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Abstract

Many modal connectives may be considered either complete join- or meet-
morphism on a complete lattice. Therefore, they induce Galois connections.
In this work we introduce a negationless logic which can be characterized
by the class of upper-bounded distributive lattices equipped with a Galois
connection.

Keywords: Galois correspondences, Reasoning under uncertainty, Fuzzy
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1 Background

In this section, we briefly recall some notions and results from existing lit-
erature. We consider Galois connections, relatively pseudocomplemented
lattices, fuzzy sets, L-fuzzy sets, rough sets, and rough L-sets. We also de-
scribe so-called information logic of Galois connections introduced earlier by
the authors.

1.1 Rough Sets and Galois Connections

Rough set theory introduced by Pawlak [12] is a mathematical formalism
dealing with reasoning under uncertainty. To some extent rough set theory
overlaps with fuzzy set theory presented by Zadeh [14]. In fuzzy set theory
vagueness is expressed by membership functions, as rough set theory is based
on approximations determined by indiscernibility relations.

Originally, indiscernibility relations were assumed to equivalences – re-
flexive, symmetric and transitive binary relations – interpreted so that two
elements are equivalent if we cannot distinguish them by their properties.
The lower approximation of a set X, denoted by XH consists of elements
such that their indiscernibility classes are included in X, and the upper ap-

proximation XN of X contains the elements of which indiscernibility classes
have at least one common element with X.

Here we consider generalized rough approximations. Let R be a binary
relation on U and X ⊆ U . The upper approximation XN is defined by

x ∈ XN ⇐⇒ (∃y ∈ U) xR y and y ∈ X

and the lower approximation XH is specified by the condition:

x ∈ XH ⇐⇒ (∀y ∈ U) xR y implies y ∈ X.

For instance, if R is a relation describing the similarity of objects in U , then
x ∈ XN if there exists an object in X similar to x, and x ∈ XH if all objects
that are similar to x are in X. Therefore, XN and XH can be viewed as sets
of elements possibly and certainly belonging to X.

For two ordered sets P and Q, a pair (f, g) of maps f :P → Q and
g:Q→ P is called a Galois connection between P and Q if for all p ∈ P and
q ∈ Q,

f(p) ≤ q ⇐⇒ p ≤ g(q).

If (f, g) is a Galois connection, we say that f has an adjoint g, and g has a
co-adjoint f .

It is clear by the definition that if (f, g) is a Galois connection between
bounded ordered sets P and Q, then f is bottom-preserving and g is top-
preserving, that is, f(0) = 0 and g(1) = 1. We may also give the following
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alternative but equivalent definition: the pair (f, g) is a Galois connection if
and only if

(GC1) p ≤ g(f(p)) for all p ∈ P and f(g(q)) ≤ q for all q ∈ Q;

(GC2) the maps f and g are order-preserving.

We know that if L and K are complete lattices, then a map f :L → K
has an adjoint if and only if

f
(

∨

S
)

=
∨

{f(x) | x ∈ S}

for all S ⊆ L. Let us denote by ℘(U) the family of all subsets of U . Since
N:℘(U) → ℘(U) distributes over arbitrary unions, that is, for all S ⊆ ℘(U),

(

⋃

S
)

N

=
⋃

{XN | X ∈ S} ,

the map N induces a Galois connection. Next we will describe the adjoint of
N. This is done by defining another pair of approximation maps △ and ▽ in
terms of the inverse of R:

x ∈ X△ ⇐⇒ (∃y ∈ U) y R x and y ∈ X

and
x ∈ X▽ ⇐⇒ (∀y ∈ U) y R x implies y ∈ X.

It is known that the pairs (N,▽) and (△,H) are Galois connections (see e.g.
[6, 8] for further details and references).

1.2 Relatively Pseudocomplemented Lattices and
Fuzzy Sets

Notions and basic results for relatively pseudocomplemented lattices may be
found in [1, 13], for example.

Suppose that L is a lattice and a, b ∈ L. If there is a largest element
x ∈ L such that a ∧ x ≤ b, then this is denoted by a → b and is called
the relative pseudocomplement of a with respect to b. In this work, we often
call the operation → simply as implication. It is obvious that a → b is the
relative pseudocomplement of a with respect to b, if for all x ∈ L,

a ∧ x ≤ b ⇐⇒ x ≤ a→ b.

Albeit
∨

{x ∈ L | a ∧ x ≤ b} exists in a complete lattice for any pair of
elements a, b ∈ L, it may fail to be the relative pseudocomplement a → b.
Note that if L has only two elements, say 0 < 1, then x→ y = 1 if and only if
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x = 0 or y = 1. Hence, the implication → can be viewed as a generalization
of the classical Boolean implication.

In a relatively pseudocomplemented lattice a → b exists for all a, b ∈ L.
The existence of a → b for each pair of elements a, b ∈ L has surprising
consequences. Namely, a relatively pseudocomplemented lattice has always
the greatest element 1 = x → x, where x is any element of L. Furthermore,
a relatively pseudocomplemented lattice is always distributive; if L is itself
a complete lattice, then for all S ⊆ L and a ∈ L,

a ∧
(

∨

S
)

=
∨

{a ∧ b | b ∈ S}.

In the following is listed some key properties of implication operation (see
[13], for instance):

(i) a ≤ b if and only if a→ b = 1

(ii) if a1 ≤ a2, then a1 → b ≥ a2 → b

(iii) if b1 ≤ b2, then a→ b1 ≤ a→ b2

(iv) a ∧ (a→ b) ≤ b

(v) a→ (a ∧ b) ≥ b

(vi) a→ (b→ c) = (a ∧ b) → c = b→ (a→ c)

(vii) (a→ b) ≤ (b→ c) → (a→ c)

If P is an ordered set and X is any set, then we can order the set PX of
all maps from X to P pointwise by defining

f ≤ g ⇐⇒ (∀x ∈ X) f(x) ≤ g(x).

If L is a lattice, then LX is a lattice such that

(f ∨ g)(x) = f(x) ∨ g(x) and (f ∧ g)(x) = f(x) ∧ g(x).

In addition, if L is a complete lattice, then LX is a complete lattice such that
for all {fi} ⊆ LX and x ∈ X,

(

∨

i∈I

fi

)

(x) =
∨

i∈I

fi(x)

and
(

∧

i∈I

fi

)

(x) =
∧

i∈I

fi(x).
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The least element of LX is 0: x 7→ 0 and the greatest element of LX is
1: x 7→ 1, where 0 and 1 are the least and the greatest elements of L. Fur-
thermore, if L is relatively pseudocomplemented, then LX is relatively pseu-
docomplemented in such a way that

(f → g)(x) = f(x) → g(x)

for all f, g ∈ LX and x ∈ X.
Let I denote the unit interval [0, 1] with its usual order. Then I is a

complete lattice such that for all S ⊆ I,

∨

S = supS and
∧

S = inf S.

In particular,

x ∨ y = max{x, y} and x ∧ y = min{x, y}

for all x, y ∈ I. Trivially, 0 and 1 are the least and the greatest elements of
I. It is also easy to notice that I is relatively pseudocomplemented lattice in
which for all x, y ∈ I,

x→ y =

{

1 if x ≤ y,
y otherwise.

Let U be a nonempty set. The elements of I
U are called fuzzy sets on U .

Each fuzzy set ϕ associates with each element x ∈ U a real number ϕ(x)
representing the grade of membership of x in the fuzzy set ϕ.

It is now obvious that I
U is a complete relatively pseudocomplemented

distributive lattice such that
(

∨

ϕi

)

(x) = sup{ϕi(x) | i ∈ I}

and
(

∧

ϕi

)

(x) = inf{ϕi(x) | i ∈ I}

for all {ϕi}i∈I ⊆ I
U and x ∈ U . In particular,

(ϕ ∨ ψ)(x) = max{ϕ(x), ψ(x)}

and
(ϕ ∧ ψ)(x) = min{ϕ(x), ψ(x)}

for all ϕ, ψ ∈ I
U and x ∈ U . The relative pseudocomplement of ϕ with

respect to ψ is defined pointwise by setting

(ϕ→ ψ)(x) = ϕ(x) → ψ(x)
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for all x ∈ X.
Goguen generalized fuzzy sets to L-fuzzy sets in [5]. An L-fuzzy set ϕ on

U is a mapping ϕ:U → L, where L is a complete lattice. The motivation
for this generalization is that in this kind of setting it is possible to consider
sets for which membership values may be incomparable. The least element 0
and the greatest element 1 of L may be viewed as the ‘absolute’ membership
values.

For any nonempty set U , the set LU is the set of all L-fuzzy sets on U .
As noted by Goguen, the set of all L-fuzzy sets on a set U can be equipped
whatever operations L has, and these inherited operations obey any law valid
in L which extends pointwise. Thus, as we already noted, with respect to
the pointwise order, LU is a complete lattice such that

(

∨

ϕi

)

(x) =
∨

i∈I

ϕi(x)

and
(

∧

ϕi

)

(x) =
∧

i∈I

ϕi(x)

for all {ϕi}i∈I ⊆ LU and x ∈ U . If addition, if L is relatively pseudocomple-
mented lattice, then LU is relatively pseudocomplemented and

(ϕ→ ψ)(x) = ϕ(x) → ψ(x)

for all ϕ, ψ ∈ LU and x ∈ U .
It should also be noted that Järvinen, in [7], has introduced set opera-

tions of union, intersection and complement for L-fuzzy sets in cases L is
just a preordered set, which means that joins, meets, and complements are
not defined in L. The presented approach even handles the union and the
intersection of an L1-fuzzy set ϕ and an L2-fuzzy set ψ on the same universe
U , but not necessarily on the same preordered set. This means that we can,
for example, combine with ‘or’, ‘and’, and ‘not’ judgements of evaluators all
wanting to use their own words and expressions.

1.3 Rough L-Sets

Dubois and Prade introduced in [4] rough fuzzy sets. The idea is that the
objects to be approximated are fuzzy instead of classical sets, and the ap-
proximations are determined by means of fuzzy relations. Here we study
rough L-sets , which means that approximations of L-sets are determined by
L-fuzzy relations.

Let L be a relatively pseudocomplemented complete lattice. This means
that L is now so-called Heyting algebra. In particular, L is distributive. Let
ϕ ∈ LU be an L-fuzzy set and let R be an L-fuzzy relation on U , that is, R
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is a mapping R:U × U → L. Then we may define the L-fuzzy sets ϕN and
ϕH on U by setting

ϕN(x) =
∨

y∈U

{R(x, y) ∧ ϕ(y)}

ϕH(x) =
∧

y∈U

{R(x, y) → ϕ(y)}

for all x ∈ U . The L-sets ϕN and ϕH and called the upper and the lower

approximations of ϕ, and these sets can be viewed as ‘coarsened L-sets’.
Naturally, we can define another pair of mappings in terms of the ‘inverse’

of R by setting:

ϕ△(x) =
∨

y∈U

{R(y, x) ∧ ϕ(y)}

ϕ▽(x) =
∧

y∈U

{R(y, x) → ϕ(y)}

for all x ∈ U . It is clear that if ϕ is a ‘classical’ two-valued set on U and
R is a two-valued binary relation on U , then the operations N, H, △, and ▽

coincide with the operations defined in Section 1.1.

Lemma 1. The pair (N,▽) is a Galois connection on LU .

Proof. Suppose ϕ and ψ are L-fuzzy sets such that ϕ ≤ ψ. Then for all
y ∈ U , R(x, y) ∧ ϕ(y) ≤ R(x, y) ∧ ψ(y) and this implies

ϕN(x) =
∨

y∈U

{R(x, y) ∧ ϕ(y)} ≤
∨

y∈U

{R(x, y) ∧ ψ(y)} = ψN(x)

Similarly, R(y, x) → ϕ(y) ≤ R(y, x) → ψ(y) for all y ∈ U . Thus,

ϕ▽(x) =
∧

y∈U

{R(y, x) → ϕ(y)} ≤
∧

y∈U

{R(y, x) → ψ(y)} = ψ▽(x).

We have now shown that N and ▽ are order-preserving.
By definition, for all x ∈ U ,

ϕ▽N(x) =
∨

y∈U

{R(x, y) ∧ ϕ▽(y)} =
∨

y∈U

{

R(x, y) ∧
∧

z∈U

{R(z, y) → ϕ(z)}
}

≤
∨

y∈U

{R(x, y) ∧ (R(x, y) → ϕ(x) ) } ≤
∨

y∈U

{ϕ(x)} = ϕ(x).

This means that ϕN▽ ≤ ϕ. Similarly, for all x ∈ U ,

ϕN▽(x) =
∧

y∈U

{R(y, x) → ϕN(y)} =
∧

y∈U

{

R(y, x) →
∨

z∈U

{R(y, z) ∧ ϕ(z)}
}

≥
∧

y∈U

{R(y, x) → (R(y, x) ∧ ϕ(x) )} ≥
∧

y∈U

{ϕ(x)} = ϕ(x).

Thus, also ϕ ≤ ϕN▽.
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It is also interesting to notice that if the fuzzy relation R is reflexive,
which means that R(x, x) = 1 for all x ∈ U , then for any ϕ ∈ LU ,

ϕN(x) =
∨

y∈U

{R(x, y) ∧ ϕ(y)} ≥ R(x, x) ∧ ϕ(x) = ϕ(x),

that is, ϕ ≤ ϕN and ϕ→ ϕN = 1. Hence, N can be considered as a weakening

modifier in the sense of [10]. Modifiers of fuzzy sets are self-maps on the set
of all fuzzy sets. Their idea is that they modify every fuzzy set to another
fuzzy set. Similarly,

ϕH(x) =
∧

y∈U

{R(x, y) → ϕ(y)} ≤ R(x, x) → ϕ(x) = ϕ(x),

and hence H may be viewed as a substantiating modifier. Since in case of
classical rough sets, XN and XH are considered as sets of elements that
certainly and possibly are in X, the modifiers H:LU → LU and N:LU → LU

may also be viewed as soft of linguistic modifiers, called hedges [11]. Similar
observation hold, of course, for △ and ▽.

1.4 Information Logic of Galois Connections

In [9], Information Logic of Galois Connections (ILGC) suited for approxi-
mate reasoning about knowledge is introduced. ILGC is just the standard
propositional logic with two modal connectives N and ▽ mimicking the per-
formance of Galois connection maps.

The set of connectives consists of logical symbols →, ¬, N, and ▽. In
addition of the three classical propositional logic axioms and the inference
rule of modus ponens, ILGC contains only two rules of inference:

A→ ▽B

NA→ B
and

NA→ B

A→ ▽B

We introduced another pair △ and H of connectives by defining them as the
duals of ▽ and N by setting

△ A := ¬▽¬A and HA := ¬N¬A.

and showed that △ and H we have similar inference rules that we have for
the original connectives N and ▽.

At the first glance the language of our logic ILGC is different from the one
of minimal tense logic Kt (see e.g. [2] for further details), because ILGC has
only three axioms and three inferences rules, meanwhile Kt has seven axioms
and three rules of inference. However, we showed in [9] that in fact ILGC
is with respect to provability equivalent to the minimal tense logic Kt. This
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means that ILGC can be viewed as a simple formulation of Kt. Additionally,
since Kt is known to be decidable, decidability of ILGC follows from this.

For ILGC, a Kripke-style semantics may be defined. If R is a binary
relation representing knowledge about objects U and x ∈ U , then

NA is true for x ⇐⇒ A is true for some object y such that xRy;

▽A is true for x ⇐⇒ A is true for all objects y such that y R x.

For instance, let U be some set of human beings and let R be a relation
reflecting similarity of people with respect to some suitable attributes – what
those properties might be is irrelevant for this consideration. Then, the pair
(U,R) is so-called ILGC-frame. Let (U,R, v) be a model based on the ILGC-
frame (U,R) , where v is the valuation mapping from the set of all ILGC-
formulas to ℘(U). If A is an ILGC-formula such that v(A) consists of ‘good
teachers’, then NA is true for x if there is a good teacher y to which x is
similar. This means that x is possibly a good teacher. Similarly, ▽A is true
for x if all people similar to x are good teachers. Thus, x is certainly a good
teacher. In addition, if B is a formula such that v(B) is the set of ‘patient
persons’, then the implication B → NA is true, since patient persons are
usually good teachers.

Note also that for the minimal tense logic Kt, validity of formulas can
be defined in a similar manner. This implies that ILGC is a complete logic,
since Kt is known to be complete.

In [9], also a survey of the literature on related modal logics is presented.
In this work our purpose is to generalize the logic ILGC. In the next section,
we present a negationless logic and present for it a lattice-valued semantics.

2 Logic LGC

In this section, we define the logic LGC which can be proved to be determined
by the class of all upper-bounded distributive lattices with a pair (f, g) of
Galois connection. LGC is suitable for dealing with, for instance, rough L-
sets, but also other application areas exist. Note that LGC is a generalization
of ILGC since its language does not include negation of any kind.

2.1 Language and Syntax

Let P be an enumerable set, whose elements are called propositional vari-

ables . The set of connectives consists of logical symbols →, ∨, ∧, N, and ▽.
Formulas of LGC are defined inductively as follows:

(i) Every propositional variable is a formula.
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(ii) If A and B are formulas, then so are A → B, A ∨ B, A ∧ B, NA, and
▽A.

We agree that in formulas implication has weaker precedence than conjunc-
tion and disjunction, which in turn have weaker precedence than the modal
connectives N and ▽. Let us denote by Φ the set of all LGC-formulas. The
logical system LGC has the following eight axioms:

(Ax1) A→ A

(Ax2) A ∧B → A

(Ax3) A ∧B → B ∧A

(Ax4) A→ A ∨B

(Ax5) A ∨B → B ∨A

(Ax6) (A ∧B → C) → (A→ (B → C))

(Ax7) (A→ (B → C)) → (A ∧ B → C)

(Ax8) (A→ B) → ((B → C) → (A→ C))

Furthermore, LGC has the following five rules of inference:

(MP)
A A→ B

B

(R∧)
A→ B A→ C

A→ B ∧ C
(R∨)

A→ C B → C

A ∨B → C

(GC1)
A→ ▽B

NA→ B
(GC2)

NA→ B

A→ ▽B

An LGC-formula A is said to be provable, if there is a finite sequence
A1, A2, . . . , An of LGC-formulas such that A = An and for every 1 ≤ i ≤ n:

(i) either Ai is an axiom of LGC

(ii) or Ai is the conclusion of some inference rules, whose premises are in
the set {A1, . . . , Ai−1}.

That A is provable is denoted by ⊢ A.
In the next proposition we present some provable formulas and additional

inference rules of LGC.

Proposition 1. For all LGC-formulas A,B,C ∈ Φ, the following assertions

hold.

(i)
A→ B B → C

A→ C
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(ii)
A→ (B → C)

B → (A→ C)

(iii) ⊢ A ∧ (A→ B) → B

(iv)
A→ B

A ∧ C → B ∧ C
and

A→ B

A ∨ C → B ∨ C

(v)
A→ B

(C → A) → (C → B)
and

A→ B

(B → C) → (A→ C)

(vi) ⊢ B → (A→ A)

(vii) ⊢ B if and only if ⊢ (A→ A) → B

Proof. (i) By (Ax8), ⊢ (A → B) → ((B → C) → (A → C)). Assume
⊢ A → B. Then ⊢ (B → C) → (A → C) by (MP). If also ⊢ B → C, then
⊢ A→ C.

(ii) If ⊢ A → (B → C), then ⊢ A ∧ B → C and ⊢ B ∧ A → C by (Ax7)
and (Ax3). This gives ⊢ B → (A→ C) by (Ax6).

(iii) By (Ax1), ⊢ (A → B) → (A→ B). We get ⊢ A → ((A → B) → B)
using (ii). This gives ⊢ A ∧ (A→ B) → B by (Ax7).

(iv) By (Ax2), ⊢ A ∧ C → A. If ⊢ A → B, then also ⊢ A ∧ C → B.
Obviously, ⊢ A ∧ C → C. Hence, ⊢ A ∧ C → B ∧ C by (R∧). For the other
case, assume that ⊢ A→ B. Because ⊢ B → B ∨C, we have ⊢ A→ B ∨C.
Clearly, ⊢ C → B ∨ C. These imply ⊢ A ∨ C → B ∨ C by (R∨).

(v) By (iii), ⊢ C ∧ (C → A) → A. Suppose ⊢ A→ B. Then, ⊢ C ∧ (C →
A) → B. This is equivalent to ⊢ (C → A) ∧ C → B. By (Ax6), we obtain
⊢ (C → A) → (C → B). The other part is obvious by (Ax8).

(vi) By (Ax2), ⊢ A ∧ B → A. This implies ⊢ A → (B → A) by (Ax6).
By (ii), we obtain ⊢ B → (A→ A).

(vii) By (vi), ⊢ (A → A) → (B → B). This gives ⊢ (A → A) ∧ B → B
and ⊢ B ∧ (A → A) → B. Thus, if ⊢ B, then ⊢ (A → A) → B. Conversely,
if (A → A) → B is provable, then clearly ⊢ B, because A → A is provable
by (Ax1).

Hereafter, we denote A → A simply by ⊤. Therefore, ⊢ ⊤ and A → ⊤
for all A ∈ Φ. Additionally, ⊢ A if and only if ⊢ ⊤ → A.

In the next proposition we present some essential provable formulas in-
volving the modal connectives N and ▽.

Proposition 2. For all LGC-formulas A,B,C ∈ Φ, the following assertions

hold.

(i)
A→ B

▽A→ ▽B
and

A→ B

NA→ NB
.

(ii) ⊢ A→ ▽NA and ⊢ N▽A→ A.
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(iii)
A

▽A
.

(iv) ⊢ ▽(A ∧B) → ▽A ∧ ▽B and ⊢ ▽A ∧ ▽B → ▽(A ∧ B).

(v) ⊢ N(A ∨B) → NA ∨ NB and ⊢ NA ∨ NB → N(A ∨ B).

(vi) ⊢ ▽(A→ B) → (▽A→ ▽B).

Proof. (i) Suppose ⊢ A → B. Since ⊢ ▽A → ▽A holds trivially, we obtain
⊢ N▽A → A by (GC1). Hence ⊢ N▽A → B, which gives ⊢ ▽A → ▽B by
(GC2). For the other part, suppose that ⊢ A → B. Since ⊢ NB → NB, we
have ⊢ B → ▽NB by (GC2). Thus, ⊢ A→ ▽NB. This implies ⊢ NA→ NB
by (GC1).

(ii) Because ⊢ NA → NA, we have ⊢ A → ▽NA by (GC2). Similarly,
⊢ ▽A→ ▽A gives ⊢ N▽A→ A by (GC1).

(iii) Assume ⊢ A. This means ⊢ ⊤ → A and we get ⊢ ▽⊤ → ▽A by (i).
Because N⊤ → ⊤ is provable, we have ⊢ ⊤ → ▽⊤. Thus, ⊢ ⊤ → ▽A and
⊢ ▽A.

(iv) Since ⊢ A∧B → A and ⊢ A∧B → B, we have ⊢ ▽(A∧B) → ▽A and
⊢ ▽(A ∧B) → ▽B. Hence, ⊢ ▽(A ∧B) → ▽A ∧ ▽B by (R∧). On the other
hand, ⊢ ▽A ∧ ▽B → ▽A yields ⊢ N(▽A ∧ ▽B) → A by (GC1). Similarly,
we may show ⊢ N(▽A∧▽B) → B. This gives that ⊢ N(▽A∧▽B) → A∧B
and ⊢ ▽A ∧ ▽B → ▽(A ∧ B) by (GC2).

(v) Because ⊢ A→ A∨B and ⊢ B → A∨B, we have ⊢ NA→ N(A∨B)
and ⊢ NB → N(A ∨ B). These give ⊢ NA ∨ NB → N(A ∨ B) by (R∨).
Conversely, ⊢ NA → NA ∨ NB and ⊢ NB → NA ∨ NB. imply ⊢ A →
▽(NA∨NB) and ⊢ B → ▽(NA∨NB). We get ⊢ A∨B → ▽(NA∨NB) and
⊢ N(A ∨B) → NA ∨ NB.

(vi) Since ⊢ A ∧ (A → B) → B, we have ⊢ ▽(A ∧ (A → B)) → ▽B.
Furthermore, by (iv), we obtain ⊢ ▽A ∧ ▽(A → B) → ▽(A ∧ (A → B)).
Thus, ⊢ ▽A ∧ ▽(A → B) → ▽B, which is equivalent to ⊢ ▽(A → B) →
(▽A→ ▽B).

2.2 Semantics and Completeness

In this section, we define an algebraic semantics for LGC. A GC-algebra

(L,∧,∨,→, f, g, 1) is an algebra of type (2, 2, 2, 1, 1, 0) such that

(GCA1) (L,∧,∨, 1) is a lattice with the greatest element 1.

(GCA2) For all x, y, z ∈ L, x ∧ y ≤ z if and only if x ≤ y → z.

(GCA3) For all x, y ∈ L, f(x) ≤ y if and only if x ≤ g(y).
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In other words, GC-algebras are relatively pseudocomplemented lattices
equipped with a Galois connection. Note that this means that they are
always distributive. Additionally, f(x) → y = 1 if and only if x→ g(y) = 1.

Let (L,∧,∨,→, f, g, 1) be a GC-algebra. Recall that we denote by P the
set of all propositional variables. Let v be a function v:P → L assigning
to each propositional variable p in P an element v(p) of the lattice L. Such
functions are called valuations. The valuation v can be extended uniquely to
the set Φ of all formulas inductively by the following way:

v(A ∧ B) = v(A) ∧ v(B)

v(A ∨ B) = v(A) ∨ v(B)

v(A→ B) = v(A) → v(B)

v(NA) = f(v(A))

v(▽A) = g(v(A))

We say that an LGC-formula A ∈ Φ is valid if v(A) = 1 for any valuation
v: Φ → L on any GC-algebra (L,∧,∨,→, f, g, 1).

Theorem 1 (Soundness). Every provable LGC-formula is valid.

Proof. Let v be a valuation from the set of all formulas Φ to some GC-algebra
L. We show first that every axiom is valid.

(Ax1): v(A→ A) = v(A) → v(A) = 1.

(Ax2): v(A∧B) = v(A)∧v(B) ≤ v(A) implies v(A∧B → A) = v(A∧B) →
v(A) = 1

(Ax3): v(A ∧ B) = v(A) ∧ v(B) = v(B) ∧ v(A) = v(B ∧ A). This implies
v(A ∧B → B ∧A) = v(A ∧ B) → v(B ∧ A) = 1.

(Ax4): v(A) ≤ v(A) ∨ v(B) = v(A ∨ B) implies v(A → A ∨ B) = v(A) →
v(A ∨B) = 1.

(Ax5): v(A ∨ B) = v(A) ∨ v(B) = v(B) ∨ v(A) = v(B ∨ A). Therefore,
v(A ∨B → B ∨A) = v(A ∨ B) → v(B ∨ A) = 1.

(Ax6–7): By the properties of relative pseudocomplements:

v(A ∧B → C) = v(A) ∧ v(B) → v(C)

= v(A) → (v(B) → v(C))

= v(A→ (B → C))

The validity of the axioms follows from this equality.
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(Ax8): In a similar way:

v(A→ B) = v(A) → v(B)

≤ (v(B) → v(C)) → (v(A) → v(C))

= v((B → C) → (A→ C)).

Next we show that each rule of inference preserves validity.

(MP): If v(A) = 1 and v(A → B) = v(A) → v(B) = 1, then v(B) ≥ v(A) =
1.

(R∧): If v(A→ B) = v(A) → v(B) = 1 and v(A→ C) = v(A) → v(C) = 1,
then v(A) ≤ v(B) and v(A) ≤ v(C), which gives v(A) ≤ v(B) ∧ v(C) =
v(B ∧ C). Thus, v(A→ B ∧ C) = v(A) → v(B ∧ C) = 1.

(R∨): If v(A→ C) = v(A) → v(C) = 1 and v(B → C) = v(B) → v(C) = 1,
then v(A) ≤ v(C) and v(B) ≤ v(C). So, v(A ∨ B) = v(A) ∨ v(B) ≤ v(C).
and v(A ∨ B → C) = v(A ∨ B) → v(C) = 1.

(GC1–2): By the definition of Galois connections,

v(A→ ▽B) = 1 ⇐⇒ v(A) → v(▽B) = 1 ⇐⇒ v(A) ≤ v(▽B)

⇐⇒ v(A) ≤ f(v(B)) ⇐⇒ g(v(A)) ≤ v(B)

⇐⇒ v(NA) ≤ v(B) ⇐⇒ v(NA) → v(B) = 1

⇐⇒ v(NA→ B) = 1.

To obtain completeness, we show that valid formulas are provable by
applying so-called Lindenbaum-Tarski algebras. Firstly, we define an equiv-
alence relation ≡ on the set Φ of LGC-formulas. Let A,B ∈ Φ. Then:

A ≡ B ⇐⇒ ⊢ A→ B and ⊢ B → A.

By applying Proposition 1, we may show that the equivalence ≡ is a congru-
ence on Φ, as done in the next lemma.

Lemma 2. The equivalence relation ≡ satisfies the substitution property,

that is, if A ≡ B and C ≡ D, then the following assertions hold.

(i) A ∧ C ≡ B ∧D,

(ii) A ∨ C ≡ B ∨D,

(iii) A→ C ≡ B → D,

(iv) NA ≡ NB,

13



(v) ▽A ≡ ▽B.

Proof. Assume that A ≡ B and C ≡ D. We prove only claims (i), (iii) and
(iv); cases (ii) and (v) can be proved in an analogous manner.

(i) By (Ax2), ⊢ A ∧ C → A and ⊢ A ∧ C → C. Because ⊢ A → B and
⊢ C → D, we have ⊢ A ∧ C → B and ⊢ A ∧ C → D. This gives by (R∧),
⊢ A∧C → B ∧D. In a similar way, we can prove ⊢ B ∧D → A∧C. Thus,
A ∧ C ≡ B ∧D.

(iii) By assumption, ⊢ B → A and ⊢ C → D. These imply by Propo-
sition 1(v) that ⊢ (A → C) → (B → C) and ⊢ (B → C) → (B → D).
Therefore, ⊢ (A → C) → (B → D). Similarly, we can show ⊢ (B → D) →
(A→ C). Hence, A→ C ≡ B → D.

(iv) Now ⊢ A → B and ⊢ B → A give ⊢ NA → NB and ⊢ NB → NA,
that is, NA ≡ NB.

For an LGC-formula A ∈ Φ, we denote by [A] the equivalence class of A,
that is,

[A] = {B ∈ Φ | A ≡ B}.

In addition, the set of all Φ-classes { [A] | A ∈ Φ} is denoted by Φ/≡.
Because the equivalence ≡ is a congruence on the set Φ, we may now

define its quotient algebra (cf. [3]) by introducing the following operations
on the quotient set Φ/≡. Let A,B ∈ Φ. Then:

[A] ∨ [B] = [A ∨ B],

[A] ∧ [B] = [A ∧ B],

[A] → [B] = [A→ B],

f([A]) = [NA],

g([A]) = [▽A],

1 = [⊤].

We now consider the quotient algebra (Φ/≡,∨,∧,→, 1, f, g) more carefully.

Lemma 3. The algebra (Φ/≡,∨,∧) is a lattice.

Proof. An algebra is a lattice if ∨ and ∧ are idempotent, commutative, asso-
ciative and satisfy the absorption law. For instance, for the absorption law
A ≡ A ∧ (A ∨ B) we have that by (Ax2), ⊢ A ∧ (A ∨ B) → A. For the
converse, by (Ax1) and (Ax4), ⊢ A → A and ⊢ A → A ∨ B. These yield
⊢ A→ A ∧ (A ∨B) by (R∧).

Let us define an order on Φ/≡ by setting

[A] ≤ [B] ⇐⇒ [A] ∨ [B] = [B] ⇐⇒ [A] ∧ [B] = [A].
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Then, the ordered set (Φ/≡,≤) is a lattice in which joins and meets agree
with the join and meet operations of the quotient algebra.

The order of Φ/≡ is closely connected to the implication relation of the
logic, as shown in the next lemma.

Lemma 4. For all LGC-formulas A,B ∈ Φ,

⊢ A→ B ⇐⇒ [A] ≤ [B].

Proof. Let A,B ∈ Φ. Then,

[A] ≤ [B] ⇐⇒ [A ∧B] = [A] ∧ [B] = [A]

⇐⇒ ⊢ A ∧ B → A and ⊢ A→ A ∧B

⇐⇒ ⊢ A→ A ∧ B

By (Ax8), ⊢ (A → A ∧ B) → ((A ∧ B → B) → (A→ B)). This means that
⊢ A → A ∧ B implies ⊢ (A ∧ B → B) → (A → B). Because ⊢ A ∧ B → B
by (Ax2), we have ⊢ A→ B.

On the other hand, assume that ⊢ A → B. Because ⊢ A → A by (Ax1),
we have ⊢ A→ A ∧ B by rule (R∧).

Proposition 3. The algebra (Φ/≡,∨,∧,→, 1, f, g) is a GC-algebra.

Proof. It is clear that the algebra is a lattice with the greatest element 1 =
[⊤]. Let A,B,X ∈ Φ. Then

[A] ∧ [X] = [A ∧X] ≤ [B] ⇐⇒ ⊢ (A ∧X) → B

⇐⇒ ⊢ X → (A→ B)

⇐⇒ [X] ≤ [A→ B] = [A] → [B].

The equivalence ⊢ (A ∧ X) → B ⇐⇒ ⊢ X → (A → B) follows from
(Ax6) and (Ax7). Thus, the lattice is relatively pseudocomplemented. For
all A,B ∈ Φ,

f([A]) ≤ [B] ⇐⇒ [NA] ≤ [B] ⇐⇒ ⊢ NA→ B

⇐⇒ ⊢ A→ ▽B ⇐⇒ [A] ≤ [▽B]

⇐⇒ [A] ≤ g([B]).

Thus, the pair (f, g) is a Galois connection.

The GC-algebra (Φ/≡,∨,∧,→, 1, f, g) is referred to the Lindenbaum-

Tarski LGC-algebra. We may now define a valuation v∗:P → Φ/≡ by

v∗(p) = [p].

It can be easily verified by a straightforward formula induction that with this
definition, we have

v∗(A) = [A]

for all LGC-formulas A ∈ Φ. Now we may prove the following lemma.
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Lemma 5. For any LGC-formula A ∈ Φ,

⊢ A ⇐⇒ v∗(A) = 1.

Proof. Assume that ⊢ A. Then ⊢ ⊤ → A. The inverse ⊢ A → ⊤ holds
always. Thus, A ≡ ⊤ and v∗(A) = [A] = [⊤] = 1.

Conversely, if v∗(A) = [A] = 1, then ⊢ ⊤ → A. This means ⊢ A.

We can now conclude the work by showing the completeness of LGC.

Theorem 2 (Completeness). An LGC-formula is valid if and only if it is

provable.

Proof. Suppose that A is valid. Then v(A) = 1 for every valuation v on any
GC-algebra. In particular, we have v∗(A) = 1 in the Lindenbaum-Tarski
GC-algebra. From Lemma 5 we obtain that A must be provable. The other
direction is already proved (Soundness Theorem).
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