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Abstract

We survey in this paper the main differences among three variants of amaiée:
ular model for gene assembly: the general, the simple, and the elementag mode
We formalize all of them in terms of sorting signed permutations and compare their
behavior with respect to: (i) completeness, (ii) confluence (with the notfinetl
in three different setups), (iii) decidability, (iv) characterization of theable per-

mutations in each model, (v) sequential complexity, and (vi) experimental valida
tion.

TUCS Laboratory
Computational Biomodelling Laboratory



1 Introduction

Gene assembly in ciliates has been subject of intense research in thevlgsafs,

both regarding the molecular details driving it, as well as the theoretical implica-
tions of some mathematical models proposed for it, see [6, 9, 10, 16, 177,23,

For a brief introduction to the biology of ciliates, especially to the gene assem-
bly process we refer to [6]. We only recall here that ciliates have twostyjie
nuclei: micronuclei and macronuclei. The macronuclear genes are consige-
guences of nucleotides. The micronuclear genes on the other hargpliato
coding blocks (called MDSs), shuffled and separated by noncodingdblcalled
IESs). This shuffling and inversion of MDSs is especially visible in a sgeaie
ciliates calledstichotrichs At some point during their life cycle, ciliates destroy
all macronuclei and develop new ones from the micronuclei; in the prabegs
must assemble correctly all coding blocks of the micronuclear genes. itegs

is called gene assembly.

We focus in this paper on an intramolecular model for gene assembly gwpos
in [9, 10] (called in the sequel the general model) and on two of its variainés:
simple model, introduced in [13] and the elementary model, introduced in [15].

The general model consists of three molecular operatidnai, dlad, see [9,
10], allowing the MDSs patrticipating in an operation to be located anywheng alo
the molecule. Arguing on the principle of parsimony, a simplified model was intro-
duced in [13], asking that all operations are applied ‘locally’. This simpleleho
consists of the same three molecular operations as the general modelingequir
however that there is at most one coding block involved in each of the tipere
ations. This idea was then further developed into two separate models,dbagh u
the terminology okimple gene assemblin the first one, that we will refer to in
here as theelementary modeiintroduced in [14, 15], the model was further re-
stricted so that onlynicronuclear but notcompositeMDSs could be manipulated
by the molecular operations. Consequently, once two or more micronucle8sM
are combined into a larger composite MDS, they can no longer be moved along
the sequence. The second model, that we will refer to asithple mode[18],
allowed that both micronuclear, as well as composite MDSs may be manipulated
in each of the three molecular operations.

However minor the difference between the frameworks of the simple and the
elementary models may seem, it does have a great impact on the charac&ristics
each model. We survey in this paper the main known results on the simple and
elementary gene assembly, comparing them also with the correspondimgt@ep
of the general model with respect to: (i) completeness, (ii) confluenih e
notion defined in three different setups), (iii) decidability, (iv) chardzttion of
the sortable permutations in each model, (v) sequential complexity, and ¢vi) ex
perimental validation. For this, we introduce in this paper a permutation-based
presentation of the general model. We discuss in particular the question ef mod
validation and consider the assembly of all currently known ciliate gene psiter
see [4]. We also present several open problems in this area.



2 Mathematical preliminaries

For afinite alphabett = {a4, ..., a,}, we denote byA* the free monoid generated
by A and call any element ofl* aword. For anyv € A*, we denote doifv) =
{a € A | a occurs inv}.

Let A = {ay,...,a,}, whereAN A = (. Forp,q € AU A, we say that
p, ¢ have the samsignatureif either p,q € A, orp,q € A and we say that
they havedifferent signaturestherwise. For any. € (AU A)*, v = 21 ... 1y,
with z; € AU A, forall1 < i < k, we denote||u|| = ||z1]| ... ||zx||, where
lla|| = ||a|| = a, for alla € A. We also denot@ = 7, . .. Z1, wherea = a, for all
a € A. We say, that: is uniformly signedif eitherz; € Aforall1 <i < k, or
x; € Aforall1 <i < k.

For stringsu, v over X, we say that: is asubstringof v, denoted by < v, if
v = zuy, for some strings:, y. We say that: is asubsequencef v, denoted by
u<gv, ifu=aay...am,a; € LUX andv = vga1v1aavs . . . Gy, fOr some
stringsw;, 0 < i < m, overX.

A permutations over A is a bijectionr : A — A. Fixing the order relation
(a1, az,...,an,) overA, we often denoter as the wordr(ay) ... m(anm) € A*. A
signed permutationver A is a stringy € (A U A)*, where|+/| is a permutation
over A. We say that a signed permutatioris (circularly) sortedif it is of either
of the following forms:

(i) 7 = agagay .- -ana1 .. .ax_1, for somek > 1. In this case, we say thatis
anorthodox sorted permutation

(i) T=ax_1...a1 Gy ...axy1 ag, fOr somek > 1. In this case, we say thatis
aninverted sorted permutation

In both cases, ik = 1, then we say that is alinear sorted permutatigrotherwise,
we say that it icircular.

A sorted blockin the signed permutationt is a substring ofr either of the
form a;a;41 ... a;, or of the forma; ... a;1a;, 1 < i < j < n, wherea;_;a;,
@; @;—1, ajaj+1, Gj+1 a; are not substrings of. By S(m) we denote the total
number of sorted blocks in. Clearly, the permutation is cyclically sorted if we
haveS(w) < 2.

The notion of structure of a permutation will be useful in the paper. To eefin
it, we first introduce the morphisg : (AUA)* — (AU A)*, foranyl <i < |AJ:

A if j =1;
ilaj) =qa;  ifj<i
aj—1 if j >4
wherea; € AU A.

Consider the mapping; : (AU A)* — (AU A)*, where for any string. €
(AU A)*, o;(u) is defined as follows:

(@) oi(u) = u, if ajair1 £ u, With a;, ai41 € A, Or a1 a; % u, With a;, a;41 €

A, and



(b) oi(u) = &;(u) otherwise.

Then, the structure of a string is the mapping (A U A)* — (AU A)*,
such thatr(u) = (01 009 0...00)4-1 © 04)(u). Note that the structure of a
sorted permutation is eithero(m) = a1, or o(m) = aza1, whereay,as € A, or
o(m) = aiaz, whereay, as € A.

Example 1. Consider a sorted permutatian= 34512. We find its structure ()
as follows:

5 =o5(m) =7 Ty = oo(m) = 73

4 = o4(ms) = &a(ms) = 3412 w1 = o1(m2) = &1(me) = 21

3 = o03(my) = E3(my) =312 o(m) =m =21

3 Gene assembly as a sorting of signed permutations

As discussed in [18, 14, 15], a natural formalization of the simple and ekanyen
operations is through rewriting rules for signed permutations. A giver gen
represented as a signed permutation by denoting the sequence anditagiori®f

its MDSs and assembling the gene is modeled through the sorting of the as$ociate
permutation.

For a straightforward comparison, we formalize in this paper also the gen-
eral model of gene assembly [6] as a sorting of signed permutations. As ob-
served also in the case of simple and elementary operations, it is a chiataobér
permutation-based models for gene assembly thdtitbperation is not explicitly
modeled. Instead, it is just assumed that two consecutive blocks are tgdireg
spliced together in a bigger compaosite block at some arbitrary point, indeptyd
of the other operations applied to the permutation.

3.1 Modeling of the general operations

Consider a gene pattern formalized as a signed permutation over alghabet

{1,2,...,n}. We formalize the general operations over signed permutations as
follows:
Definition 1. i. Foreachl < p < n, hi, is defined as follows:

hiy (zpy(p +1)z) = 2p(p + 1)7z,
hip(zpy(p +1)2) = ayp(p + 1)z,
hip(2(p + 1)ypz) = 2y(p + 1)pz,

hip(z(p + 1)ypz) = z(p + 1)p ¥z,
wherez, y, z are signed strings ovér,,. We denotddi = {hi; | 1 <i < n}.

ii. Foreachl < p,q < n,where|p —¢| > 1, dlad, , is defined as follows:

dlady, ¢ (zp"uq"vp'wq'z) = zwq' ¢"vp'p"uz,
dladpq xp”uq/vp/wq”z /2N

)

al ) = zwop'p’uq'q" 2,

dIadpvq(a:p'uq”vp”wq’z) = zp'p"wq' ¢"vuz,
a "2)

vl

dlad, 4 xp'ug'vp"wq"2) = xp'p"woug'q" 2,



wherep’ =p,p”" =p+1,0rp’ = (p+1),p" =p,and¢ =q,¢" = q+1,
orqd = (q¢+1),¢" =7q, andx, u,v,w, z are signed strings ovéf,. In all
these case, we also dendted, ;, = dlad,,,.

For eachl < p < n, we definedlad,,_; , anddlad,, ,_; as follows:

d|adp,17p($pmup”wplz) _ xwp’p"p"'uz,
dlad,—1 p(zp"vp wp'”z) = zwvp'p’p” 2,
dlad,—1 p(zp'up”vp"z) = xp'p"p" vuz,
wherep’ = p—1,p" = p, p" =p+1,0rp" = (p+1),p" =
p = (p—1), z,u,v,w, z are signed strings ovdi,,. We denoteDlad =
{dladm | 1< i,j < n,i 75 ]}
Example 2. Consider the permutation, = 2514376. We sort it byhi anddlad as

follows:
hi5(2514376) = 27 34156 hig(4732156) = 1237456
hio (27 34156) = 2374156 dlads 6(1237456) = 1234567

hiy (2374156) = 1732156

=

3.2 Modeling of the simple operations
Simple operations are a restriction of the general operations [7, 6]: gaesange
pieces of DNA containing at most one MDS, be that micronuclear, or coitepos

Definition 2. The molecular model of simple and simpledlad can be formalized
as follows.

I. For eachl < p < n, sh, is defined as follows:
hp(zp...(p+i)(p+k)...(p+i+1)y) ) ).
hp(z(p+1i)...pp+i+1)...(p+k)y) pti)p+i+1).. (p+k)
hp(z(p+i+1)...(p+k)(p+1)...py) = (p+k) A(p+i+1)(p+i)...py,

shp( (p+k)...(p+i+1)p...(p+z)y):x(p+l<:)...(p+i+1)(P+z)...py,

wherek > i > 0 andz,y are signed strings ovdi,,. We denoteSh =
{sh; |1 <i<mn}.

Sp+i)p+i+ ). (p+E)y,

ii. Foreachp, 2 <p <n —1,sd,is defined as follows:

sdp(zp...(p+i)y(p—1)(p+i+1)z)=aylp—Lp...(p+i)(p+i+1)z,
sdp(z(p—1)(p+i+yp...(p+i)z) =z(p—Vp...(p+i)(p+i+1)yz
sdp(z(p+i+1)(p—1Dylp+i)...pz) =z(p+i+1)(p+i)...p(p — l)yz
sdp(z(p+1) ... pylp+i+1)(p—1)z) =zyp+i+1)(p+i)...p(p — 1)z
wherei > 0 andzx,y, z are signed strings ovdil,,. We denoteSd =
{sd;,sd; | 1 <i < n}.

Example 3. Consider the following signed permutatian = 54 763 1 2. It can be
sorted by the following composition of simple operations

sdyoshg(m) = 5476321, sdyoshyosdyoshg(m) =7654321.



3.3 Modeling of the elementary operations

The elementary model is a restriction of the simple model: elementary intramolec-
ular operations rearrange only micronuclear MDSs. This leads to the fotjow
formalization for elementary operations.

Definition 3. i. For eactp > 1, eh,, is defined as follows:
ehy(zp(p + 1)2) = 2p(p + 1)z,
eh,(zp(p + 1)z) = 2p(p + 1)z,
ehy(z(p + 1)pz) = z(p + 1)pz,
ehy(z(p + 1)pz) = z(p + 1)pz,

wherez, z are signed strings ovér,,. We denot&h = {eh,, | 1 < p < n}.

ii. Foreachp, 2 <p <n —1,ed,is defined as follows:

edy(zpy(p — 1)(p + 1)2) = zy(p — L)p(p + 1)z,
edy(z(p — 1)(p + Dypz) = 2(p — L)p(p + L)y,
edy(
ed,(

wpy(p+1) (p—1)2) =xy(p+ 1)p(p — 1)2,
z(p+1)(p—1ypz) =x(p+1)p(p — Dyz,

wherex, y, z are signed strings ovéf,,. We denoteEd = {ed,, | 1 < p <

n}.
Note thatEh ¢ Sh ¢ Hi andEd ¢ Sd c Dlad.

Example 4. Consider the signed permutatian= 315246. It can be sorted by a
composition of elementary operations as follows

ed5(7r) = 31?456, ed3 oeh1 o ed5(7r) = 123456.
ehy oeds(m) = 312456,

3.4 Sorting strategies: terminology

A composition of operation® = ¢, o ¢_1 o ... ¢2 o ¢1, where all operations are
from eitherHi U Dlad, or Shu Sd, or Eh U Ed is called astrategy A composition

® = ¢rodr_10...020¢1 Of operations is called sorting strategyor , if & ()

is a (circularly) sorted permutation. ¢f € (Hi U Dlad) forall 1 < ¢ < k, we say
that ® is ageneral sorting strategylf ¢ € (ShuSd) forall 1 < i < k, we say
that® is asimple sorting strategyif ¢ € (EhUEd) forall 1 < i < k, we say that

® is anelementary sorting strategyVe say that an unsorted signed permutation
is blockedif no (simple, elementary) operation is applicable to it. We say ¢hist
anunsuccessful stratedygr , if ®(7) is blocked. If there are no sorting strategies
for 7, then we say that is anunsortable permutatian

4 Comparison of the three models

In this section we compare the general, simple and elementary intramolecular mod-
els for gene assembly by different criteria:

5



- completeness: whether any gene pattern may be assembled or not;
- confluence, defined in three different ways:

(i) whether there are permutations having both successful and usstigce
strategies,

(ii) whether different assembly strategies starting from the same gene pat-
tern lead to assembled genes with the same structure,

(iii) whether different assembly strategies starting from the same gene pat-
tern lead to the same assembled gene;

- decidability of assembly: whether it is possible to decide effectively if amgiv
gene pattern can be assembled or not;

- characterization of gene patterns that can be assembled (starting értaimc
characteristics of a given gene pattern we can conclude whether tee gen
pattern can be assembled);

- sequential complexity is constant: whether all assembly strategies apply the
same number of intramolecular operations;

- model validation: whether it is consistent with biological data.

4.1 Completeness

It was shown in [7, 6] that the general model is complete, i.e., it assembjes an
gene pattern. The result was proved in terms of MDS-descriptors. ok fitr for
signed permutations, one may take two different approaches.

On one hand, one may observe that the set of signed permutations and that
of MDS descriptors are in an one-to-one correspondence. Mardove signed
permutationr, if ¢ () is its corresponding MDS descriptor, then for any operation
f e HiuDlad, ¥ (f(r)) = f(¢(m)). The completeness result for signed permuta-
tions then follows easily from the corresponding result for MDS desaspto

On the second hand, one may give a direct proof of the completeness; by
sentially mimicking the proof in the case of MDS descriptors. The essentiaf-obs
vation in this case is that for any € Hi U Dlad and any signed permutatian the
number of sorted blocks a@f() is smaller than that of (i.e., S(¢(7)) < S(7)).

One needs to observe then that a signed permutatiensorted if and only if
S(7) < 2 andr is uniformly signed.

Theorem 1. All signed permutations are sortable ouéi U Dlad.

Note however that the simple and the elementary models are not complete, as
shown by the following example.

Example 5. Consider the permutation = 321. We cannot apply eithesh or sh
operations as all pointers have the same signature, and there is no dpplicab
or sd operation either. On the other handjs successful in the general model:
dlad172(7r) = 123.



4.2 Confluence

We consider the notion afonfluencen three different setups, so as to reflect the
success of different assembly strategies, the resulting gene strustutes re-
sulting gene pattern. These aspects are discussed below stressindetfeacifs
between the three models for gene assembly.

Consider first the most common notion of confluence, requiring that tlit res
of all assemblies of a given input is the same. Equivalently, all strategiagiven
signed permutation are confluent. It is easy to see that neither of the thdetsmo
for gene assembly is confluent in this sense. For this, consider the p&onuta
T = 2413. Thendlad271(7r) = Sdg(ﬂ') = ed2(7r) = 4123, while d|ad273(ﬂ') =
Sdg(ﬂ') = ed3(7r) = 2341.

The example above shows that all three models are nondeterministic in the
sense that different sorting strategies may lead to different resultstufahgues-
tion is then whether a given signed permutation may have both successfdll as
as non-successful strategies in any of the three models. Consider théwl-th
lowing notion of confluence. We say that the general (simple, elemenésy,)r
model is confluent if there are no signed permutations having both sfidcasd
unsuccessful strategies.

It follows from Theorem 1 that the general model is indeed confluenten th
sense above. As shown in [18], the simple model is also confluent. Hovwkege
elementary model is not confluent. To see it, consider the permutatioR4135.
Theneds(m) = 23415 is a blocked permutation, whileds o eds(7) = 12345, a
sorted permutation.

It was proved in [8, 21], see also [2], that for any gene pattern, reitthgen-
eral assembly strategies assemble it to a linear molecule, or all of them assemble
it to a circular one. Consequently, even though if the assembly processis n
deterministic, the results of all possible assemblies of a given gene patterthiea
same structure. l.e., the results ofsdting strategies applicable to a permutation
have the same structure. As such, the same result holds also $ortidlg strate-
gies in the simple and in the elementary models. The question may however be
asked also for the unsuccessful strategies. In this context, we say riadel for
gene assembly is confluent if, for any signed permutation, all its sortinggiea
lead to permutations having the same structure. Based on the considerbtees a
it follows easily that the general model is confluent in this sense, while theesle
tary model is not (since a permutation may have both successful andcesstid
elementary strategies). Interestingly, it was proved in [18] that the simplelnsode
in fact confluent in this sense.

Example 6. Consider permutation = 623514. There are only two simple strate-
gies applicable tar: 1 = sda(7m) = 651234 andme = sd4(7) = 623451. These
strategies are unsuccessful, and there are no other simple stratediealdgpo

«. Permutationr cannot be sorted by simple operations. Note however, that per-
mutationsr; andmy have the same structusgr;) = 321 = o(m2).

The following table captures the behavior of the three models for genmasse
bly with respect to the three notions of confluence above. Interestinghg of



these notions distinguishes the simple and the general model. One propeérty tha
does distinguish between the two is the completeness, valid only for the benera

model.
Success Same result| Same structure
General confluent | not confluent|  confluent
Simple confluent | not confluent|  confluent
Elementary| not confluent| not confluent| not confluent

Table 1: The results of considering confluence with regard to the thpee@sare
summarized here.

4.3 Deciding the sortability problem

For the simple and elementary models, which are not complete, deciding the sorta
bility of a given signed permutation is an interesting problem. Based on the con-
fluence results in the previous section, it turns out that the problem iSaathe
simple model: for any signed permutation, either all its sorting strategies are suc
cessful, or they are all unsuccessful. As such, to decide the sortalvibibyem,
it is enough to find an arbitrary strategy (e.g., using a straightforwarceprge
having quadratic time complexity) and answer ‘yes'/'no’, depending oathgr
or not that strategy is successful.

For the elementary model the problem of #hesortability of a signed permu-
tation is easy.

Theorem 2([15]). The unsigned permutatianis eh-sortable if and only if either

() ||7|| = k(k+1)...n12...(k—1)andforsomd < i < k—1,k<j<n
we have;, j unsigned, or

(i) || =(k—=1)...21n...(k+ 1)k,andforsomd <i<k—-1,k<j<n
we havei, j signed.

The problem of theed-sortability turns out to be technically more involved,
since a signed permutation may have both successful, and unsucctssfgjiss.
A complete characterization of tked-sortable signed permutation has been given
in [14, 15, 22]. The main notions used in the result are those of depeyndesphs
and forbidden elements. We only present here these notions for ungignad-
tation; in the case of signed permutation, the setup is technically more complex,
see [15]. Note also that an efficient decision procedure for the sidstadsoblem
is only known for unsigned permutation, see [22]

Dependency graphs in the elementary model

Dependency graphs suggest in which order elementary operatiomsl ffeoused
to assemble a given gene pattern. £ée an unsigned permutation with doim =

8
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Figure 1: The dependency graph associated+62841071359.

{1,2,...,n}. We associate to it dependency graph, = (V,, E;) to w, where
Vz = dom(r), and

Er ={(1,1), (n,n)}U{(&,9)[(i+1)(i —1) <s 7} UL{(J,9)[(0—=1)j(i+1) <5 7}

Intuitively, an edge(j,4) in I'; shows that in any sorting strategy fer the
operatiored; should be used first, in order fed; to become applicable. If there is
aloop(i, i) in I'z, thened; cannot be applied in any strategy applicablertdNe
refer to [15] for a proof of these observations.

Example 7. Consider the unsigned permutation= 62841071359. Its asso-
ciated dependency graph = (V;, E) is shown in Figure 1.

We have loopg1, 1), (5,5), (6,6), (10,10) in the dependency graph, and so,
the operationsd;, eds, edg anded;y cannot be applied in any strategy applicable
to G. We have cycles38 in T'. and so, neither operatiasal;, nor operatioredg
can be applied in any strategy applicablerto The dependency gragh, sug-
gests the following order of operations to be applied in any sorting strafegy o
ed, should be applied beforal;, anded, should be applied beforalg. Indeed,
for instance, strategydg o eds o ed7 o eds(m) Sortsz: edg o edy o edy oedy(m) =
67891012345.

Forbidden elementseh — and ed — sortability of unsigned permutations

For a signed permutation, we say thap € dom(x) is forbiddenin = if and only
if there exists no composition eh anded operations applicable to with p in the
domain of one of them. We denotég, the set of all forbidden elements of It
was proved in [15] thap € U(~) if and only if

(i) pison acycle of; or
(i) there is a path frony to p in I',;, for someg on a cycle ofl"; or

(iii) there exists > 1 such that there are paths from- 1 to p and fromr to p in
T

The following result gives theh — anded —sortability of unsigned permuta-
tions.

Theorem 3([15]). Letw be an unsigned permutation.

9



(i) 7 is eh-sortable if and only if eithef|n|| = k(k + 1)...n12...(k — 1),
and for somel < i < k—1,k < j < n we havei, j unsigned, or

||| =(k—=1)...2In...(k+1)k,andforsomd <i<k—1,k<j<n
we havei, j signed.

(i) 7 is ed-sortable if and only ifr|y; is sorted.

Finding an efficient method for theh, ed-sortability of a signed permutation
remains an open problem.

4.4 Characterization of sortable permutations

The following theorem characterizeg-sortable unsigned permutations. A similar,
albeit technically more involved, characterization exists also for signadyiar
tions, see [15].

Theorem 4 ([15]). Let w be a unsigned permutation. Thenis Ed-sortable if
and only if there exists a partitiofi, 2,...,n} = D U U, such that the following
conditions are satisfied:

(i) 7|v is sorted;

(ii) The subgraph induced b in G is acyclic;
(i) If (p,q) € G withq € D, thenp € D;

(V) Foranype D, (p—1)(p+1) <s m;
(vyForanype D, (p—1),(p+1) € U.

For simple operations we do not have a characterization of sortable permuta
tions for the moment. For general operations the question is moot since atsign
permutations are sortable.

4.5 Sequential complexity

We focus now on the length of various sorting strategies of a given sigeed
mutation, where the length is defined as the number of operations in the strategy
Consider first the general model and 4et= 152 436. One can sort it by apply-

ing dlady 5 o hig, or by applyinghis o hiz o hi;. These two sorting strategies are of
different length, and use a different combination of operations.

Somewhat surprisingly, the situation is different in the simple model and by
consequence, also in the elementary model. It was established in [193 @sin
string-based formalism) that any two sorting strategies for a given siggreuipa-
tion have the same assembly length.

Theorem 5([19]). Letw be a signed permutation angl «) be two simple sorting
strategies forr. Theng andy have the same sequential assembly length. More-
over, they have the same numbeslofind the same number sf operations.

10



The differences between the general model and the two restricted madels g
beyond Theorem 5. E.g., when choosing operations in the simple model, we may
always just choose the first available operation as the number of operegiguired
in the end remains the same. If the operations were given different weigtdsts,
then the general model may have optimal and sub-optimal sorting strategées. W
refer to [12] for a detailed discussion on various measures of complexityeine
assembly.

4.6 Model validation

A database of known sequences of micronuclear and macronuclear giiad¢s
can be found in [4]. Based on the completeness result for the genedsl nito

is clear that all the gene patterns have an assembly strategy in the gendehl mo
As it turns out however, the elementary model cannot account for Hesrddy of
some of the gene patterns in [4].

Example 8. Actin | gene in it Sterkiella nova is represented by the permutation
7 = 346579218. It is easy to check that there is no elementary sorting strategy
applicable tor. However, we can sort by applying the simple sorting strategy

shy oshgosdgosds(m) =987654321.

Below we will outline all the available scrambled gene patterns in [4], together
with one simple sorting strategy. Genes that are not scrambled in their micronu-
clear form or the ones that have missing MDSs will not be included.

Actin |, Sterkiella nova : 7 = 346579218;
shy oshg osdg osdg(m) = 987654321.

Actin |, Sterkiella histriomuscorum : 7 = 346579 10 218;
Sh1 o Sh2 o Sdg o Sd6(ﬂ') == ﬁ987654321

Actin |, Stylonychia pustulata : = = 34657821;
Sh1 o ShQ @) Sdﬁ(’ﬂ) = 87654321.

a Telomere Binding Protein, Sterkiella nova :

T=13579112468101213 14;
sdyp osdg osdgosdgosda(m) =12345678910111213 14.

DNA Polymerasea, Paraurostyla weissei:

m=4442403836343230282624222018161412108612345791113
15171921232527293133353739414345464748

The signed permutation sorting strategy for this gene issjustepeated 40
times.
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4.7 Summary

The following table summarize properties of general, simple and elementary mod-
els considered in this paper.

General Simple Elementary
Completeness complete | not complete| not complete
Confluence (Success) confluent confluent | not confluent
Confluence (Structure) confluent confluent | not confluent
Confluence (Result) | not confluent| not confluent| not confluent
Deciding Sortability trivial confluence | forbidden
(success) elements
Characterizing sortable not a problem open dependency
permutations problem graph
Sequential Complexity no yes yes
is Constant
Model Validation unknown valid not valid

Table 2: Summary for general, simple and elementary intramolecular models

5 Open problems

There are two currently open problems related to the simple model: the linear de-
cidability of the sortability problem and computing the number of sortable permu-
tations of length. It is however possible that these two problems are intertwined
and an answer to one may at least partly solve the other.

Decidability. Itwas shown in [18] that it is possible to decide whether a permuta-
tion is sortable or unsortable in the simple model by applying available operations
in an arbitrary order until the permutation is blocked or sorted. This gigea u
guadratic method for deciding. Our first open problem is related to the optimality
of this method: is there a procedure to decide in linear time the sortability problem
in the simple model?

For the elementary model, finding an efficient decision procedurgeford }-
sortability problem is also open.

Sortable permutations of lengthn. As we pointed out also in this paper, not

all permutations may be sorted using the simple operations. This differs from
the general model which has been shown to be complete. Thus, an ingrestin
problem is computing how many permutations of lengtiare sortable in the sim-
ple/elementary models. As a related problem, it should even be interesting to see
whether the ratio of sortable signed permutations ten@sabenn tends to infin-

ity. Both problems are open also in the case of unsigned permutations.
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