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Abstract

This paper studies for the case of discrete possibilistic distributions, two models:
one for possibilistic portfolios and one for the possibilistic risk aversion. The mathe-
matical treatment of the two models is based on the notion of quasi–mean value, an
indicator attached to a possibilistic distribution with a role similar with the one of the
mean value in probability theory.
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1 Introduction

Usually, phenomena which use the risk are studied by means of probability
theory [7]. The theory of probabilistic risk can be adequately applied for events
which occur with a sufficiently large frequency.

The probability theory initiated by Zadeh in [11] can be another way of
approaching the situations when the risk should be taken into consideration.

The probabilistic risk is studied by probabilistic concepts such as the mean
value, dispersion, covariance, etc. In possibility theory, the place of the random
variables is taken by possibilistic distributions. The probabilistic concepts of
mean value, dispersion, covariance should be replaced by corresponding concepts
in possibility theory. For the class of the fuzzy numbers, this desideratum has
been successfully achieved in [1], [2], [4], [5], [9].

There are important possibilistic distributions beside the class of the fuzzy
numbers (e. g. discrete possibilistic distributions). Therefore one imposes
to define some notions of mean value, dispersion, etc. for larger classes of
possibilistic distributions.

In [8] there has been introduced a notion of mean value of a normalized
possibilistic distribution. For a fuzzy number it does not coincide with the
mean value studied in [1] or [5].

At the same time, it does not verify the usual properties of mean values
(e. g. linearity). For the case of the discrete possibilistic distributions a very
interesting phenomenon appears. To a discrete possibilistic distribution µ one
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canonically associates a random variable Xµ, whose mean value E(Xµ) coin-
cides with the mean value of µ in the sense of [8]. This construction causes
a possibilistic model related to µ to be associated with a probabilistic model
expressed in terms of the random variable Xµ.

For example, a problem of possibilistic optimization can be replaced with a
problem of probabilistic optimization, equivalent with the first one. A solution
of the second one coincides with a solution of the first one.

This study deals with the mean value introduced in [8] and called by us the
quasi–mean value (since it has less properties than the usual mean value).

In Section 2, based on the notions of possibility and necessity measures it
is introduced the credibility measure [8]. Each possibility distribution µ on X
induces the notion of possibility Posµ and the necessity measure Necµ on X, by
meas of which we define a credibility measure Crµ. In this section, we establish
the form of Crµ for trapezoidal fuzzy numbers and for discrete possibilistic
distributions.

Section 3 contains the definition of the possibilistic quasi–mean value and
discusses it in the case of discrete possibilistic distributions. To a discrete pos-
sibilistic distribution µ one associates a discrete random variable whose mean
value coincides with the quasi–mean value of µ.

Section 3 contains the definition of the possibilistic mean value and its dis-
cussion in the case of the discrete possibilistic distributions. To a discrete pos-
sibilistic distribution µ one associates a discrete random variable, whose mean
value coincides with the quasi–mean value of µ.

Section 3 discusses a notion of possibilistic portfolio based on the construc-
tion presented in Section 2. To a possibilistic portfolio one associates a proba-
bilistic portfolio such that the risk problematique for the first type of portfolio
is reduced to the consideration of a probabilistic risk.

In Section 4 there is proposed a definition of risk premium for discrete pos-
sibilistic distributions, based also on the construction from Section 2. There is
established a formula for the possibilistic risk premium, expressed in terms of
the utility function and of the quasi–mean value.

2 Credibility measures

Credibility measure is a particular fuzzy measure introduced by means of the
notions of possibility and necessity measures. Each possibility distribution on a
set X defines a credibility measure on X. By means of this one we will define
in the next section the notion of quasi–mean value of a possibility distribution
on R.

This section contains the definition of the credibility measure and some ex-
amples. The references for this section are [11], [8], [4], [2].

Let X be a non–empty set. A fuzzy measure on X is a function m : P(X) →
[0, 1] such that the following conditions hold:

(M1) m(∅) = 0; m(X) = 1;
(M2) If D1, D2 ∈ P(X) then D1 ⊆ D2 implies m(D1) ⊆ m(D2).

2



A possibility measure on X is a function Π : P(X) → [0, 1] such that the
following conditions are verified:

(P1) Π(∅) = 0; Π(X) = 1;
(P2) For any family {Di}i∈I of subsets of X, Π(

⋃
i∈I

Di) = sup
i∈I

Π(Di).

A necessity measure on X is a function N : P(X) → [0, 1] such that
(N1) N(∅) = 0; N(X) = 1;
(N2) For any family {Di}i∈I of subsets of X, N(

⋂
i∈I

Di) = inf
i∈I

N(Di).

Proposition 2.1 Any possibility measure (resp. any necessity measure) on X
is a fuzzy measure.

Proof. Let Π be a possibility measure on X and D1 ⊆ D. Then D1 ∪D2 = D2,
hence Π(D2) = Π(D1 ∪D2) = Π(D1)∨Π(D2) so Π(D1) ≤ Π(D2). Analogously
we reason for the case of a necessity measure.

Remark 2.2 (i) If Π is a possibility measure then the function N : P(X) →
[0, 1] defined by N(D) = 1−Π(X−D) for any D ∈ P(X) is a necessity measure.

(ii) If N is a necessity measure then the function Π : P(X) → [0, 1] defined
by

Π(D) = 1−N(X −D) for any D ∈ P(X) is a possibilistic measure.

Let Π be a possibility measure on X and N the associated necessity measure
(cf. Remark 2.2(i)).

Consider the function Cr : P(X) → [0, 1 defined by
(i) Cr(D) = 1

2 (Π(D) + N(D)) for any D ∈ P(X).

Proposition 2.3 Cr is a fuzzy measure on X.

Proof. We apply Proposition 2.1.

Remark 2.4 Cr is a self–dual fuzzy measure, i. e. Cr(D) = 1− Cr(X −D),
for each D ∈ P(X).

Cr is called the credibility measure associated with Π.
A possibility distribution on X is a function µ : X → [0, 1] such that

sup
x∈X

µ(X) = 1.

µ is normalized if µ(x) = 1 for some x ∈ X.
If Π is a possibility measure on X then the function µΠ : X → [0, 1] defined

by µX(x) = Π({x}) for each x ∈ X is a possibility distribution.
Let µ be a possibility distribution on X. Let us consider the function Posµ :

P(X) → [0, 1] defined by µX(x) = Π({x}) for each x ∈ X is a possibility
distribution.
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Let µ be a possibility distribution on X. Let us consider the function Posµ :
P(X) → [0, 1] defined by

(2) Posµ(D) = sup
x∈D

µ(x) for any D ∈ P(X).

Proposition 2.5 Posµ is a possibility measure on X. The necessity measure
Necµ associated with (cf. Remark 2.2 (i)) will be given by the formula

(3) Necµ(D) = 1− Posµ(X −D) = 1− sup
x6∈D

µ(D).

3 Expected value and covariance of a fuzzy num-
ber

In probability theory the behaviour of the random variables is studied by indica-
tors such as the mean value, dispersion, covariance, etc. In case of possibilistic
distributions, one defines similar indicators. For fuzzy numbers, in [1], [2], [5],
[9], etc. there have been defined the possibilistic mean value, the possibilistic
dispersion, the possibilistic covariance. etc. These concepts have properties very
similar with those from the probabilistic case, which allowed the development
of the mathematical theory and their applicability.

On the other hand, their definitions are connected to the form of the fuzzy
numbers and can be extended to other possibilistic repartitions (e. g. to discrete
possibilistic repartitions). One imposes to find some indicators for larger classes
of possibilistic repartitions.

This section is dedicated to a concept of mean value for any possibilistic
distribution [8]. It is defined by the one introduced in [1], [5] and does not
verify such important properties (e. g. linearity). Therefore we shall call it
possibilistic quasi–mean value.

For the case of a discrete possibilistic distribution, this quasi–mean value
has a very good formula from the point of view of the calculation. At the same
time, in the discrete case an interesting phenomenon occurs: to a possibilistic
distribution µ one canonically associates a random variable X whose mean value
coincides with the quasi mean value of µ. This fact allows that some possibilistic
decision making problems should be converted into problems of probabilistic
decisions. The solving of the of probabilistic decisions to a solution for the first
ones.

Let µ : R → [0,1] be a normalized possibility distribution.

Definition 3.1 [8] The possibilistic quasi–mean value Q(µ) of µ is defined by
(1) Q(µ) =

∫∞
0

Cr(µ ≥ r)dr −
∫ 0

−∞ Cr(µ ≤ r)dr.

If the right member has the from ∞−∞, then Q(µ) is not defined.
The definition of Q(µ)has used the credibility measure defined in the previous

section.
(2) Cr(D) = 1

2 [Pos(D) + Nec(D)], for any D ∈ PR.
(Pos and Nec are the possibility and necessity measures Posµ and Necµ
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associated to µ, according to the formula (2) from the previous section.)
If f : [0, 1] → [0, 1] is a function such that f(1) = 1 then f(µ) = f ◦ µ is

normalized possibilistic distribution and
(3) Q(f(µ)) =

∫∞
0

Cr(f(µ) ≥ r)dr −
∫ 0

−∞ Cr(µ ≤ r)dr.

Example 3.2 [8] If µ is the trapezoidal fuzzy number (a, b, β, α) then Q(µ) =
1
2 (a + b) + 1

4 (β − α). By [1], the possibilistic expected value of the fuzzy number
µ is E(µ) = a+b

2 + 1
4 (β − α), hence Q(µ) 6= E(µ).

Let us assume that µ is a normalized discrete possibilistic distribution.

(4) µ =
∣∣∣∣ a1 a2 . . . an

µ1 µ2 . . . µn

∣∣∣∣ .

where a1 < a2 < . . . < an.
Recall that µi = µ(ai) for i = 1, . . . , n. Let µ0 = µ = n + 1 = 0. Let us

denote

(5) pi = 1
2 [

i∨
j=1

µj −
i−1∨
j=0

] +
1
2
[

n∨
j=1

µj −
n+1∨

j=i+1

µj ]

for i = 1, . . . , n.

Proposition 3.3 [8] [8] The numbers p1, . . . , pn satisfy the following proper-
ties:

(i) pi ≥ 0 for i = 1, . . . , n;

(ii)
n∨

i=1

pi =
n∨

i=1

µi = 1.

Proposition 3.3 emphasizes a remarkable fact: we can consider a discrete
random variable:

(6) Xµ =
∣∣∣∣ a1 a2 . . . an

p1 p2 . . . pn

∣∣∣∣ .

which takes values a1, a2, . . . , an with probabilities p1, p2, . . . , pn.

Proposition 3.4 [8] Q(µ) = E(Xµ) =
∑n

i=1 aipi.

According to Propositions 3.3 and 3.4, to each normalized discrete possi-
bilistic distribution µ one can associate a discrete random variable Xµ, such
that the possibilistic quasi–mean Q(µ) coincides with the probabilistic mean
value E(Xµ). In this way, the possibilistic phenomenon described by µ can
be probabilistically modelled by the random variable Xµ. In particular, some
possibilistic optimization problems will be treated as probabilistic optimization
problems. This idea will be illustrated in the next section.

4 Probabilistic portfolio and possibilistic port-
folios

A portfolio is a set of financial assets (money, bonds, etc. ) and real assets (earth,
buildings, gold, etc.) available to be bought. A portfolio is characterized by a
return and by a risk connected by actions which will take place in the future.
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We shall define two notions of portfolio: probabilistic portfolio and possibilis-
tic portfolio. For the first one, the return is expressed in terms of probabilities
and for the second one in terms of possibilities.

In the case of the probabilistic portfolio the risk is given by the dispersion of
a random variable. To define the risk of a possibilistic portfolio, we shall make
a construction based on the content of the previous section.

To a possibilistic portfolio one canonically associates a portfolio equivalent
from the point of view of the revenue. The risk of the possibilistic portfolio will
be the dispersion which appears in the framework of the associated probabilistic
portfolio.

(I) The probabilistic portfolio ([10], p. 447).
We shall consider that the portfolio consists of m assets A1, . . . , Am. By

taking into account these m actions is n future time moments by
rij=the expected return for action Ai at moment j
pij=the probability of obtaining the expected return rij for action Ai at

moment j,
where i = 1, . . . ,m and j = 1, . . . , n.
For any i =, ldots,m, the probabilities pi1, . . . , pin satisfy conditions:
pij ≥ 0 for any j = 1, . . . , n

n∑
j=1

pij = 1.

We define the return of the action i as being the discrete random variable

Ri :=
∣∣∣∣ ri1 ri2 . . . rin

pi1 pi2 . . . pin

∣∣∣∣ .

for i = 1, . . . ,m.
For each of these random variables one considers the two main indicators:
(a) the mean return of the asset i:

R̄i = E(Ri) =
n∑

j=1

pijrij

(b) the variance of the asset i:

V ar(Ri) =
n∑

j=1

pij(rij − R̄i)2

Also we shall consider the covariance of two assets Ai and A2:

cov(Ri, Rk) =
n∑

s,t=1

pst(ris − R̄i)(rkt − R̄k),

indicator which shows the relationship between the two assets. We distin-
guish the cases:

cov(Ri, Rk) =
n∑

s,t=1

pst(ris − R̄i)(rkt − R̄r),

indicator which shows the relationship between the two assets. We distin-
guish the cases:

cov(Ri, Rk) > 0. Then the returns of the two assets Ai, Ak evolve in the
same sense;
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cov(Ri, Rk) = 0. The two assets are independent;
cov(Ri, Rk) < 0. The returns of the two assets Ai, Ak evolve in different

senses.
Since the portfolio P described above is determined by the returns rij and

by the probabilities pij , we shall use the notation
P =< rij , pij >, i = 1, . . . ,m, j = 1, . . . , n.
We shall denote now the weight of the budget of the investor dedicated for

the asset Ai. It is obvious that we have the relations:
f1, . . . , fm ≥ 0;
m∑

i=1

= 1.

For the portfolio P and for the weights f1, . . . , fm we define:
(d) the mean return of the portfolio:

EP(f1, . . . , fm) =
m∑

i=1

fiE(Ri).

(e) the dispersion of the portfolio

VP(f1, . . . , fm) =
m∑

i,k=1

fifkcov(Ri, Rk)

=
m∑

i=1

f2
i V ar(Ri) +

∑
i 6=k

fifkcov(Ri, Rk).

The risk of the asset i is given by V ar(Ri) and the total risk of the portfolio
is VP(f1, . . . , fm).

By establishing a mean value λ of the return of the portfolio, one requires the
determination of the numbers f1, . . . , fm such that the total risk of the portfolio
to be minim.

One obtains the following optimization problem:

(∗) (20)


min

f1,...,fm

VP(f1, . . . , fm)

EP(f1, . . . , fm) = λ
f1 + . . . fm = 1
f1, . . . , fm ≥ 0

(II) The possibilistic portfolio
The portfolio consists of m assets A1, . . . , Am and is defined by the following

items:
rij is the expected return for the asset Ai at time j;
µij is the possibility of obtaining the return rij for asset Ai at time j
where i = 1, . . . ,m and j = 1, . . . , n.
The difference between the probabilistic and the possibilistic portfolio is

essential: for the case of the former one appreciates the probability of obtaining
a return and for the latter one appreciates the possibility of obtaining a return.

To this point, the problem is that the probabilistic notions of the proba-
bilistic portfolio (mean values, dispersion, covariance) should be replaced with
possibilistic notions.
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We emphasized that in the first case we have had discrete random variables;
in the second case we shall have discrete possibilistic distributions.

We define the possibilistic return corresponding to the asset Ai as being
possibilistic distributions:

(f) µi =
∣∣∣∣ ri1 ri2 . . . rin

µi1 µi2 . . . µin

∣∣∣∣
for i = 1, . . . ,m.
The possibilistic mean return of the asset Ai is defined as:
(g) µ̄i = Q(µi), for i = 1, . . . ,m.
In (g) one used the possibilistic quasi–mean value introduced in Section 3. It

would follow the introduction of the possibilistic dispersion of an asset, but we do
not have a satisfying notion of dispersion of a discrete possibilistic distribution.
We will appeal to the construction from the preceding section. One considers
the discrete random variable Xi associated to the possibilistic distribution µi.

Xi =
∣∣∣∣ ri1 ri2 . . . rin

pi1 pi2 . . . pin

∣∣∣∣
for i = 1, . . . ,m, where, according to the relation (5) from Section 3,

(h) pik = 1
2 [

k∨
j=1

µik −
k−1∨
j=0

] +
1
2
[

n∨
j=k

µij −
n+1∨

j=k+1

] for any i = . . . , m and k =

1, . . . , n.
We recall that in (h) one takes pi0 = pin+1 = 0, i = 1, . . . ,m.
According to Proposition 3.4, the mean possibilistic return of asset Ai can

be expressed by:

(i) µ̄i = Q(µi) = E(Xi) =
n∑

k=1

rikpik for i = 1, . . . ,m.

We denote by P ′ =< rij , µij >i=1,...,m the possibilistic portfolio defined at
the beginning of (II). Then P ′ =< rij , pij >i=1,...,m,j=1,...,n with the probabili-
ties pij defined by (h) will be a probabilistic portfolio.

The main idea of the following considerations is to reduce the study of the
possibilistic portfolio P ′ to the study of P.

Let f1, . . . , fm be the weights of the revenue of the investor dedicated to the
assets A1, . . . , Am.

The mean possibilistic return of the portfolio P ′ will defined as the mean
probabilistic return of P:

(j) EP(f1, . . . , fm) =
m∑

i=1

fiE(Xi) =
m∑

i=1

fiµ̄i.

The risk of the asset Ai will be defined as the dispersion of Xi:

(k) V ar(Xi) =
n∑

j=1

pij(rij − µ̄i)2, i = 1, . . . ,m.

The total risk of the portfolio P ′ will be defined as the total risk of the
portfolio P.

(l) V

P(f1,...,fm)=

m∑
i,k=1

fifkcov(xi, xk)
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=
m∑

i=1

f2
i V ar(Xi) +

∑
i 6=k

fifkcov(Xi, Xk).

In formula (l), cov(Xi, Xk) has the following expression:

(m) cov(Xi, Xk) =
n∑

s,t=1

pst(ris − µ̄)(rkt−µ̄k)

By fixing an expected mean value λ of the possibilistic return of the portfolio
P ′, one reaches the following optimization problem:

(∗∗)


min

f1,...,fm

VP(f1, . . . , fm)

EP(f1, . . . , fm) = λ
f1 + . . . fm = 1
f1, . . . , fm ≥ 0

We notice that (∗∗) is exactly the optimization problem (∗) but the dates
offered by the possibilistic portfolio P ′. Its reduction means to find the weights
f1, . . . , fm for which one achieves the possibilistic expected mean return λ, but
with a minimum risk.

5 Possibilistic risk aversion

In the context of the discrete posssibilistic distributions we shall define a notion
of risk premium. It will describe the risk aversion of an agent represented by
the utility function u. The result of the section is a calculus formula for the risk
premium.

Let µ be a discrete possibilistic distribution.

(1) µ =
∣∣∣∣ a1 a2 . . . an

µ1 µ2 . . . µn

∣∣∣∣ .,

0 ≤ a1 ≤ a2 ≤ . . . ≤ an (µi = µ(ai)).
Let us consider the probabilities p1, . . . , pn defined by (5)

pi = 1
2 [

i∨
j=1

µj −
i−1∨
j=0

µj ] +
1
2
[

n∨
j=1

µj −
n+1∨

j=i+1

µj ]

By Proposition 3.3, the possibilistic quasi–mean value Q(µ) is given by

(2) µ̄ = Q(µ) =
∧ n∑

i=1

aipi.

Let u : R+ → R+ be a utility function. shall suppose that µ has the class
C2 on [0,∞) and that u′ 6= 0. Let us define

(3) Q(µ(u)) =
n∑

i=1

µ(ai)pi.

Definition 5.1 The possibilistic risk premium ρ = ρµ,u (associated with the
discrete possibilistic distribution µ and with the utility function u) is defined by
the equality

(4) Q(µ(u)) = u(µ̄− ρ).
According to (3), relation (4) can be written:
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(5)
n∑

i=1

µ(ai)pi = u(µ̄− ρ)

Proposition 5.2 ρ = − 1
2

u′′(µ)
u′(µ)

n∑
i=1

(ai − µ̄)2pi.

Proof. Under the conditions when u : R+ → R+ has the class C2 on [0,∞)
and that u′ 6= 0, we can apply the Taylor formula with the rest of the second
degree. By omitting this rest for any i = 1, . . . , n:

µ(ai) = u(µ̄ + ai − µ̄)
= u(µ̄) + u′(µ̄)(ai − µ̄) + u′′(µ̄)

2 (ai − µ̄)2.

By multiplying these equalities with pi and then summing after i = 1, . . . , n

(taking into account that
n∑

i=1

pi = 1):

n∑
i=1

u(ai)pi = u(µ̄).

piu(ai) = piu(µ̄) + piu
′(µ̄)(ai − µ̄) + pi

u′′(µ̄)
2 (ai − µ̄)2, i = 1, . . . , n.

n∑
i=1

piµ(ai) =
n∑

i=1

piu(µ̄) +
n∑

i=1

piu
′(µ̄) +

n∑
i=1

pi
1
2
u′′(µ̄)(ai − µ̄)2.

n∑
i=1

µ(ai)pi = u(µ̄) + u′(µ̄)
n∑

i=1

(ai − µ̄)pi +
1
2
u′′(µ̄)

n∑
i=1

pi(ai − µ̄)2.

We notice that
n∑

i=1

(ai − µ̄)pi =
n∑

i=1

aipi − µ̄
n∑

i=1

pi = µ̄− µ̄ = 0, therefore

(6)
n∑

i=1

u(ai)pi = u(µ̄) + u′(µ̄)
n∑

i=1

(ai − µ̄)pi +
1
2
u′′(µ̄)

n∑
i=1

pi(ai − µ̄)2.

By applying Taylor’s formula
(7) u(µ̄− ρ) = u(µ̄)− u′(µ̄)ρ.

From (4),
u∑

i=1

(ai)pi = u(µ̄− ρ). Then, from (6) and (7) it follows:

(8) u(µ̄) + 1
2u′′(µ̄)

n∑
i=1

(ai − µ̄)2pi = u(µ̄)− u′(µ̄)ρ.

From that it follows immediately that

ρ = − 1
2

u′′(µ̄)

n∑
i=1

(ai − µ̄)2pi

u′(µ̄) .

6 Concluding Remarks

Probability theory and possibility theory and are two branches of mathematics
which describe the uncertainty. In the field of applicability of possibility the-
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ory enter those situations of uncertainty in which we have a reduced databases.
The development of possibility theory was done by relating it to the probabil-
ity theory , by searching some concepts and results which should translate in
possibilistic language what was known in case of probability theory.

The transition from probabilities to possibilities is not a simple operation and
is not always possible. The finding of some possibilistic concepts corresponding
to the mean value, the covariance and the dispersion has been successfully done
for the fuzzy numbers [1], [2], [4], [5], [9], etc.

For larger classes of possibilistic distributions the problem seems more dif-
ficult. In [8] there has been proposed a notion of mean value of a possibilistic
distribution, which does not have any longer the traditional properties of such
a concept (e. g. linearity). For this reason, in this paper, the notion introduced
in [8] has been named quasi–mean value.

For the case of the discrete possibilistic distributions a very interesting fact
happens: to each discrete possibilistic repartition µ one can canonically asso-
ciates a discrete probabilistic repartition (=discrete random variable), whose
mean value is exactly the quasi–mean value of µ. This is the fundamental idea
of the two topics studied in this paper: the possibilistic portfolios and the pos-
sibilistic risk aversion.

For the case of the first theme, by using the above mentioned construction,
to a possibilistic portfolio one associates a probabilistic portfolio. This way the
optimization problem associated to the possibilistic portfolio is transformed into
an optimization problem corresponding to a probabilistic portfolio.

The second theme refers to the possibilistic risk aversion. In this case the
uncertainty situation is described by a possibilistic distribution. For the case
when the possibilistic distribution is a fuzzy number, this topic has been treated
in [6] by means of possibilistic notions of expected value and variance studied
by [1], [2], [4], [5], [9].

We define here a notion of possibilistic risk premium for a discrete possibilis-
tic distribution by using the quasi–mean value and the transition from discrete
possibilistic distributions to discrete random variables. This possibilistic risk
premium is a measure of the risk aversion of an agent in front of a situation
of uncertainty described by a discrete possibilistic distribution. For the calcu-
lation of the indicator of risk aversion one proved an analytical formula (see
Proposition 5.1).
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