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Abstract

The possibilistic risk premium is defined in a possibilistic context, made by a
utility function, a fuzzy number and a weighting function. This notion measures
the aversion to the possibilistic risk. The main result of the paper is a Pratt–type
theorem on the possibilistic risk aversion. This result, combined with the Pratt
theorem leads to a surprising conclusion: the aversion to the probabilistic risk is
equivalent with the aversion to the possibilistic risk.
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1 Introduction

Risk aversion is traditionally treated in probabilistic terms. An agent, represented
by a utility function is confronted with a random phenomenon (e. g. a lottery),
represented by a random variable. Therefore the framework in which the risk
aversion is studied consists of a utility function u and a random variable. In this
context we define the notions of risk premium which expresses the agent’s u aver-
sion towards X . The probabilistic risk premium is expressed with help of the
Arrow–Pratt index associated with a utility function u and a random variable.
Therefore the framework in which the risk aversion is studied consists of a utility
function u and a random variable. In this context, we define the notion of risk
premium, which expresses the agent’s u aversion towards X . The probabilistic
risk premium is expressed with help of the Arrow–Pratt index associated with a
utility function u ([1], [10], [12]).

A Pratt theorem [12] shows that the comparison of the risk aversion repre-
sented by the utility functions u1, u2 is equivalent with the comparison of the
Arrow–Pratt indices of u1, u2.

The comparison of the Arrow–Pratt indices is an analytical condition which
appears both in the Pratt theorem and also in our result. Then, by combining the
two results, one obtains a fact which has a remarkable significance: the proba-
bilistic risk aversion is equivalent with the possibilistic risk aversion.

In Section 2 there is recalled the expected value Ef (A) and the variance
V arf (A) of a fuzzy number A with respect to a weighting function f . Besides
them there is considered the possibilistic indicator V ar∗f (A) related with V arf (A)
but different from it. A possibilistic form of Jensen inequality is proved.

Section 3 presents definitions and the calculation of the possibilistic risk pre-
mium and the Pratt theorem.

In Section 3 there is proved a possibilistic form of the Pratt theorem, by us-
ing the possibilistic Jensen inequality. Theorem 4.5 obtained by combining this
result with the Pratt theorem establishes the equivalence of four properties: the
probabilistic risk aversion, the possibilistic risk aversion, a concavity condition
and analytical condition of the Arrow–Pratt indices.

2 Possibilistic indicators of fuzzy numbers

In this section we shall recall the definition and some properties of some possi-
bilistic indicators of fuzzy numbers [2], [3], [4], [5], [7], [11]. At the same time,
we shall prove a possibilistic version of the probabilistic Jensen inequality (see
[9], p. 201).

Let A be a fuzzy number. Let γ ∈ [0, 1]. The γ–level set of A is defined by

[A]γ =

{
{x ∈ R|A(x) ≥ γ} ifγ > 0

cl{x ∈ R|A(x) > 0} ifγ = 0
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The cl{x ∈ R|A(x) > 0} means the closure of {x ∈ R|A(x) > 0} means
the closure of {x ∈ R|A(x) > 0} in R. [A]γ is a compact and convex subset of R.
If we denote a1(γ) = min[A]γ and a2(γ) = max[A]γ then [A]γ = [a1(γ), a2(γ)]
for all γ ∈ [0, 1].

We fix a fuzzy number A.
A non–negative and monotone increasing function f : [0, 1] → R is a weight-

ing function if
∫ 1
0 f(γ)dγ = 1.

The expected value of A with respect to a weighting function f is defined by
(1) Ef (A) =

∫ 1
0

a1(γ)+2(γ)
2

f(γ)dγ.
If f(γ) = 2γ then Ef (A) coincides with the possibilistic mean value intro-

duces in [2]. By considering a real number r as a degenerate fuzzy number, one
notices that E(r) = r.

Let g : R → R be a continuous function.Then g(A) : R → R is defined by
using the Zadeh extension principle:

g(A)(y) =

{
sup A(x)f(x)=y if there existsx ∈ R such that f(x) = y

0 otherwise
The expected value of g(A) with respect to a weighting function f is intro-

duced by
(2) Ef (g(A)) =

∫ 1
0 [ 1

a2(γ)−a1(γ)

∫ a2(γ)
a1(γ) g(x)dx]f(γ)dγ.

The variance of A with respect to a weighting function f is defined by
(3) V arf (A) =

∫ 1
0

(a2(γ)−a1(γ))2

12
f(γ)dγ.

Remark 2.1 Consider the possibilistic variance σA = 1
2

∫ 1
0 (a2(γ) − a1(γ))2γdγ

of the fuzzy number A introduced in [2]. If we take f(γ) = 2γ for all γ ∈ [0, 1]
then V arf (A) = 1

3
σA.

Remark 2.2 In Definition 3 of [7], the variance of A with respect to f is defined
by V arf (A) =

∫ 1
0

(a2(γ)−a1(γ)2)
4

f(γ)dγ. The form of V arf (A) given in (3) can be
found in [11], p. 87. In this paper we shall use for V arf (A) the form (3).

Proposition 2.3 [7] Let A, B be two fuzzy numbers and λ, µ ∈ R. Then
Ef (λA + µB) = λEf (A) + µEf (B).

Lemma 2.4 Let g : R → R, h : R → R be two continuous functions. If g ≤ h
then Ef (g(A)) ≤ Ef (h(A)).

Proof. Assume g ≤ h. Then, for any γ ∈ [0, 1], we have∫ a2(γ)
a1(γ) g(x)dx ≤

∫
a2(γ)

a1(γ)
h(x)dx

.

Since a1(γ) ≤ a2(γ) and f ≥ 0, the following inequality holds:
[ 1
a2(γ)−a1(γ)

∫ a2(γ)
a1(γ) g(x)dx]f(γ) ≤ [ 1

a2(γ)−a1(γ)

∫ a2(γ)
a1(γ) h(x)dx]f(γ)

for each x ∈ [0, 1]. By taking into account (2), one obtains Ef (g(A)) ≤
Ef (h(A)).
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The following result is a possibilistic version of the probabilistic Jensen in-
equality. Its proof will be an adaptation of the proof in [9], p. 201, but it will use
the properties of the possibilistic expected value.

Proposition 2.5 If the function g : R → R is convex and continuous, then
g(Ef (A)) ≤ Ef (g(A)).

Proof. From the real analysis we know that if g is convex then there exist two
sequences of real numbers (an) and (bn) such that

(a) g(x) = sup
n

(anx + bn), for any x ∈ R.

Let n ∈ N. Then anx + bn ≤ g(x) for any x ∈ R. By Lemma 2.4 we get
Ef (anA + bn) ≤ Ef (g(A)).
Applying Proposition 2.3, Ef (anA + bn) = anEf (A) + bn, hence
(b) anEf (A) + bn ≤ Ef (g(A)) for all n ∈ N.
From (a) and (b) it follows
g(Ef (A)) = supn(anEf (A) + bn) ≤ Ef (g(A)).

Corollary 2.6 If the function g : R → R is concave and continuous then g(Ef (A)) ≥
Ef (g(A)).

Proof. It follows from Proposition 2.5 and from the fact that g is concave iff−g
is convexe. We consider the function g : R → R defined by g(x) = (x−Ef (A))2

for any x ∈ R. We denote
(4) V ar∗f (A) = Ef (g(A)) = Ef [(A− Ef (A))2]
Cf. (2) we have
(5) V ar∗f (A) =

∫ 1
0 [ 1

a2(γ)−a1(γ)

∫ a2(γ)
a1(γ) (x− Ef (A)2)dx]f(γ)dγ.

V ar∗f (A) can be considered a possibilistic indicator inspired by one of the
forms of the probabilistic variance. We shall observe that V arf (A) and V ar∗f (A)
are different. It is easy to notice that V ar∗f (A) ≥ 0.

Proposition 2.7 [8] V ar∗f (A) can be written under the following form:
(i) V ar∗f (A) = 1

3

∫ 1
0 [a2

1(γ) + a2
2(γ) + a1(γ)a2(γ)]f(γ)dγ − E2

f (A)

(ii) V ar∗f (A) = 4V arf (A)− E2
f (A) +

∫ 1
0 a1(γ)a2(γ)f(γ)dγ.

3 Probabilistic risk aversion
In this section we shall recall some notions and results regarding the ways the
risk aversion is evaluated probabilistically. They will be a starting point in the
treatment of the probabilistic risk aversion.

Let Ω be a set of states endowed with a probabilistic space (Ω, K, P ). Assume
that X : Ω → R is a random variable and u : R → R is a continuous function.
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Then u(X) = u◦X is a random variable and E(u(X)) denotes the expected value
of u(X). If X has a density function f : R → R then

E(u(X)) =
∫∞
∞ u(X)f(X)dX .

Throughout this section we shall assume that Ω = R and K is the Σ–algebra
B of Borelian subsets of R.

We consider an agent represented by a utility function u : R → R continuous
and strictly increasing.

Definition 3.1 Let X be a random variable with respect to (R,B). The prob-
abilistic risk premium ρX,u (associated with X and u) is defined by the identity
:

(1) E(u(X)) = u(E(X)− ρX,u)

Due to the injectivity of u, the probabilistic risk premium ρX,u is uniquely
determined by relation (1). The probabilistic risk premium ρX,u) expresses the
risk aversion of the agent represented by u with respect to the random variable X .
The bigger ρX,u is, the more risk–prone the agent is.

Proposition 3.2 [1] Assume that u is twice differentiable, strictly concave and
strictly increasing. Then

(2) ρX,u = −1
2
σ2

X
u′′(E(X))
u′(E(X))

,
where σ2

X is the variance of X .

In the following we shall assume that the utility function verifies the properties
of Proposition 3.2. The Arrow–Pratt index associated with the utility function u
is defined by

(3) rn(x) = −u′′(x)
u′(x)

for each x ∈ R.
Let u1, u2 be two utility functions. Let us denote by r1(x) = ru1(x) and

r2(x) = ru2(x) the Arrow–Pratt indices of u1 and u2.

Theorem 3.3 [12] The following assertions are equivalent:
(1) r1(x) ≥ r2(x) for each x ∈ R;
(2) u1 ◦ u−1

2 is concave;
(3) ρX,u1 ≥ ρX,u2 for any random variable X with respect to (R,B).

Remark 3.4 Suppose that agents 1 and 2 are represented by the utility functions
u1 and u2. By taking into account the interpretation of the probabilistic risk pre-
mium, condition (3) of Theorem 3.3 means that the agent 1 is more risk–prone
than the agent 2, with respect to any random variable X . In this case we shall de-
note u1 �probab u2 iff the Arrow–Pratt index of u1 is bigger than the Arrow–Pratt
index of u2. It follows that the Arrow–Pratt index is a measure of the probabilistic
risk aversion.
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4 Possibilistic risk aversion
In this section we shall prove a Pratt–type theorem [12] for the possibilistic risk
aversion premium associated with a fuzzy number, a utility function and a weight-
ing function (see [8]). By combining this result with the Pratt theorem for the
possibilistic risk one reaches a surprising result: the aversion to the probabilistic
risk is equivalent with the aversion to the possibilistic risk.

We consider an agent represented by a utility function u : R → R continuous
and strictly increasing. Then we can consider its inverse u−1 : Im(u) → R where
Im(f) = {u(x)|x ∈ R}.

We fix a weighting function f : [0, 1] → R.

Definition 4.1 [8] Let A be a fuzzy number. The possibilistic risk premium ρA =
ρA,f,u (associated with the fuzzy number A, the weighting function f and the
utility function u) is defined by the following equality:

(1) u(Ef (A)− ρA) = Ef (u(A)).

Since function u is injective, the possibilistic risk premium ρA is uniquely
determined by the equality (1). For the rest of the section we shall assume that the
utility function is twice differentiable, strictly concave and strictly increasing.

Proposition 4.2 [8] Let u be a utility function and A a fuzzy number. Then the
possibilistic risk premium ρA has the form:

(2) ρA = −1
2
V ar∗f (A)

u′′(Ef (A))

u′(Ef (A))

Remark 4.3 The possibilistic risk premium ρA expresses the risk aversion of the
agent represented by u with respect to the probabilistic distribution given by a
fuzzy number a and the weighting function f . The bigger ρA is, the more prone to
the possibilistic risk the agent is.

Recall from the previous section the form of the Arrow–Pratt index associated
with the utility function u:

(3) rn(x) = −u′′(x)
u′(x)

, for any x ∈ R.
Then the relation (2) becomes:
(4) ρA = 1

2
V ar∗f (A)r(Ef (A)).

Relation (4) shows that the possibilistic risk premium can be expressed func-
tion of the Arrow–Pratt index and the possibilistic indicators Ef (A) and V ar∗f (A).

The following result is the possibilistic aversion of the Pratt theorem:

Theorem 4.4 Let u1, u2 be two utility functions and r1 = ru1 , r2 = ru2 be the
Arrow-indices of u1 and u2. The following assertions are equivalent:

(1) r1(x) ≤ r2(x), for any x ∈ R;
(2) u ◦ u−1

2 is concave;
(3) For all fuzzy numbers A and weighting functions f , we have
ρA,f,u1 ≥ ρA,f,u2 .
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Proof. (1) ⇔ (2) By Pratt’s theorem:
(2) ⇒ (3) let ρi = ρA,f,ui

, i = 1, 2. Cf (1)
u1(Ef (A)− ρ1) = Ef (u1(A))
u2(Ef (A)− ρ2) = Ef (u2(A)).
By applying to these equalities the inverses u−1

1 , u−1
2 of u1 and u2 one deduces:

ρ1 = Ef (A)− u−1
1 (Ef (u1(A))

ρ2 = Ef (A)− u−1
2 (Ef (u2(A))

By subtracting these two inequalities one obtains:
(a) ρ1 − ρ2 = u−1

2 (Ef (u2(A))− u−1
1 (Ef (u1(A)).

Since u1 ◦ u−1
2 is concave, by applying Corollary 2.6 we have:

Ef (u1(A)) = Ef ((u1 ◦ u−1
2 )(u2(A)) ≤ (u1 ◦ u−1

2 )(Ef (u2(A))).
But u−1

1 is increasing, therefore:
u−1

1 (Ef (u1(A))) ≤ u−1
1 ((u1 ◦ u2−1)(Ef (u2(A))) = u−1

2 (Ef (u2(A))).
By taking into account (a) and the preceding inequality, it follows ρ1 ≥ ρ2.
(3)⇒ (1) Let x ∈ R. We consider a fuzzy number A and a weighting function

such that x = Ef (A). Cf. (4) we have:
ρA,f,u1 = 1

2
V ar∗f (A)r1(x)

ρA,f,u2 = 1
2
V ar∗f (A)r2(x)

Since V ar∗f (A) ≥ 0 and ρA,f,u1 ≥ ρA,f,u2 it follows r1(x) ≥ r2(x).

By combining Theorems 3.3 and 4.4 we obtain:

Theorem 4.5 Let u1, u2 be two utility functions and r1 = ru1 , r2 = ru2 the
Arrow–Pratt indices of u1 and u2. The following assertions are equivalent:

(1) r1(x) ≥ r2(x), for any x ∈ R;
(2) u1 ◦ u−1

2 is concave;
(3) For any random variable X with respect to (R,B), ρX,u1 ≥ ρX,u2;
(4) For all fuzzy numbers A and weighting functions f , we have:
ρA,f,u1 ≥ ρA,f,u2 .

If condition (4) of Theorem 4.5 holds, then we have u1 ≥posib u2 and we will
say that the agent represented by u1 is more risk–prone to the possibilistic risk
than the agent represented by u2.

Remark 4.6 The equivalence (3) ⇔ (4) of Theorem 4.5 gets the form:
u1 ≥probab u2 iff u1 ≥possib u2.

The significance of this inequality is remarkable: the probabilistic risk aver-
sion is equivalent with the possibilistic risk aversion.

Remark 4.7 The binary relation u1 ≥probab u2 is defined with respect to the set
of the fuzzy numbers.

An open problem is if the equivalence of Remark 4.6 still holds when instead
of fuzzy numbers we consider another class of possibilistic distributions.
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5 Concluding Remarks
This paper continues the study of the possibilistic risk aversion stated in [8]. By
establishing a possibilistic Pratt-type theorem, we can measure the possibilistic
risk aversion by the Arrow–Pratt index.

The proof of such a result was due to the fact that the indicators associated
with a fuzzy number (mean value, variance, etc.) have properties very similar to
the probabilistic case.

We consider the following directions in which this topic might be continued:
(1) By keeping the framework offered by a fuzzy number to obtain the pos-

sibilistic version of some results of probabilistic risk aversion (e. g. Ross theory
[13]).

(2) The treatment of the risk aversion of an agent with respect to a family of
possibilistic distributions (in particular the study of the dynamic possibilistic risk
aversion).

References
[1] K. J. Arrow. Essays in the theory of risk bearing. North Holland. 1970

[2] C. Carlsson, R. Fullér. On possiblistic mean value and variance of fuzzy
numbers. Fuzzy Sets and Systems, 122, 2001, 315–326

[3] C. Carlsson, R. Fullér. Fuzzy reasoning in decision making and optimization.
Studies in Fuzziness and Soft Computing Series, Vol. 82, Springer-Verlag,
Berlin/Heildelberg, 2002

[4] C. Carlsson, R. Fullér, P. Majlender. A possibilistic approach to selecting
portfolios with highest utility score. Fuzzy Sets and Systems, 131, 2002,
13–21

[5] C. Carlsson, R. Fullér, P. Majlender. Some normative properties of possi-
bility distributions in Proceedings of the Third International Symposium of
Hungarian Researchers in Computational Intelligence, Budapest, 2002, 61–
71

[6] D.Dubois, H.Prade, Possibility theory. Plenum Press, New York , 1988

[7] R. Fullér, P. Majlender. On weighted possibilistic mean and variance of fuzzy
numbers. Fuzzy Sets and Systems, 136, 2003, 363–374

[8] I. Georgescu, Possibilistic risk premium, Turku Centre for Computer Sci-
ence Technical Report 852, Turku, Finland

[9] J. Jacod, P. Protter, Probability essentials, Springer 2000

7



[10] J. J. Laffont, The economics of uncertainty and information, MIT Press,
Cambridge, 1993

[11] P. Majlender, A normative approach to possibility theory and decision sup-
port, Turku Centre for Computer Science PhD Thesis, 2004

[12] J. Pratt, Risk aversion in the small and in the large, Econometrica, 32, 1964,
122–130

[13] S. Ross, Some stronger measures of risk aversion in the small and in the
large with applications, Econometrica, 49, 1981, 621–638

[14] L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and
Systems, 1, 1978, 3–28

8
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