Tomi Metsala | Tomi Westerlund |
Seppo Virtanen | Juha Plosila

ActionC: An Action Systems Approach to
System Design with SystemC

Turku CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 865, January 2008

1

ActionC: An Action Systems Approach to
System Design with SystemC

Tomi Metsala .
University of Turku, Department of Information Technology

Joukahaisenkatu 3-5 B, 20520 Turku, Finland
tom . metsal a@itu. fi

Tomi Westerlund _
University of Turku, Department of Information Technology

Joukahaisenkatu 3-5 B, 20520 Turku, Finland
tom . westerlund@itu. fi

Seppo Virtanen
University of Turku, Department of Information Technology
Joukahaisenkatu 3-5 B, 20520 Turku, Finland
seppo. virtanen@itu. fi

Juha Plosila _
University of Turku, Department of Information Technology

Joukahaisenkatu 3-5 B, 20520 Turku, Finland
j uha. pl osil a@it u. fi

TUCS Technical Report
No 865, January 2008

Abstract

ActionC is a new approach to rigorous modelling and develemnof computer

systems. ActionC integrates SystemC, an informal desigguage, and Ac-
tion Systems, a formal modelling language that supporific&tion and stepwise
correctness-preserving refinement of system models. TtierAZapproach com-
bines the possibility to use a formal correct-by-constraethod and an industry
standard design language with simulation and synthesostidn our approach
Action Systems provides a formal foundation for an infor@wastemC model with

a promise of verified simulation, refinement and synthestghi& point we have

explored the first aspects of ActionC development: the SyStenplementations
of nondeterminism and of Action Systems type inter-moduolammunication. The

early experiments have successfully produced simulataypstemC descriptions
of Action Systems.

Keywords: SystemC, Action Systems, Formal methods

TUCS Laboratory
Distributed Systems Design

1 Introduction

Formal methods provide an environment to specify, desigh\amify systems
with the benefits of a strict mathematical basis. In our casm&l methods are
provided by the Action Systems formalism [1], which offerpaverful stepwise
development environment for designing embedded HW/SWesysthroughout
the design project from abstract specification down to irmglistable model. Ac-
tion Systems enables us to formally verify each derivatiap svithin specific
refinement calculus framework [2].

Programming languages that are targeted to software dewelat do not na-
tively support hardware-oriented functionality such asckk, signals, reactivity
and parallel processing accurately. Because of this, whem languages and en-
vironments are used in embedded system development, tpersdigr hardware
modelling is typically built on top of the underlying prognaning language. The
benefit of this approach is that while support for hardwareletlong is added,
all features of the base language can still be used in sysésigrd One such
a language is SystemC [3][4], which is a system modelling sintulation en-
vironment based on the standard C++ programming langupgk{&ddition to
hardware modelling related data types, structures and defénitions, SystemC
also provides the system designer all the object orientglthiques available in
C++. SystemC is a single language framework for co-vergggstems at multi-
ple, possibly mixed, abstraction levels allowing the systiesigner to gradually
develop the model towards lower abstraction levels witlzoued to translate the
model into a hardware design language.

This report explores the possibilities of the Action Sysédormalism in pro-
viding a formal foundation for SystemC modelling. The olijgxis to capitalise
the best features of both methods and to combine the resulisrew system
modelling framework. The propose&ttionC framework would provide a Sys-
temC model out of an Action Systems description at a givenratison level.
The utilisation of the ActionC framework would allow the dgger to initially
produce a simulatable description from a formal Action 8yst description. The
purpose of ActionC would also be to ensure the preservafitredormal correct-
ness throughout the model’s refinement process as well asggdhe simulation.
In this report two important aspects of Action Systems amestered in detail:
nondeterminism and communication between system modulesfinal conclu-
sion should tell us how SystemC handles these aspects inuasiom and how
the ActionC framework development should be continued éfftiure.

First, the Action Systems formalism is introduced in Secwith a short de-
scription of the language and an introduction to its intediie communication
methods. Section 3 briefly introduces SystemC by preseitsrigasic structures
and their usage. Based on the information presented in thietfio sections,
Action Systems and SystemC are viewed together in Sect. & nidiching con-
structs between the two modelling languages are studiedeatotindation for

1

the new ActionC framework. In addition, the first methodstfoe ActionC class
library are introduced in Sect. 4. Section 5 presents an pkam which an Ac-

tion Systems model is transformed into an implementatiabftiilows the coding
style of the proposed ActionC framework and utilises theidxd@ methods and
constructs introduced in the previous section. Concludamgarks are provided
in Sect. 6.

2 Action Systems Formalism

Action Systems is a design method for modelling and refinorghal models of
sequential programs as well as more complex parallel amtiveaystems [1][6].
The Action Systems formalism was initially proposed by Rallmhan Back and
Reino Kurki-Suonio [7] and it is based dhe guarded command languagg
Edsger W. Dijkstra [8]. Action Systems allows a system paogmer to design
a system based on its logical behaviour. The decisions coimcethe actual im-
plementation and the questions of sequential and parakelgions in the system
can be made after the design of the logical behaviour.

An action system is a program in which the system executia@essribed in
terms ofatomic actions Atomic actions, once chosen for execution, are executed
to completion without interference from other actions ie gystem. Only the
initial and final states of an atomic action are observableclvmeans that there
are no observable states between them. If two actions doawat &ny shared
variables, it is possible to execute them in parallel. Bahaplel and sequential
executions of such actions are guaranteed to produce ¢dérgsults.

The Action Systems formalism supports modularity, inahgdmodularisation
mechanisms such as procedures, parallel composition aa@&deapsulation. An
action system module has its own local variables and a sitegkgtion statement.
Modularity of Action Systems includes also parameterised¢@dures and nested
action systems. The action system modules communicateeasith other us-
ing different kinds of communication mechanisms. Modulas share variables,
which they use to pass information. The information passargalso be accom-
plished via shared actions and remote procedure calls bgrimg and exporting
variables and procedures within the system module interfac

A stepwise refinement method is used for the development ataral paral-
lel, distributed system from an initial action system modéie model is produced
using a formal method callegfinement calculysvhich was originally proposed
by Ralph-Johan Back [2][9]. The refinement is performed ierAction Systems
model created as a result of the behavioural and logicagjdesia system. By fol-
lowing the refinement calculus the refinement steps preskevotal correctness
of the original statements. This way the initially generad éanguage independent
design is refined into efficiently implementable code in gagseveral different
programming languages.

2.1 Actions

Actions are defined (for example) by:

| [[var x:=Xo; Al

(abortion, non-termination
(empty statement
((multiple) assignmeint
(iterative compositioh
(guarded command/action
(sequential compositign
(nondeterministic choige
(prioritised composition
(simultaneous compositipn
(assertion statement
(assumption statement
(nondeterministic assignment
(block with local variableg

whereA, Ag andA,, n € NT, are actionsx is a variable or a list of variablesg
some value(s) of variable(s) e is an expression or a list of expressions; and
andR are Boolean conditions. Thetal correctnessf an actionA with respect to
a preconditiorP and a postconditio is denoted?AQand defined by:

PAQ= P = wp(A,Q)

wherewp(A, Q) stands for theveakest preconditiofor the actionA to establish
the postconditiol®. The activation of the statement li&tis guaranteed to lead to
a properly terminating activity leaving the system in a fisigte that satisfies the
postconditiorQ and also the weakest precondition.

The guardyA of an actionA is defined by:

gA= —wp(A, false

In the case of a guarded actién= p — B, we have thagA= pAgB. An action
Ais said to besnabledin states, where its guard is true atidabled where the
guard is false. Now for the above introduced actions we céinete

3

wp(abort, Q) = false
wp(skipQ) =Q
wp(x:= € Q) = Qle/X]
wp(doAod,Q) = (Fk. k> 0AH(K)) where
k=0=H(0)=QA—gA
k> 0= H(k) = (gAAWp(AH(k—1))) VH(0)
wp(p— A Q) =P=wp(A Q)
Wp((Ao; A1), Q) = wp(Ao, Wp(A1,Q))
wp((Ao | A1),Q) =wp(Ao, Q) AWP(A1,Q)
Wp(Ao / A1, Q) = (Wp(Ao, Q) A (—gA = (WP(A1,Q)))
wp(Ag* A1, Q) = gAu A gAL = (Vap, a).Pa, A Pa, = Q[ag, a) /a0, a1))
wp({p},Q) = pAQ
wp([p],Q)=p=Q
wp(x:=X.p,Q) =VX.p= Qx/x|
wp(|[varx;AJ[, Q) = Vx.(Wp(A,Q))

The above defined actions and their compositions are alliat@etions.Atomic
compositiongre larger atomic entities composed of simpler ones, anddtiens
within such compositions are calledergedactions. However, in @aon-atomic
compositiorof actions the component actions are atomic entities of tven, but
the composition itself is not. One such a construct is thatitee composition, the
do-od loop, whose execution may consist of several executionts @oimponent
actions. Non-atomicity means that also the intermediatiestof the composition
can be observed in contrast to an atomic composition.

2.2 Action System

An action systemw/ has the form:

sys ¢ (imp pi; exp pe;)(9;)
[private procedure
p(in x;outy): (P);
public procedure
pe(in x;outy): (Pe);
variable
I;
action
A (aA);
initialisation
g,l :=g0,10;
execution
doconposition of actions A od ||

where we can identify three main sectionsterface declarationanditeration.
The interface part declares the global varialdesvhich are visible outside the
action system boundaries meaning that they are accesgilbébr action sys-
tems. These variables may be eithgrout or inout variables. The interface also
introducesinterface procedurespand pg that are imported or defined and ex-
ported by the system, respectively. In general, procecaneany atomic actions
A, possibly with some local variableg that are initialised tavO every time the
procedure is called. The actigncan access the globaj)(and local () variables
of the host/enclosing system and the formal parametarsdy. Procedures can
be treated as parametrisable subactions because theutiexscare considered
as parts of the calling action. An action system that doedhaw¢ any interface
variables or procedures &sclosed action systenOtherwise it isan open action
systemThe declarations part introduces all the local variabléscal procedures
p, exported procedurege and actionsA; that perform operations on local and
global variables.

The operation of the action system is started by the ing@ilon in which the
variables are set to their predefined values. In the itergtiart, in theexecu-
tion section, actions are selected for execution based on tbeipasition and
enabledness. This is continued until there are no enabtehacwhereupon the
computation terminates. Hence, an action system is eafigiatn initialised block
with a body that contains a repeatedly executing statement.

2.3 Procedure Based Communication

The procedure based communication [10] uses remote proeetiumodel com-
munication channels between action systems. One actidensydefines and ex-
ports a procedure, which is imported by another system. ditaes the importing
system a possibility to perform a remote call by executirggtocedure (Fig. 1).
Consider the action systerasid and ® ec whose internal activities are denoted

5

(Snd A (Rec)

call p P> await p

. J . J

Figure 1: Action systemsnd and® ec communicating directly with each other
using a procedure

with actions

S= (sp;call p(lsng); S)

and
R= (Ry;await p;Ry)

whereS, 2, Ry > are arbitrary subactions &andR, respectively. Interface pro-
cedurep is defined in and exported by the receiveec and imported and called
by the sendes nd, with the sender’s local variablésnd as actual value param-
eters. Furthermore, the local variables of the systemsiat@d, lsnqN lrec = 0,
communication variables are a sgtqN grec and the initialisations of the commu-
nication variablegjsngM grec are consistent with each other. The bdlgf p can
be any atomic action writing onto the receiver’s local viales lec. In parallel
compositiorof action systemssnd || % eg, theexecution clause of the composed
system is by definition:
doS | Rod

The construcS || R, whereS calls p (call command) andR awaits such a call
(await command), is regarded as a single atomic acBBdefined by:

SR= (S1;R1; Pllsnd/X); Ro; &)

Therefore, communication is based on sharing an action iohnwdtata is atomi-
cally passed frong nd to % ecby executing the bod# of the procedurg while
hiding the communication details into the procedure call.

3 SystemC

In the same way as the Action Systems formalism, System@][8Hn be seen
as a methodology that can be used in writing a specificatiora feystem that
includes both hardware and software components. Syste@Cléss library for
the standard C++ programming language [5], and it is an oparce standard,
which is currently supported and advanced by the Open Sytaitiative (OSCI)

6

[11]. IEEE has approved the IEEE 1666 standard for versi@anothe OSCI
SystemC Language Reference Manual [12], which is also sw#port the main
reference concerning the SystemC class library definitions

With SystemC a system designer can create cycle-accuratelsnof soft-
ware algorithms, hardware architectures and interfac&s@f and system-level
designs. SystemC is a fine tool for hardware modelling, eliengh it is built
on a high-level software programming language. Therefiore, HW/SW sys-
tem design process SystemC can be used inplace of actuadrardescription
languages, such as VHDL and Verilog. SystemC provides sysiehitecture
constructs, such as hardware timing, concurrency, andivedzehaviour, which
are not included in standard C++. In addition, the desigaaruse all the object-
oriented features and development tools of C++. Both soéveand hardware
partitions of a system model can be written in a single heglel language, which
provides higher productivity, less code and decreasesasslulity of errors. Be-
cause both software and hardware partitions are writterygte®C, they can be
tested using the same test bench without any need for lapgr@wersions be-
tween different abstraction levels.

3.1 A SystemC Model

A SystemCmoduleis the building block of a SystemC model. Breaking a de-
sign model into several small pieces makes the otherwis@leonsystem easier
to manage. Modules implement data encapsulation by hidiogl ldata and al-
gorithms from other modules in the system. A module may éordéhierarchy

of other modules. Modules rymrocesseshat are triggered bgvents Processes
describe the behaviour of the modules, to which they are wedfiModules are
connected to each other lghannels which are used in inter-module and inter-
process communication.

SystemC module us@®rtsandexportsto access channels. SystemC provides
three different kinds of ports to allow single-directiorcass from the outside en-
vironment to the module, from the module to the environmeidirectional ac-
cess through one port. A port communicates with its desaghaihannel through
aninterface which gives the port the methods that it can use to accesshtre
nel. This way the port acts as an intermediary for the modutale the interface
provides the same service for the channel. There can be peas 9f channels:
primitive channelsand hierarchical channels A primitive channel, sometimes
also called a signal, is considered atomic because it daesomtain any other
SystemC structures. Hierarchical channels may contaier etiodules and chan-
nels as well as internal processes, therefore in practiey, dre as complex as
modules. Inter-module communication can be refined by uadapters wrap-
persandconvertersf the ports and interfaces between the modules do not match.

A SystemGCsimulationis set up in theelaborationphase in which the top level
modules, channels and clocks are instantiated and modtite gre bound to the

7

channel instances. Constructs inside the inner hierayafienodules and hier-
archical channels are instantiated in their constructdhss way the elaboration
process advances recursively from top and down throughrttie dnierarchy. In
the simulation phase the SystersCheduleracts as a system kernel that handles
the timing and order of the process execution. It controenewotifications and
updates channels when requested.

4 ActionC

In the context of ActionC, Action Systems and SystemC willvrize viewed to-
gether with the objective to utilise the best parts of botstayn modelling lan-
guages. Action Systems is a formal language that is usebelogsly at the first
stage of a system development process, while SystemC iserfudbtool for sys-
tem model simulation, refinement, testing and implemesratAn initial Action
Systems model can be created directly from the system spamin and then re-
fined down to the desired abstraction level through coresgmpreserving refine-
ment steps. By combining the formal features of Action Systevith the benefits
of the SystemC environment we could write an executableifspeon that is
based on a formal system description. The formal correstoéshis specifica-
tion would be verified, the specification would be simulagadhd, if necessary,
synthesisable within the limits set by the synthesisabbsstof SystemC.

ActionC can be viewed as the implementation of Action Systéonmalism
in the SystemC environment. In this report, the key poinésthe implementa-
tions of nondeterminisnand communication between action systerirs Action
Systems, these are essential features when modelling errapibedded systems
with multiple modules and processors, and therefore mugrbperly handled
also in the ActionC framework. Simultaneous execution aioas is one of the
action compositions in Action Systems. In SystemC, sinm@tals process execu-
tion is implemented with the request-update method andibephase semantics
of the SystemC scheduler. Therefore, concurrent execufisaveral actions can
be easily simulated in SystemC without any greater needdditianal ActionC
features. By ActionC features, we mean C++ or SystemC metbpdlasses that
bring the principles of Action Systems formalism into a @€ model. Imple-
mentations of nondeterminism and inter-module commuioicatre elaborated in
the forthcoming sections.

The view on the ActionC modelling framework starts with tdentification
of the language constructs that the Action Systems formagdisares with the Sys-
temC design language. These directly mappable languagruots are gathered
in Table 1. A SystemC module corresponds to an action sydieth,enclosing
a local scope. Both also have an interface that they use inmtomeating with
the environment and other similar elements. When concgrActionC, let us
call this structure aActionC moduleAction Systems actions are implemented as

8

Table 1: Matching language constructs between Action &ystend SystemC

Action Systems SystemC

action system Module
action Module member
do-od loop thread process

in var,out var Sc_in<>, sc_out<>
inout variable
non-atomic sequence

proc

sc_inout<>
sequential execution
C/C++ void method

S R

member functions of the ActionC module. The member funstioray be either
normal C++ methods, SystemC method processes or, if the erefionfiction ex-
ecution needs to be suspended and reactivated, they arenapled as SystemC
thread processes. Let us here call these member fun&it C actionsThese
ActionC actions are executed by performiction calls Thedo-od loop of each
of the Action Systems module is also implemented as a threackps that calls
the action processes in the composition one at a time. Teadhs suspended
when the action procecesses and the processes in otherenatel executed.
When inter-module communication in Action Systems useyg basic data types,
the SystemC primitive channel pods_i n<>, sc_out <>andsc_i nout <> match
directly with thein, out andinout variables of the Action Systems formalism.
However, if the channel structure is more complex, a Systémfarchical chan-
nel is a more practical solution. The ActionC implementatid the hierarchical
channel and its usage is given in the forthcoming sections.

4.1 Nondeterministic Choice

The challenge in modelling the behaviour of an action systerdel in SystemC is
how to capture the behaviour of a nondeterministic chbité, the basic building
block in Action Systems. In a nondeterministic compositioere are no guaran-
tees that all the enabled actions will be executed. This szt some actions
may be executed multiple times, while others may be leftuctied. Thedo-od
loop of a system is executed as long as there are enabledsbtitweak fairness
is not applied, that is, all actions have equal probabdité getting chosen for
execution during each loop iteration. This behaviour cambeelled in SystemC
with the help of a random number generator. Here we implertienrandom
number generator ag_sel ector (), a function that chooses one of the enabled
nondeterministically combined actions for execution. Trffermation on the en-
abledness of each of the actions is stored onto a booleasbl@arrayenabl ed,
which is examined by thec_count Enabl ed() function. The function counts the

9

number of the enabled actions and passes the informatidhdac_sel ector ().

These functions are used by a SystemC structure that sesula behaviour
of a do-od loop. After a function call tcac_sel ector () the structure uses the
returned integer value to determine the next action to beuggd. With an atomic
action the function would be called only once, but in theaten part the call is
repeated as long as there are enabled actions. A decreaseaimrhber of enabled
actions also decreases the value passed to the random ngemagator. Hence,
when this value evaluates to zero, execution stops and @@t of the system
is terminated.

To exemplify theActionC iteration loopstructure, we have actions and B
that are chosen for execution nondeterministically. Thiigh Systems iteration
loop execution do A[| B od can be implemented with the following structure:

int numactions; /1 total number of actions in the conposition
int action_to_execute; // indexing variable for the inner |oop

int action_nunber; /] the actual action to be executed

int enabled |eft; /'l nunmber of enabled actions

bool enabl ed[2]; /1 actions are enabl ed/ di sabl ed

bool * action_list; /1 pointer to the array enabled[].

action_nunber = 0;
enabl ed | eft = ac_count Enabl ed(action_list,numactions);

while (enabled |eft >0) { [/* The do-od | oop begins */
action_to_execute = ac_sel ector(enabled_|eft);
while (action_to_execute > 0) {
i f (enabl ed[action_nunber]==true) {
action_to_execute--;

1
action_nunber ++,
}
switch (action_nunber) {
case 1:
/* execution of action process A */
br eak;
case 2:
[* execution of action process B */
br eak;
}

action_nunber = 0;
enabl ed_| eft = ac_count Enabl ed(action_Iist, num actions);
} [* The do-od | oop ends */
where the innewhile loop uses the random integer value to choose one of the

10

| :
! 1
1
' sC_port<> sc_channel sc_interface :
1
| :
! 1
N I # ____________________ ;
: ActionC channel * * :
1
! actionc ch - : I
! _uses i — <<interface>>
user module : actione_port | of type . actionc_ch_if !
- - 1
1
1

Figure 2: ActionC communication channel class hierarchy

enabled actions, and the outer one keeps the process ruamlogg as there are
enabled actions.

4.2 ProcedureBased Communication

In Action Systems, the interface variables and procedwes the communica-
tion channels between modules. Previously we examineditbetly matching
language constructs between Action Systems and System@and the Sys-
temC counterparts for the Action Systems interface vaembHowever, only in-
terface variables of basic data types can be mapped direcBystemC. When
more complex structures are needed, interface variabled baiimplemented
with SystemC hierarchical channels, ports and interfasehawn in Fig. 2. They
compose arActionC communication channelhich confines the functionality
of the communication events and hides the actual implertienttom the com-
municating systems. Ports and interfaces are used in congex hierarchical
channel to the systems so that we have a port-interface ea@tiglach end of the
channel. The information passing through the channel iptearily stored in the
local variables of the channel. The communicating systemng access the infor-
mation in the channel by using the methods declared by th&grfaces. There-
fore, the access rights to the channel can be controlled éoyntierface method
declarations. Depending on the case, the sets of methodslaead may be iden-
tical or different. In the case @hout variables, the access rights are equal for both
parts but when using andout variables, the sets of interface methods differ at
each end.

The implementation of an Action Systems interface procediia specialisa-
tion of the interface variable implementation. Also theqadure based communi-
cation can be implemented with hierarchical channels amdiptrface couples.
In this case, the sets of interface methods at each end aagsatifferent because
of the difference in their intended functionality. One ee@nresents an exported
procedure, while the other end simulates the functionalitgn imported proce-
dure. Therefore, for each communication procedure, we tiage&hannel and two
port-interface couples: one for an exported and one for gorted procedure. At

11

Snd Rec
S imp_port imp_ch_if channel exp-_ch_if exp_port R
virtual 4.
virtual exported_p() -|-| exported_p() <t call
call - P> oet res() - - - - 1--get_res()
virtual 5.
virtual p-done() |- p-done() <t call
call - .>imp0rted,p() - imported_p() I
1
A o 2 6 o A
——— event notification . *| event notification —
= SystemC scheduler

trigger process S trigger process R

Figure 3: The ActionC implementation of the systesrsl and ® ec communi-
cating with each other using the procedure based commionaaiodel

the imported side, the interface has a minimum amount of aakstibecause the
properties of the imported procedure are introduced by yiséem that exports
it. At the exported side, the system has a wide-ranging setathods to use the
channel.

The operation of the ActionC procedure based communicati@nnel, in
terms of the Action Systems communication procedure clluistrated in Fig. 3.
The data integrity during communication call, as requirgdhe Action Systems
model, is ensured in the ActionC model by seven (7) or eighté@munication
phases. The number is determined by the existence of a netlue. The phases
are: (1) The mastesnd starts the communication by calling the channel’s inter-
face method as it would call the imported procedure in théohcBystems model.
Then the method stores its parameters into the channeks \@aciables before
(2) sending an event notification to the SystemC scheduér(8) triggers pro-
cessR, which is sensitive to the particular event. The sensytigitthe procesf
corresponds to the function of tlagvait command in the Action Systems model.
After being invoked (4) the procegkcalls the method(s) provided by its interface
to receive and use the parameters stored in the channedksvagables. Process
R performs its tasks after which it (5) employs an interfacehoé (6) to send
an event notification to the SystemC scheduler in order (#)ftom the process
S of the completion of the communication procedure. (8) If fnecedure call
produces a return value, the proc&llects it from the channel using a method
provided by its interface.

5 Experimenting with ActionC

In this section we experiment with the previously introddiéetionC features by
modelling a system consisting of parallel operating maoslul® test the proposed
ActionC framework in practise, we introduce an Action Systenodel that sim-
ulates the basic activities in a simple bank office. The madilen implemented
in SystemC with the help of the ActionC methods and codintgsfyhe concen-

12

tration will be on the implementation of inter-module conmmaation and non-
determinism. In the following discussion of the modellimgytain complicated
implementational details have been omitted in order to Bfynine presentation.

5.1 Action Systems Model

Let us have a model of a bank office whose customers eithersideponey to or
withdraw money from their bank accounts. Inside the bankceffhere are two
bank clerks A and B, who serve the customers that enter the premisesghro
the main entrance At the entrance, the incoming customer chooses randomly
between one of the two clerk to do business with. At the ctedlk’sk, the customer
determines the sum of money that is either deposited to drdvatvn from the
customer’s account. In order to keep the implementatioplgnthe sum is chosen

at random from integer values between 1 and 1000. The customees, again,

a random choice between the deposit and withdrawal transactThe clerk acts
according to the customer’s wishes and begins to perforratibsen transaction.
Before gaining access to th@ank accountsthe clerk requests a permission from
the arbiter systemwhich controls the traffic between the clerks and the bank
accounts letting only one clerk at a time access the accoutitsr gaining the
access, the clerk performs the ordered transaction anasedehe access to the
bank accounts. The customer has hereby finished his busiuitesthe clerk and
exits the bank office, while the clerk begins waiting for tlexincustomer to come

in through the entrance.

The Action Systems model consists of five parallel operatioglules, which
correspond to the different scenes in the bank officetrance clerkA, clerkB,
Arbiter andsank

£ntrance|| clerkA|| clerkB|| arbiter || 3ank

Next we describe the models for each system by using the A&istems
formalism after which we concentrate on their ActionC inmpéntations.

5.1.1 <Entrance

The action systenz ntranceis of form:

13

sys £ ntrance (out customerAcustomerB Int;
inout enterAenterB Bool;)
[ACCOUNTS Int:=5; | =
|[variable
account Int;
action
NewCustomer (account=c¢'.(1 < c <ACCOUNT $);
QueueA (—enterA— enterA:= T;customerA= accoun;
QueueB (—enterB— enterB:= T; customerB= accouny;
initialisation
accountcustomerAcustomerBenterAenterB:=0,0,0,0,F, F;
execution
do NewCustomer(QueueA] QueueB od ||

where the variabl&CCOUNT Sdefines the number of accounts the bank man-
ages. Because there is only one account for each cust&@&QUNT Salso
defines the total number of customers. From that numbegraistewCustomer
nondeterministically selects the next customer that ertteg bank office. The
clerk the customer chooses to do business with is chosee aotld loop of the
system. Depending on the result of the nondeterministieccehdhe customer is
directed either to queue A or queue B of clerk A and clerk Bpeesively.

5.1.2 clerkAand clerkB

The action systerzrlerkX has a form:

sys clerkX (imp Put(in addr,x: Int);
imp Get(in addr: Int; inout x: Int);
in customerX Int;
inout enterX: Bool; comX: comchannel)
|[variable
action: Bool, accountsunt Int;
action
Customer (enterX— sum:= sum.1 < sum < 1000
; account:= customerX
; (action:=T [action:=F));
RegAccess(—comXack— comXreq:=T);
Deposit (comXackA action— call Put(accountsun);
Withdrawal: (comXackA —action— call Get(accountsum);
RelAccess(comXack— comXreq:=F);
WaitNext (enterX:=F);

initialisation

action accountsumenterX comX:=T,0,0,F, (F,F);
execution

do CustomejReqgAccesgDeposit | Withdrawal)

,RelAcces3VaitNextod |

14

where by substituting X for A and B we obtagrierkA andclerkB, respectively.
Clerks communicate with their environment, that is, theso#ttion systems, with
the imported communication procedures and variables aflwhie type of the last
variable is a recordomchannel

type comchannei record(reg,ack: Bool)

Thecomchanneis used in communication with therbiter system. The cus-
tomer’s nondeterministic choice of the money sum involuedhie operation as
well as the choice between the deposit and withdrawal triose is performed
in the Customeraction. That is, th&€ustomeraction models the customer that
requests the clerk to perform either tBe positor Withdrawal actions. Action
RegAccesgequests bank access from the arbiter,RatAccesaotifies the arbiter
after when access is no longer needed. The action systéenkA and clerkB
communicate with all the other systems in the model exclythemselves. Com-
munication between the clerks and thank system is modelled using the pro-
cedure based communication model while the variable bageununication is
used between the clerks and thatranceandarbiter systems.

5.1.3 arbiter

The action systemirbiter is of form:

sys arbiter (inout comAcomB: comchannel)
|[action
ClerkA: (comAregA —comBack— comAack:=T;
| —-comAregqA comAack— comAack:=F);
ClerkB: (comBregA -comAack— comBack:=T;
| -comBregA comBack— comBack:=F);
initialisation
comAcomB= (F,F), (F,F);
execution
doClerkA | ClerkB od ||

where action€lerkAandClerkBare chosen for execution based on the Boolean
type interface variablesomXregandcomXack whereX € {A,B}. If both clerks
request access to the bank at the same time, the selectiwadrethem is per-
formed in a nondeterministic manner.

514 ®8ank

The action systems ankhas a form:

15

sys sank (exp Put(in addr,x: Int);
exp Get(in addr: Int; inout x: Int);)
[ACCOUNTS Int:=5; | =
|[variable
sdgACCOUNT §accountsunt Int;
public procedure
Put(in addrx: Int): (account=addr, sum:= x
; sdhaccount- 1] := sddaccount— 1] + sum;
Get(in addr: int; inout x: int):
(account= addr, sum:= X
; (sum< sdbaccount- 1] —
sdhaccount- 1] := sdaccount— 1] — sum
| sum> sdiaccount-1] —
sdhaccount- 1] := 0));
action
Save (await Put);
Load: (await Get);
initialisation
sdh0..ACCOUNT S- 1],accountsum:= (100Q.1000), 0, 0;
execution
doSave| Load od ||

wheresdJACCOUNT $is the safe deposit box array that holds the information
on each customer’s bank account balarmeank exports interface procedur@sit

and Get, which are imported and called by action systemerkA and clerkB.
ActionsSaveandLoad actively wait for procedure calls fromlerkAandclerkB

and, when a call comes in, they perform the ordered taskshelfsum that is
requested with thé&et procedure exceeds the account’s balance, only the sum
as large as the balance is withdrawn from the account. Neghtlance is not
allowed.

5.2 ActionC Implementation

The next step is to translate the presented Action Systerdglnma correspond-
ing ActionC model using the methods provided by the Systeta&sdibrary. The
entire implementation of the bank office model is illustchie Fig. 4, where the
Entrance module communicates with modu@ er kA through primitive chan-
nelscust omer A andent er A, and with moduleC er kB through primitive chan-
nelscust omrer B andent er B. The arrow at each port determines the direction the
corresponding channel transfers the data. ActionC comeatioh channels are
illustrated in Fig. 4 as dashed-lined boxes with the typenefchannel given in-
side. Exported procedurdéaut and Get are implemented as ActionC constructs
that we here name gsut andget, respectively. Theut andget channels con-

16

Entrance

! void newCustomer()

= =
'
| voi
bool enterA [| void queueA() '] bool enterB

1+ void queueB()

int customerA int customerB

Arbiter
| void clerkA()
1+ void clerkB()
P RREEEEEEEEREED Rlelelelluielelsislty Jutyl -SSR RpUpRpR (R \
! com_port H ! com_port H
H comchannel_if | 1 | comchannel if H
' (TTTTTTmommommes \] (TTTTTTmommommes H
H ' bool request ! comchannel comChanA 1 1| comchannel conChanB ' bool request 1
[1 bool acknowledge : ' 1 bool acknowledge :
L e leieslienlilieniiiititiietititiet L sttt
B 1 1
1 | comchannel if Vo comchannel_if |
- B T
T T + | com.port comchannel y ' comchannel com_port |t
S L L T A ’
e -
'
V[ey I
3 3|
VA= put_channel put_chan =12l
HEE HER
YAl A (CTTTT TS al &l
' T I 1 int address I o
H & & \ int data &l & :
1HE s HEE
' '
' - '
H exp_put_if H
N '
! put channel exp._put_port '
l~ --- "
ClerkA \void save() Bank |void load() ClerkB
B e ieaeetetl sEE L L EEE T -
H t_port '
__________________ ' exp_get-p get channel [
v N v
| void customer() . exp_get_if H | void customer()
) vol ' 1 vol
void reqAccess() ' +© | ¢ ! void regAccess()
! void deposit() 5 5| 1 1 void depositO
| void withdrawal()] Al get_channel get_chan | & v 1 void withdrawal()
1 ' B - L
1 void relAccess())] 1| 7| v+ void relAccess()
' void waitNext () lslsl B[S| 11 void waitNext()
.
STt TTTommmsmmmmms : b‘\) bl\‘j 1 int address b‘\) bP : """""""""
' g g int data g g‘ '
'
LI A= I8~ —mmemmsmmmmm-- B IR
1 1
. 1
2 .

Figure 4: lllustration of the bank office model in ActionC &bructs.

sist of hierarchical channefsut _channel andget channel , respectively, and
their related port-interface couples for each channel. uBee Bank module that
exports the procedures, uses the channels through an edpygpe port-interface
couple while the clerks use imported type port-interfacaptes at their ends.
In the communication between the clerks andAhki t er module, the interface
variablecomchanneis implemented as a point-to-point hierarchical channét wi
equal port-interface couples at its ends. The SystemC ¢@dd-tg. 4 illustrates,
will be introduced later.

Most of the ActionC implementation is created by directlpleing the Ac-
tion Systems model structures with the matching SystemGtoacts that were
presented in Sect. 4. In Action Systems both local and gledables are ini-
tialised by thanitialisation clause, whereas in SystemC this is performed inside
the module constructor. Guarded commands are implementedibg the C++
if statement in evaluating the state of the guard. Triieand Bool type inter-
face variables are implemented as SystemC ports of comdgpptypes bound
tosc_si gnal type primitive channels.

17

5.2.1 Handling ActionC Actions

The communications inside ActionC modules are handled Ritblean signals.
Actions that are implemented as SystemC processes aratadtivy the positive
edge of the signal that controls the action’s executioncivimneans that there is
one signal for each action process. Most action processeactivated by their
host module’sexec() processwhich is a SystemC thread that models the be-
haviour of an Action Systems’ iteration part. Teeec() process is used to han-
dle the action activation in all the modules excluding Baak module whose
actions only react tmethod callsrom other modules. Method calls are sufficient
as the Action Systems actiossaveandLoad only include theawait command.
Furthermore, action processes can be triggered directtiidogvent notifications
from the channel that corresponds the Action Systems atterprocedure. We
illustrate this by the following example. Let us have an AntSystems actioA
that is implemented with a processt i onA() in SystemC. The execution of the
process is handled by amec() process using the following structure:

actionA sig.wite(true);
wai t (acti onA si g. negedge_event());

where the Boolean signatti onA si g is set to true. This activates the process
actionA() to perform its tasks. After performing its operati@tt i onA() sets
actionA si g to false, which, in turn, triggers thexec() process. If actions are
not implemented as SystemC processes but as standard C+kem&mctions,
theexec() process performs a simple method call and waits for retunrthis
example, however, only processes were used. In the folgpas@ttions, we will
elaborate the implementation of nondeterminism and pruareelased communi-
cation.

5.2.2 Nondeter minism

Let us first examine the source code of the processes() andcust oner () of
thed er k module. A part of the filel er k. cpp is listed below:

/* Iteration loop handling actions Custonmer, RegAccess, Deposit,
Wthdrawal , Rel Access and WitNext */
void Cerk::exec() {
while(true) {
/1 activate action Custoner
custoner_sig.wite(true); wait(customer_sig.negedge_event());

/'l activate action RegAccess
reqAccess_sig.wite(true); wait(regAccess_sig.negedge_event());
/1 nondeterninistic choice between Deposit and Wt hdrawal
if (action) {
/1 activate action Deposit
deposit_sig.wite(true); wait(deposit_sig.negedge_event());

el se {

18

/'l activate action Wthdrawal
withdrawal _sig.wite(true); wait(withdrawal _sig.negedge_event());

}

/1 activate action Rel Access
rel Access_sig.wite(true); wait(rel Access_sig.negedge_event());

/'l activate action Wit Next
wai t Next _sig.wite(true); wait(waitNext_sig.negedge_event());

wai t (ent er. posedge_event());
}
}

/* action Customer */
void Cerk::custoner() {

while(true) {
sum = ac_sel ect or (1000) ; /1 The sumto use
account = custoner.read(); /1 I'nquiring the account
int choice = ac_selector(2); /1 Choosing action

if (choice == 1) {
cout << "Clerk(Custoner): Cerk will performa deposit" << endl;
action = true;

el se {
cout << "Clerk(Custoner): Cerk will performa withdrawal " << endl;
action = fal se;

}

custoner_sig.wite(false);
wait();

The nondeterministic choice between the execution Déposit and
Withdrawal actions is made by the acticdustomer The ActionC function
ac_sel ector () is used in choosing between the two options. In this case, the
exec() process does not include the iteration loop structure,usecanly a sim-
pleif statementis needed to implement the choice between thetegeir values.
However, theexec() processes dEnt rance andAr bi t er modules take advan-
tage of the proposed structure, because the nondetenaichistce is performed
by theexec() process itself, not by a component action. As presentedbleTy
non-atomic sequences @o-od loops are implemented as sequential executions.

In the action processust oner (), theac_sel ector () function is also used
in choosing a random value for the sum that is used in the chtvaasaction.
This corresponds to the nondeterministic assignment ghaséd in the Action
Systems model. Nondeterministic assignment is also imghéed in the module
Ent rance, where the action processwCust oner () chooses the customers that
enter the bank office.

The action systena rbiter continuously monitors the states of timout vari-
ablescomAandcomBof the typecomchannel The ActionC implementation of
Arbiter similarly waits for changes in the channel’s local variablequest and
acknow edge. When a state change has been detected, the iteration lacis ey
executing both of the action processésr kA() andcl er kB() in a nondetermin-
istic order. The reason for executing both processes ishtbakec() process can

19

——

<<interface>>| | | |<<interface>> | [<<interface>> |<<interface>>
exp_put_if imp_put_if | exp_get_if imp_get_if
1
is oftyp/é ’—A L/Sj Nis of typ i

&
o
=4
<
=}
F
i
I
I
I
I
I
I
I
I
I
7]
&
o
=4
<
K]
e e e e m = D e e - -

| 4
Eexp_put_port imp_put_port<: Liexp_get_port imp_get_port

put_channel g 3:’ get_channe
put channel get channe
__ 4
uses uses
| user module| -

Figure 5: The class hierarchy ptuit andget.

only detect a state change in the communication channetheagxact variable
whose state has been changed. However, depending on whtich pfocesses is
executed first, it might be necessary to execute only onet i$hid the changed
variable is found in the first executed process there is nd teeexecute the other.
When a process is nondeterministically chosen for executlmat is, both pro-
cesses sent a request at the same time, the guards of thegsoo@mponent
actions are evaluated and the winning component is executed

5.2.3 Procedure Based Communication

As defined earlier, the interfaces of the procedure comnatioit channels be-
tween aC er k andBank declare different sets of methods for these systems to
call; Bank is able to control the information stored in the local valesbof the
channel, wheread er k is only allowed to requeftut or Getprocedures by using
the corresponding methods provided by the channel interfélee class hierarchy
of the ActionCput andget channels that implement thut andGet procedures,
respectively, is shown in Fig. 5.

Let us next elaborate the functionality of the Action Syss&at andGet pro-
cedures by viewing their implementation in ActionC, thet andget procedure
commmunication channels. Import ports for these chanmels@nstructed in the

20

module body ofC er k, while the corresponding export ports are constructed in
the module body oBank. Cl erk may commence a deposit or a withdrawal by
calling theput () orget () method, respectively, which is provided by the inter-
face between thél erk’s port and the channel. The methods take as arguments
the amount of moneyx) and the bank account numbexd(ir), that is, data and
its destination address. The methods store this informatrothe channel’s vari-
ables, and then inforrBank by sending an event notification for the SystemC
scheduler. After being invoke8ank reads the sent information from the channel
by using the methods provided by the interface betwstk and the channel.
Depending on the called meth®adnk either deposits into or withdraws from a
bank account the amount of money, pointed out by the pasgaunation. After
this, Bank calls the channel’'s function to produce an event notificatiroorder

to informd er k that the deposit transactioR\ft procedure) is complete, whereas
the withdrawal transactiorSet procedure) is ended by obtaining the money using
ther eadX() method provided by thél er k’s interface.

5.2.4 Complex Interface Variables

The variable based communication chanmelimchannelis used in communi-
cation between the clerks and tAebi t er module. In contrast tgut and get
channelscomchannehas identical port-interface couples and both countegspart
own the same access rights for the channel’'s methmmiachannetontains a pair
of local boolean variablesgquest andacknow edge that in the Action Systems
model correspond to the boolean variabdeg and ack, respectively. They are
used in the signalling that follows the 4-phase handshakiatpcol, in which the
request and acknowledgement phases are initiated by firgatang the request
signal after which the acknowledgement signal is activaea sign of opened
access through channel. After the transaction has finisteedandshaking proto-
col is finalised by initialising the request and acknowledgat signals again in
that order. In this experiment, the clerks control tleguest variable to request
a service, whileéAr bi t er controls theacknow edge variable, thus guarding the
access to the shared resource, the bank.

5.25 SourceFiles

All the source files created for the ActionC model of the pnésé bank office are
gathered in Table 2. In addition to tivei n file the implementation includes the
header(h) and definition(cpp) files for each of the four distinct action systems
in the Action Systems model. Action Systems clerks A and Bimg@emented
as two instances of a sing® er k module. There are also header and definition
files for an ActionC communication chanrenthannel that corresponds to the
interface variable typeomchanneland for ActionC procedure communication
channelsput andget corresponding to thBut and Get procedures, respectively.

21

Table 2: Source files for the bank office example.

mai n. cpp The main program file including
thesc_mai n() routine.

si nctonstants. h Simulation specific constants

actionc. h,actionc.cpp ActionC methods

entrance. h,entrance. cpp Implementation ofe ntrance

clerk.h,clerk.cpp Implementation ot"lerkX

arbiter.h,arbiter.cpp Implementation ofa rbiter

bank. h, bank. cpp Implementation ofs ank

put _procedure. h, Implementation oPut procedure

put _procedure. cpp

get procedure. h, Implementation ofet procedure

get _procedure. cpp

conthannel . h, conchannel . cpp Implementation otomchannetype
interface variable

The simulation specific constants are gathered insfileconst ant s. h and the
declarations and definitions of the previously introducetignC methods are in
filesactionc. h andacti onc. cpp, respectively.

5.3 Simulation

To run simulations on the ActionC bank office model the Sy€lestass library
version 2.1 was installed on DLL release version 1.5.21-€yifwin [13] envi-
ronment running on Windows XP. The created model was thempdedwith g++
compiler version 3.4.4-3 for Cygwin.

The Action Systems model describes a system that runs fonlémited pe-
riod of time, and the simulation of the created ActionC maxdel be implemented
for similar behaviour. For practical reasons, however, @élge simulation to stop
after a predefined number of transactions. In several pattesimulation, the
execution is monitored with printed screen outputs. Altiloprinted reports are
a more primitive approach to observe the model during sitirahan a monitor-
ing solution with SystemC trace files, it is also a more stri@yward approach.
This decision was made to keep the implementation as sirsgessible, which is
also the reason for allowing the presence of only one custatreetime inside the
bank office. The model can be adapted for multiple customegraddifying the
implementation of ther ntrancesystem. However, the simpler implementation
used here is adequate enough to fulfil our goals to experimamtieterminism

22

and procedure based communication in ActionC.

The simulation execution is monitored in several parts efrtiodel starting
from the entrance of the first customer and lasting until &s¢ ¢ustomer has left
the bank office. To keep the simulation output short, the @ea is stopped after
the third customer has done his business in the bank. Theenwhbustomers and
the length of the simulation can be altered by changing theewvaf the constant
TRANSACTI ONS in file si ntonst ant s. h. With the setting:

const int TRANSACTIONS = 3;

the execution of the main program produced the followingpatit

Entrance(exec): Bank is now open

____Entrance(NewCustoner): Custoner 3 enters the bank__
Entrance(QueueA): Customer 3 queues for O erkA

Cerk(Customer): Cerk will performa withdrawal

O erk(RegAccess): Clerk is requesting access to the bank accounts
Arbiter(CerkA): CerkA has been granted access to the bank accounts
Cerk(Wthdrawal): Wthdraw ng sum 421 fromaccount 3

Bank(Load): Wthdrawi ng sum421 fromaccount 3

Bank(Load): The bal ance of account 3 is now 579

Cerk(Wthdrawal): Received sum 421

Cerk(Rel Access): Cerk is releasing access to the bank accounts
Arbiter(CerkA): Bank account access of C erkA has been cancel | ed
__COerk(WitNext): Customer 3 exits the bank___
____Entrance(NewCustoner): Custoner 2 enters the bank___
Entrance(QueueB): Customer 2 queues for O erkB

Clerk(Customer): Cerk will performa wthdraval

O erk(RegAccess): Clerk is requesting access to the bank accounts
Arbiter(CerkB): CerkB has been granted access to the bank accounts
Cerk(Wthdrawal): Wthdraw ng sum 815 fromaccount 2

Bank(Load): Wthdrawi ng sum 815 from account 2

Bank(Load): The bal ance of account 2 is now 185

Cerk(Wthdrawal): Received sum 815

Clerk(Rel Access): Clerk is releasing access to the bank accounts
Arbiter(CerkB): Bank account access of C erkB has been cancelled
__Cerk(WitNext): Customer 2 exits the bank___
____Entrance(NewCustoner): Custoner 5 enters the bank___
Entrance(QueueA): Customer 5 queues for O erkA

Cerk(Customer): Cerk will performa wthdraval

O erk(RegAccess): Clerk is requesting access to the bank accounts
Arbiter(Cl erkA): CerkA has been granted access to the bank accounts
Cerk(Wthdrawal): Wthdraw ng sum 700 fromaccount 5

Bank(Load): Wthdrawi ng sum 700 from account 5

Bank(Load): The bal ance of account 5 is now 300

Cerk(Wthdrawal): Recei ved sum 700

Cerk(Rel Access): Clerk is releasing access to the bank accounts
Arbiter(CerkA): Bank account access of Cl erkA has been cancel | ed
__Cerk(\WitNext): Customer 5 exits the bank___
Entrance(exec): Bank is now cl osed

where on each line the first print before the paranthesesatel the module and
the print inside the parentheses the executed action thdtpes the output line.
Owing to the nondeterministic choices in several parts efrttodel, the course
of the simulation and the output is, in all probability, ajadifferent. Similarly,
as the number of customers, also the number of accounts ibathle is freely
adjustable by altering the value of the cons&CGOUNTS in file si nconst ant s. h.

23

This does not change the total length of the simulation guleges the variety of
possible customers entering the bank office during the sitioul.

The operation of one loop of simulation begins from Emnér ance module,
where the next customer and the clerk that the customer witjurueing for are
nondeterministically chosen by action procaessCust ormer () and theexec()
process, respectively. Depending on the queue, eithemaptocessjueueA()
orqueueB() then activates thexec() process of the correspondigber k mod-
ule and sends the clerk the customer number through theeintgge primitive
channel between the modules. After being activatedCtlee k module’sexec()
process executes action processt oner () , which nondeterministically chooses
between the deposit and withdrawal transactions. Nextiénk r2quests access to
the bank accounts from th bi t er module with action processgAccess() .

If both clerks are trying to request the access simultargoirshi t er makes the
choice between them nondeterministically. In this simatathowever, there is
only one customer in the bank office at a time, which also mézatonly one of
the clerks is requesting the access during each simulatam [Therefore, despite
theAr bi t er module’s ability to manage simultaneous requests, norleaplear
due to the simplicity of this simulation. After being gradtéhe bank access, the
clerk performs the chosen transaction through the correfipg channel, that is,
by using eithermput or get channel for deposit and withdrawal, respectively. The
Bank module then executes either action prosas®() or action procesisoad()
depending on the case. Once the transaction has finishe@ ¢hk module’s
exec() process executes action processAccess(), which releases the bank
account access to be dealt out againfbyi t er. By activating action process
wai t Next () theC er k module informsEnt r ance that it is ready to receive the
next customer. After thignt rance continues by dealing out the next customer
for one of theCl er k modules if there are more transactions to be performed in the
simulation.

6 Conclusionsand Future Challenges

In ActionC the formal correct-by-construct developmeniagggm Action Sys-
tems and the industry standard design language Systengtdteento an embed-
ded computer system development framework. Action Sysiapisdes many
similar constructs as SystemC. Both Action Systems ande8yStuse a mod-
ularised model structure and support modularisation nrashes such as proce-
dures, parallel composition and data encapsulation. Batlbe used in describing
entire HW/SW systems starting from an initial behaviouraldel and resulting
with an implementable design that includes both hardwadesaftware partitions
of the system. For both languages, there are accurate uhegming the refine-
ment performed on the models. In addition, SystemC incladgsulation kernel
that can be used in testing the created models.

24

In this report, the most important Action Systems aspecthenActionC de-
velopment have been nondeterminism and communicationeleet\system com-
ponents. The introduced case study exemplified the use @irtdposed ActionC
framework and concentrated on these aspects. Nondetstimichoice in differ-
ent parts of the model was implemented in several differeatsadepending on
the proposed functionality in each case. The model thakepted the activities
of a bank office consisted of four distinct modules whose compation had to
be organised by using primitive as well as hierarchical cleé The used hier-
archical channel was the ActionC communication channel the specialisation
of that channel, the ActionC procedure communication cehmwas used to im-
plement the procedure based communication in the initiilbAcSystems model.
Being based on interfaces and procedure calls, the Actiorgleimentation of in-
ter module communication resembles the accuracy aspeetsrahsaction level
model. Therefore, based on the implementation of commtiaicghannels the
best place for the bridge between Action Systems and Systsraihe transac-
tion level. The internal implementation of ActionC modulsgjuite straightfor-
ward because of the similarity in the structures of actiostays and SystemC
modules. For the internal implementation of modules, inteatdto the first Ac-
tionC methods, an ActionC coding style has been introdu@dfollowing the
proposed coding style with the rules of transaction levedletiong in the conver-
sion process from Action Systems to SystemC, an initial @@l model can be
described, from which the design process can be continueefioyng the model
down to the desired levels of abstraction.

The ActionC framework underpins the Action Systems develept frame-
work by the simulation support provided by SystemC. Theritievelopment of
ActionC should also include the objective to achieve ditegic synthesis from
SystemC descriptions of Action Systems models. However,pibssibility of
synthesis based on SystemC is limited to the features iadludits synthesisable
subset. The future development of the ActionC frameworkikhalso ensure that
the formal correctness of an Action Systems descriptiomasgrved in the simu-
lations. This is especially useful when working on the finggh abstraction level
model: An executable ActionC model of the initial specificatprovides valu-
able information for later refinement of the design. The sieai to map Action
Systems communication practises into SystemC at transeaetvel also requires
further research. Timing is another aspect that the futeveldpment of the Ac-
tionC framework should also address.

The continuous development of the SystemC class libramngbralso chal-
lenges to the system designer that uses the environmenturégshat have been
valid in the previous release may well be deprecated in tixé n<hough, as
the development advances, SystemC class library offersra amal more precise
tool for modelling HW/SW systems, this comes with the costvefiker back-
ward compatibility. In the case of the bank office examplgrdeated features,
or should we say improved realism, brings up some implentient challenges,

25

when SystemC class library is upgraded from version 2.1dm#xt, version 2.2
beta. By default, the former version has no objections withtiple ports writing

to onesc_si gnal instance, while the latter would deny such actions and stgge
using other signal types in the placesd si gnal . Although, this deprecated
feature can still be turned on if needed, these types of @wirtgthe language
cause problems for a system designer, and may be even mdresiocgnin the
development of a framework that uses SystemC as its impletiem.

26

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]
[13]

K. Sere and R.-J. Back, “From Action Systems to Modulast8yns,” in
FME’94: Industrial Benefit of Formal Methods Springer-Verlag, 1994,
pp. 1-25.

R.-J. Back, “A Calculus of Refinements for Program Detitvas,” Acta In-
formatica vol. 25, pp. 593-624, 1988.

The Open SystemC Initiativ&gystemC Version 2.0 User’s Guide. Update for
SystemC 2.0,2002.

T. Grotker, S. Liao, G. Martin, and S. SwaBystem Design with SystemC
Kluwer Academic Publishers, Boston / Dordrecht / Londorg20

B. Stroustrup,The C++ Programming Languag@&rd ed. Addison-Wesley
Publishing Company, Reading, Massachusetts, USA, 1997.

R.-J. Back and K. Sere, “Action Systems with Synchron@@nmunica-
tion,” in PROCOMET 1994, pp. 107-126.

R.-J. Back and R. Kurki-Suonio, “Decentralization ofoBess Nets with
Centralized Control,” irPODC '83: Proceedings of the second annual ACM
symposium on Principles of distributed computindACM Press, 1983, pp.
131-142.

E. W. Dijkstra, A Discipline of Programming Prentice-Hall, Inc., 1976.

R.-J. BackCorrectness Preserving Program Refinements: Proof Thewly a
Applications ser. Mathematical Center Tracts. Mathematical Centr@)19
vol. 131.

J. Plosila, P. Liljeberg, and J. Isoaho, “Modelling arefinement of an
on-chip communication architecturd,ecture Notes in Computer Science
(LNCS) vol. 3785, pp. 219-234, 2005.

The Open SystemC Initiative, “www.systemc.org (vexdfi2007-04-12).”
——, Draft Standard SystemC 2.1 Language Reference Mag08ab.

The Cygwin Development/Support, “www.cygwin.com fied 2007-04-
12)”

27

TURKU

CENTRE for

COMPUTER

SCIENCE

Joukahaisenkatu 3-5 B, FI-20520 Turku, Finland | www.tucs.fi

m University of Turku
§ ,{ég ® Department of Information Technology
= S i
-~ N ® Department of Mathematics
(g
O

Abo Akademi University
® Department of Computer Science
e |Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
® |Institute of Information Systems Sciences

ISBN 978-952-12-2025-8
ISSN 1239-1891

