
Artiom Alhazov | Sergey Verlan

Minimization Strategies for Maximally
Parallel Multiset Rewriting Systems

TUCS Technical Report
No 862, January 2008

Minimization Strategies for Maximally
Parallel Multiset Rewriting Systems

Artiom Alhazov
Åbo Akademi University
Turku Center for Computer Science, FIN-20520 Turku, Finland
aalhazov@abo.fi

Current address:
Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei, 5, MD-2028, Moldova
artiom@math.md

Sergey Verlan
LACL, Département Informatique, Université Paris 12,
61 av. Général de Gaulle, 94010 Créteil, France
verlan@univ-paris12.fr

TUCS Technical Report

No 862, January 2008

Abstract

Maximally parallel multiset rewriting systems (MPMRS) present a convenient
way to express relations between unstructured objects. Thefunctioning of various
computational devices may be expressed in terms of MPMRS (e.g. register ma-
chines and many variants of P systems). In particular, this means that MPMRS are
computationally complete; however, a direct translation leads to quite a big num-
ber of rules. Like for other classes of computationally complete devices, there
is a challenge to find a universal system having the smallest number of rules. In
this article we present different rule minimization strategies for MPMRS based on
encodings and structural transformations. We apply these strategies to the trans-
lation of a small universal register machine (Korec, 1996) and we show that there
exists a universal MPMRS with 23 rules. Since MPMRS are identical to a re-
stricted variant of P systems with antiport rules, the results we obtained improve
previously known results on the number of rules for that systems.

Keywords: Multiset rewriting, Universal computations, Small Register Machines,
P Systems, Symport, Antiport

TUCS Laboratory
Computational Biomodelling Laboratory

1 Introduction

Multiset rewriting presents a convenient way to express chemical reactions. In-
deed, there is a direct correspondence between chemicals, represented by multi-
sets, and the reactions, represented by multiset rewriting. Some additional prop-
erties of the reactions’ environment might be expressed by an additional control
over the rewriting. This idea was heavily exploited and different multiset rewriting
systems were proposed, we only mention here the Chemical Abstract Machine,
CHAM, introduced in [3] and the Gamma language, first considered in [1] (see
also a survey in [2]).

One of natural controls that can be added to the multiset rewriting is the maxi-
mal parallelism. This roughly corresponds to the idea of waiting until the chemical
system reaches a stable state,i.e., no more rules can be applied, for a particular
step. More formally, during a rewriting step of a maximally parallel multiset
rewriting system (MPMRS) all rules that can be applied should be applied.

MPMRS systems serve as a basis for P systems that were introduced by Gh.
Păun in [8] as distributed parallel computing devices of biochemical inspiration.
These systems are inspired from the structure and the functioning of a living cell.
The cell is considered as a set of compartments (regions) nested one in another
and which contain objects and evolution rules. Membranes are separators of re-
gions; they may serve as communication channels between theregions. The basic
framework specifies neither the nature of these objects, northe nature of rules.

Numerous variants specify these two parameters by obtaining many different
models of computing, see [12] for a comprehensive bibliography. One of these
variants, P systems withsymport/antiport, was introduced in [7]. This variant
uses one of the most important properties of P systems: the communication. This
property is so powerful, that it suffices by itself to reach the computational power
of Turing machines only by moving objects between the regions. These systems
have two types of rules: symport rules, when several objectsgo together from one
region to another one, and antiport rules, when several objects from two regions
are exchanged. In spite of a simple definition, they may compute all Turing com-
putable sets of numbers, [7]. Several subsequent works havebeen dedicated to
improve this result with respect to both the number of membranes used and the
size of symport/antiport rules used inside the membranes. We refer to [10] for a
survey of these investigations.

Since symport/antiport systems compute all recursively enumerable sets of
numbers, it is possible to construct a universal symport/antiport P system,i.e., a
fixed system that will compute any partially recursive function if a corresponding
input is provided. The article [4] constructs such a system having only 30 antiport
rules. This result is based on a result from [5] where a universal register machine
with 32 instructions is constructed.

Antiport P systems with one membrane (as considered in [4]) correspond in
a direct manner to maximally parallel multiset rewriting systems (MPMRS). In

1

fact, any exchange rule(u, out; v, in) of an antiport system becomes a multiset
rewriting rule u → v and in both cases the application of rules is maximally
parallel.

In this article we show that there is a universal MPMRS with 23rules. Thus
we improve the result from [4] and we obtain a universal antiport system with
the same number of rules. This result is quite astonishing, because the machine
from [5] that was the starting point of our construction has 25 computational
branches. We also present different rule minimization strategies for MPMRS
based on encodings and structural transformations. We alsocontinue the discus-
sion of the relation between the number of rules and their size started in [4].

2 Definitions

We recall here some basic notions of formal language theory we need in the rest
of the paper. We refer to [11], [9] for further details.

We denote byN the set of all non-negative integers. AmultisetS overO is a
mappingfS : O −→ N. The mappingfS specifies the number of occurrences of
each element ofS. The size of the multisetS is |S| =

∑
x∈O fS(x). An empty

multiset is represented byλ.
We use the ordinary set notation in order to specify a multiset. In this case we

either indicate the number of occurrences of each element asits power, or we give
the mapping functionfS. For example the multiset containing3 occurrences of
elementa, one occurrence of elementb and zero occurrences of elementc will be
specified as{a3, b} or a → 3, b → 1, c → 0. We shall also use a string notation
in order to specify a multiset. In this case we write all elements of the multiset
having a positive multiplicity in a string. For example, theprevious multiset will
be written asaaab or a3b.

The sum of two multisetsP andQ overV , denoted byP + Q, is a multiset
S such thatfS(a) = fP (a) + fQ(a) for all a in V . Similarly, the difference
of two multisetsP andQ, denoted byP − Q, is a multisetS havingfS(a) =
fP (a) 	 fQ(a) where	 is the positive subtraction. A projection of a multisetX

over a setO is denoted byπO(X).

2.1 Register machines

A deterministicregister machineis the following construction:

M = (Q, R, q0, qf , P),

whereQ is a set of states,R = {R1, . . . , Rk} is the set of registers,q0 ∈ Q is
the initial state,qf ∈ Q is the final state andP is a set of instructions (called also
rules) of the following form:

2

1. (p, [RkP], q) ∈ P , p, q ∈ Q, p 6= q, Rk ∈ R (being in statep, increase
registerRk and go to stateq).

2. (p, [RkM], q) ∈ P , p, q ∈ Q, p 6= q, Rk ∈ R (being in statep, decrease
registerRk and go to stateq).

3. (p, 〈Rk〉, q, s) ∈ P , p, q, s ∈ Q, Rk ∈ R (being in statep, go toq if register
Rk is not zero or tos otherwise).

4. (p, 〈RkZM〉, q, s) ∈ P , p, q, s ∈ Q, Rk ∈ R (being in statep, decrease
registerRk and go toq if successful or tos otherwise).

5. (qf , STOP) (may be associated only to the final stateqf).

We note that for each statep there is only one instruction of the types above.
A configuration of a register machine is given by the(k + 1)-tuple(q, n1, · · · ,

nk), whereq ∈ Q andni ∈ N, 1 ≤ i ≤ k, describing the current state of the
machine as well as the contents of all registers. A transition of the register machine
consists in updating/checking the value of a register according to an instruction of
one of types above and by changing the current state to another one. We say that
the machine stops if it reaches the stateqf . We say thatM computes a valuey ∈ N

on theinput x ∈ N if, starting from the initial configuration(q0, x, 0, · · · , 0), it
reaches the final configuration(qf , y, 0, · · · , 0).

It is well-known that register machines compute all partialrecursive functions
and only them, [6]. For everyn ∈ N, with every register machineM havingn reg-
isters, ann-ary partial recursive functionΦn

M is associated. LetΦ0, Φ1, Φ2, · · · ,

be a fixed admissible enumeration of the set of unary partial recursive functions.
Then, a register machineM is said to bestrongly universalif there exists a recur-
sive functiong such thatΦx(y) = Φ2

M(g(x), y) holds for allx, y ∈ N.
We also note that the power and the efficiency of a register machine M de-

pends on the set of instructions that are used. In [5] severalsets of instructions
are investigated. In particular, it is shown that there are strongly universal regis-
ter machines with 22 instructions of form[RiP] and〈RiZM〉. Moreover, these
machines can be effectively constructed.

Figure 1 shows this special universal register machine (more precisely in [5]
only a machine with 32 instructions of type[RkP], [RkM] and 〈Rk〉 is con-
structed, and the machine below may be simply obtained from that one).

Here is the list of rules of this machine.
(q1, 〈R1ZM〉, q3, q6) (q3, [R7P], q1) (q4, 〈R5ZM〉, q6, q7)
(q6, [R6P], q4) (q7, 〈R6ZM〉, q9, q4) (q9, [R5P], q10)
(q10, 〈R7ZM〉, q12, q13) (q12, [R1P], q7) (q13, 〈R6ZM〉, q33, q1)
(q33, [R6P], q14) (q14, 〈R4ZM〉, q1, q16) (q16, 〈R5ZM〉, q18, q23)
(q18, 〈R5ZM〉, q20, q27) (q20, 〈R5ZM〉, q22, q30) (q22, [R4P], q16)
(q23, 〈R2ZM〉, q32, q25) (q25, 〈R0ZM〉, q1, q32) (q27, 〈R3ZM〉, q32, q1)
(q29, [R0P], q1) (q30, [R2P], q31) (q31, [R3P], q32)
(q32, 〈R4ZM〉, q1, qf)

3

Figure 1: Flowchart of the strongly universal machineU22

4

2.2 Maximally parallel multiset rewriting system

A maximally parallel multiset rewriting system(MPMRS) is the construct

γ = (O, I,P),

whereO is an alphabet,I is the initial multiset andP is a set of multiset rewriting
rules (productions) of formu → v, u ∈ O+, v ∈ O∗. We say that a ruler ∈ P,
r : u → v is applicableto a multisetX ∈ O+ if X ⊇ u. Similarly, a set of rules
ri : ui → vi, 1 ≤ i ≤ n is said to be applicable toX if X ⊇

∑
1≤i≤n ui. We now

define theapplicationof a ruler ∈ P to a multisetX ∈ O+ which produces a
new multisetY ∈ O∗; this is denoted byX

r
→ Y . More exactly,

X
r
→ Y ⇐⇒ Y = X + u − v andr is u → v.

A maximally parallel transition, written asX ⇒ Y , is performed if there are
multisetsX1, · · · , Xn−1, n > 0 such thatX

r1→ X1
r2→ X2

r3→ · · ·
rn−1

→ Xn−1
rn→ Y

andr1, · · · , rn is a non-deterministically chosen maximally parallel set of rules
applicable toX, i.e., there is nor ∈ P such thatr, r1, · · · , rn is applicable toX.
In a more formal way,

•
n∑

i=1

ui ⊆ X,

• X − (
n∑

i=1

ui) 6⊆ u for all rules(u → v) ∈ P,

• Y = (X − (
n∑

i=1

ui)) +
n∑

i=1

vi.

The first condition indicates that these rules are applicable in parallel,i.e., the
the rules rewrite disjoint submultisets ofX. The second condition is maximality:
no other rule is applicable in parallel with them.

By ⇒∗ we denote the reflexive and transitive closure of⇒.
We may perform a maximally parallel transition on a multisetX ∈ O∗ using

the following algorithm.

Algorithm 1

Initially the listL ∈ P∗ is empty and the multisetX ′ overO∪Ō is
equal toX. Consider also the unmarking functionu(ā) = a, u(a) =
a, a ∈ O and its extension to multisets. ConsiderP̄ = {u → v̄ | u →
v ∈ P} and suppose that rules from̄P are ordered with respect to a
total order<.

5

1. Take (non-deterministically) a ruler ∈ P̄ applicable toX ′ (r :
u → v̄).

2. If the previous step was successful then updateX ′ and L:
X ′ = X ′ − u + v̄ andL = L, r. After that go to step 1.

3. If no rule inP̄ is applicable toX ′, inspectL = r1, · · · , rl, l > 0.
If the rules appear inL according to the order<, i.e. ri 6< rj

wheni > j, then putY = u(X ′) and return true.

4. Otherwise, fail and return false.

It is clear thatX ⇒ Y is a maximally parallel transition. We also define the
set

NEXT (X) = {Y | algorithm 1 returns true andY on inputX}.

We define the set ofsentential forms(called alsoconfigurations) SF (γ) as

SF (γ) = {w | I ⇒∗ w}.

We introduce the following additional notions. Thesizeof a ruleu → v is
|uv|, i.e., the size of the multisetuv. Let Ō = {ā | a ∈ O} be the set of marked
symbols fromO andu be the unmarking morphism defined as in Algorithm 1. We
say that a multisetX overO ∪ Ō is stable if no rule can be applied to it:u 6⊆ X

for all (u → v) ∈ P.
The result of the computation ofγ is defined as

L(γ) = {w | I ⇒∗ w andw is stable}.

2.3 State configurations

Now we distinguish an alphabetR ⊆ O that we call the alphabet ofregistersor
thedataalphabet. Astateconfiguration is the projection of a configuration over
O \R (hence the registers alphabet is not a part of the state configuration). A state
configurationB is reachablein one step from the state configurationA if there
are multisetsR′, R′′ overR such that there exists a maximally parallel transition
AR′ ⇒ BR′′. We will denote this byA V B. We remark that there might be sev-
eral configurations reachable in one step from a particular configurationA. In the
general case, the number of possible state configurations isnot bounded, however
we would like to consider MPMRS with a finite number of state configurations.

A finite state maximally parallel multiset rewriting systemFsMPMRS is a
tuple

γ = (O, R, Rt, I,P),

whereγ′ = (O, I,P) is a MPMRS which has a finite number of state configura-
tions, i.e., the projection ofSF (γ′) overO \ R is finite andRt ⊆ R (O are the

6

terminal alphabet of registers and the alphabet of registers respectively. Moreover,
we require that for any ruler ∈ P, r : u → v, u must contain at least one symbol
from O \ R.

We would like to note that FsMPMRS correspond to the paradigmof the com-
putation where the control (the program) is separated from the data. In our case
the state configurations correspond to the program and the projection of a config-
uration toR corresponds to the data. Moreover, the restriction on the rules implies
that the data cannot evolve by itself. This is a quite standard assumption. In par-
ticular, in case of register machines there is a strict separation between states and
registers, and the registers cannot evolve by themselves.

The result of the computation ofγ is the projection ofL(γ′) overRt:

L(γ) = πRt
(γ′).

We say that a ruleu → v is apure staterule if u contains no symbols fromR,
otherwise we call it aregister-dependentrule.

The set of state configurations of a FsMPMRS may be computed iteratively as
follows:

1. C0 = {I}.

2. Ci+1 = Ci ∪ πO\R(Y), whereY ∈ NEXT (X + R∞) for all X ∈ Ci.

We remark thatNEXT (X + R∞) is finite because there are no rules that
involve only registers. In fact,NEXT (X + R∞) may be obtained by comput-
ing NEXT (X) for a system where register symbols in the rules are ignored.
Moreover, we notice that actual infinity of register symbolsis not needed, since
the maximal number of them that can be consumed does not exceed the maximal
number of register symbols that appear in the left hand side of a rule, multiplied
by size ofX. Therefore, when speaking about applicability of rules without wor-
rying about the register symbols, we will writeX + R∞, in the context of these
observations.

2.3.1 Graphical notation.

We introduce a graphical notation for FsMPMRS. We representa state configu-
ration by a filled square. We also suppose that pure state rules precede register-
dependent rules. Now, in order to represent the relations between state configura-
tions we will depict the relationV by graphically representing the functioning of
Algorithm 1. We take a state configurationX and apply the algorithm for the mul-
tisetX + R∞. It is clear that for any positive run of the algorithm that returns the
multisetY with L = r1, · · · , rn the equationX +R∞ r1→ X1

r2→ X2
r3→ · · ·

rn→ Xn

holds, whereu(Xn) = Y . More precisely, multisetsXi overO ∪ Ō, 1 ≤ i ≤ n

are obtained in the second step of the algorithm. We take the projection over

7

O ∪ Ō \ (R ∪ R̄) of each of these intermediate multisets and represent it by a
circle. We also draw an arrow labelled byri between circles corresponding to
πO∪Ō\(R∪R̄)(Xi−1) andπO∪Ō\(R∪R̄)(Xi). Finally, we attach by a line the circle
corresponding to a configurationZ to the squareu(Z). If all circles attached to a
square represent multisets overO∪ Ō that are not stable with respect to pure state
rules, such square is not filled.

The final diagram is obtained by repeating the above construction for all pos-
sible runs of the Algorithm 1 and for all state configurations. We recall that there
is a finite number of state configurations and a finite number ofpossible runs of
the Algorithm 1, hence the above process will stop at some moment.

Example 1 Consider the following systemγ = ({A, B, C, D}, {E, F}, {F},
{AABEE},P), whereP contains the following rules:

r1 : AB → C

r2 : AE → D

r3 : DC → AABF

Clearly, the systemγ is a FsMPMRS that computes the language{FF}. In-
deed, there are three state configurationsAAB, AC and CD and there are no
rules involving onlyE or F in the left-hand side. In a graphical way this system
is represented as follows:

The graphical notation described above not only describes the functioning of
Algorithm 1, but also gives a tool which may be used for the description of the
evolution of the system. Consider an arbitrary transitionX ⇒ Y corresponding to
a parallel application of rulesr1, · · · , rn. If X

r1→ X1
r2→ · · ·

rn→ Xn = Y , this can
be graphically followed as a path from a square corresponding toπO\R(X), going
through circles corresponding toπO∪Ō\(R∪R̄)(Xi), 1 ≤ i ≤ n, and the last one
is attached to a square corresponding toπO\R(Y). The maximality of parallelism
should translate in the following way: no rules corresponding to arrows from the
circle corresponding toπO∪Ō\(R∪R̄)(Xn) should be applicable toXn.

Therefore, applying any maximally parallel transition to aconfigurationX

means to start from the squareπO\R(X) and follow arrows to circles as long as
possible, keeping track of symbols fromR; when it is no longer possible, consider
the square to which the last circle is attached.

8

Taking into account this description, we can simplify the diagram from the
example above by the following observation. For any configuration X having
πO\R(X) = AAB, if rule r2 is not applicable from the circleAC̄, then it will not
be applicable from the squareAC because otherwise it would be applied in the
previous step. Hence, it may be eliminated:

This can be formalized as follows.

Proposition 1 If the following conditions hold:
• Let A be a state configuration andB and C be two state configurations

reachable in one step fromA.

• There is a path (a sequence of rules) obtained by Algorithm 1A + R∞ →∗

B′ r1→ · · ·
rn→ C ′ such thatπO\R(u(B′)) = B andπO\R(u(C ′)) = C.

• There is no state configurationD other that those on the mentioned path,
such thatB is reachable in one step fromD.

Then the path labelled byr1, · · · , rn leading fromB to C may never be involved
in a computation and it may be eliminated from the diagram.

3 The Basic Simulation Technique
In this section we concentrate on a simple simulation of register machines by
FsMPMRS. This simulation is done as follows. We represent a current configura-
tion of a register machineM by a multiset (initiallyI). In particular, the contents
of a registerRk ∈ R is represented by the number of symbolsRk which are
present. The simulation of any incrementing or decrementing instruction ofM is
done by an appropriate set of rules.

In order to construct a MPMRS with a small number of rules we shall follow
ideas presented in [4]. We take them as a starting point and after that we consider
different minimization strategies that will decrease the number of used rules.

The system from [4] is based on a simulation of a special universal register
machineU32 having 32 instructions taken from [5]. This construction may be
rewritten in terms of[RiP] and 〈RiZM〉 instructions, which gives 22 rules (9
incrementing instructions and 13 decrementing), see Figure 1.

The basic simulation strategy consists in a simulation of rules of an arbitrary
register machine by multiset rewriting rules using the smallest number of the latter

9

ones. Any incrementing rule(q, [RkP], q1) of register machine can be directly
simulated by the rule

q → Rkq1, (1)

This corresponds to the following flowchart:

Any decrementing rule(q, 〈RiqZM〉, q1, q2) can be simulated using five rules:

q → q′Cq,

q′ → q′′, CqRiq → C ′
q, (2)

q′′Cq → q1, q′′C ′
q → q2

This corresponds to the following flowchart:

This simulation is done as follows. Symbolq introduces symbolsq′ andCq

(the last one is called thecheckerfor the stateq).
After that symbolCq tries to decrease registerRiq and if it succeeds then it

becomesC ′
q. Now, depending on this information symbolq′′, which replacedq′,

will choose the corresponding new state.
The choice between configurationsq′′Cq andq′′C ′

q depends on the presence of
symbolRiq , i.e., if registerRiq is zero.

Applied toU32 this translation gives a FsMPMRS with 73 rules. We remark
that these rules are of size at most 3. In the following sections we show different
techniques which reduce the number of rules for the price of increasing their size.

4 Basic minimization strategies

In this section we present two basic minimization strategies. One of them is based
on structural improvements and the other one is based on encodings. We present
them in a general form and after that we show how they apply to the system that
simulatesU32.

10

4.1 State Elimination

This minimization strategy performs an elimination of linear fragments in the
flow-chart (by performing a kind of speed-up). Suppose that there are follow-
ing two pure state rules,r1 = (q1 → q2) andr2 = (q2 → q3Rk). This corresponds
to the flowchart in the picture.

We observe that rulesr1 andr2 may be combined and stateq2 may be elim-
inated by introducing a new ruler = (q1 → q3Rk). In a similar way, any lin-
ear chain of pure state rules may be collapsed to a single rule(the size may be
increased for each additional rule). We shall further referto this technique as
intermediate state elimination.

ForU32 we observe that using intermediate state elimination technique we can
reduce (2) to following rules (we also renamedq′ by q):

q → q′, CqRiq → C ′
q, (3)

q′Cq → q1Cq1
, q′C ′

q → q2Cq2

Graphically this can be represented as follows:

Moreover, we observe that forU32 in a most of the cases a decrementing in-
struction (q, 〈RkZM〉, q1, q2) is followed by an incrementing instruction
(q1, [Rk1

P], q3) or (q2, [Rk2
P], q4). Hence, one can simulate the incrementing

instruction during the simulation of the previous decrementing instruction (by
eliminating the unneeded state in between). For example, last two rules from (3)
become

q′Cq → q3Rk1
Cq3

, q′C ′
q → q4Rk2

Cq4
. (4)

Of course, this increases the size of rules up to 5.

4.2 Gluing rules

In this section we shall consider techniques that will minimize the number of
rules by performing more transitions between the configurations by fewer rules.

11

Informally, transitionsc1
r1
→ c2 andd1

r2
→ d2 can be performed by the same rule

X → Y if they are represented in a suitable way:c1 = cX, c2 = cY , d1 = dX,
d2 = cY . In this case, we say thatr1 andr2 may beglued. The following picture
illustrates this:

In a more formal way one have to find a suitable encoding of state configura-
tions such that:

• No state configuration is a submultiset of another state configuration.

• There should be at least 2 transitions that may be glued.

We would like to remark that it is only possible to glue transitions that in-
crement registers equivalently, in particular, transitions that do not increment any
register.

In what follows we apply the idea of gluing rules to the FsMPMRS system
obtained by the basic simulation technique.

4.2.1 Phases

Consider now the rules (3). If we represent the stateq by qS and the stateq′ by
qS ′ then the first rule from (3) may be glued for all statesq, i.e., instead of|Q|
rulesq → q′ we obtain one ruleS → S ′. We call the symbolS thephase, hence
there will be two phasesS andS ′. The rules from (3) are replaced by:

CqRiq → C ′
q, (5)

qS ′Cq → q1Cq1
, qS ′C ′

q → q2Cq2

Graphically this is represented at follows (where the double-headed arrow rep-
resents the ruleS → S ′ common for all simulation blocks):

12

4.2.2 Independent Checkers

Another minimization idea comes from the observation that the information en-
coded in the checkerCq from (5) is redundant. If we take the set of first rules
from (5) for all q ∈ Q, we observe that it is possible to glue rules that decrement
the same register in the following way. We encode the sequenceqCq, respectively
qC ′

q, by symbolsqCiq , respectivelyqC ′
iq

, whereiq is the number of the register
decreased by the instructionq of M . Now we may eliminate the first rule from (5)
by introducing rulesCiRi → C ′

i, 1 ≤ i ≤ |R|. By convention, we will say that a
stateq of machineM is encoded by symbolsqCiqS and we will say thatCiq is the
checker for the stateq. This transforms (5) into the following:

qS ′Cq → q1Cq1
, qS ′C ′

q → q2Cq2
, (6)

whereCiq1 and Ciq2 represent checkers for statesq1 and q2. Of cause this
introduces|R| new rules, but finally we gain more because of the eliminationof
one rule for eachq ∈ Q from (5).

Graphically this is represented at follows:

4.2.3 Remarks

The improvements toU32 simulation presented above where implemented in [4],
but they were classified in a different way. The cited articleconsiders the relation
between the size of rules and their number. In the table belowwe collect the results
obtained by using the techniques above, as well as results from paper [4] which
uses ideas similar to those used in the current and the next section (we underline
these results):

Size Number of rules
3 73
5 56
6 47
7 43
11 30

5 Further Minimization of U32 Simulation

In this section we show how to minimize the simulation ofU32. We start with the
simulation using rules (6) and we do structural improvements based on some ob-
servations on the functioning of the system. After that we show how to glue most
of the remaining rules by showing a suitable encoding of state configurations.

13

5.1 Structural improvements

The structural improvements presented in this section are in some sense a gener-
alization of the intermediate state elimination technique.

5.1.1 Reducing decoder block

The first important improvement may be done by considering the decoder part of
the machine from [5] (see the flowchart in Figure 1). In fact, this block does
a division of R5 by three. The result of this division is stored in registerR4

and according to the value of the remainder statesq23, q27 and q30 are chosen
respectively. This behavior may be simulated by 5 rules which try to decrease
registerR5 by 3 and make the choice depending on the result of this subtraction.
The stateq16 is now encoded byq16C5C5C5S.

C5R5 → C ′
5,

q16C5C5C5 → q23C2, q16C5C5C
′
5 → q27C3 (7)

q16C5C
′
5C

′
5 → q32C4R3R2, q16C

′
5C

′
5C

′
5 → q16C5C5C5R4

We note that we combined 2 addition instructions in the thirdbranch using
the elimination of intermediate states (q30 andq31) by the mechanism discussed
above. The subtraction by 3 is done using the maximal parallelism which permits
to apply the ruleC5R5 → C ′

5 three times if there are 3 copies ofR5. In [4] the
idea of checking several registers at the same time is developed in more details,
however here we will use another structural idea which is more efficient.

We integrally present the obtained flowchart in Figure 2. We use following
conventions. The double-headed arrow represents the ruleS → S ′ that changes
the phase. Rules that decrement registers (CiRi → C ′

i) are represented by ar-
rows starting with a perpendicular bar and labelled byD0–D7 enclosed in circle.
Rules that increment registers are depicted by arrows with adashed line and the
incremented register(s) are depicted beside the line. These rules are labelled by a
letter enclosed in a diamond. All other rules (which do not increment/decrement
registers) are labelled by a number enclosed in a square.

5.1.2 State Elimination for Decrementing Rules

If we look at the flowchart in Figure 2 we observe that rulesD0–D3 andD7 are
used only once. This gives the possibility to combine these rules with rules that
follow them using the state elimination technique. For example, the transforma-
tion done by rule 9 may be done directly in ruleD2. However, in this case we
reach the configurationq32C4S

′ instead ofq32C4S because the ruleS → S ′ is per-
formed independently. We may solve this issue by introducing 3 phases instead
of 2. In this case, phase 2 (marked byS ′) will be treated analogously to phase
1 (marked byS) and the move to the next state will be done in phase 3 (marked

14

Figure 2: Multiset rewriting flowchart ofU32 with improved decoder block

by S ′′). Moreover, the phase change may still be done by one rule. For this it is
enough to replaceS by XXX, S ′ by XXT andS ′′ by XTT and the ruleS → S ′

by the ruleXX → XT . These changes permit to save 3 rules because ruleD1 is
a special case and it cannot be be combined with ruleh. However, we can include
the increment ofR7 in rule D1, in this case ruleh becomes a non-incrementing
rule and it will be labelled by1a.

The new flowchart is shown in Figure 3. We still depict phases by symbolS
with primes because of the lack of the space. However, it is clear that the above
substitution shall be done.

5.2 Encoding optimization

In this section we show how using the gluing minimization strategy the number
of rules may be substantially decreased.

From Figure 3 we can see that transitionsa, b andd may be potentially glued
together as well as transitions labelled by numbers. All other rules are not eligible

15

Figure 3: Multiset rewriting flowchart ofU32 with 3 phases

for gluing. Consider the part of the flowchart that involves transitions labelled by
numbers and all corresponding phases. Figure 4 depicts this. We denote rules that
apply in parallel by drawing corresponding arrows beside each other and we do
not show theS ′ phase (because in our case it differs from theS ′′ phase only by
the phase symbol).

We remark that all rules labelled by numbers change the phasefrom S ′′ to
S. We call such rulesphase changingrules, in contrast tonon-phaserules like
S → S ′ (andS ′ → S ′′) or CiRi → C ′

i. It is clear that non-phase rules may
performed in parallel to each other or to a phase changing rule.

We found two strategies that permit to create suitable encodings in order to
glue rules:

• End of phase discrimination.

• Maximally parallel unification.

The first strategy consists in assigning one phase changing rule per each arrow
that enters a node with the maximal number of entering arrows. After that all

16

Figure 4: Part of the multiset rewriting flowchart ofU32 showing only rules la-
belled by numbers.

other arrows are identified with one of the obtained arrows and the corresponding
encoding is deduced.

The second technique permits to reduce the number of phase changing rules
in the maximal node (and potentially in some other distant nodes). This technique
is based on the fact that any number of phase changing rules that enter a nodeU
may be reduced to only two rules, one phase changing and one non-phase rule.
More precisely, we number rules from0 to k, wherek is the number of entering
phase changing rules and denote byUj , 0 ≤ j ≤ k corresponding nodes. After
that we introduce new special symbolsAjBk−j in the encoding ofUj . We also
consider thatBk is a part of the encoding ofU . Such an encoding permits to make
the transition from any ofUj , 0 ≤ j ≤ k to U by applying an appropriate phase
changing rule and several parallel applications of the non-phase ruleA → B.

However, this technique has some limitations. In fact, it isapplicable only if
rules that are glued are preceded by rules that introduce thedifference between
encodings which is subject to the non-phase rule (the symbols A andB). In the
case of our system, inherited from the basic simulation ofU32, this must be a rule
that decrements a register. This is due to the fact that the non-phase rule may be
applied in parallel to any other rule, so corresponding symbols must be introduced
just before making the last step, namely during phase 2. If these symbols are in-
troduced during phase 1, then in the case if corresponding computational branch is
not chosen, for example if register is zero, then a wrong encoding (corresponding
to some other state) is produced.

After applying all considerations above we found an encoding of the part of
the flowchart represented in Figure 4 that permits to perform9 rules (labelled by
numbers) by only 3 new rules. This encoding is shown in Figure5 and it is based
on 2 phase changing rulesA = (IS ′′ → JS) andB = (JJMS ′′ → JJNS) and

17

Figure 5: Part of the multiset rewriting flowchart ofU32 showing only glued rules
and the corresponding encoding.

on one non-phase ruleC = (LP → LQ).
It was done as follows. The nodeq1C1S has the maximal number of entering

arrows, hence we try to keep only the 4 rules that enter this node (10, 1a, 6 and 4)
and express all other rules in their terms. However, before doing this it is better to
apply the maximally parallel unification of the above 4 rules. We remark that rules
10, 1a and 6 exit from states reached by a decrement rule, while the rule 4 exits a
state that is not reached by a decrement rule. Hence, we need two phase changing
rules to perform rules 6 and 4. We denote them byB andA respectively. Rules
1a and 10 are performed by the combinationB + C andB + C + C respectively.
We recall that ruleC is performed in parallel to any other rule.

Figure 6 shows the flowchart obtained after applying all ideas mentioned be-
fore. Arrows ending with a diamond correspond to ruleC, while arrows ending
with square correspond to ruleA. The sparse arrow corresponds to ruleB.

6 Formal Description of the System

In this section we give the formal description of the obtained system.
We constructed the systemγ = (O, R, {R1}, I,P), where

O = R ∪ {C3, C
′
5, C

′
6} ∪ {q16, q27} ∪ {T, I, J, K, L, M, N, O, P, Q, T, X},

R = {Ri | 0 ≤ i ≤ 7},

I = LQLQJJNXXXRi0
0 · · ·Ri7

7 .

Herei0, · · · , i7 is the contents of registers0 to 7 of U32 andLQLQJJNXXX is
the encoding of the initial stateq1C1S. The table below gives the set of rulesP.

18

phase XX → XT

D0 IJKPQR0 → LQLQJJM

D1 LQLQJJNR1 → LPLPJJMR7

D2 IIKPQR2 → JJKPQ

D3 q27C3R3 → JJKPQ

D4 JJKR4 → JJLLM

D5 JJOR5 → C ′
5

D6 IJLR6 → C ′
6

D7 IILQLQNR7 → IJLOR1

A ITT → JXX

B JJMTT → JJNXX

C LP → LQ

a LQLQJJNTT → JJLOR6XX

b LC ′
5TT → JJLOR6XX

c OC ′
6TT → IILQLQNR5XX

d QLQNC ′
6TT → JJKQQR6XX

e q27C3TT → LQLQJJNR0XX

f q16JJOC ′
5C

′
5TT → LQLQJJNR2R3XX

g q16C
′
5C

′
5C

′
5TT → q16JJOJJOJJOXX

5 JJKQQTT → q16JJOJJOJJOXX

8 q16JJOJJOJJOTT → IIKPQMXX

12 q16JJOJJOC ′
5TT → q27C3XX

7 Conclusions

In this article we have investigated maximally parallel multiset rewriting systems
(MPMRS) which correspond in a direct way to antiport P systems with one mem-
brane. We constructed a universal MPMRS that computes any partially recursive
function providing that the input is the encoding of a register machine computing
the corresponding function as well as the value to be computed. Our construc-
tion uses 23 rules. This result is quite astonishing, because the machine from [5]
that was the starting point of our construction uses 25 computational branches.
This means that some branches in [5] do the same thing and are maybe redundant.
Hence the result of this paper may possibly help to decrease the number of rules
for universal register machines.

We also presented two different minimization strategies for MPMRS based
on structural transformations (on the elimination of intermediate states) and on
encodings (gluing rules) and discussed how their consequent application may de-
crease the number of rules in the simulation ofU32. These strategies may help to
design more compact MPMRS and we leave the question open about a smaller
number of rules for a universal MPMRS (or antiport P systems with one mem-

19

brane). Moreover, we observed a trade-off between the number of rules and their
size (also observed in [4]) and we think that a further study of the relation between
the size of rules and their influence on different minimization strategies (and of
course their number) is interesting.

Acknowledgments The first author acknowledges support by Academy of Fin-
land, project 203667, and the by the Science and Technology Center in Ukraine,
project 4032.

Figure 6: Multiset rewriting flowchart ofU32 with glued rules.

References

[1] J.P. Banâtre, A. Coutant, D. Le Métayer, A parallel machine for multiset
transformation and its programming style, Future Generation Computer Sys-
tems, 4 (1998), 133-144.

20

[2] J.P. Banâtre, P. Fradet, D. Le Métayer: Gamma and the Chemical Reac-
tion Model: Fifteen Years After. In C.S. Calude, Gh. Păun, G. Rozenberg,
A. Salomaa (Eds.),Multiset Processing. Mathematical, Computer Science
and Molecular Points of View. Lecture Notes in Computer Science, 2235,
Springer, 2001, 17–44.

[3] G. Berry, G. Boudol, The chemical abstract machine,Theoretical Computer
Science96, (1992), 217–248.

[4] E. Csuhaj-Varju, M. Margenstern, G. Vaszil, S. Verlan: Small Computation-
ally Complete Symport/Antiport P systems,Theoretical Computer Science
372(2-3), (2007) 152–164.

[5] I. Korec: Small universal register machines,Theoretical Computer Science
168, (1996), 267–301.

[6] M. Minsky: Computations: Finite and Infinite Machines. Prentice Hall,
Englewood Cliffts, NJ, 1967.

[7] A. Păun, Gh. Păun: The power of communication: P systems with sym-
port/antiport.New Generation Computing20(3), (2002), 295–305.

[8] Gh. Păun: Computing with membranes.Journal of Computer and System
Sciences61(1), (2000), 108–143.

[9] Gh. Păun:Membrane Computing. An Introduction. Springer-Verlag, 2002.

[10] Yu. Rogozhin, A. Alhazov, R. Freund: Computational power of sym-
port/antiport: History, advances and open problems. In R. Freund, Gh. Păun,
G. Rozenberg, A. Salomaa (Eds.),Membrane Computing, 6th International
Workshop, Vienna, Austria, July 18-21, 2005, Revised Selected and Invited
Papers, Lecture Notes in Computer Science3850, Springer (2006), 1–30.

[11] G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages. Vol.
I-III., Springer, 1997.

[12] The P systems web page.http://psystems.disco.unimib.it/.

21

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology

• Department of Mathematics

Åbo Akademi University
• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 978-952-12-2021-0
ISSN 1239-1891

