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Abstract

Maximally parallel multiset rewriting systems (MPMRS) peat a convenient
way to express relations between unstructured objectsfuftegioning of various
computational devices may be expressed in terms of MPMRSS (egister ma-
chines and many variants of P systems). In particular, tk@m that MPMRS are
computationally complete; however, a direct translateadks to quite a big num-
ber of rules. Like for other classes of computationally cteteodevices, there
is a challenge to find a universal system having the smallester of rules. In
this article we present different rule minimization stgaés for MPMRS based on
encodings and structural transformations. We apply thieategies to the trans-
lation of a small universal register machine (Korec, 199%) @e show that there
exists a universal MPMRS with 23 rules. Since MPMRS are idahto a re-
stricted variant of P systems with antiport rules, the tsswk obtained improve
previously known results on the number of rules for thateyst
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1 Introduction

Multiset rewriting presents a convenient way to expressrmebal reactions. In-
deed, there is a direct correspondence between chemieptesented by multi-
sets, and the reactions, represented by multiset rewrithogne additional prop-
erties of the reactions’ environment might be expressednbgdalitional control
over the rewriting. This idea was heavily exploited andetiint multiset rewriting
systems were proposed, we only mention here the Chemicdtasbdachine,
CHAM, introduced in [3] and the Gamma language, first considen [1] (see
also a survey in [2]).

One of natural controls that can be added to the multiseitiagis the maxi-
mal parallelism. This roughly corresponds to the idea ofiwguntil the chemical
system reaches a stable state, no more rules can be applied, for a particular
step. More formally, during a rewriting step of a maximallgrallel multiset
rewriting system (MPMRS) all rules that can be applied stidnd applied.

MPMRS systems serve as a basis for P systems that were ingtdhy Gh.
Paun in [8] as distributed parallel computing devices oichemical inspiration.
These systems are inspired from the structure and the tuniicg of a living cell.
The cell is considered as a set of compartments (regiongdese in another
and which contain objects and evolution rules. Membraneseparators of re-
gions; they may serve as communication channels betweeadims. The basic
framework specifies neither the nature of these objectsheanature of rules.

Numerous variants specify these two parameters by obtamany different
models of computing, see [12] for a comprehensive biblipgya One of these
variants, P systems witlymport/antiport was introduced in [7]. This variant
uses one of the most important properties of P systems: thencmication. This
property is so powerful, that it suffices by itself to reach tomputational power
of Turing machines only by moving objects between the regidrhese systems
have two types of rules: symport rules, when several obgxtegether from one
region to another one, and antiport rules, when severattsbjeom two regions
are exchanged. In spite of a simple definition, they may cdasall Turing com-
putable sets of numbers, [7]. Several subsequent works lheee dedicated to
improve this result with respect to both the number of memésaused and the
size of symport/antiport rules used inside the membranesrefér to [10] for a
survey of these investigations.

Since symport/antiport systems compute all recursivelynerable sets of
numbers, it is possible to construct a universal sympdiplart P systemi.e., a
fixed system that will compute any partially recursive fuoietif a corresponding
input is provided. The article [4] constructs such a systemirtg only 30 antiport
rules. This result is based on a result from [5] where a usaleegister machine
with 32 instructions is constructed.

Antiport P systems with one membrane (as considered in Bfespond in
a direct manner to maximally parallel multiset rewritings®ms (MPMRS). In
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fact, any exchange rule., out; v, in) of an antiport system becomes a multiset
rewriting ruleu — v and in both cases the application of rules is maximally
parallel.

In this article we show that there is a universal MPMRS withr@@s. Thus
we improve the result from [4] and we obtain a universal antigystem with
the same number of rules. This result is quite astonishiagaiise the machine
from [5] that was the starting point of our construction h&scd@mputational
branches. We also present different rule minimizationtstjias for MPMRS
based on encodings and structural transformations. Wecalstinue the discus-
sion of the relation between the number of rules and thedr stiarted in [4].

2 Definitions

We recall here some basic notions of formal language theerpeed in the rest
of the paper. We refer to [11], [9] for further detalils.

We denote byN the set of all non-negative integers.multisetS overO is a
mappingfs : O — N. The mappingfs specifies the number of occurrences of
each element of. The size of the multise$ is |S| = > ., fs(x). An empty
multiset is represented by,

We use the ordinary set notation in order to specify a multisethis case we
either indicate the number of occurrences of each elemets pswer, or we give
the mapping functiorfs. For example the multiset containitgoccurrences of
elements, one occurrence of elemeaind zero occurrences of elememtill be
specified aga?, b} ora — 3,b — 1,¢ — 0. We shall also use a string notation
in order to specify a multiset. In this case we write all elatseof the multiset
having a positive multiplicity in a string. For example, thievious multiset will
be written asiaab or a3b.

The sum of two multiset® and( overV, denoted byP + (), is a multiset
S such thatfs(a) = fr(a) + fo(a) for all a in V. Similarly, the difference
of two multisetsP and ), denoted byP — @, is a multisetS having fs(a) =
fr(a) & fo(a) wheres is the positive subtraction. A projection of a multisét
over a se®) is denoted byr, (X).

2.1 Register machines

A deterministicregister machinés the following construction:

M = (Q7R7QO7Qf7P>7

where(@ is a set of statesk = { Ry, ..., Ry} is the set of registergy € Q is
the initial stateg,; € @ is the final state an@ is a set of instructions (called also
rules) of the following form:



1. (p,[RxP],q) € P,p,q € Q,p # q, R, € R (being in statey, increase
registerR, and go to state).

2. (p,[RxM],q) € P,p,q € Q,p # q,Rx € R (being in statey, decrease
registerR;, and go to state).

3. (p,(Ry),q,8) € P,p,q,s € Q, R, € R (being in statey, go togq if register
Ry, is not zero or tas otherwise).

4. (p,(RxZM),q,s) € P, p,q,s € Q,Rr € R (being in statep, decrease
registerR;, and go tog if successful or ta otherwise).

5. (¢, STOP) (may be associated only to the final stafe

We note that for each stapethere is only one instruction of the types above.

A configuration of a register machine is given by ttet 1)-tuple (¢, n4, - - -,
ng), whereq € @ andn; € N, 1 < i < k, describing the current state of the
machine as well as the contents of all registers. A tramsdfdhe register machine
consists in updating/checking the value of a register aliogrto an instruction of
one of types above and by changing the current state to anmtlee We say that
the machine stops if it reaches the stgteWe say thafl/ computes a valug € N
on theinput x € N if, starting from the initial configuratiofig, =, 0, - - -,0), it
reaches the final configuratidn, v, 0, - - -, 0).

It is well-known that register machines compute all pargiursive functions
and only them, [6]. For every € N, with every register machin& havingn reg-
isters, am-ary partial recursive functio®, is associated. Leby, ¢, Po, - - -,
be a fixed admissible enumeration of the set of unary pag@lnsive functions.
Then, a register machin¥ is said to bestrongly universaif there exists a recur-
sive functiong such thatb,(y) = ®3,(g(z),y) holds for allz, y € N.

We also note that the power and the efficiency of a registethimad// de-
pends on the set of instructions that are used. In [5] segetal of instructions
are investigated. In particular, it is shown that there &mengly universal regis-
ter machines with 22 instructions of forfi:P] and (RiZM). Moreover, these
machines can be effectively constructed.

Figure 1 shows this special universal register machine €mpoecisely in [5]
only a machine with 32 instructions of tyg®&, P], [R,M] and (Ry) is con-
structed, and the machine below may be simply obtained fhanhdne).

Here is the list of rules of this machine.

qi, (Rle> g3, C]6) (C_I3, [R7P] ) q4, <R5ZM> Q6,CI7)

( (

(96, [R6 P, qa) (g7, <RGZM> @.q) (99, [R5 P], q1o0)

(CI10, <R7ZM> q12, q13) (C_Ilz,[ ] qr) (q13, <R()ZM> 433, q1)
(Q33> [RG ] Q14) (CI14, <R4ZM> QI7QI6) (QI67 <R5ZM) QI87QQ3>
(QI87 <R5ZM> Q20,CI27) (CI20, <R5ZM> Q22,Q30) (Q22,[ ] Q16)

(C]23, <R2ZM> C_I32,CJ25) (C_I25, <ROZM> C_I1,Q32) (C_I27, <R3ZM> C]32,C]1)
(q20, [ ] 1) (30, [ ] q31) (g31, [ ] q32)

(32, <R4ZM> C_I1>CIf)
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Figure 1: Flowchart of the strongly universal maching



2.2 Maximally parallel multiset rewriting system

A maximally parallel multiset rewriting systefMPMRS) is the construct
7= (0,1,P),

whereQ is an alphabef] is the initial multiset andP is a set of multiset rewriting
rules (productions) of form — v, u € O, v € O*. We say that a rule € P,
r :u — v is applicableto a multisetX € Ot if X D w. Similarly, a set of rules
ri tu; — v, 1 <@ < nis said to be applicable t& if X O > . u;. We now
define theapplicationof a ruler € P to a multisetX € O* which produces a
new multisefy” € O*; this is denoted by = Y. More exactly,

XLY«<—Y=X+u—vandrisu — v.

A maximally parallel transitionwritten asX = Y, is performed if there are

multisetsX;, -+, X,,_;,n>0suchthaty 2 X; 2 X, & ..."5  x, vy
andry,---,r, is a non-deterministically chosen maximally parallel setutes
applicable taX, i.e, there is na- € P such that-,rq, - - - , r,, is applicable taX.

In a more formal way,

n
e > u; C X,
i=1

n

o X — (> u;) L uforallrules(u — v) € P,

i=1

n n

V= (X (Yu) +

i=1

The first condition indicates that these rules are applecabparallel,.e., the
the rules rewrite disjoint submultisets &f. The second condition is maximality:
no other rule is applicable in parallel with them.

By =* we denote the reflexive and transitive closuresaf

We may perform a maximally parallel transition on a multi¥et O* using
the following algorithm.

Algorithm 1

Initially the list £ € P* is empty and the multiset’ overOUO is
equal toX. Consider also the unmarking functiofiz) = a, u(a) =
a, a € O and its extension to multisets. Consider= {u — v | u —
v € P} and suppose that rules frof are ordered with respect to a
total order<.



1. Take (non-deterministically) a rulec P applicable toX’ (r :
u— ).

2. If the previous step was successful then upddteand L:
X' =X —u+vandL = L, r. After that go to step 1.

3. If norule inP is applicable taX’, inspectC = 4, ---,r;, 1 > 0.
If the rules appear i according to the ordex, i.e. r; £ r;
wheni > j, then putY” = u(X’) and return true.

4. Otherwise, fail and return false.

It is clear thatX = Y is a maximally parallel transition. We also define the
set

NEXT(X) ={Y | algorithm 1 returns true and on inputX}.
We define the set afentential formgcalled alsaconfiguration$ S F'(~) as
SF(y) ={w|Z =" w}.

We introduce the following additional notions. Tk&eof a ruleu — v is
luv|, i.e., the size of the multisetv. LetO = {a | a € O} be the set of marked
symbols from0O andu be the unmarking morphism defined as in Algorithm 1. We
say that a multiseX overO U O is stable if no rule can be applied to it: Z X
forall (u — v) € P.

The result of the computation efis defined as

L(y) = {w | T =" wandw is stablg.

2.3 State configurations

Now we distinguish an alphabét C O that we call the alphabet oégistersor
thedataalphabet. Astateconfiguration is the projection of a configuration over
O\ R (hence the registers alphabet is not a part of the state coafign). A state
configurationB is reachablein one step from the state configuratidnif there
are multisetsk’, R” over R such that there exists a maximally parallel transition
AR’ = BR". We will denote this byd = B. We remark that there might be sev-
eral configurations reachable in one step from a particaafigurationA. In the
general case, the number of possible state configuratiov lounded, however
we would like to consider MPMRS with a finite number of stataftgurations.

A finite state maximally parallel multiset rewriting systétaMPMRS is a
tuple

v=(0,R,R,,T,P),

wherey’ = (0,Z,P) is a MPMRS which has a finite number of state configura-
tions,i.e., the projection ofSF'(7') overO \ R is finite andR; C R C O are the
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terminal alphabet of registers and the alphabet of registspectively. Moreover,
we require that for any rule € P, r : u — v, v must contain at least one symbol
fromO \ R.

We would like to note that FsSMPMRS correspond to the paradiftne com-
putation where the control (the program) is separated floedéata. In our case
the state configurations correspond to the program and tiegbion of a config-
uration toR corresponds to the data. Moreover, the restriction on tles implies
that the data cannot evolve by itself. This is a quite stashdasumption. In par-
ticular, in case of register machines there is a strict sear between states and
registers, and the registers cannot evolve by themselves.

The result of the computation ofis the projection of.(+') over R;:

L(v) = g, (7).

We say that a rule — v is apure stataule if u« contains no symbols fronk,
otherwise we call it aegister-dependemntile.

The set of state configurations of a FSMPMRS may be compueeatiitely as
follows:

1. Cy={TZ}.
2. Cip1 = C;Umo\r(Y), whereY € NEXT(X + R>) forall X € C;.

We remark thatVEXT (X + R>) is finite because there are no rules that
involve only registers. In factV EXT (X + R*) may be obtained by comput-
ing NEXT(X) for a system where register symbols in the rules are ignored.
Moreover, we notice that actual infinity of register symbisisiot needed, since
the maximal number of them that can be consumed does notcRoeenaximal
number of register symbols that appear in the left hand diderole, multiplied
by size of X. Therefore, when speaking about applicability of rulesheitt wor-
rying about the register symbols, we will wrifé + R, in the context of these
observations.

2.3.1 Graphical notation.

We introduce a graphical notation for FSMPMRS. We repreaestate configu-
ration by a filled square. We also suppose that pure state pukeede register-
dependent rules. Now, in order to represent the relatiotvgdas state configura-
tions we will depict the relatioe> by graphically representing the functioning of
Algorithm 1. We take a state configuratidhand apply the algorithm for the mul-
tisetX + R*. Itis clear that for any positive run of the algorithm thaturas the
multisetY with £ = 4, - - -, r, the equationX + R* = X; 2 X, & ... 5 X,
holds, whereu(X,,) = Y. More precisely, multiset&; overO U O, 1 <i < n
are obtained in the second step of the algorithm. We take ithjeqtion over
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O U O \ (RU R) of each of these intermediate multisets and represent it by a
circle. We also draw an arrow labelled by between circles corresponding to
Touo\(ruk) (Xi—1) and moue\ (rur)(Xi). Finally, we attach by a line the circle
corresponding to a configuratiohto the square(7). If all circles attached to a
square represent multisets oveu O that are not stable with respect to pure state
rules, such square is not filled.

The final diagram is obtained by repeating the above construfor all pos-
sible runs of the Algorithm 1 and for all state configuratiowe recall that there
is a finite number of state configurations and a finite humbgroskible runs of
the Algorithm 1, hence the above process will stop at some embm

Example 1 Consider the following system= ({A, B,C, D}, {E, F'},{F},
{AABEFE},P), whereP contains the following rules:

r:AB — C
ro: AE — D
r3: DC' — AABF

Clearly, the system is a FSMPMRS that computes the langudgé}. In-
deed, there are three state configuratiohd B, AC and C'D and there are no
rules involving onlyE' or F' in the left-hand side. In a graphical way this system
is represented as follows:

The graphical notation described above not only descrifbe$unctioning of
Algorithm 1, but also gives a tool which may be used for thecdpson of the
evolution of the system. Consider an arbitrary transifior> Y corresponding to
a parallel application of rules, - - - ,r,,. If X =5 X; 2 ... % X, = Y, this can
be graphically followed as a path from a square corresp@tding, (X ), going
through circles corresponding tQ, o\ (rur)(Xi), 1 < i < n, and the last one
is attached to a square corresponding#0z(Y). The maximality of parallelism
should translate in the following way: no rules correspagdp arrows from the
circle corresponding te, 0\ (rur) (X») should be applicable t,.

Therefore, applying any maximally parallel transition t@@nfiguration.X
means to start from the squarg, z(X') and follow arrows to circles as long as
possible, keeping track of symbols frafp when it is no longer possible, consider
the square to which the last circle is attached.
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Taking into account this description, we can simplify thagtam from the
example above by the following observation. For any conéigan X having
To\r(X) = AAB, if rule r, is not applicable from the circldC, then it will not
be applicable from the squar&C' because otherwise it would be applied in the
previous step. Hence, it may be eliminated:

This can be formalized as follows.

Proposition 1 If the following conditions hold:
e Let A be a state configuration an® and C' be two state configurations
reachable in one step from.

e There is a path (a sequence of rules) obtained by Algorithér4l R>~ —*
B’ % ... 1% ¢ such thatro\ r(u(B')) = B andmo\r(u(C")) = C.

e There is no state configuratioh other that those on the mentioned path,
such thatB is reachable in one step from.

Then the path labelled by, - - -, r,, leading fromB to C' may never be involved
in a computation and it may be eliminated from the diagram.

3 The Basic Simulation Technique

In this section we concentrate on a simple simulation ofstegimachines by
FsMPMRS. This simulation is done as follows. We represenireeat configura-
tion of a register maching&/ by a multiset (initiallyZ). In particular, the contents
of a reqgisterk, € R is represented by the number of symbalg which are
present. The simulation of any incrementing or decremgntistruction ofM is
done by an appropriate set of rules.

In order to construct a MPMRS with a small number of rules wedldbllow
ideas presented in [4]. We take them as a starting point dadtaat we consider
different minimization strategies that will decrease thenber of used rules.

The system from [4] is based on a simulation of a special usalaegister
machinelUs, having 32 instructions taken from [5]. This constructionymniee
rewritten in terms off R, P] and (R;Z M) instructions, which gives 22 rules (9
incrementing instructions and 13 decrementing), see Eigjur

The basic simulation strategy consists in a simulation Esef an arbitrary
register machine by multiset rewriting rules using the sesahumber of the latter
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ones. Any incrementing ruléy, [RxP], q:) of register machine can be directly
simulated by the rule

q— Rk’qla (1)

This corresponds to the following flowchart:

q q,

ol »o ]

Any decrementing rul¢g, (R;, ZM), q1, ¢2) can be simulated using five rules:

q—qCy,
d—q' C,Ri, — C., )
7"Cq — a1, q"Cy — g

This corresponds to the following flowchart:

This simulation is done as follows. Symbgpintroduces symbolg’ andC,
(the last one is called theheckerfor the statey).

After that symbolC, tries to decrease registé¥;, and if it succeeds then it
becomes”;. Now, depending on this information symhgl, which replaced;’,
will choose the corresponding new state.

The choice between configuratiogi&”; andq”C; depends on the presence of
symbolR; , i.e. if registerR;_ is zero.

Applied to Us, this translation gives a FSMPMRS with 73 rules. We remark
that these rules are of size at most 3. In the following sastiwe show different
techniques which reduce the number of rules for the prica@tiasing their size.

4 Basic minimization strategies

In this section we present two basic minimization stratedigne of them is based
on structural improvements and the other one is based ordemys We present
them in a general form and after that we show how they appliigcsystem that
simulated/s,.
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4.1 State Elimination

This minimization strategy performs an elimination of Bmdragments in the
flow-chart (by performing a kind of speed-up). Suppose thatd are follow-
ing two pure state rules; = (¢1 — ¢2) andry = (g2 — g3 Ry). This corresponds
to the flowchart in the picture.

q, q, a,

We observe that rules andr, may be combined and staje may be elim-
inated by introducing a new rule = (qi — ¢3R). In a similar way, any lin-
ear chain of pure state rules may be collapsed to a singlgth#esize may be
increased for each additional rule). We shall further reédethis technique as
intermediate state elimination

For Us, we observe that using intermediate state elimination tgcienwe can
reduce (2) to following rules (we also renamgdby ¢):

q— q/7 CqRiq - C{]a (3)
qCy — q1Cy,, q'Cy — 204,

Graphically this can be represented as follows:

Moreover, we observe that fdr;, in a most of the cases a decrementing in-
struction (¢, (RxZM),q1,q2) is followed by an incrementing instruction
(1, [Rk, Pl, q3) Or (g2, [Ri,Pl,q4). Hence, one can simulate the incrementing
instruction during the simulation of the previous decretimgninstruction (by
eliminating the unneeded state in between). For exam@etva rules from (3)
become

q/Cq - q3Rk’1 OQ37 q,C((,] - (_I4Rk:2 Oq4' (4)

Of course, this increases the size of rules up to 5.

4.2 Gluing rules

In this section we shall consider techniques that will mizenthe number of
rules by performing more transitions between the configumatby fewer rules.
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Informally, transitions: kit ¢y andd; L d, can be performed by the same rule
X — Y ifthey are represented in a suitable way:= cX, ¢, = ¢Y, dy = dX,

d, = ¢Y'. In this case, we say that andr, may beglued The following picture
illustrates this:

c, c, cX cY
d, d dX dy

offi»ofl ol »efd

r, r

In a more formal way one have to find a suitable encoding oé stanfigura-
tions such that:

e No state configuration is a submultiset of another state gordtion.
e There should be at least 2 transitions that may be glued.

We would like to remark that it is only possible to glue trdiwsis that in-
crement registers equivalently, in particular, transisithat do not increment any
register.

In what follows we apply the idea of gluing rules to the FsMP#Bystem
obtained by the basic simulation technique.

4.2.1 Phases

Consider now the rules (3). If we represent the stabg ¢S and the stateg’ by
¢S’ then the first rule from (3) may be glued for all statgs.e., instead of|Q)|

rulesq — ¢’ we obtain one rul& — S’. We call the symbob the phase hence
there will be two phaseS andS’. The rules from (3) are replaced by:

CyR;, — C, (5)
qS,Oq - qlCQ17 qS,Oé - QQOqz

Graphically this is represented at follows (where the deti#aded arrow rep-
resents the rul® — S’ common for all simulation blocks):

qCS dCSs' q,C,S

aC' s’ q,C,S

12



4.2.2 Independent Checkers

Another minimization idea comes from the observation thatibformation en-
coded in the checkef’, from (5) is redundant. If we take the set of first rules
from (5) for allq € @, we observe that it is possible to glue rules that decrement
the same register in the following way. We encode the sequgfig respectively
qCy, by symbolsgC; , respectivelygC; , wherei, is the number of the register
decreased by the instructigrof //. Now we may eliminate the first rule from (5)
by introducing rules”; R; — €}, 1 < i < |R|. By convention, we will say that a
stateg of machine)M is encoded by symbolg”; S and we will say that;, is the
checker for the state This transforms (5) into the following:

q¢S'Cy — ¢1Cyy, qS'Cy — 20y, (6)

whereC;,, andC; , represent checkers for statgsandg,. Of cause this
introduces R| new rules, but finally we gain more because of the elimination
one rule for eacly € @ from (5).

Graphically this is represented at follows:

qC.S qC.S' q,C,S

qC'iqS' q,C.,S

iq2

4.2.3 Remarks

The improvements té’;, simulation presented above where implemented in [4],
but they were classified in a different way. The cited artedasiders the relation
between the size of rules and their number. In the table bet®waollect the results
obtained by using the techniques above, as well as resalts fiaper [4] which
uses ideas similar to those used in the current and the nebdrs¢we underline
these results):

Size | Number of rules
3 73
5 56
6 47
7 43
11 30

5 Further Minimization of Uy Simulation

In this section we show how to minimize the simulatior@f. We start with the
simulation using rules (6) and we do structural improversé&atsed on some ob-
servations on the functioning of the system. After that wanshow to glue most
of the remaining rules by showing a suitable encoding oestanfigurations.
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5.1 Structural improvements

The structural improvements presented in this sectionraseline sense a gener-
alization of the intermediate state elimination technique

5.1.1 Reducing decoder block

The first important improvement may be done by consideriegigcoder part of
the machine from [5] (see the flowchart in Figure 1). In fabistblock does
a division of R5 by three. The result of this division is stored in register
and according to the value of the remainder statgs ¢,y and ¢z, are chosen
respectively. This behavior may be simulated by 5 rules titig to decrease
registerRs; by 3 and make the choice depending on the result of this stilana
The statey;¢ is now encoded by,C5C5C5.S.

CsR5 - Oéa
QI6CSC5C5 - Q23C'2, Q16C'505Cé - Q27C3 (7)
Q16C'50§,C§, - Q32C'4R3R27 Q160§C§,C§, - QI6CSCSC5R4

We note that we combined 2 addition instructions in the thir@nch using
the elimination of intermediate stateg( andqs;) by the mechanism discussed
above. The subtraction by 3 is done using the maximal péisatievhich permits
to apply the ruleCs R; — C% three times if there are 3 copies 8f. In [4] the
idea of checking several registers at the same time is desdlmm more details,
however here we will use another structural idea which isadficient.

We integrally present the obtained flowchart in Figure 2. We following
conventions. The double-headed arrow represents theSrule S’ that changes
the phase. Rules that decrement registétg( — C!) are represented by ar-
rows starting with a perpendicular bar and labelledly~D7 enclosed in circle.
Rules that increment registers are depicted by arrows withshed line and the
incremented register(s) are depicted beside the line.eThass are labelled by a
letter enclosed in a diamond. All other rules (which do naté@ment/decrement
registers) are labelled by a number enclosed in a square.

5.1.2 State Elimination for Decrementing Rules

If we look at the flowchart in Figure 2 we observe that rules-D3 and D7 are
used only once. This gives the possibility to combine thesesrwith rules that
follow them using the state elimination technique. For egkanthe transforma-
tion done by rule 9 may be done directly in rul®. However, in this case we
reach the configuratiop,C,S’ instead of;3,C, S because the rule — S’ is per-
formed independently. We may solve this issue by intrody&mphases instead

of 2. In this case, phase 2 (marked BY will be treated analogously to phase

1 (marked byS) and the move to the next state will be done in phase 3 (marked

14
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Figure 2: Multiset rewriting flowchart af/;, with improved decoder block

by S”). Moreover, the phase change may still be done by one rulethisoit is
enough to replacs by X X X, S by X XTandS” by XT'T and the rule5 — 5’
by the ruleX X — XT'. These changes permit to save 3 rules becausdxulis
a special case and it cannot be be combined with/rutléowever, we can include
the increment ofR; in rule D1, in this case rulés becomes a non-incrementing
rule and it will be labelled byta.

The new flowchart is shown in Figure 3. We still depict phasgsymbol S
with primes because of the lack of the space. However, itgardhat the above
substitution shall be done.

5.2 Encoding optimization

In this section we show how using the gluing minimizatiorattgy the number
of rules may be substantially decreased.

From Figure 3 we can see that transitiaf$ andd may be potentially glued
together as well as transitions labelled by numbers. Akkothles are not eligible
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Figure 3: Multiset rewriting flowchart df’s, with 3 phases

for gluing. Consider the part of the flowchart that involvessitions labelled by
numbers and all corresponding phases. Figure 4 depictdftigislenote rules that
apply in parallel by drawing corresponding arrows besidehezther and we do
not show theS’ phase (because in our case it differs from ffephase only by
the phase symbol).

We remark that all rules labelled by numbers change the phaseS” to
S. We call such rulephase changingules, in contrast tmon-phaseules like
S — S (@ands’" — S")or C;R; — C!. ltis clear that non-phase rules may
performed in parallel to each other or to a phase changirg rul

We found two strategies that permit to create suitable engsdn order to
glue rules:

e End of phase discrimination.
e Maximally parallel unification.
The first strategy consists in assigning one phase changi@ger each arrow

that enters a node with the maximal number of entering arroifter that all
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belled by numbers.

other arrows are identified with one of the obtained arrowsthe corresponding
encoding is deduced.

The second technique permits to reduce the number of phaseicly rules
in the maximal node (and potentially in some other distadtiesd. This technique
is based on the fact that any number of phase changing ridesnker a nodé&’
may be reduced to only two rules, one phase changing and anphase rule.
More precisely, we number rules frobnto k&, wherek is the number of entering
phase changing rules and denotelhy 0 < j < k corresponding nodes. After
that we introduce new special symbol$B*~/ in the encoding of/;. We also
consider thaf3* is a part of the encoding @f. Such an encoding permits to make
the transition from any of/;, 0 < j < k to U by applying an appropriate phase
changing rule and several parallel applications of the ploase ruled — B.

However, this technique has some limitations. In fact, applicable only if
rules that are glued are preceded by rules that introducditfeeence between
encodings which is subject to the non-phase rule (the sysnbaind B). In the
case of our system, inherited from the basic simulatiobisf this must be a rule
that decrements a register. This is due to the fact that thgphase rule may be
applied in parallel to any other rule, so corresponding syisimust be introduced
just before making the last step, namely during phase 2.eddlsymbols are in-
troduced during phase 1, then in the case if correspondimgutational branch is
not chosen, for example if register is zero, then a wrong @ngo(corresponding
to some other state) is produced.

After applying all considerations above we found an encgdaihthe part of
the flowchart represented in Figure 4 that permits to perf@mmes (labelled by
numbers) by only 3 new rules. This encoding is shown in Figuaed it is based
on 2 phase changing rules= (15" — JS) andB = (JJMS" — JJNS) and
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Figure 5: Part of the multiset rewriting flowchart @f, showing only glued rules
and the corresponding encoding.

on one non-phase ruté = (LP — LQ).

It was done as follows. The nodeC, S has the maximal number of entering
arrows, hence we try to keep only the 4 rules that enter thde 1(00, 1a, 6 and 4)
and express all other rules in their terms. However, befonegithis it is better to
apply the maximally parallel unification of the above 4 ruM& remark that rules
10, 1a and 6 exit from states reached by a decrement ruleg tiglrule 4 exits a
state that is not reached by a decrement rule. Hence, we weqthaise changing
rules to perform rules 6 and 4. We denote themfbgnd A respectively. Rules
la and 10 are performed by the combinati®r- C' andB + C' + C respectively.
We recall that rule” is performed in parallel to any other rule.

Figure 6 shows the flowchart obtained after applying all sde@ntioned be-
fore. Arrows ending with a diamond correspond to rGlewhile arrows ending
with square correspond to ruke The sparse arrow corresponds to rizle

6 Formal Description of the System

In this section we give the formal description of the obtdisgstem.
We constructed the system= (O, R,{R:},Z,P), where

O - RU{C&C@)’C&}U{q16aq27}U{T7I’J7K7L>M7N7O7P7Q7T7X}a
R = {R|0<i<T}
T = LQLQJINXXXRY .- RY.

Hereiy, - - -, i7 is the contents of registefsto 7 of Uz, and LQLQJJNX X X is
the encoding of the initial statgC; S. The table below gives the set of rules
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phase | XX — XT

DO | IJKPQRy — LQLQJJM

D1 | LQLQJJNR, — LPLPJJMR;

D2 | IIKPQR, — JIKPQ

D3 QQ703R3 — JJKPQ

D4 JIKR, — JJLLM

D5 | JJOR; — Cf

D6 | IJLRs — C}

D7 |IILQLQNR; — IJLOR,

ITT — JXX

JIMTT — JINXX

LP — LQ

LQLQJINTT — JILORsX X
LCITT — JJLORsX X

OCITT — ITLQLQNR; X X
QLQNCITT — JJKQQRsX X

116J JOCLCITT — LQLQJJNRyRs X X
JIKQQTT — ¢16JJOJJOJJOXX
G16JJOJJOJJOTT — ITKPQMXX

R R R A IS

—| co| Ul

7 Conclusions

In this article we have investigated maximally parallel tiagt rewriting systems
(MPMRS) which correspond in a direct way to antiport P systeith one mem-
brane. We constructed a universal MPMRS that computes atiglparecursive
function providing that the input is the encoding of a regiishachine computing
the corresponding function as well as the value to be condpuBur construc-
tion uses 23 rules. This result is quite astonishing, bexthes machine from [5]
that was the starting point of our construction uses 25 caatjgmal branches.
This means that some branches in [5] do the same thing andegtieenedundant.
Hence the result of this paper may possibly help to decrdesaumber of rules
for universal register machines.

We also presented two different minimization strategiegsM®MRS based
on structural transformations (on the elimination of imediate states) and on
encodings (gluing rules) and discussed how their conse@pgtication may de-
crease the number of rules in the simulatiorgf. These strategies may help to
design more compact MPMRS and we leave the question opert almmaller
number of rules for a universal MPMRS (or antiport P systenth wane mem-
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brane). Moreover, we observed a trade-off between the nuailvales and their
size (also observed in [4]) and we think that a further studh@relation between
the size of rules and their influence on different minimiaatstrategies (and of
course their number) is interesting.
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