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Abstract

ActionC is a new approach to rigorous modelling and development of computer
systems. ActionC integrates SystemC, an informal design language, and Ac-
tion Systems, a formal modelling language that supports verification and stepwise
correctness-preserving refinement of system models. The ActionC approach com-
bines the possibility to use a formal correct-by-constructmethod and an industry
standard design language with simulation and synthesis support. In our approach
Action Systems provides a formal foundation for an informalSystemC model with
a promise of verified simulation, refinement and synthesis. At this point we have
explored the first aspects of ActionC development: the SystemC implementations
of nondeterminism and of Action Systems type inter-module communication. The
early experiments have successfully produced simulatableSystemC descriptions
of Action Systems.

Keywords: SystemC, Action Systems, Formal methods
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1 Introduction

Formal methods provide an environment to specify, design and verify systems
with the benefits of a strict mathematical basis. In our case formal methods are
provided by the Action Systems formalism [1], which offers apowerful stepwise
development environment for designing embedded HW/SW systems throughout
the design project from abstract specification down to implementable model. Ac-
tion Systems enables us to formally verify each derivation step within specific
refinement calculus framework [2].

Programming languages that are targeted to software development do not na-
tively support hardware-oriented functionality such as clocks, signals, reactivity
and parallel processing accurately. Because of this, when such languages and en-
vironments are used in embedded system development, the support for hardware
modelling is typically built on top of the underlying programming language. The
benefit of this approach is that while support for hardware modelling is added,
all features of the base language can still be used in system design. One such
a language is SystemC [3][4], which is a system modelling andsimulation en-
vironment based on the standard C++ programming language[5]. In addition to
hardware modelling related data types, structures and class definitions, SystemC
also provides the system designer all the object oriented techniques available in
C++. SystemC is a single language framework for co-verifying systems at multi-
ple, possibly mixed, abstraction levels allowing the system designer to gradually
develop the model towards lower abstraction levels withouta need to translate the
model into a hardware design language.

This report explores the possibilities of the Action Systems formalism in pro-
viding a formal foundation for SystemC modelling. The objective is to capitalise
the best features of both methods and to combine the results as a new system
modelling framework. The proposedActionC framework would provide a Sys-
temC model out of an Action Systems description at a given abstraction level.
The utilisation of the ActionC framework would allow the designer to initially
produce a simulatable description from a formal Action Systems description. The
purpose of ActionC would also be to ensure the preservation of the formal correct-
ness throughout the model’s refinement process as well as during the simulation.
In this report two important aspects of Action Systems are considered in detail:
nondeterminism and communication between system modules.The final conclu-
sion should tell us how SystemC handles these aspects in a simulation and how
the ActionC framework development should be continued in the future.

First, the Action Systems formalism is introduced in Sect. 2with a short de-
scription of the language and an introduction to its inter-module communication
methods. Section 3 briefly introduces SystemC by presentingits basic structures
and their usage. Based on the information presented in the first two sections,
Action Systems and SystemC are viewed together in Sect. 4. The matching con-
structs between the two modelling languages are studied as the foundation for
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the new ActionC framework. In addition, the first methods forthe ActionC class
library are introduced in Sect. 4. Section 5 presents an example in which an Ac-
tion Systems model is transformed into an implementation that follows the coding
style of the proposed ActionC framework and utilises the ActionC methods and
constructs introduced in the previous section. Concludingremarks are provided
in Sect. 6.

2 Action Systems Formalism

Action Systems is a design method for modelling and refining formal models of
sequential programs as well as more complex parallel and reactive systems [1][6].
The Action Systems formalism was initially proposed by Ralph-Johan Back and
Reino Kurki-Suonio [7] and it is based onthe guarded command languageby
Edsger W. Dijkstra [8]. Action Systems allows a system programmer to design
a system based on its logical behaviour. The decisions concerning the actual im-
plementation and the questions of sequential and parallel executions in the system
can be made after the design of the logical behaviour.

An action system is a program in which the system execution isdescribed in
terms ofatomic actions. Atomic actions, once chosen for execution, are executed
to completion without interference from other actions in the system. Only the
initial and final states of an atomic action are observable, which means that there
are no observable states between them. If two actions do not have any shared
variables, it is possible to execute them in parallel. Both parallel and sequential
executions of such actions are guaranteed to produce identical results.

The Action Systems formalism supports modularity, including modularisation
mechanisms such as procedures, parallel composition and data encapsulation. An
action system module has its own local variables and a singleiteration statement.
Modularity of Action Systems includes also parameterised procedures and nested
action systems. The action system modules communicate witheach other us-
ing different kinds of communication mechanisms. Modules can share variables,
which they use to pass information. The information passingcan also be accom-
plished via shared actions and remote procedure calls by importing and exporting
variables and procedures within the system module interface.

A stepwise refinement method is used for the development of anactual paral-
lel, distributed system from an initial action system model. The model is produced
using a formal method calledrefinement calculus, which was originally proposed
by Ralph-Johan Back [2][9]. The refinement is performed for the Action Systems
model created as a result of the behavioural and logical design of a system. By fol-
lowing the refinement calculus the refinement steps preservethe total correctness
of the original statements. This way the initially general and language independent
design is refined into efficiently implementable code in possibly several different
programming languages.

2



2.1 Actions

Actions are defined (for example) by:

A ::= abort (abortion, non-termination)

| skip (empty statement)

| x := e ((multiple) assignment)

| do A od (iterative composition)

| p→ A (guarded command/action)

| A0; . . . ;An (sequential composition)

| A0 8 . . . 8 An (nondeterministic choice)

| A0 � . . . � An (prioritised composition)

| A0∗ . . .∗An (simultaneous composition)

| {p} (assertion statement)

| [p] (assumption statement)

| x := x′.R (nondeterministic assignment)

| |[var x := x0; A]| (block with local variables)

whereA, A0 andAn, n∈ N
+, are actions;x is a variable or a list of variables;xo

some value(s) of variable(s)x; e is an expression or a list of expressions; andp
andRare Boolean conditions. Thetotal correctnessof an actionA with respect to
a preconditionP and a postconditionQ is denotedPAQand defined by:

PAQ=̂ P⇒ wp(A,Q)

wherewp(A,Q) stands for theweakest preconditionfor the actionA to establish
the postconditionQ. The activation of the statement listA is guaranteed to lead to
a properly terminating activity leaving the system in a finalstate that satisfies the
postconditionQ and also the weakest precondition.

The guardgA of an actionA is defined by:

gA =̂ ¬wp(A, f alse)

In the case of a guarded actionA =̂ p→ B, we have thatgA= p∧gB. An action
A is said to beenabledin states, where its guard is true anddisabled, where the
guard is false. Now for the above introduced actions we can define:
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wp(abort,Q) = f alse

wp(skip,Q) = Q

wp(x := e,Q) = Q[e/x]

wp(do A od,Q) = (∃k. k≥ 0∧H(k)) where

k = 0⇒ H(0) = Q∧¬gA

k > 0⇒ H(k) = (gA∧wp(A,H(k−1)))∨H(0)

wp(p→ A,Q) = P⇒ wp(A,Q)

wp((A0;A1),Q) = wp(A0,wp(A1,Q))

wp((A0 8 A1),Q) = wp(A0,Q)∧wp(A1,Q)

wp(A0 �A1,Q) = (wp(A0,Q))∧ (¬gA0 ⇒ (wp(A1,Q)))

wp(A0∗A1,Q) = gA0∧gA1 ⇒ (∀a′0,a
′
1.PA0 ∧PA1 ⇒ Q[a′0,a

′
1/a0,a1])

wp({p},Q) = p∧Q

wp([p],Q) = p⇒ Q

wp(x := x′.p,Q) = ∀x′.p⇒ Q[x′/x]

wp(|[varx;A]|,Q) = ∀x.(wp(A,Q))

The above defined actions and their compositions are all atomic actions.Atomic
compositionsare larger atomic entities composed of simpler ones, and theactions
within such compositions are calledmergedactions. However, in anon-atomic
compositionof actions the component actions are atomic entities of their own, but
the composition itself is not. One such a construct is the iterative composition, the
do-od loop, whose execution may consist of several executions of its component
actions. Non-atomicity means that also the intermediate states of the composition
can be observed in contrast to an atomic composition.

2.2 Action System

An action systemM has the form:
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sys M ( imp pI ; exp pE; )( g; )
|[ private procedure

p(in x;out y) : (P);
public procedure

pE(in x;out y) : (PE);
variable

l ;
action

Ai : (aAi);
initialisation

g, l := g0, l0;
execution

do composition of actions Ai od ]|

where we can identify three main sections:interface, declarationand iteration.
The interface part declares the global variablesg, which are visible outside the
action system boundaries meaning that they are accessible by other action sys-
tems. These variables may be eitherin, out or inout variables. The interface also
introducesinterface procedures pI and pE that are imported or defined and ex-
ported by the system, respectively. In general, proceduresare any atomic actions
A, possibly with some local variablesw that are initialised tow0 every time the
procedure is called. The actionA can access the global (g) and local (l ) variables
of the host/enclosing system and the formal parametersx andy. Procedures can
be treated as parametrisable subactions because their executions are considered
as parts of the calling action. An action system that does nothave any interface
variables or procedures isa closed action system. Otherwise it isan open action
system. The declarations part introduces all the local variablesl , local procedures
p, exported procedurespE and actionsAi that perform operations on local and
global variables.

The operation of the action system is started by the initialisation in which the
variables are set to their predefined values. In the iteration part, in theexecu-
tion section, actions are selected for execution based on their composition and
enabledness. This is continued until there are no enabled actions, whereupon the
computation terminates. Hence, an action system is essentially an initialised block
with a body that contains a repeatedly executing statement.

2.3 Procedure Based Communication

The procedure based communication [10] uses remote procedures to model com-
munication channels between action systems. One action system defines and ex-
ports a procedure, which is imported by another system. Thisgives the importing
system a possibility to perform a remote call by executing the procedure (Fig. 1).
Consider the action systemsS nd andR ec whose internal activities are denoted

5



await pcall p
pS R

RecSnd

Figure 1: Action systemsS nd andR eccommunicating directly with each other
using a procedure

with actions
S=̂ (S1;call p(lsnd);S2)

and
R =̂ (R1;await p;R2)

whereS1,2, R1,2 are arbitrary subactions ofS andR, respectively. Interface pro-
cedurep is defined in and exported by the receiverR ec, and imported and called
by the senderS nd, with the sender’s local variableslsnd as actual value param-
eters. Furthermore, the local variables of the systems are distinct, lsnd∩ lrec = /0,
communication variables are a setgsnd∩grec and the initialisations of the commu-
nication variablesgsnd∩grec are consistent with each other. The bodyP of p can
be any atomic action writing onto the receiver’s local variables lrec. In parallel
compositionof action systems,S nd ‖ R ec, theexecution clause of the composed
system is by definition:

do S 8 R od

The constructS 8 R, whereS calls p (call command) andR awaits such a call
(await command), is regarded as a single atomic actionSR, defined by:

SR=̂ (S1;R1;P[lsnd/x];R2;S2)

Therefore, communication is based on sharing an action in which data is atomi-
cally passed fromS nd to R ecby executing the bodyP of the procedurep while
hiding the communication details into the procedure call.

3 SystemC

In the same way as the Action Systems formalism, SystemC [3][4] can be seen
as a methodology that can be used in writing a specification for a system that
includes both hardware and software components. SystemC isa class library for
the standard C++ programming language [5], and it is an open source standard,
which is currently supported and advanced by the Open SystemC Initiative (OSCI)
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[11]. IEEE has approved the IEEE 1666 standard for version 2.1 of the OSCI
SystemC Language Reference Manual [12], which is also in this report the main
reference concerning the SystemC class library definitions.

With SystemC a system designer can create cycle-accurate models of soft-
ware algorithms, hardware architectures and interfaces ofSoC and system-level
designs. SystemC is a fine tool for hardware modelling, even though it is built
on a high-level software programming language. Therefore,in a HW/SW sys-
tem design process SystemC can be used inplace of actual hardware description
languages, such as VHDL and Verilog. SystemC provides system architecture
constructs, such as hardware timing, concurrency, and reactive behaviour, which
are not included in standard C++. In addition, the designer can use all the object-
oriented features and development tools of C++. Both software and hardware
partitions of a system model can be written in a single high-level language, which
provides higher productivity, less code and decreases the possibility of errors. Be-
cause both software and hardware partitions are written in SystemC, they can be
tested using the same test bench without any need for language conversions be-
tween different abstraction levels.

3.1 A SystemC Model

A SystemCmoduleis the building block of a SystemC model. Breaking a de-
sign model into several small pieces makes the otherwise complex system easier
to manage. Modules implement data encapsulation by hiding local data and al-
gorithms from other modules in the system. A module may contain a hierarchy
of other modules. Modules runprocessesthat are triggered byevents. Processes
describe the behaviour of the modules, to which they are confined. Modules are
connected to each other bychannels, which are used in inter-module and inter-
process communication.

SystemC module usesportsandexportsto access channels. SystemC provides
three different kinds of ports to allow single-direction access from the outside en-
vironment to the module, from the module to the environment or bidirectional ac-
cess through one port. A port communicates with its designated channel through
an interface, which gives the port the methods that it can use to access thechan-
nel. This way the port acts as an intermediary for the module,while the interface
provides the same service for the channel. There can be two types of channels:
primitive channelsand hierarchical channels. A primitive channel, sometimes
also called a signal, is considered atomic because it does not contain any other
SystemC structures. Hierarchical channels may contain other modules and chan-
nels as well as internal processes, therefore in practise, they are as complex as
modules. Inter-module communication can be refined by usingadapters, wrap-
persandconvertersif the ports and interfaces between the modules do not match.

A SystemCsimulationis set up in theelaborationphase in which the top level
modules, channels and clocks are instantiated and module ports are bound to the
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channel instances. Constructs inside the inner hierarchies of modules and hier-
archical channels are instantiated in their constructors.This way the elaboration
process advances recursively from top and down through the entire hierarchy. In
the simulation phase the SystemCscheduleracts as a system kernel that handles
the timing and order of the process execution. It controls event notifications and
updates channels when requested.

4 ActionC

In the context of ActionC, Action Systems and SystemC will now be viewed to-
gether with the objective to utilise the best parts of both system modelling lan-
guages. Action Systems is a formal language that is useful especially at the first
stage of a system development process, while SystemC is a powerful tool for sys-
tem model simulation, refinement, testing and implementation. An initial Action
Systems model can be created directly from the system specification and then re-
fined down to the desired abstraction level through correctness preserving refine-
ment steps. By combining the formal features of Action Systems with the benefits
of the SystemC environment we could write an executable specification that is
based on a formal system description. The formal correctness of this specifica-
tion would be verified, the specification would be simulatable and, if necessary,
synthesisable within the limits set by the synthesisable subset of SystemC.

ActionC can be viewed as the implementation of Action Systems formalism
in the SystemC environment. In this report, the key points are the implementa-
tions of nondeterminismandcommunication between action systems. In Action
Systems, these are essential features when modelling complex embedded systems
with multiple modules and processors, and therefore must beproperly handled
also in the ActionC framework. Simultaneous execution of actions is one of the
action compositions in Action Systems. In SystemC, simultaneous process execu-
tion is implemented with the request-update method and the two-phase semantics
of the SystemC scheduler. Therefore, concurrent executionof several actions can
be easily simulated in SystemC without any greater need for additional ActionC
features. By ActionC features, we mean C++ or SystemC methods or classes that
bring the principles of Action Systems formalism into a SystemC model. Imple-
mentations of nondeterminism and inter-module communication are elaborated in
the forthcoming sections.

The view on the ActionC modelling framework starts with the identification
of the language constructs that the Action Systems formalism shares with the Sys-
temC design language. These directly mappable language constructs are gathered
in Table 1. A SystemC module corresponds to an action system,both enclosing
a local scope. Both also have an interface that they use in communicating with
the environment and other similar elements. When concerning ActionC, let us
call this structure anActionC module. Action Systems actions are implemented as
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Table 1: Matching language constructs between Action Systems and SystemC

Action Systems SystemC

action system ⇔ Module

action ⇔ Module member

do-od loop ⇔ thread process

in var,out var ⇔ sc_in<>, sc_out<>

inout variable ⇔ sc_inout<>

non-atomic sequence; ⇔ sequential execution

proc ⇔ C/C++ void method

member functions of the ActionC module. The member functions may be either
normal C++ methods, SystemC method processes or, if the member function ex-
ecution needs to be suspended and reactivated, they are implemented as SystemC
thread processes. Let us here call these member functionsActionC actions. These
ActionC actions are executed by performingaction calls. Thedo-od loop of each
of the Action Systems module is also implemented as a thread process that calls
the action processes in the composition one at a time. The thread is suspended
when the action procecesses and the processes in other modules are executed.
When inter-module communication in Action Systems uses only basic data types,
the SystemC primitive channel portssc_in<>, sc_out<> andsc_inout<> match
directly with thein, out and inout variables of the Action Systems formalism.
However, if the channel structure is more complex, a SystemChierarchical chan-
nel is a more practical solution. The ActionC implementation of the hierarchical
channel and its usage is given in the forthcoming sections.

4.1 Nondeterministic Choice

The challenge in modelling the behaviour of an action systemmodel in SystemC is
how to capture the behaviour of a nondeterministic choice′ 8 ′, the basic building
block in Action Systems. In a nondeterministic compositionthere are no guaran-
tees that all the enabled actions will be executed. This means that some actions
may be executed multiple times, while others may be left untouched. Thedo-od
loop of a system is executed as long as there are enabled actions butweak fairness
is not applied, that is, all actions have equal probabilities of getting chosen for
execution during each loop iteration. This behaviour can bemodelled in SystemC
with the help of a random number generator. Here we implementthe random
number generator asac_selector(), a function that chooses one of the enabled
nondeterministically combined actions for execution. Theinformation on the en-
abledness of each of the actions is stored onto a boolean variable arrayenabled,
which is examined by theac_countEnabled() function. The function counts the
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number of the enabled actions and passes the information fortheac_selector().
These functions are used by a SystemC structure that simulates the behaviour

of a do-od loop. After a function call toac_selector() the structure uses the
returned integer value to determine the next action to be executed. With an atomic
action the function would be called only once, but in the iteration part the call is
repeated as long as there are enabled actions. A decrease in the number of enabled
actions also decreases the value passed to the random numbergenerator. Hence,
when this value evaluates to zero, execution stops and the operation of the system
is terminated.

To exemplify theActionC iteration loopstructure, we have actionsA andB
that are chosen for execution nondeterministically. This Action Systems iteration
loop execution do A8B od can be implemented with the following structure:

int num_actions; // total number of actions in the composition
int action_to_execute; // indexing variable for the inner loop
int action_number; // the actual action to be executed
int enabled_left; // number of enabled actions
bool enabled[2]; // actions are enabled/disabled
bool* action_list; // pointer to the array enabled[].
...

action_number = 0;
enabled_left = ac_countEnabled(action_list,num_actions);

while (enabled_left > 0) { /* The do-od loop begins */
action_to_execute = ac_selector(enabled_left);
while (action_to_execute > 0) {

if (enabled[action_number]==true) {
action_to_execute--;

}
action_number++;

}
switch (action_number) {

case 1:
/* execution of action process A */
break;

case 2:
/* execution of action process B */
break;

}
action_number = 0;
enabled_left = ac_countEnabled(action_list,num_actions);

} /* The do-od loop ends */

where the innerwhile loop uses the random integer value to choose one of the
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SystemC 2.1 class library

sc_interfacesc_channelsc_port<>

actionc_ch_if
<<interface>>actionc_ch

actionc_port of typeuser module uses

ActionC channel

Figure 2: ActionC communication channel class hierarchy

enabled actions, and the outer one keeps the process runningas long as there are
enabled actions.

4.2 Procedure Based Communication

In Action Systems, the interface variables and procedures form the communica-
tion channels between modules. Previously we examined the directly matching
language constructs between Action Systems and SystemC andfound the Sys-
temC counterparts for the Action Systems interface variables. However, only in-
terface variables of basic data types can be mapped directlyto SystemC. When
more complex structures are needed, interface variables must be implemented
with SystemC hierarchical channels, ports and interfaces as shown in Fig. 2. They
compose anActionC communication channel, which confines the functionality
of the communication events and hides the actual implementation from the com-
municating systems. Ports and interfaces are used in connecting a hierarchical
channel to the systems so that we have a port-interface couple at each end of the
channel. The information passing through the channel is temporarily stored in the
local variables of the channel. The communicating systems may access the infor-
mation in the channel by using the methods declared by their interfaces. There-
fore, the access rights to the channel can be controlled by the interface method
declarations. Depending on the case, the sets of methods at each end may be iden-
tical or different. In the case ofinout variables, the access rights are equal for both
parts but when usingin andout variables, the sets of interface methods differ at
each end.

The implementation of an Action Systems interface procedure is a specialisa-
tion of the interface variable implementation. Also the procedure based communi-
cation can be implemented with hierarchical channels and port-interface couples.
In this case, the sets of interface methods at each end are always different because
of the difference in their intended functionality. One end represents an exported
procedure, while the other end simulates the functionalityof an imported proce-
dure. Therefore, for each communication procedure, we haveone channel and two
port-interface couples: one for an exported and one for an imported procedure. At
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imp port imp ch if channel exp ch if exp port

Snd
S R

Rec

virtual
exported p() call

4.

imported p()
virtual

call

p done()

get res()

imported p()

exported p()

p done()
virtual

call
5.

get res()

virtual

call
8.

1.

SystemC scheduler

event notification event notification

trigger process Rtrigger process S

6.

7. 3.

2.

Figure 3: The ActionC implementation of the systemsS nd andR ec communi-
cating with each other using the procedure based communication model

the imported side, the interface has a minimum amount of methods because the
properties of the imported procedure are introduced by the system that exports
it. At the exported side, the system has a wide-ranging set ofmethods to use the
channel.

The operation of the ActionC procedure based communicationchannel, in
terms of the Action Systems communication procedure call, is illustrated in Fig. 3.
The data integrity during communication call, as required by the Action Systems
model, is ensured in the ActionC model by seven (7) or eight (8) communication
phases. The number is determined by the existence of a returnvalue. The phases
are: (1) The masterS nd starts the communication by calling the channel’s inter-
face method as it would call the imported procedure in the Action Systems model.
Then the method stores its parameters into the channel’s local variables before
(2) sending an event notification to the SystemC scheduler that (3) triggers pro-
cessR, which is sensitive to the particular event. The sensitivity of the processR
corresponds to the function of theawait command in the Action Systems model.
After being invoked (4) the processRcalls the method(s) provided by its interface
to receive and use the parameters stored in the channel’s local variables. Process
R performs its tasks after which it (5) employs an interface method (6) to send
an event notification to the SystemC scheduler in order (7) toinform the process
S of the completion of the communication procedure. (8) If theprocedure call
produces a return value, the processScollects it from the channel using a method
provided by its interface.

5 Experimenting with ActionC

In this section we experiment with the previously introduced ActionC features by
modelling a system consisting of parallel operating modules. To test the proposed
ActionC framework in practise, we introduce an Action Systems model that sim-
ulates the basic activities in a simple bank office. The modelis then implemented
in SystemC with the help of the ActionC methods and coding style. The concen-
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tration will be on the implementation of inter-module communication and non-
determinism. In the following discussion of the modelling,certain complicated
implementational details have been omitted in order to simplify the presentation.

5.1 Action Systems Model

Let us have a model of a bank office whose customers either deposit money to or
withdraw money from their bank accounts. Inside the bank office there are two
bank clerks, A and B, who serve the customers that enter the premises through
the main entrance. At the entrance, the incoming customer chooses randomly
between one of the two clerk to do business with. At the clerk’s desk, the customer
determines the sum of money that is either deposited to or withdrawn from the
customer’s account. In order to keep the implementation simple, the sum is chosen
at random from integer values between 1 and 1000. The customer makes, again,
a random choice between the deposit and withdrawal transactions. The clerk acts
according to the customer’s wishes and begins to perform thechosen transaction.
Before gaining access to thebank accounts, the clerk requests a permission from
the arbiter system, which controls the traffic between the clerks and the bank
accounts letting only one clerk at a time access the accounts. After gaining the
access, the clerk performs the ordered transaction and releases the access to the
bank accounts. The customer has hereby finished his businesswith the clerk and
exits the bank office, while the clerk begins waiting for the next customer to come
in through the entrance.

The Action Systems model consists of five parallel operatingmodules, which
correspond to the different scenes in the bank office:E ntrance, C lerkA, C lerkB,
A rbiter andB ank:

E ntrance‖ C lerkA‖ C lerkB‖ A rbiter ‖ B ank

Next we describe the models for each system by using the Action Systems
formalism after which we concentrate on their ActionC implementations.

5.1.1 E ntrance

The action systemE ntranceis of form:

13



sys E ntrance (out customerA,customerB: Int;
inout enterA,enterB: Bool; )[
ACCOUNT S: Int := 5;

]
::

|[ variable
account: Int;

action
NewCustomer: (account:= c′.(1≤ c′ ≤ ACCOUNT S));
QueueA: (¬enterA→ enterA:= T;customerA:= account);
QueueB: (¬enterB→ enterB:= T;customerB:= account);

initialisation
account,customerA,customerB,enterA,enterB:= 0,0,0,0,F,F;

execution
do NewCustomer;(QueueA8 QueueB) od ]|

where the variableACCOUNTSdefines the number of accounts the bank man-
ages. Because there is only one account for each customer,ACCOUNTSalso
defines the total number of customers. From that number, action NewCustomer
nondeterministically selects the next customer that enters the bank office. The
clerk the customer chooses to do business with is chosen in the do-od loop of the
system. Depending on the result of the nondeterministic choice, the customer is
directed either to queue A or queue B of clerk A and clerk B, respectively.

5.1.2 C lerkA and C lerkB

The action systemC lerkX has a form:

sys C lerkX (imp Put(in addr,x: Int);
imp Get(in addr: Int; inout x: Int);
in customerX: Int;
inout enterX: Bool; comX: comchannel; )

|[ variable
action: Bool; account,sum: Int;

action
Customer: (enterX→ sum:= sum′.1≤ sum′ ≤ 1000

; account:= customerX
; (action:= T 8 action:= F));

ReqAccess: (¬comX.ack→ comX.req := T);
Deposit: (comX.ack∧action→ call Put(account,sum);
Withdrawal: (comX.ack∧¬action→ call Get(account,sum));
RelAccess: (comX.ack→ comX.req := F);
WaitNext: (enterX:= F);

initialisation
action,account,sum,enterX,comX:= T,0,0,F,(F,F);

execution
do Customer;ReqAccess;(Deposit 8 Withdrawal)

;RelAccess;WaitNext od ]|
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where by substituting X for A and B we obtainC lerkA andC lerkB, respectively.
Clerks communicate with their environment, that is, the other action systems, with
the imported communication procedures and variables of which the type of the last
variable is a recordcomchannel:

type comchannel: record(req,ack: Bool)

Thecomchannelis used in communication with theA rbiter system. The cus-
tomer’s nondeterministic choice of the money sum involved in the operation as
well as the choice between the deposit and withdrawal transactions is performed
in theCustomeraction. That is, theCustomeraction models the customer that
requests the clerk to perform either theDepositor Withdrawalactions. Action
ReqAccessrequests bank access from the arbiter, andRelAccessnotifies the arbiter
after when access is no longer needed. The action systemsC lerkA andC lerkB
communicate with all the other systems in the model excluding themselves. Com-
munication between the clerks and theB ank system is modelled using the pro-
cedure based communication model while the variable based communication is
used between the clerks and theE ntranceandA rbiter systems.

5.1.3 A rbiter

The action systemA rbiter is of form:

sys A rbiter ( inout comA,comB: comchannel; )
|[ action

ClerkA: (comA.req∧¬comB.ack→ comA.ack:= T;
8 ¬comA.req∧comA.ack→ comA.ack:= F);

ClerkB: (comB.req∧¬comA.ack→ comB.ack:= T;
8 ¬comB.req∧comB.ack→ comB.ack:= F);

initialisation
comA,comB= (F,F),(F,F);

execution
do ClerkA 8 ClerkB od ]|

where actionsClerkAandClerkBare chosen for execution based on the Boolean
type interface variablescomX.reqandcomX.ack, whereX ∈ {A,B}. If both clerks
request access to the bank at the same time, the selection between them is per-
formed in a nondeterministic manner.

5.1.4 B ank

The action systemB ankhas a form:
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sys B ank (exp Put(in addr,x: Int);
exp Get(in addr: Int; inout x: Int); )[
ACCOUNT S: Int := 5;

]
::

|[ variable
sdb[ACCOUNTS],account,sum: Int;

public procedure
Put(in addr,x: Int) : (account:= addr; sum:= x

; sdb[account−1] := sdb[account−1]+sum);
Get(in addr: int; inout x: int) :

(account:= addr; sum:= x
; (sum≤ sdb[account−1] →

sdb[account−1] := sdb[account−1]−sum
8 sum> sdb[account−1] →

sdb[account−1] := 0));
action

Save: (await Put);
Load: (await Get);

initialisation
sdb[0..ACCOUNTS−1],account,sum:= (1000..1000),0,0;

execution
do Save8 Load od ]|

wheresdb[ACCOUNTS] is the safe deposit box array that holds the information
on each customer’s bank account balance.B ankexports interface proceduresPut
andGet, which are imported and called by action systemsC lerkA andC lerkB.
ActionsSaveandLoadactively wait for procedure calls fromC lerkAandC lerkB
and, when a call comes in, they perform the ordered tasks. If the sum that is
requested with theGet procedure exceeds the account’s balance, only the sum
as large as the balance is withdrawn from the account. Negative balance is not
allowed.

5.2 ActionC Implementation

The next step is to translate the presented Action Systems model to a correspond-
ing ActionC model using the methods provided by the SystemC class library. The
entire implementation of the bank office model is illustrated in Fig. 4, where the
Entrance module communicates with moduleClerkA through primitive chan-
nelscustomerA andenterA, and with moduleClerkB through primitive chan-
nelscustomerB andenterB. The arrow at each port determines the direction the
corresponding channel transfers the data. ActionC communication channels are
illustrated in Fig. 4 as dashed-lined boxes with the type of the channel given in-
side. Exported proceduresPut andGet are implemented as ActionC constructs
that we here name asput andget, respectively. Theput andget channels con-
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Figure 4: Illustration of the bank office model in ActionC constructs.

sist of hierarchical channelsput_channel andget_channel, respectively, and
their related port-interface couples for each channel user. TheBank module that
exports the procedures, uses the channels through an exported type port-interface
couple while the clerks use imported type port-interface couples at their ends.
In the communication between the clerks and theArbiter module, the interface
variablecomchannelis implemented as a point-to-point hierarchical channel with
equal port-interface couples at its ends. The SystemC code that Fig. 4 illustrates,
will be introduced later.

Most of the ActionC implementation is created by directly replacing the Ac-
tion Systems model structures with the matching SystemC constructs that were
presented in Sect. 4. In Action Systems both local and globalvariables are ini-
tialised by theinitialisation clause, whereas in SystemC this is performed inside
the module constructor. Guarded commands are implemented by using the C++
if statement in evaluating the state of the guard. TheInt and Bool type inter-
face variables are implemented as SystemC ports of corresponding types bound
to sc_signal type primitive channels.
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5.2.1 Handling ActionC Actions

The communications inside ActionC modules are handled withBoolean signals.
Actions that are implemented as SystemC processes are activated by the positive
edge of the signal that controls the action’s execution, which means that there is
one signal for each action process. Most action processes are activated by their
host module’sexec() process, which is a SystemC thread that models the be-
haviour of an Action Systems’ iteration part. Theexec() process is used to han-
dle the action activation in all the modules excluding theBank module whose
actions only react tomethod callsfrom other modules. Method calls are sufficient
as the Action Systems actionsSaveandLoad only include theawait command.
Furthermore, action processes can be triggered directly bythe event notifications
from the channel that corresponds the Action Systems interface procedure. We
illustrate this by the following example. Let us have an Action Systems actionA
that is implemented with a processactionA() in SystemC. The execution of the
process is handled by anexec() process using the following structure:

actionA_sig.write(true);
wait(actionA_sig.negedge_event());

where the Boolean signalactionA_sig is set to true. This activates the process
actionA() to perform its tasks. After performing its operation,actionA() sets
actionA_sig to false, which, in turn, triggers theexec() process. If actions are
not implemented as SystemC processes but as standard C++ member functions,
the exec() process performs a simple method call and waits for return. In this
example, however, only processes were used. In the following sections, we will
elaborate the implementation of nondeterminism and procedure based communi-
cation.

5.2.2 Nondeterminism

Let us first examine the source code of the processesexec() andcustomer() of
theClerk module. A part of the fileclerk.cpp is listed below:

/* Iteration loop handling actions Customer, ReqAccess, Deposit,
Withdrawal, RelAccess and WaitNext */

void Clerk::exec() {
while(true) {

// activate action Customer
customer_sig.write(true); wait(customer_sig.negedge_event());

// activate action ReqAccess
reqAccess_sig.write(true); wait(reqAccess_sig.negedge_event());

// nondeterministic choice between Deposit and Withdrawal
if (action) {
// activate action Deposit
deposit_sig.write(true); wait(deposit_sig.negedge_event());

}
else {
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// activate action Withdrawal
withdrawal_sig.write(true); wait(withdrawal_sig.negedge_event());

}

// activate action RelAccess
relAccess_sig.write(true); wait(relAccess_sig.negedge_event());

// activate action WaitNext
waitNext_sig.write(true); wait(waitNext_sig.negedge_event());

wait(enter.posedge_event());
}

}

/* action Customer */
void Clerk::customer() {
while(true) {

sum = ac_selector(1000); // The sum to use
account = customer.read(); // Inquiring the account
int choice = ac_selector(2); // Choosing action
if (choice == 1) {
cout << "Clerk(Customer): Clerk will perform a deposit" << endl;
action = true;

}
else {
cout << "Clerk(Customer): Clerk will perform a withdrawal" << endl;
action = false;

}
customer_sig.write(false);
wait();

}
}

The nondeterministic choice between the execution ofDeposit and
Withdrawal actions is made by the actionCustomer. The ActionC function
ac_selector() is used in choosing between the two options. In this case, the
exec() process does not include the iteration loop structure, because only a sim-
ple if statement is needed to implement the choice between the two integer values.
However, theexec() processes ofEntrance andArbiter modules take advan-
tage of the proposed structure, because the nondeterministic choice is performed
by theexec() process itself, not by a component action. As presented in Table 1,
non-atomic sequences indo-od loops are implemented as sequential executions.

In the action processcustomer(), theac_selector() function is also used
in choosing a random value for the sum that is used in the chosen transaction.
This corresponds to the nondeterministic assignment that is used in the Action
Systems model. Nondeterministic assignment is also implemented in the module
Entrance, where the action processnewCustomer() chooses the customers that
enter the bank office.

The action systemA rbiter continuously monitors the states of theinout vari-
ablescomAandcomBof the typecomchannel. The ActionC implementation of
A rbiter similarly waits for changes in the channel’s local variables request and
acknowledge. When a state change has been detected, the iteration loop reacts by
executing both of the action processesclerkA() andclerkB() in a nondetermin-
istic order. The reason for executing both processes is thattheexec() process can
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Figure 5: The class hierarchy ofput andget.

only detect a state change in the communication channel, notthe exact variable
whose state has been changed. However, depending on which ofthe processes is
executed first, it might be necessary to execute only one. That is, if the changed
variable is found in the first executed process there is no need to execute the other.
When a process is nondeterministically chosen for execution, that is, both pro-
cesses sent a request at the same time, the guards of the process’s component
actions are evaluated and the winning component is executed.

5.2.3 Procedure Based Communication

As defined earlier, the interfaces of the procedure communication channels be-
tween aClerk andBank declare different sets of methods for these systems to
call; Bank is able to control the information stored in the local variables of the
channel, whereasClerk is only allowed to requestPut or Getprocedures by using
the corresponding methods provided by the channel interface. The class hierarchy
of the ActionCput andget channels that implement thePut andGet procedures,
respectively, is shown in Fig. 5.

Let us next elaborate the functionality of the Action SystemsPut andGetpro-
cedures by viewing their implementation in ActionC, theput andget procedure
commmunication channels. Import ports for these channels are constructed in the
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module body ofClerk, while the corresponding export ports are constructed in
the module body ofBank. Clerk may commence a deposit or a withdrawal by
calling theput() or get() method, respectively, which is provided by the inter-
face between theClerk’s port and the channel. The methods take as arguments
the amount of money (x) and the bank account number (addr), that is, data and
its destination address. The methods store this information on the channel’s vari-
ables, and then informBank by sending an event notification for the SystemC
scheduler. After being invoked,Bank reads the sent information from the channel
by using the methods provided by the interface betweenBank and the channel.
Depending on the called methodBank either deposits into or withdraws from a
bank account the amount of money, pointed out by the passed information. After
this, Bank calls the channel’s function to produce an event notification in order
to informClerk that the deposit transaction (Put procedure) is complete, whereas
the withdrawal transaction (Getprocedure) is ended by obtaining the money using
thereadX() method provided by theClerk’s interface.

5.2.4 Complex Interface Variables

The variable based communication channel,comchannel, is used in communi-
cation between the clerks and theArbiter module. In contrast toput andget
channels,comchannelhas identical port-interface couples and both counterparts
own the same access rights for the channel’s methods.comchannelcontains a pair
of local boolean variables,request andacknowledge that in the Action Systems
model correspond to the boolean variablesreq andack, respectively. They are
used in the signalling that follows the 4-phase handshakingprotocol, in which the
request and acknowledgement phases are initiated by first activating the request
signal after which the acknowledgement signal is activatedas a sign of opened
access through channel. After the transaction has finished the handshaking proto-
col is finalised by initialising the request and acknowledgement signals again in
that order. In this experiment, the clerks control therequest variable to request
a service, whileArbiter controls theacknowledge variable, thus guarding the
access to the shared resource, the bank.

5.2.5 Source Files

All the source files created for the ActionC model of the presented bank office are
gathered in Table 2. In addition to themain file the implementation includes the
header(.h) and definition(.cpp) files for each of the four distinct action systems
in the Action Systems model. Action Systems clerks A and B areimplemented
as two instances of a singleClerk module. There are also header and definition
files for an ActionC communication channelcomchannel that corresponds to the
interface variable typecomchannel, and for ActionC procedure communication
channelsput andget corresponding to thePut andGet procedures, respectively.
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Table 2: Source files for the bank office example.

main.cpp The main program file including

thesc_main() routine.

simconstants.h Simulation specific constants

actionc.h, actionc.cpp ActionC methods

entrance.h, entrance.cpp Implementation ofE ntrance

clerk.h, clerk.cpp Implementation ofC lerkX

arbiter.h, arbiter.cpp Implementation ofA rbiter

bank.h, bank.cpp Implementation ofB ank

put_procedure.h,

put_procedure.cpp

Implementation ofPut procedure

get_procedure.h,

get_procedure.cpp

Implementation ofGet procedure

comchannel.h, comchannel.cpp Implementation ofcomchanneltype

interface variable

The simulation specific constants are gathered in filesimconstants.h and the
declarations and definitions of the previously introduced ActionC methods are in
filesactionc.h andactionc.cpp, respectively.

5.3 Simulation

To run simulations on the ActionC bank office model the SystemC class library
version 2.1 was installed on DLL release version 1.5.21-2 ofCygwin [13] envi-
ronment running on Windows XP. The created model was then compiled with g++
compiler version 3.4.4-3 for Cygwin.

The Action Systems model describes a system that runs for an unlimited pe-
riod of time, and the simulation of the created ActionC modelcan be implemented
for similar behaviour. For practical reasons, however, we set the simulation to stop
after a predefined number of transactions. In several parts of the simulation, the
execution is monitored with printed screen outputs. Although printed reports are
a more primitive approach to observe the model during simulation than a monitor-
ing solution with SystemC trace files, it is also a more straightforward approach.
This decision was made to keep the implementation as simple as possible, which is
also the reason for allowing the presence of only one customer at a time inside the
bank office. The model can be adapted for multiple customers by modifying the
implementation of theE ntrancesystem. However, the simpler implementation
used here is adequate enough to fulfil our goals to experimentnondeterminism
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and procedure based communication in ActionC.
The simulation execution is monitored in several parts of the model starting

from the entrance of the first customer and lasting until the last customer has left
the bank office. To keep the simulation output short, the execution is stopped after
the third customer has done his business in the bank. The number of customers and
the length of the simulation can be altered by changing the value of the constant
TRANSACTIONS in file simconstants.h. With the setting:

const int TRANSACTIONS = 3;

the execution of the main program produced the following output:

Entrance(exec): Bank is now open
____Entrance(NewCustomer): Customer 3 enters the bank____
Entrance(QueueA): Customer 3 queues for ClerkA
Clerk(Customer): Clerk will perform a withdrawal
Clerk(ReqAccess): Clerk is requesting access to the bank accounts
Arbiter(ClerkA): ClerkA has been granted access to the bank accounts
Clerk(Withdrawal): Withdrawing sum 421 from account 3
Bank(Load): Withdrawing sum 421 from account 3
Bank(Load): The balance of account 3 is now 579
Clerk(Withdrawal): Received sum 421
Clerk(RelAccess): Clerk is releasing access to the bank accounts
Arbiter(ClerkA): Bank account access of ClerkA has been cancelled
____Clerk(WaitNext): Customer 3 exits the bank____
____Entrance(NewCustomer): Customer 2 enters the bank____
Entrance(QueueB): Customer 2 queues for ClerkB
Clerk(Customer): Clerk will perform a withdrawal
Clerk(ReqAccess): Clerk is requesting access to the bank accounts
Arbiter(ClerkB): ClerkB has been granted access to the bank accounts
Clerk(Withdrawal): Withdrawing sum 815 from account 2
Bank(Load): Withdrawing sum 815 from account 2
Bank(Load): The balance of account 2 is now 185
Clerk(Withdrawal): Received sum 815
Clerk(RelAccess): Clerk is releasing access to the bank accounts
Arbiter(ClerkB): Bank account access of ClerkB has been cancelled
____Clerk(WaitNext): Customer 2 exits the bank____
____Entrance(NewCustomer): Customer 5 enters the bank____
Entrance(QueueA): Customer 5 queues for ClerkA
Clerk(Customer): Clerk will perform a withdrawal
Clerk(ReqAccess): Clerk is requesting access to the bank accounts
Arbiter(ClerkA): ClerkA has been granted access to the bank accounts
Clerk(Withdrawal): Withdrawing sum 700 from account 5
Bank(Load): Withdrawing sum 700 from account 5
Bank(Load): The balance of account 5 is now 300
Clerk(Withdrawal): Received sum 700
Clerk(RelAccess): Clerk is releasing access to the bank accounts
Arbiter(ClerkA): Bank account access of ClerkA has been cancelled
____Clerk(WaitNext): Customer 5 exits the bank____
Entrance(exec): Bank is now closed

where on each line the first print before the parantheses indicates the module and
the print inside the parentheses the executed action that produces the output line.
Owing to the nondeterministic choices in several parts of the model, the course
of the simulation and the output is, in all probability, always different. Similarly,
as the number of customers, also the number of accounts in thebank is freely
adjustable by altering the value of the constantACCOUNTS in file simconstants.h.
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This does not change the total length of the simulation but regulates the variety of
possible customers entering the bank office during the simulation.

The operation of one loop of simulation begins from theEntrance module,
where the next customer and the clerk that the customer will be queueing for are
nondeterministically chosen by action processnewCustomer() and theexec()
process, respectively. Depending on the queue, either action processqueueA()
or queueB() then activates theexec() process of the correspondingClerk mod-
ule and sends the clerk the customer number through the integer type primitive
channel between the modules. After being activated theClerk module’sexec()
process executes action processcustomer(), which nondeterministically chooses
between the deposit and withdrawal transactions. Next the clerk requests access to
the bank accounts from theArbiter module with action processreqAccess().
If both clerks are trying to request the access simultaneously, Arbiter makes the
choice between them nondeterministically. In this simulation, however, there is
only one customer in the bank office at a time, which also meansthat only one of
the clerks is requesting the access during each simulation loop. Therefore, despite
theArbiter module’s ability to manage simultaneous requests, none will appear
due to the simplicity of this simulation. After being granted the bank access, the
clerk performs the chosen transaction through the corresponding channel, that is,
by using eitherput or get channel for deposit and withdrawal, respectively. The
Bankmodule then executes either action processsave() or action processload()
depending on the case. Once the transaction has finished, theClerk module’s
exec() process executes action processrelAccess(), which releases the bank
account access to be dealt out again byArbiter. By activating action process
waitNext() theClerk module informsEntrance that it is ready to receive the
next customer. After this,Entrance continues by dealing out the next customer
for one of theClerk modules if there are more transactions to be performed in the
simulation.

6 Conclusions and Future Challenges

In ActionC the formal correct-by-construct development paradigm Action Sys-
tems and the industry standard design language SystemC integrate into an embed-
ded computer system development framework. Action Systemsincludes many
similar constructs as SystemC. Both Action Systems and SystemC use a mod-
ularised model structure and support modularisation mechanisms such as proce-
dures, parallel composition and data encapsulation. Both can be used in describing
entire HW/SW systems starting from an initial behavioural model and resulting
with an implementable design that includes both hardware and software partitions
of the system. For both languages, there are accurate rules concerning the refine-
ment performed on the models. In addition, SystemC includesa simulation kernel
that can be used in testing the created models.
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In this report, the most important Action Systems aspects inthe ActionC de-
velopment have been nondeterminism and communication between system com-
ponents. The introduced case study exemplified the use of theproposed ActionC
framework and concentrated on these aspects. Nondeterministic choice in differ-
ent parts of the model was implemented in several different ways depending on
the proposed functionality in each case. The model that presented the activities
of a bank office consisted of four distinct modules whose communication had to
be organised by using primitive as well as hierarchical channels. The used hier-
archical channel was the ActionC communication channel, and the specialisation
of that channel, the ActionC procedure communication channel, was used to im-
plement the procedure based communication in the initial Action Systems model.
Being based on interfaces and procedure calls, the ActionC implementation of in-
ter module communication resembles the accuracy aspects ofa transaction level
model. Therefore, based on the implementation of communication channels the
best place for the bridge between Action Systems and SystemCis at the transac-
tion level. The internal implementation of ActionC modulesis quite straightfor-
ward because of the similarity in the structures of action systems and SystemC
modules. For the internal implementation of modules, in addition to the first Ac-
tionC methods, an ActionC coding style has been introduced.By following the
proposed coding style with the rules of transaction level modelling in the conver-
sion process from Action Systems to SystemC, an initial ActionC model can be
described, from which the design process can be continued byrefining the model
down to the desired levels of abstraction.

The ActionC framework underpins the Action Systems development frame-
work by the simulation support provided by SystemC. The future development of
ActionC should also include the objective to achieve directlogic synthesis from
SystemC descriptions of Action Systems models. However, the possibility of
synthesis based on SystemC is limited to the features included in its synthesisable
subset. The future development of the ActionC framework should also ensure that
the formal correctness of an Action Systems description is preserved in the simu-
lations. This is especially useful when working on the first,high abstraction level
model: An executable ActionC model of the initial specification provides valu-
able information for later refinement of the design. The decision to map Action
Systems communication practises into SystemC at transaction level also requires
further research. Timing is another aspect that the future development of the Ac-
tionC framework should also address.

The continuous development of the SystemC class library brings also chal-
lenges to the system designer that uses the environment. Features that have been
valid in the previous release may well be deprecated in the next. Although, as
the development advances, SystemC class library offers a more and more precise
tool for modelling HW/SW systems, this comes with the cost ofweaker back-
ward compatibility. In the case of the bank office example, deprecated features,
or should we say improved realism, brings up some implementational challenges,
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when SystemC class library is upgraded from version 2.1 to the next, version 2.2
beta. By default, the former version has no objections with multiple ports writing
to onesc_signal instance, while the latter would deny such actions and suggest
using other signal types in the place ofsc_signal. Although, this deprecated
feature can still be turned on if needed, these types of changes in the language
cause problems for a system designer, and may be even more confusing in the
development of a framework that uses SystemC as its implementation.
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