+t]

- x:0+(OlFx) +(x19)

{ Atom_LeftMerge from left with a:=d, x:=x }
x0 + §x + (x]0)

{ CommMerge_Delta from left with x:=x }
X0 + 0x + 0

{ Alt_Delta from left with x:=x0 + d-x }
X0 + 0-x

{ Delta_Seq from left with x:=x }

X0 + 0

{ Alt_Delta from left with x:=x-0 }

x-0

We see from this part that MathEdit creates the expected subproofs: first
we have to prove the property for x=4§, then for x=a, then for x=a-s, and
finally for x=s+t. Furthermore, we get some assumptions for s and t. These
assumptions can be used as normal rules in their corresponding subproofs,
as will be shown later. The steps after the BTI step are rather trivial. In
fact, these steps can be done as one simplification step.

7.2.2 ACP example

As an example, we will define the behavior of a web server as an expression
of the type Process. The actions for the web server are RecvReq, GetPage,
SendPage, and SendErrorPage. A rather abstract view of a web server can
be defined as follows.

Server = RecvReq- (Server || Handle Request)
HandleRequest = GetPage - (SendPage + SendErrorPage)

The Server waits for a request for a certain web page (RecvReq). When it
has received a request, it starts up a new Server, to deal with following re-
quests, and in parallel to that it starts handling the request (HandleRequest).
Handling of a request means retrieving the requested web page (GetPage)
and, when it exists, sending it back (SendPage), or, when it does not exist,
sending an error page back (SendErrorPage).

To define the Server process in MathEdit, we first define the actions.

26



pa.math

op "RecvReqg" —+ Action

op "GetPage" — Action .

op "SendPage" —+ Action .

op "SendErrorPage” — Action .

op "Server" —+ Process
op "HarndleReguest" -+ Process .

rule ServerDef: Server = RecvReq-(Server [HandleReguesi) .
rule HandlerequesiDef: HandleReguest = GelPage -{SendPage +
SendErrorFPage) .

=

Figure 5: A simple web server.

op "RecvReq" — Action .

op "GetPage" —Action .

op "SendPage" —Action

op "SendErrorPage" — Action .

Note that these operator definitions are without a name. As the syntax of
the operators are perfectly good names, it seems unnecessary to add names
explicitly. Behind the scenes, UP will create internal names for these oper-
ators. Such internal names have the form ““op_N”, where N is a sequence
number.

Next, we define the compound processes Server and HandleRequest. Both
consist of an operator definition and a defining rule.

op "Server" — Process
op "HandleRequest"— Process
rule ServerDef:
Server = RecvRequest-(Server | HandleRequest)
rule HandleRequestDef:
HandleRequest = GetPage-(SendPage + SendErrorPage)

Note that rules always need a name, even if they are as simple as the two rules
defining Server and HandleRequest. The reason for this is that MathEdit
needs to refer to these rules while creating or checking derivations. Fig-
ure 5 shows the operators and rules of the web server as they appear on the
MathEdit text canvas.
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7.3 Using Math Lib

Math Lib has built-in support for expressions including Boolean connectives,
quantifiers, and arithmetic expressions. However, no constructs for reason-
ing explicitly about sets is provided, so we describe how this addition can
be made to the Math Lib profile with appropriate declarations contained in
the same document as the proof itself. The following example builds a sim-
ple mathematical language to describe sets, and introduces definitions of set
comprehension and the operators union and intersection based on set mem-
bership. Set comprehension allows us to reason about a Boolean variable
quantified over the elements of a set; since membership is Boolean-valued,
we can use the existing Math Lib support for Booleans.

We start by introducing two new types, Elem and Set, which are both
subtypes of the built-in type T'erm. This means that they can be used as
top-level terms in expressions. We might also wish to make Set a subtype of
Elem, so that it is possible to have sets of sets. This is achieved by entering
the following lines in an empty document using the Math Lib profile and
formatting each line as a definition:

op ElemTerm: Elem—Term .
op SetTerm: Set—Term .
op SetElem: Set—Elem .

The op keyword is also used to define operators. We now define the operators
for set membership, union, intersection and comprehension:

op IN: Elem "€" Set—Bool [prec=50]

op UNION: Set "U" Set—Set [prec=100,commutativel

op INTERSECTON: Set "A" Set—Set [prec=100,commutative]
op SETCOMP: "{" Elem "\|" Bool "}" — Set

The strings within quotation marks are regular expressions used by Math
Lib’s scanner/parser to recognize operations. Binary operators can be as-
sociated with precedence and commutativity properties, which enable us to
omit superfluous parentheses in expressions. Also note the use of the prede-
fined Bool type.

To be able to define rules and expressions with variables, we define a
number of unprimed and primed set, element and Boolean variables:

var "S[’]*": Set
var A,B,C: Set
var e,v: Elem .
var "b[’]*": Bool

28



We now define rules for rewriting union/intersection using Boolean disjunc-
tion/conjunction and for introducing set comprehension. Rules are declared
using a different formatting than definitions, and the text is colored blue in
the editor:

rule UnionDef: ecSUS’ = (ecS)V(e€S’)
rule IntersectionDef: ecSNS’ = (ecS)A(e€S’)
rule SetComprehension: S = {e|ecS}

Math Lib does not provide a built-in rule for distributing disjunction over
conjunction, so we need to define this. To be able to transform only the
predicate of a set comprehension construct in a subderivation, we also define
a focusing rule:

rule DistrDisjOverConj: bV(b’Ab”) = (bVb’)A(bVDb’’)
rule FocusOnPredicate: {v|b} = {v|b’} if b=Db’

The precondition clause b = b in the second rule triggers the creation of a
subderivation when the rule is applied. When applied from left to right, b’ is
a free variable which can be assigned any expression.

With these definitions, it is now possible to perform the following deriva-
tion:

AU (BNCQO)
= { SetComprehension from left with S:= AU (BNC),e:=v }
{vjve AU(BNC)}
= { FocusOnPredicate from left with ¥/ := v € (AUB)N (AU (),
b:=ve AU(BNC),v:=v}

eveAU(BNCQO)
{ UnionDef from left with S’:=BNC,S:=A, e:=v }
cA)V(wveBnNC)
{ IntersectionDef from left with ' :=C, S :=B,e:=v }
ceA)Vive B)A(ve ()
{ DistrDisjOverConj from left with b :=v € C, ¥ :=v € B,
=veA}
veA)V(weB))A((ve AV (vel))
{ UnionDef from right with S’ := B, S:= A, e:=v }
cAUB)A((ve AV (ve(D))
{ UnionDef from right with S’ :=C, S:= A, e:=v }
ceAUB)A(ve AUC)
{ IntersectionDef from right with §':= AUC, S:= AU B,
e:=v}
ve(AUB)N(AUC)

=

—~
4

= <

mi= m =
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-+ {vjv € (AUB)N (AU C)}

= { SetComprehension from right with S:= (AUB)N(AUC), e:=v
}
(AUB)N(AUCQ)

Each step in the derivation can be typed in manually or created by using
MathEdit’s “Show applicable rules” button to list the applicable rules in each
step and selecting the appropriate rule. A screenshot showing the widget
listing applicable rules for the FocusOnPredicate step can be seen in figure
6. Top-level nodes in the tree represent rules while the children are possible
applications. An application can be further expanded to reveal substitutions.
The question marks in the substitution of variable &’ indicate that in order
to apply the focusing rule the user must supply a value for the free variable

b', which in this case isv € (AUB)N (AU ).

uile view
& Downwards | <4 Upwards

Rule - \Pr\ority_| File |1|

S-FocusOnPredicate: {v|bl={v|b'] © setmath
+-Result: {v | b}
E-Result:{v|b'}
b'=7?
~b=veAU(BnC)
+- Proof obligations
v=v

~-SetComprehension: S ={e|ec S5} 1] set.math
+-Result: Au (B n C)
4-Result: {e|es{v|veAu(BnC)}]

e — ¢ >
£ J

i Cancel J

Figure 6: MathEdit’s applicable rules list

8 Conclusion and Future Work

This paper has presented MathEdit, a tool for writing mathematical deriva-
tions in the structured calculational proof format. Since this format is dis-
tinguished from ordinary calculational proofs by its ability to hierarchically
decompose proofs into smaller ones, it makes an outlining editor a natu-
ral choice of editing environment. By defining a syntax for derivations the
editor provides a framework for representing and manipulating derivations,
and by providing an extensible profile interface, it enables users to reason
about many different kinds of mathematics. Although the functionality of-
fered by MathEdit is limited compared to that of more specialized programs,
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the freedom and extensibility offered is valuable as a basis for future devel-
opment and research; since there are no built-in assumptions about a specific
mathematical theory, new ideas can be tested in the editor rather freely.

The experience gathered from developing and using MathEdit has re-
sulted in a number of important insights. There are still some improvements
needed to make it useful for people working with mathematics in practice.
One of high importance is notation; currently MathEdit is completely line-
based and does not allow nice-looking multi-tiered typesetting for constructs
such as rationals, square roots and matrices. It would certainly be bene-
ficial for the usability and aesthetics of MathEdit if such constructs could
be displayed and edited, and preferably encoded in a standard format such
as MathML |26|. However, specifying and implementing an intuitive user
interface for more advanced mathematical constructs is no small feat. An
alternative solution, which we are currently pursuing, is to take an existing
mathematics editor with an extensible document structure, such as TEXmacs,
and implement an integration layer to either our own parser/proof engine or
to a more powerful theorem prover.

Currently the user is required to invent the proofs for theorems; the ed-
itor only assists in the task of writing them. A future version of MathEdit
could make use of an advanced theorem proving assistant to create proofs
as well as perform the correctness checking. Progress has been made in this
area, as integration layers for HOL [18] and Simplify [10] have been partially
implemented.

Proof browsing in hypertext media is an interesting technique for proof
presentation that is worth developing beyond the limited export filters that
MathEdit currently implements. The user should be able to publish a work
book, consisting of a number of MathEdit documents, in both hypertext
and printed formats. A template system could be devised to ensure that
workbooks can conform to different styles.
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