
Artiom Alhazov

Ciliate Operations without Context in a
Membrane Computing Framework

TUCS Technical Report
No 855, December 2007





Ciliate Operations without Context in a
Membrane Computing Framework

Artiom Alhazov
Åbo Akademi University
Department of Information Technologies
20520 Turku, Finland
aalhazov@abo.fi
Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Str. Academiei 5, Chişinău, MD-2028, Moldova
aartiom@math.md

TUCS Technical Report

No 855, December 2007



Abstract

We study the computational power of string processing systems with excision
and insertion rules with communication. The strings are distributed in different
regions, and the rules are defined by cutting out a substring flanked by specific re-
peated symbols and a reverse operation; the rule only specifies the repeated sym-
bol and the regions of reactants and products. It turns out that they can generate
all recursively enumerable sets of non-negative integers.

Keywords: Gene assembly, Ciliates, Membrane computing

TUCS Laboratory
Computational Biomodelling Laboratory



1 Introduction

Ciliates are a group of unicellular eucaryotes with a uniquefeature: the gene
assembly. During the sexual reproduction the genetic information in ciliates is
being rearranged: blocks of DNA surrounded by certain repeated sequences called
pointers are being reordered, and some of them are inverted.A few pointer-based
mathematical models have been introduced to explain this process, such as the
intermolecular model, see [6], [7], and the intramolecularmodel, see [2], [8].

Hence, we can say that the gene assembly in ciliates inspireda number of
theoretical string-processing operations. Ciliate operations are string processing
rules based on recombination at specific repeated substrings.

To introduce the operations in both models we need a few notions. LetV be a
finite alphabet, then the set of words (also called strings) overV is denoted byV ∗.
The circular string associated to a stringx ∈ V ∗ is denoted by•x; two circular
strings are considered identical if and only if they are associated toxy andyx for
somex, y ∈ V ∗. Consider a fixed bijective complement functionc : V −→ V
such thatc(c(a)) = a for all a ∈ V . Then the complementc(an) · · · c(a2)c(a1) of
a mirror image of a wordx = a1a2 · · ·an is denoted byx.

Essentially the intramolecular model has rulesexc, ins:

upv, •pw ⇒insp upvpw, (1)

•upv, •pw ⇒insp •upvpw, (2)

upvpw ⇒excp upv, •pw, (3)

•upvpw ⇒excp •upv, •pw (4)

for stringsu, v, w ∈ V ∗,

and the intermolecular model has rulesld, hi, dlad:

uppw ⇒ldp uw, (5)

pvp ⇒ldp •v, (6)

upvpw ⇒hip uvw, (7)

upvqwpxqy ⇒dladp,q uxwvy (8)

for stringsu, v, w, x, y ∈ V ∗.

Notice some “conservation laws” in the rules above: all parts of the result ap-
pear in the reactants. In case one considers the first model inthe computational
framework, one might assume the presence of an infinite supply of certain strings
as resources for computation. In the latter model, there is only one string consid-
ered, and the computation is limited to reordering, inverting and deleting its parts,
so when one speaks about its computational power, some variant of increasing the
workspace is assumed.

Some universality results have been obtained for intermolecular model, see [7]
and for intramolecular model, see [5] and [4]. All these results rely on contexts:

1



whether some rule is applicable to the corresponding pointers depends on the
contexts surrounding them. We now eliminate the control by contexts by placing
strings in different regions and letting rules control their movement between the
regions. It turns out that such systems are still very powerful.

To describe such devices we use the framework of P systems. P systems are
parallel distributed computational devices of biochemical inspiration, introduced
by Gh. Păun, see [10] for a systematic overview and [12] for comprehensive bib-
liography. A system consists of a graph, objects placed in its nodes and processed
in parallel by the rules. The basic framework specifies neither the nature of the
objects, nor the kind of rules used to process these objects.Throughout this paper
we speak about (linear and circular) strings and intermolecular ciliate operations.

The closest systems considered in the literature are splicing P systems, intro-
duced by Gh. Păun and T. Yokomori in [11], see also [10]. Although a ciliate
operation may be viewed as two synchronized splicing operations, splicing seems
to provide much more control.

The structure of the paper is the following. In Section 2 we recall the tools
we use and give a formal definition of P systems with ciliate operations, and in
Section 3 we show the power of these systems. We conclude in Section 4 by a
discussion on possible variants of the model and open questions.

2 Preliminaries

2.1 Basics

We denote the set of circular strings overO by O•.
The class of all recursively enumerable languages is denoted byRE. The class

of all recursively enumerable sets of nonnegative integersis denoted byNRE.

2.2 Register machines

A (non-deterministic) register machine is a tupleM = (n, Q, q0, qf , I) where

• n is the number of registers;

• I is a set of instructions bijectively labeled by elements ofQ, of the form
(q : io, q′, q′′), where1 ≤ i ≤ n, o ∈ {+,−}, andq, q′, q′′ ∈ Q;

• q0 ∈ Q is the initial label;

• qf ∈ Q is the final label.

The allowed instructions are:

• (q : i+, q′, q′′) - add one to the contents of registeri and proceed to instruc-
tion q′ or q′′;

2



• (q : i−, q′, q′′) - jump to instructionq′′ if the contents of registeri is zero,
otherwise subtract one from it and proceed to instructionq′;

• (qf : halt) - finish the computation; this is a unique instruction with label
qf .

If a register machine starts from instructionq0 with all registers containing zero
and arrives to the instructionqf with the first register containingn1, we say that it
generates the numbern1. Any recursively enumerable set of nonnegative integers
can be generated by a register machine; three registers suffice.

2.3 Operations and P systems

Our systems have multiple regions (cells) and a population of (linear and circular)
strings associated to each region. The operations are defined by specifying the
regions of each reactant, the regions of each product, and the pointer defining the
place of excision or insertion.

An excision operationi →p j/k is applicable to a stringupvpw (or •upvpw)
in regioni; it yields stringsupw (or •upw, respectively) in regionj and•pv in
regionk.

An insertion operationj/k →p i is applicable to a pair of stringsupw (or
•upw) in region j and •pv in region k; it yields a stringupvpw (or •upvpw,
respectively) in regioni.

Definition 2.1 A (tissue) P system with ciliate operations is a tuple

Π = (O, C, R, i0), where

• O is a finite set of symbols;

• C is a finite set of cells; each cellc ∈ C we associate a finite setinf(c) of
strings fromO∗ ∪ O• present in infinite supply, and a finite multisetcfg(c)
of strings fromO∗ ∪ O•, representing its initial contents;

• R is a finite set of excision and insertion rules;

• i0 ∈ C is the output cell.

Remark 2.1 We additionally require thatR cannot contain rulei →p j/k if
inf(i) contains some string of the formupvpw, u, v ∈ O∗. We also requite thatR
cannot contain rulei/j →p k if both inf(i) contains some string of the formupv,
u, v ∈ O∗ and inf(j) contains some string of the formxpy, x, y ∈ O∗.

This requirement is needed to make sure that only finite multisets of rules are
applicable to any configuration.

3



The rules are applied non-deterministically, in a maximally parallel way (the
set of applications of rules cannot be extended). The computation halts when no
rules are applicable. The result of a halting computation isa set of strings (or
lengths of strings) in celli0. The set generated byΠ is the union of the results
over all halting computations; we denote it byL(Π) (or N(Π), respectively). If
instead of maximally parallel application of rules we consider asynchronous way
(any number of rules can be applied), then we add superscriptasyn to L or N in
the notation.

We denote the set of numbers (N) generated by asynchronous (asyn) tissue P
systems with at mostm membranes (tPm) with linear and circular strings (S•) and
ciliate operations with pointers of length at mostk (exck, insk) and targets(tar) by
NasynS•tPm(exck, insk, tar).

We replacem by ∗ if we do not restrict it. We replaceN by L if we con-
sider generation of languages. We removeasyn if we consider maximally parallel
systems. We replacetar by tar2 if at most two different regions are present in
specifications of rules, or byntar if non-distributed systems are considered.

Remark 2.2 Since a rule involves three regions, one might argue that instead of
tissue it is more appropriate to call the underlying structure a network of cells,
see also [3].

3 Results

Theorem 3.1 NasynS•tP∗(exc1, ins1, tar) = NRE.

Proof. Let L ∈ NRE. Then there exists a register machineM = (3, Q, q0, qf , I)
generating{n ≥ 0 | n + 11 ∈ L} in the first register, halting with other registers
being empty. Consider the following P system:

Π = (O, C, R, qf), where

O = {#} ∪ {Ai, ai | 1 ≤ i ≤ 3},

C = {q, zq | q ∈ Q} ∪ {sai
, sAi

| 1 ≤ i ≤ 3} ∪ {test, fail},

cfg(q0) = {#A1a1A1A2a2A2A3a3A3#},

cfg(qf ) = {an
1 | n < 11, n ∈ L},

cfg(c) = ∅, c /∈ {q0, qf},

inf(sai
) = {•ai}, 1 ≤ i ≤ 3,

inf(sAi
) = {•Aiai}, 1 ≤ i ≤ 3,

inf(c) = ∅, c /∈ {sai
, sAi

| 1 ≤ i ≤ 3},

and the rules are listed and explained below.
Consider the string fromcfg(q0). As it evolves throughout the computation,

its part between copies ofAi holds the value of registeri plus one, represented by
symbolsai in unary.

4



For each instruction(q : i+, q′, q′′) ∈ I we have the following rules inR:

(+1) q/sai
→ai

q′,

(+2) q/sai
→ai

q′′,

For each instruction(q : i−, q′, q′′) ∈ I we have the following rules inR:

(-1) q →ai
q′/test,

(-2) q →Ai
zq/test,

(-3) zq/sAi
→ q′′.

The setR also has the following rules:

(*1) test →ai
fail/fail,

(*2) fail/fail →ai
test.

(*3) q0 →# test/test.

Suppose that the value of registerj is nj , for 1 ≤ j ≤ 3, and the state isq.
Then the strings = #A1a

n1+1
1 A1A2a

n2+1
2 A2A3a

n3+1
3 A3# = s1Aia

ni+1
i Ais2 is

present in cellq.
If q is assigned an instruction incrementing registeri, then one copy of•ai

from cell sai
is inserted somewhere into the partani+1

i of s, and the resulting
strings1Aia

ni+2
i Ais2 is sent to either cellq′ by (+1), or to cellq′′ by (+2).

Consider the case whenq is assigned a conditional subtract instruction of reg-
isteri.

If n1 > 0, then the correct simulation is the following:

s1Aia
ni+1
i Ais2 in q ⇒(−1) s1Aia

ni+1
i Ais2 in q′.

A string•ai is sent to celltest. If rule (−1) is applied to non-adjacent occur-
rences ofai, then a string of more than one symbolai appears in celltest, and the
computation never halts because of the rules(∗1) and(∗2). Notice that ifn1 = 0,
then only one occurrence ofa1 is present, so(−1) is not applicable.

If n1 = 0, then the correct simulation is the following:

s1AiaiAis2 in q ⇒(−2) s1Ais2 in zq ⇒
(−3) s1AiaiAis2 in q5.

A string •Aiai is sent to celltest. Then, an identical string from cellsAi
is

inserted, restoring the shape of the string. Notice that ifn1 > 0, then then a string
of oneA1 and more than one symbola1 appears in celltest, and the computation
never halts because of the rules(∗1) and(∗2).

Finally, when the computation ofM reaches the final state, the string repre-
senting the final configuration ofM in the form

#A1a
n1+1
1 A1A2a2A2A3a3A3#

5



is present in cellqf ; its length isn1 +11, wheren1 is the number generated byM .
Hence,Π has a halting computation generating a numbern + 11, n ≥ 0 if and

only if M has a halting computation generatingn, i.e., if and only ifn + 11 ∈ L.
As for numbers smaller than11, they can be generated byΠ (and only they)
because the corresponding strings are already present inqf . We only need to
mention that they are considered as a part of the result sincethe computation may
always halt, i.e., by(∗3).

The maximally parallel nature of the computation is not required for the theo-
rem above to hold. Indeed, any string inqf is generated from a linear initial string
by inserting strings present in infinite copies, and excising strings that are never
inserted back; the only interaction between them is by making sure that they do
not lead to an infinite computation. This is equally true for asynchronous systems.

�

4 Discussion

We showed the computational completeness of distributed systems with ciliate op-
erations without contexts. Certain related questions are currently open and present
interest.

From the point of view of biological inspiration, it is interesting to consider
a dedicated region, called environment, and require that inall other regions only
finite multisets of strings are present.

Problem 4.1 Would this decrease the generative power of such systems?

Since P systems with ciliate operations are string-processing devices, it is nat-
ural to ask the following question.

Problem 4.2 What is the class oflanguagescharacterized by P systems with cili-
ate operations?

Clearly, Theorem 3.1 already implies non-recursiveness. However, with ciliate
operations it seems to be very difficult to organize the output in linear order.

Other interesting questions come from an observation that regulation by tar-
gets, i.e., specifying the regions of reactants and products of each operation, pro-
vides a rather strong control. How does the power of P systemswith ciliate oper-
ations depend on the “amount” of control, e.g., consider thefollowing question.

Problem 4.3 What is the computational power of ciliate operations of theform
i →p i/j, i →p j/i, i →p j/j, i/i →p j, i/j →p i, i/j →p j?

We expect such systems to be still quite powerful.

6



Problem 4.4 What is the computational power of ciliate operations without tar-
gets?

In these case, it seems unlikely that some nontrivial computation can be per-
formed, since insertion operation has no context in either string, while excision
operation cannot control the excised segment.

If the demands or restrictions in the problems stated above are “too strong”,
the following extensions of the systems may be considered.

Extension 4.1 Using maximal parallelism.

Extension 4.2 Allowing pointers to be strings as opposed to symbols.

Extension 4.3 Allowing the two copies of a pointer in the semantics of the rule to
be different, and specifying both in the rule.

We also mention some particular related observations.

Remark 4.1 It is easy to see that Theorem 3.1 holds also if rules of the form
i/j →p k are replaced by rulesi(u) →p k (“in a string from cell i duplicate a
substringp and insert between these two copies ofp a specificstring u”). No
strings would then need to be present in infinite supply. Moreover, it would then
be explicit that different strings in the system do not interact.

Remark 4.2 Excision and insertion can be defined on linear strings only,in style
of synchronized insertion/deletion, see [1]: rulej/k →p i, applied toupw in
regionj andvp in regionk, yields a stringupvpw in regioni, while rulei →p j/k
has opposite effect. It is easy to see that Theorem 3.1 then holds with linear strings
only.

Remark 4.3 Deterministic simulation of register machines is possibleif we make
the following assumptions: (a) excision is not applicable to the occurrences of
a pointer that do not contain other occurrences of the same pointer; (b) the op-
erations are only defined as excising a circular string from alinear string and
inserting a circular string in a linear string; (c) maximal parallelism.

Remark 4.4 In case of rules inserting and deletingspecificstrings, the computa-
tional completeness is achieved even in the non-distributed case, see [9].

Acknowledgments

The author gratefully acknowledges the support by Academy of Finland, project
203667, and the Science and Technology Center in Ukraine, project 4032. The
author thanks Ion Petre, Sergey Verlan and Tseren-Onolt Ishdorj for useful dis-
cussions.

7



References

[1] M. Daley, L. Kari, I. McQuillan: Families of Languages Defined by Ciliate
Bio-Operations,Theoretical Computer Science320(1), 2004, 51–69.

[2] A. Ehrenfeucht, D.M. Prescott, G. Rozenberg: Computational Aspects of
Gene (Un)scrambling in Ciliates. In: L. F. Landweber, E. Winfree (Eds.)
Evolution as Computation, Springer, Berlin, 2001, 216-256.

[3] R. Freund, S. Verlan: A Formal Framework for P Systems. In: G. Eleft-
herakis, P. Kefalas, Gh. Păun (Eds.) Preproceedings of Eight Workshop on
Membrane Computing (WMC8), Thessaloniki, Greece, 317-330.

[4] T.-O. Ishdorj, I. Petre: Computing Through Gene Assembly. In: S. G. Akl
et al. (Eds.),Unconventional Computation2007, Lecture Notes in Computer
Science4618, Springer, 2007, 91-105, and TUCS Technical Report816,
2007.

[5] T.-O. Ishdorj, I. Petre, V. Rogojin: Computational Power of Intramolecular
Gene Assembly.International Journal of Foundations of Computer Science
18 (5), 2007, 1123–1136, and TUCS Technical Report815, 2007.

[6] L. F. Landweber, L. Kari: The Evolution of Cellular Computing: Nature’s
Solution to a Computational Problem. In:Proceedings of the 4th DIMACS
Meeting on DNA-Based Computers, Philadelphia, PA, 1998, 3–15.

[7] L. F. Landweber, L. Kari: Universal Molecular Computation in Ciliates. In:
L. F. Landweber and E. Winfree (Eds.)Evolution as Computation, Springer,
Berlin, 2002.

[8] D.M. Prescott, A. Ehrenfeucht, G. Rozenberg: MolecularOperations for
DNA Processing in Hypotrichous Ciliates.Europ. J. Protistology37, 2001,
241260.

[9] M. Margenstern, Gh. Păun, Yu. Rogozhin, S. Verlan: Context-Free Insertion-
Deletion Systems.Theoretical Computer Science330(2), 2005, 339–348.

[10] Gh. Păun:Membrane Computing. An Introduction. Springer, Berlin, 2002.

[11] Gh. Păun, T. Yokomori: Membrane Computing Based on Splicing, In: E.
Winfree, D. Gifford (Eds.) Preliminary Proc. of Fifth Intern. Meeting on
DNA Based Computers, MIT, 1999, 213–227.

[12] The P systems web page.http://psystems.disco.unimib.it/.

8



9



Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology

• Department of Mathematics

Åbo Akademi University
• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 978-952-12-2004-3
ISSN 1239-1891


