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Abstract

We survey in this paper the main differences among three variants of an intramolec-
ular model for gene assembly: the general, the simple, and the elementary models.
We formalize all of them in terms of sorting signed permutations and compare their
behavior with respect to: (i) completeness, (ii) confluence (with the notion defined
in three different setups), (iii) decidability, (iv) characterization of the sortable per-
mutations in each model, (v) sequential complexity, and (vi) experimental valida-
tion.
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1 Introduction

Gene assembly in ciliates has been subject of intense research in the last few years,
both regarding the molecular details driving it, as well as the theoretical implica-
tions of some mathematical models proposed for it, see [6, 9, 10, 16, 17, 23,1, 20].
For a brief introduction to the biology of ciliates, especially to the gene assem-
bly process we refer to [6]. We only recall here that ciliates have two types of
nuclei: micronuclei and macronuclei. The macronuclear genes are contiguous se-
quences of nucleotides. The micronuclear genes on the other hand, aresplit into
coding blocks (called MDSs), shuffled and separated by noncoding blocks (called
IESs). This shuffling and inversion of MDSs is especially visible in a species of
ciliates calledstichotrichs. At some point during their life cycle, ciliates destroy
all macronuclei and develop new ones from the micronuclei; in the processthey
must assemble correctly all coding blocks of the micronuclear genes. This process
is called gene assembly.

We focus in this paper on an intramolecular model for gene assembly proposed
in [9, 10] (called in the sequel the general model) and on two of its variants:the
simple model, introduced in [13] and the elementary model, introduced in [15].

The general model consists of three molecular operations,ld, hi, dlad, see [9,
10], allowing the MDSs participating in an operation to be located anywhere along
the molecule. Arguing on the principle of parsimony, a simplified model was intro-
duced in [13], asking that all operations are applied ‘locally’. This simple model
consists of the same three molecular operations as the general model, requiring
however that there is at most one coding block involved in each of the threeoper-
ations. This idea was then further developed into two separate models, both using
the terminology ofsimple gene assembly. In the first one, that we will refer to in
here as theelementary model, introduced in [14, 15], the model was further re-
stricted so that onlymicronuclear, but notcomposite, MDSs could be manipulated
by the molecular operations. Consequently, once two or more micronuclear MDSs
are combined into a larger composite MDS, they can no longer be moved along
the sequence. The second model, that we will refer to as thesimple model[18],
allowed that both micronuclear, as well as composite MDSs may be manipulated
in each of the three molecular operations.

However minor the difference between the frameworks of the simple and the
elementary models may seem, it does have a great impact on the characteristicsof
each model. We survey in this paper the main known results on the simple and
elementary gene assembly, comparing them also with the corresponding properties
of the general model with respect to: (i) completeness, (ii) confluence (with the
notion defined in three different setups), (iii) decidability, (iv) characterization of
the sortable permutations in each model, (v) sequential complexity, and (vi) ex-
perimental validation. For this, we introduce in this paper a permutation-based
presentation of the general model. We discuss in particular the question of model
validation and consider the assembly of all currently known ciliate gene patterns,
see [4]. We also present several open problems in this area.
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2 Mathematical preliminaries

For a finite alphabetA = {a1, . . . , an}, we denote byA∗ the free monoid generated
by A and call any element ofA∗ a word. For anyv ∈ A∗, we denote dom(v) =
{a ∈ A | a occurs inv}.

Let A = {a1, . . . , an}, whereA ∩ A = ∅. For p, q ∈ A ∪ A, we say that
p, q have the samesignatureif either p, q ∈ A, or p, q ∈ A and we say that
they havedifferent signaturesotherwise. For anyu ∈ (A ∪ A)∗, u = x1 . . . xk,
with xi ∈ A ∪ A, for all 1 ≤ i ≤ k, we denote‖u‖ = ‖x1‖ . . . ‖xk‖, where
‖a‖ = ‖a‖ = a, for all a ∈ A. We also denoteu = xk . . . x1, wherea = a, for all
a ∈ A. We say, thatu is uniformly signed, if eitherxi ∈ A for all 1 ≤ i ≤ k, or
xi ∈ A for all 1 ≤ i ≤ k.

For stringsu, v overΣ, we say thatu is asubstringof v, denoted byu ≤ v, if
v = xuy, for some stringsx, y. We say thatu is asubsequenceof v, denoted by
u ≤s v, if u = a1a2 . . . am, ai ∈ Σ ∪ Σ andv = v0a1v1a2v2 . . . amvm, for some
stringsvi, 0 ≤ i ≤ m, overΣ.

A permutationπ overA is a bijectionπ : A → A. Fixing the order relation
(a1, a2, . . . , am) overA, we often denoteπ as the wordπ(a1) . . . π(am) ∈ A∗. A
signed permutationoverA is a stringψ ∈ (A ∪ A)∗, where‖ψ‖ is a permutation
overA. We say that a signed permutationπ is (circularly) sortedif it is of either
of the following forms:

(i) π = akak+1 . . . ana1 . . . ak−1, for somek ≥ 1. In this case, we say thatπ is
anorthodox sorted permutation.

(ii) π = ak−1 . . . a1 an . . . ak+1 ak, for somek ≥ 1. In this case, we say thatπ is
an inverted sorted permutation.

In both cases, ifk = 1, then we say thatπ is alinear sorted permutation; otherwise,
we say that it iscircular.

A sorted blockin the signed permutationπ is a substring ofπ either of the
form aiai+1 . . . aj , or of the formaj . . . ai+1 ai, 1 ≤ i ≤ j ≤ n, whereai−1ai,
ai ai−1, ajaj+1, aj+1 aj are not substrings ofπ. By S(π) we denote the total
number of sorted blocks inπ. Clearly, the permutation is cyclically sorted if we
haveS(π) ≤ 2.

The notion of structure of a permutation will be useful in the paper. To define
it, we first introduce the morphismξi : (A∪A)∗ → (A∪A)∗, for any1 ≤ i ≤ |A|:

ξi(aj) =











λ if j = i;

aj if j < i;

aj−1 if j > i;

whereaj ∈ A ∪A.
Consider the mappingσi : (A ∪ A)∗ → (A ∪ A)∗, where for any stringu ∈

(A ∪A)∗, σi(u) is defined as follows:

(a)σi(u) = u, if aiai+1 � u, with ai, ai+1 ∈ A, or ai+1 ai � u, with ai, ai+1 ∈
A, and
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(b) σi(u) = ξi(u) otherwise.

Then, the structure of a string is the mappingσ : (A ∪ A)∗ → (A ∪ A)∗,
such thatσ(u) = (σ1 ◦ σ2 ◦ . . . ◦ σ|A|−1 ◦ σ|A|)(u). Note that the structure of a
sorted permutationπ is eitherσ(π) = a1, or σ(π) = a2a1, wherea1, a2 ∈ A, or
σ(π) = a1a2, wherea1, a2 ∈ A.

Example 1. Consider a sorted permutationπ = 34512. We find its structureσ(π)
as follows:

π5 = σ5(π) = π π2 = σ2(π3) = π3

π4 = σ4(π5) = ξ4(π5) = 3412 π1 = σ1(π2) = ξ1(π2) = 21
π3 = σ3(π4) = ξ3(π4) = 312 σ(π) = π1 = 21

3 Gene assembly as a sorting of signed permutations

As discussed in [18, 14, 15], a natural formalization of the simple and elementary
operations is through rewriting rules for signed permutations. A given gene is
represented as a signed permutation by denoting the sequence and the orientation of
its MDSs and assembling the gene is modeled through the sorting of the associated
permutation.

For a straightforward comparison, we formalize in this paper also the gen-
eral model of gene assembly [6] as a sorting of signed permutations. As ob-
served also in the case of simple and elementary operations, it is a characteristic of
permutation-based models for gene assembly that theld operation is not explicitly
modeled. Instead, it is just assumed that two consecutive blocks are goingto be
spliced together in a bigger composite block at some arbitrary point, independently
of the other operations applied to the permutation.

3.1 Modeling of the general operations

Consider a gene pattern formalized as a signed permutation over alphabetΠn =
{1, 2, . . . , n}. We formalize the general operations over signed permutations as
follows:

Definition 1. i. For each1 ≤ p < n, hip is defined as follows:

hip(xpy(p+ 1)z) = xp(p+ 1)yz,

hip(xpy(p+ 1)z) = xyp(p+ 1)z,

hip(x(p+ 1)ypz) = xy(p+ 1)pz,

hip(x(p+ 1)ypz) = x(p+ 1)p yz,

wherex, y, z are signed strings overΠn. We denoteHi = {hii | 1 ≤ i < n}.

ii. For each1 ≤ p, q < n, where|p− q| > 1, dladp,q is defined as follows:

dladp,q(xp
′′uq′′vp′wq′z) = xwq′q′′vp′p′′uz,

dladp,q(xp
′′uq′vp′wq′′z) = xwvp′p′′uq′q′′z,

dladp,q(xp
′uq′′vp′′wq′z) = xp′p′′wq′q′′vuz,

dladp,q(xp
′uq′vp′′wq′′z) = xp′p′′wvuq′q′′z,
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wherep′ = p, p′′ = p+ 1, or p′ = (p+ 1), p′′ = p, andq′ = q, q′′ = q+ 1,
or q′ = (q + 1), q′′ = q, andx, u, v, w, z are signed strings overΠn. In all
these case, we also denotedladq,p = dladp,q.

For each1 < p < n, we definedladp−1,p anddladp,p−1 as follows:

dladp−1,p(xp
′′′up′′wp′z) = xwp′p′′p′′′uz,

dladp−1,p(xp
′′vp′wp′′′z) = xwvp′p′′p′′′z,

dladp−1,p(xp
′up′′′vp′′z) = xp′p′′p′′′vuz,

wherep′ = p − 1, p′′ = p, p′′′ = p + 1, or p′′′ = (p+ 1), p′′ = p,
p′ = (p− 1), x, u, v, w, z are signed strings overΠn. We denoteDlad =
{dladi,j | 1 ≤ i, j < n, i 6= j}.

Example 2. Consider the permutationπ1 = 2514376. We sort it byhi anddlad as
follows:

hi5(2514376) = 27 34156 hi4(4 7 3 2 156) = 1237456
hi2(27 34156) = 2374156 dlad3,6(1237456) = 1234567
hi1(2374156) = 4 7 3 2 156

3.2 Modeling of the simple operations

Simple operations are a restriction of the general operations [7, 6]: they rearrange
pieces of DNA containing at most one MDS, be that micronuclear, or composite.

Definition 2. The molecular model of simplehi and simpledlad can be formalized
as follows.

i. For each1 ≤ p < n, shp is defined as follows:

shp(xp . . . (p+ i)(p+ k) . . . (p+ i+ 1)y) = xp . . . (p+ i)(p+ i+ 1) . . . (p+ k)y,

shp(x(p+ i) . . . p(p+ i+ 1) . . . (p+ k)y) = xp . . . (p+ i)(p+ i+ 1) . . . (p+ k)y,

shp(x(p+ i+ 1) . . . (p+ k)(p+ i) . . . py) = x(p+ k) . . . (p+ i+ 1)(p+ i) . . . py,

shp(x(p+ k) . . . (p+ i+ 1)p . . . (p+ i)y) = x(p+ k) . . . (p+ i+ 1)(p+ i) . . . py,

wherek > i ≥ 0 andx, y are signed strings overΠn. We denoteSh =
{shi | 1 ≤ i ≤ n}.

ii. For eachp, 2 ≤ p ≤ n− 1, sdp is defined as follows:

sdp(x p . . . (p+ i) y (p− 1) (p+ i+ 1) z) = xy(p− 1)p . . . (p+ i)(p+ i+ 1)z,

sdp(x (p− 1)(p+ i+ 1)yp . . . (p+ i)z) = x(p− 1)p . . . (p+ i)(p+ i+ 1)yz,

sdp(x(p+ i+ 1)(p− 1)y(p+ i) . . . pz) = x(p+ i+ 1)(p+ i) . . . p(p− 1)yz,

sdp(x(p+ i) . . . py(p+ i+ 1)(p− 1)z) = xy(p+ i+ 1)(p+ i) . . . p(p− 1)z,

where i ≥ 0 and x, y, z are signed strings overΠn. We denoteSd =
{sdi, sdi | 1 ≤ i ≤ n}.

Example 3. Consider the following signed permutationπ1 = 54 763 1 2. It can be
sorted by the following composition of simple operations

sh6(π) = 54 7 6 3 1 2, sh4 ◦ sd
2
◦ sh6(π) = 5 4 7 6 3 2 1,

sd
2
◦ sh6(π) = 54 7 6 3 2 1, sd

4
◦ sh4 ◦ sd

2
◦ sh6(π) = 7 6 5 4 3 2 1.
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3.3 Modeling of the elementary operations

The elementary model is a restriction of the simple model: elementary intramolec-
ular operations rearrange only micronuclear MDSs. This leads to the following
formalization for elementary operations.

Definition 3. i. For eachp ≥ 1, ehp is defined as follows:

ehp(xp(p+ 1)z) = xp(p+ 1)z,

ehp(xp(p+ 1)z) = xp(p+ 1)z,

ehp(x(p+ 1)pz) = x(p+ 1)pz,

ehp(x(p+ 1)pz) = x(p+ 1)pz,

wherex, z are signed strings overΠn. We denoteEh = {ehp | 1 ≤ p ≤ n}.

ii. For eachp, 2 ≤ p ≤ n− 1, edp is defined as follows:

edp(xpy(p− 1)(p+ 1)z) = xy(p− 1)p(p+ 1)z,

edp(x(p− 1)(p+ 1)ypz) = x(p− 1)p(p+ 1)yz,

edp(xpy(p+ 1) (p− 1)z) = xy(p+ 1) p(p− 1)z,

edp(x(p+ 1) (p− 1)ypz) = x(p+ 1) p (p− 1)yz,

wherex, y, z are signed strings overΠn. We denoteEd = {edp | 1 < p <

n}.
Note thatEh ⊂ Sh ⊂ Hi andEd ⊂ Sd ⊂ Dlad.

Example 4. Consider the signed permutationπ = 315246. It can be sorted by a
composition of elementary operations as follows

ed5(π) = 312456, ed3 ◦ eh1 ◦ ed5(π) = 123456.
eh1 ◦ ed5(π) = 312456,

3.4 Sorting strategies: terminology

A composition of operationsΦ = φk ◦ φk−1 ◦ . . . φ2 ◦ φ1, where all operations are
from eitherHi ∪ Dlad, or Sh∪Sd, or Eh∪Ed is called astrategy. A composition
Φ = φk ◦φk−1 ◦ . . . φ2 ◦φ1 of operations is called asorting strategyfor π, if Φ(π)
is a (circularly) sorted permutation. Ifφ ∈ (Hi ∪ Dlad) for all 1 ≤ i ≤ k, we say
thatΦ is a general sorting strategy. If φ ∈ (Sh∪Sd) for all 1 ≤ i ≤ k, we say
thatΦ is asimple sorting strategy. If φ ∈ (Eh∪Ed) for all 1 ≤ i ≤ k, we say that
Φ is anelementary sorting strategy. We say that an unsorted signed permutationπ

is blockedif no (simple, elementary) operation is applicable to it. We say thatΦ is
anunsuccessful strategyfor π, if Φ(π) is blocked. If there are no sorting strategies
for π, then we say thatπ is anunsortable permutation.

4 Comparison of the three models

In this section we compare the general, simple and elementary intramolecular mod-
els for gene assembly by different criteria:
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- completeness: whether any gene pattern may be assembled or not;

- confluence, defined in three different ways:

(i) whether there are permutations having both successful and unsuccessful
strategies,

(ii) whether different assembly strategies starting from the same gene pat-
tern lead to assembled genes with the same structure,

(iii) whether different assembly strategies starting from the same gene pat-
tern lead to the same assembled gene;

- decidability of assembly: whether it is possible to decide effectively if a given
gene pattern can be assembled or not;

- characterization of gene patterns that can be assembled (starting from certain
characteristics of a given gene pattern we can conclude whether the gene
pattern can be assembled);

- sequential complexity is constant: whether all assembly strategies apply the
same number of intramolecular operations;

- model validation: whether it is consistent with biological data.

4.1 Completeness

It was shown in [7, 6] that the general model is complete, i.e., it assembles any
gene pattern. The result was proved in terms of MDS-descriptors. To prove it for
signed permutations, one may take two different approaches.

On one hand, one may observe that the set of signed permutations and that
of MDS descriptors are in an one-to-one correspondence. Moreover, for a signed
permutationπ, if ψ(π) is its corresponding MDS descriptor, then for any operation
f ∈ Hi ∪ Dlad, ψ(f(π)) = f(ψ(π)). The completeness result for signed permuta-
tions then follows easily from the corresponding result for MDS descriptors.

On the second hand, one may give a direct proof of the completeness, byes-
sentially mimicking the proof in the case of MDS descriptors. The essential obser-
vation in this case is that for anyφ ∈ Hi ∪ Dlad and any signed permutationπ, the
number of sorted blocks ofφ(π) is smaller than that ofπ (i.e.,S(φ(π)) < S(π)).
One needs to observe then that a signed permutationπ is sorted if and only if
S(π) ≤ 2 andπ is uniformly signed.

Theorem 1. All signed permutations are sortable overHi ∪ Dlad.

Note however that the simple and the elementary models are not complete, as
shown by the following example.

Example 5. Consider the permutationπ = 321. We cannot apply eithereh or sh

operations as all pointers have the same signature, and there is no applicable ed

or sd operation either. On the other hand,π is successful in the general model:
dlad1,2(π) = 123.
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4.2 Confluence

We consider the notion ofconfluencein three different setups, so as to reflect the
success of different assembly strategies, the resulting gene structure,or the re-
sulting gene pattern. These aspects are discussed below stressing the differences
between the three models for gene assembly.

Consider first the most common notion of confluence, requiring that the result
of all assemblies of a given input is the same. Equivalently, all strategies for a given
signed permutation are confluent. It is easy to see that neither of the three models
for gene assembly is confluent in this sense. For this, consider the permutation
π = 2413. Thendlad2,1(π) = sd2(π) = ed2(π) = 4123, while dlad2,3(π) =
sd3(π) = ed3(π) = 2341.

The example above shows that all three models are nondeterministic in the
sense that different sorting strategies may lead to different results. A natural ques-
tion is then whether a given signed permutation may have both successful, aswell
as non-successful strategies in any of the three models. Consider then the fol-
lowing notion of confluence. We say that the general (simple, elementary, resp.)
model is confluent if there are no signed permutations having both successful and
unsuccessful strategies.

It follows from Theorem 1 that the general model is indeed confluent in the
sense above. As shown in [18], the simple model is also confluent. However, the
elementary model is not confluent. To see it, consider the permutationπ = 24135.
Thened3(π) = 23415 is a blocked permutation, whileed2 ◦ ed4(π) = 12345, a
sorted permutation.

It was proved in [8, 21], see also [2], that for any gene pattern, either all gen-
eral assembly strategies assemble it to a linear molecule, or all of them assemble
it to a circular one. Consequently, even though if the assembly process is non-
deterministic, the results of all possible assemblies of a given gene pattern have the
same structure. I.e., the results of allsortingstrategies applicable to a permutation
have the same structure. As such, the same result holds also for allsortingstrate-
gies in the simple and in the elementary models. The question may however be
asked also for the unsuccessful strategies. In this context, we say thata model for
gene assembly is confluent if, for any signed permutation, all its sorting strategies
lead to permutations having the same structure. Based on the considerations above,
it follows easily that the general model is confluent in this sense, while the elemen-
tary model is not (since a permutation may have both successful and unsuccessful
elementary strategies). Interestingly, it was proved in [18] that the simple model is
in fact confluent in this sense.

Example 6. Consider permutationπ = 623514. There are only two simple strate-
gies applicable toπ: π1 = sd2(π) = 651234 andπ2 = sd4(π) = 623451. These
strategies are unsuccessful, and there are no other simple strategies applicable to
π. Permutationπ cannot be sorted by simple operations. Note however, that per-
mutationsπ1 andπ2 have the same structureσ(π1) = 321 = σ(π2).

The following table captures the behavior of the three models for gene assem-
bly with respect to the three notions of confluence above. Interestingly, none of
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these notions distinguishes the simple and the general model. One property that
does distinguish between the two is the completeness, valid only for the general
model.

Success Same result Same structure
General confluent not confluent confluent
Simple confluent not confluent confluent

Elementary not confluent not confluent not confluent

Table 1: The results of considering confluence with regard to the three aspects are
summarized here.

4.3 Deciding the sortability problem

For the simple and elementary models, which are not complete, deciding the sorta-
bility of a given signed permutation is an interesting problem. Based on the con-
fluence results in the previous section, it turns out that the problem is easyfor the
simple model: for any signed permutation, either all its sorting strategies are suc-
cessful, or they are all unsuccessful. As such, to decide the sortability problem,
it is enough to find an arbitrary strategy (e.g., using a straightforward procedure
having quadratic time complexity) and answer ‘yes’/‘no’, depending on whether
or not that strategy is successful.

For the elementary model the problem of theeh-sortability of a signed permu-
tation is easy.

Theorem 2([15]). The unsigned permutationπ is eh-sortable if and only if either

(i) ‖π‖ = k(k + 1) . . . n12 . . . (k − 1) and for some1 ≤ i ≤ k − 1, k ≤ j ≤ n

we havei, j unsigned, or

(ii) ‖π‖ = (k − 1) . . . 21n . . . (k + 1)k, and for some1 ≤ i ≤ k − 1, k ≤ j ≤ n

we havei, j signed.

The problem of theed-sortability turns out to be technically more involved,
since a signed permutation may have both successful, and unsuccessful strategies.
A complete characterization of theed-sortable signed permutation has been given
in [14, 15, 22]. The main notions used in the result are those of dependency graphs
and forbidden elements. We only present here these notions for unsignedpermu-
tation; in the case of signed permutation, the setup is technically more complex,
see [15]. Note also that an efficient decision procedure for the sortability problem
is only known for unsigned permutation, see [22]

Dependency graphs in the elementary model

Dependency graphs suggest in which order elementary operations should be used
to assemble a given gene pattern. Letπ be an unsigned permutation with dom(π) =
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GFED@ABC.6.

		

GFED@ABC.5.

		

// GFED@ABC.8. 22
GFED@ABC.3.
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GFED@ABC.2. // GFED@ABC.7. GFED@ABC.4. // GFED@ABC.9.

Figure 1: The dependency graph associated toπ = 6 2 8 4 10 7 1 3 5 9.

{1, 2, . . . , n}. We associate to it adependency graphΓπ = (Vπ, Eπ) to π, where
Vπ = dom(π), and

Eπ = {(1, 1), (n, n)}∪{(i, i)|(i+1)(i−1) ≤s π}∪{(j, i)|(i−1)j(i+1) ≤s π}.

Intuitively, an edge(j, i) in Γπ shows that in any sorting strategy forπ, the
operationedj should be used first, in order foredi to become applicable. If there is
a loop(i, i) in Γπ, thenedi cannot be applied in any strategy applicable toπ. We
refer to [15] for a proof of these observations.

Example 7. Consider the unsigned permutationπ = 6 2 8 4 10 7 1 3 5 9. Its asso-
ciated dependency graphΓπ = (Vπ, Eπ) is shown in Figure 1.

We have loops(1, 1), (5, 5), (6, 6), (10, 10) in the dependency graph, and so,
the operationsed1, ed5, ed6 anded10 cannot be applied in any strategy applicable
to G. We have cycle8 3 8 in Γπ and so, neither operationed3, nor operationed8

can be applied in any strategy applicable toπ. The dependency graphΓπ sug-
gests the following order of operations to be applied in any sorting strategy of π:
ed2 should be applied beforeed7, anded4 should be applied beforeed9. Indeed,
for instance, strategyed9 ◦ ed4 ◦ ed7 ◦ ed2(π) sortsπ: ed9 ◦ ed4 ◦ ed7 ◦ ed2(π) =
6 7 8 9 10 1 2 3 4 5.

Forbidden elements,eh− and ed− sortability of unsigned permutations

For a signed permutationπ, we say thatp ∈ dom(π) is forbiddenin π if and only
if there exists no composition ofeh anded operations applicable toπ with p in the
domain of one of them. We denoteUπ the set of all forbidden elements ofπ. It
was proved in [15] thatp ∈ U(π) if and only if

(i) p is on a cycle ofΓπ or

(ii) there is a path fromq to p in Γπ, for someq on a cycle ofΓπ or

(iii) there existsr > 1 such that there are paths fromr− 1 to p and fromr to p in
Γπ.

The following result gives theeh− anded−sortability of unsigned permuta-
tions.

Theorem 3([15]). Letπ be an unsigned permutation.
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(i) π is eh-sortable if and only if either‖π‖ = k(k + 1) . . . n12 . . . (k − 1),
and for some1 ≤ i ≤ k − 1, k ≤ j ≤ n we havei, j unsigned, or
‖π‖ = (k− 1) . . . 21n . . . (k+ 1)k, and for some1 ≤ i ≤ k− 1, k ≤ j ≤ n

we havei, j signed.

(ii) π is ed-sortable if and only ifπ|Uπ
is sorted.

Finding an efficient method for theeh, ed-sortability of a signed permutation
remains an open problem.

4.4 Characterization of sortable permutations

The following theorem characterizesed-sortable unsigned permutations. A similar,
albeit technically more involved, characterization exists also for signed permuta-
tions, see [15].

Theorem 4 ([15]). Let π be a unsigned permutation. Thenπ is Ed-sortable if
and only if there exists a partition{1, 2, . . . , n} = D ∪ U , such that the following
conditions are satisfied:

(i) π|U is sorted;

(ii) The subgraph induced byD in Gπ is acyclic;

(iii) If (p, q) ∈ Gπ with q ∈ D, thenp ∈ D;

(iv) For anyp ∈ D, (p− 1)(p+ 1) ≤s π;

(v) For anyp ∈ D, (p− 1), (p+ 1) ∈ U .

For simple operations we do not have a characterization of sortable permuta-
tions for the moment. For general operations the question is moot since all signed
permutations are sortable.

4.5 Sequential complexity

We focus now on the length of various sorting strategies of a given signedper-
mutation, where the length is defined as the number of operations in the strategy.
Consider first the general model and letπ1 = 152 436. One can sort it by apply-
ing dlad1,5 ◦ hi2, or by applyinghi2 ◦ hi3 ◦ hi1. These two sorting strategies are of
different length, and use a different combination of operations.

Somewhat surprisingly, the situation is different in the simple model and by
consequence, also in the elementary model. It was established in [19] (using a
string-based formalism) that any two sorting strategies for a given signed permuta-
tion have the same assembly length.

Theorem 5 ([19]). Letπ be a signed permutation andφ, ψ be two simple sorting
strategies forπ. Thenφ andψ have the same sequential assembly length. More-
over, they have the same number ofsh and the same number ofsd operations.
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The differences between the general model and the two restricted models go
beyond Theorem 5. E.g., when choosing operations in the simple model, we may
always just choose the first available operation as the number of operations required
in the end remains the same. If the operations were given different weightsor costs,
then the general model may have optimal and sub-optimal sorting strategies. We
refer to [12] for a detailed discussion on various measures of complexity for gene
assembly.

4.6 Model validation

A database of known sequences of micronuclear and macronuclear ciliategenes
can be found in [4]. Based on the completeness result for the general model, it
is clear that all the gene patterns have an assembly strategy in the general model.
As it turns out however, the elementary model cannot account for the assembly of
some of the gene patterns in [4].

Example 8. Actin I gene in it Sterkiella nova is represented by the permutation
π = 346579218. It is easy to check that there is no elementary sorting strategy
applicable toπ. However, we can sortπ by applying the simple sorting strategy

sh1 ◦ sh2 ◦ sd8 ◦ sd5(π) = 9 8 7 6 5 4 3 2 1.

Below we will outline all the available scrambled gene patterns in [4], together
with one simple sorting strategy. Genes that are not scrambled in their micronu-
clear form or the ones that have missing MDSs will not be included.

Actin I, Sterkiella nova : π = 346579218;

sh1 ◦ sh2 ◦ sd8 ◦ sd6(π) = 987654321.

Actin I, Sterkiella histriomuscorum : π = 346579 10 218;

sh1 ◦ sh2 ◦ sd8 ◦ sd6(π) = 10 987654321.

Actin I, Stylonychia pustulata : π = 34657821;

sh1 ◦ sh2 ◦ sd6(π) = 87654321.

α Telomere Binding Protein, Sterkiella nova :

π = 1 3 5 7 9 11 2 4 6 8 10 12 13 14;

sd10 ◦ sd8 ◦ sd6 ◦ sd4 ◦ sd2(π) = 1 2 3 4 5 6 7 8 9 10 11 12 13 14.

DNA Polymeraseα, Paraurostyla weissei:

π = 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 1 2 3 4 5 7 9 11 13

15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 46 47 48

The signed permutation sorting strategy for this gene is justsh1 repeated 40
times.
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4.7 Summary

The following table summarize properties of general, simple and elementary mod-
els considered in this paper.

General Simple Elementary
Completeness complete not complete not complete

Confluence (Success) confluent confluent not confluent
Confluence (Structure) confluent confluent not confluent
Confluence (Result) not confluent not confluent not confluent
Deciding Sortability trivial confluence forbidden

(success) elements
Characterizing sortable not a problem open dependency

permutations problem graph
Sequential Complexity no yes yes

is Constant
Model Validation unknown valid not valid

Table 2: Summary for general, simple and elementary intramolecular models

5 Open problems

There are two currently open problems related to the simple model: the linear de-
cidability of the sortability problem and computing the number of sortable permu-
tations of lengthn. It is however possible that these two problems are intertwined
and an answer to one may at least partly solve the other.

Decidability. It was shown in [18] that it is possible to decide whether a permuta-
tion is sortable or unsortable in the simple model by applying available operations
in an arbitrary order until the permutation is blocked or sorted. This gives us a
quadratic method for deciding. Our first open problem is related to the optimality
of this method: is there a procedure to decide in linear time the sortability problem
in the simple model?

For the elementary model, finding an efficient decision procedure for{eh, ed}-
sortability problem is also open.

Sortable permutations of lengthn. As we pointed out also in this paper, not
all permutations may be sorted using the simple operations. This differs from
the general model which has been shown to be complete. Thus, an interesting
problem is computing how many permutations of lengthn are sortable in the sim-
ple/elementary models. As a related problem, it should even be interesting to see
whether the ratio of sortable signed permutations tends to0 whenn tends to infin-
ity. Both problems are open also in the case of unsigned permutations.
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