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Abstract

We present in this paper a novel molecular model for the gene regulatory
network responsible for the eukaryotic heat shock response. Our model in-
cludes the temperature-induced protein misfolding, the chaperone activity of
the heat shock proteins and the backregulation of their gene transcription.
We then build a mathematical model for it, based on ordinary differential
equations. Finally, we discuss the parameter fit and the implications of the
sensitivity analysis for our model.
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1 Introduction

One of the most impressive algorithmic-like bioprocesses in living cells, cru-
cial for the very survival of cells is the heat shock response: the reaction of
the cell to elevated temperatures. One of the effects of raised temperature in
the environment is that proteins get misfolded, with a rate that is exponen-
tially dependent on the temperature. As an effect of their hydrophobic core
being exposed, misfolded proteins tend to form bigger and bigger aggregates,
with disastrous consequences for the cell, see [1]. To survive, the cell needs
to increase quickly the level of chaperons (proteins that are assisting in the
folding or refolding of other proteins). Once the heat shock is removed, the
cell eventually re-establishes the original level of chaperons, see [10, 18, 22].

The heat shock response has been subject of intense research in the last
few years, for at least three reasons. First, it is a well-conserved mechanism
across all eukaryotes, while bacteria exhibit only a slightly different response,
see [5, 12, 23]. As such, it is a good candidate for studying the engineering
principle of gene regulatory networks, see [4, 5, 12, 25]. Second, it is a
tempting mechanism to model mathematically, since it involves only very
few reactants, at least in a simplified presentation, see [18, 19, 22]. Third,
the heat shock proteins (the main chaperons involved in the eukaryotic heat
shock response) play a central role in a large number of regulatory and of
inflammatory processes, as well as in signaling, see [9, 20]. Moreover, they
contribute to the resilience of cancer cells, which makes them attractive as
targets for cancer treatment, see [3, 15, 16, 27].

We focus in this paper on a new molecular model for the heat shock
response, proposed in [19]. We consider here a slight extension of the model in
[19] where, among others, the chaperons are also subject to misfolding. After
introducing the molecular model in Section 2, we build a mathematical model
in Section 3, including the fitting of the model with respect to experimental
data. We discuss in Section 4 the results of the sensitivity analysis of the
model, including its biological implications.

2 A new molecular model for the eukaryotic

heat shock response

The heat shock proteins (hsp) play the key role in the heat shock response.
They act as chaperons, helping misfolded proteins (mfp) to refold. The re-
sponse is controlled in our model through the regulation of the transactiva-
tion of the hsp-encoding genes. The transcription of the gene is promoted by
some proteins called heat shock factors (hsf) that trimerize and then bind
to a specific DNA sequence called heat shock element (hse), upstream of the
hsp-encoding gene. Once the hsf trimer is bound to the heat shock element,
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the gene is transactivated and the synthesis of hsp is thus switched on (for
the sake of simplicity, the role of RNA is ignored in our model). Once the
level of hsp is high enough, the cell has an ingenious mechanism to switch
off the hsp synthesis. For this, hsp bind to free hsf, as well as break the hsf
trimers (including those bound to hse, promoting the gene activation), thus
effectively halting the hsp synthesis.

Under elevated temperatures, some of the proteins (prot) in the cell get
misfolded. The heat shock response is then quickly switched on simply be-
cause the heat shock proteins become more and more active in the refolding
process, thus leaving the heat shock factors free and able to promote the
synthesis of more heat shock proteins. Note that several types of heat shock
proteins exist in an eukaryotic cell. We treat them all uniformly in our model,
with hsp70 as common denominator. The same comment applies also to the
heat shock factors.

Our molecular model for the eukaryotic heat shock response consists of
the following molecular reactions:

1. 2 hsf ¿ hsf2

2. hsf + hsf2 ¿ hsf3

3. hsf3 + hse ¿ hsf3: hse

4. hsf3: hse → hsf3: hse + mhsp

5. hsp + hsf ¿ hsp: hsf

6. hsp + hsf2 → hsp: hsf + hsf

7. hsp + hsf3 → hsp: hsf +2 hsf

8. hsp + hsf3: hse → hsp: hsf +2 hsf + hse

9. hsp → ∅

10. prot → mfp

11. hsp + mfp ¿ hsp: mfp

12. hsp: mfp → hsp + prot

13. hsf → mhsf

14. hsp → mhsp

15. hsp + mhsf ¿ hsp: mhsf

16. hsp: mhsf → hsp + hsf
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17. hsp + mhsp ¿ hsp: mhsp

18. hsp: mhsp → 2 hsp

It is important to note that the main addition we consider here with
respect to the model in [19] is to include the misfolding of hsp and hsf. This
is, in principle, no minor extension since in the current model the repairing
mechanism is subject to failure, but it is capable to fix itself.

Several criteria were followed when introducing this molecular model:

(i) as few reactions and reactants as possible;

(ii) include the temperature-induced protein misfolding;

(iii) include hsf in all its three forms: monomers, dimers, and trimers;

(iv) include the hsp-backregulation of the transactivation of the hsp-encoding
gene;

(v) include the chaperon activity of hsp;

(vi) include only well-documented, textbook-like reactions and reactants.

For the sake of keeping the model as simple as possible, we are ignoring
a number of details. E.g., note that there is no notion of locality in our
model: we make no distinction between the place where gene transcription
takes place (inside nucleus) and the place where protein synthesis takes place
(outside nucleus). Note also that protein synthesis and gene transcription
are greatly simplified in reaction 4: we only indicate that once the gene is
transactivated, protein synthesis is also switched on. On the other hand,
reaction 4 is faithful to the biological reality, see [1] in indicating that newly
synthesized proteins often need chaperons to form their native fold.

As far as protein degradation is concerned, we only consider it in the
model for hsp. If we considered it also for hsf and prot, then we should
also consider the compensating mechanism of protein synthesis, including its
control. For the sake of simplicity and also based on experimental evidence
that the total amount of hsf and of prot is somewhat constant, we ignore the
details of synthesis and degradation for hsf and prot.

3 The mathematical model

We build in this section a mathematical model associated to the molecular
model 1–18. Our mathematical model is in terms of coupled ordinary differ-
ential equations and its formulation is based on the principle of mass-action.
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3.1 The principle of mass-action

The mass-action law is widely used in formulating mathematical models in
physics, chemistry, and engineering. Introduced in [6, 7], it can be briefly
summarized as follows: the rate of each reaction is proportional to the con-
centration of reactants. In turn, the rate of each reaction gives the rate of
consuming the reactants and the rate of producing the products. E.g., for a
reaction

R1 : A + B → C,

the rate according to the principle of mass action is f1(t) = kA(t)B(t), where
k ≥ 0 is a constant and A(t), B(t) are functions of time giving the level of
the reactants A and B, respectively. Consequently, the rate of consuming A
and B, and the rate of producing C is expressed by the following differential
equations:

dA

dt
=

dB

dt
= −k A(t) B(t),

dC

dt
= k A(t) B(t).

For a reversible reaction
R2 : A + B ¿ C,

the rate is f2(t) = k1 A(t) B(t) − k2 C(t), for some constants k1, k2 ≥ 0. The
differential equations are written in a similar way:

dA

dt
=

dB

dt
= −f2(t),

dC

dt
= f2(t). (*)

For a set of coupled reactions, the differential equations capture the combined
rate of consuming and producing each reactant as an effect of all reactions
taking place simultaneously. E.g., for reactions

R3 : A + B ¿ C, R4 : B + C ¿ A, R5 : A + C ¿ B,

the associated system of differential equations is

dA/dt = −f3(t) + f4(t) − f5(t),

dB/dt = −f3(t) − f4(t) + f5(t),

dC/dt = f3(t) − f4(t) − f5(t),

where fi(t) is the rate of reaction Ri, for all 3 ≤ i ≤ 5, formulated according
to the principle of mass action.

We recall that for a system of differential equations

dX1

dt
= f1(X1, . . . , Xn),

. . .
dXn

dt
= fn(X1, . . . , Xn),
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Table 1: The list of variables in the mathematical model, their initial values,
and their values in one of the steady states of the system, for T = 42. Note
that the initial values give one of the steady states of the system for T = 37.

Metabolite Variable Initial value A steady state (T=42)
hsf X1 0.669 0.669
hsf2 X2 8.73 · 10−4 8.73 · 10−4

hsf3 X3 1.23 · 10−4 1.23 · 10−4

hsf3: hse X4 2.956 2.956
mhsf X5 3.01 · 10−6 2.69 · 10−5

hse X6 29.733 29.733
hsp X7 766.875 766.875
mhsp X8 3.45 · 10−3 4.35 · 10−2

hsp: hsf X9 1403.13 1403.13
hsp: mhsf X10 4.17 · 10−7 3.72 · 10−6

hsp: mhsp X11 4.78 · 10−4 6.03 · 10−3

hsp: mfp X12 71.647 640.471
prot X13 1.14 · 108 1.14 · 108

mfp X14 517.352 4624.72

we say that (x1, x2, . . . , xn) is a steady states (also called equilibrium points)
if it is a solution of the algebraic system of equations fi(X1, . . . , Xn) = 0,
for all 1 ≤ i ≤ n, see [24, 28]. Steady states are particularly interesting
because they characterize situations where although reactions may have non-
zero rates, their combined effect is zero. In other words, the concentration
of all reactants and of all products are constant.

We refer to [11, 17, 29] for more details on the principle of mass action
and its formulation based on ordinary differential equations.

3.2 Our mathematical model

Let R+ be the set of all positive real numbers and Rn
+ the set of all n-tuples of

positive real numbers, for n ≥ 2. We denote each reactant and bond between
them in the molecular model 1–18 according to the convention in Table 1. We
also denote by κ ∈ R17

+ the vector with all reaction rate constants as its com-
ponents, see Table 2: κ = (k+

1 , k−
1 , k+

2 , k−
2 , k+

3 , k−
3 , k4, k

+
5 , k−

5 , k6, k7, k8, k9, k
+
11,

k−
11, k12, k

+
13, k

−
13, k14, k

+
15, k

−
15, k16).

The mass action-based formulation of the associated mathematical model
in terms of differential equations is straightforward, leading to the following
system of equations:
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Table 2: The numerical values for the fitted model.

Kinetic constant Reaction Numerical value
k+

1 (1), forward 3.49091
k−

1 (1), backward 0.189539
k+

2 (2), forward 1.06518
k−

2 (2), backward 1 · 10−9

k+
3 (3), forward 0.169044

k−
3 (3), backward 1.21209 · 10−6

k4 (4) 0.00830045
k+

5 (5), forward 9.73665
k−

5 (5), backward 3.56223
k6 (6) 2.33366
k7 (7) 4.30924 · 10−5

k8 (8) 2.72689 · 10−7

k9 (9) 3.2 · 10−5

k+
11 (11), forward 0.00331898

k−
11 (11), backward 4.43952

k12 (12) 13.9392
k+

13 (15), forward 0.00331898
k−

13 (15), backward 4.43952
k14 (16) 13.9392
k+

15 (17), forward 0.00331898
k−

15 (17), backward 4.43952
k16 (18) 13.9392
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dX1/dt = f1(X1, X2, . . . , X14, κ) (1)

dX2/dt = f2(X1, X2, . . . , X14, κ) (2)

dX3/dt = f3(X1, X2, . . . , X14, κ) (3)

dX4/dt = f4(X1, X2, . . . , X14, κ) (4)

dX5/dt = f5(X1, X2, . . . , X14, κ) (5)

dX6/dt = f6(X1, X2, . . . , X14, κ) (6)

dX7/dt = f7(X1, X2, . . . , X14, κ) (7)

dX8/dt = f8(X1, X2, . . . , X14, κ) (8)

dX9/dt = f9(X1, X2, . . . , X14, κ) (9)

dX10/dt = f10(X1, X2, . . . , X14, κ) (10)

dX11/dt = f11(X1, X2, . . . , X14, κ) (11)

dX12/dt = f12(X1, X2, . . . , X14, κ) (12)

dX13/dt = f13(X1, X2, . . . , X14, κ) (13)

dX14/dt = f14(X1, X2, . . . , X14, κ) (14)

where

f1 = −k+
2 X1 X2 + k−

2 X3 − k+
5 X1 X7 + k−

5 X9 + 2 k8 X4 X7 + k6 X2 X7

−ϕ(T ) X1 + k14 X10 + 2 k7 X3 X7 − 2 k+
1 X2

1 + 2 k−
1 X2

f2 = −k+
2 X1 X2 + k+

2 X3 − k6 X2 X7 + k+
1 X2

1 − k−
1 X2

f3 = −k+
3 X3 X6 + k+

2 X1 X2 − k−
2 X3 + k−

3 X4 − k7 X3 X7

f4 = k+
3 X3 X6 − k−

3 X4 − k8 X4 X7

f5 = ϕ(T ) X1 − k+
13 X5 X7 + k−

13 X10

f6 = −k+
3 X3 X6 + k−

3 X4 + k8 X4 X7

f7 = −k+
5 X1 X7 + k−

5 X9 − k+
11 X7 X14 + k−

11 X12 − k8 X4 X7 − k6 X2 X7

−k+
13 X5 X7 + (k−

13 + k14) X10 − (ϕ(T ) + k9) X7 − k+
15 X7 X8

−k7 X3 X7 + (k−
15 + 2 k16) X11 + k12 X12

f8 = k4 X4 + ϕ(T ) X7 − k+
15 X7 X8 + k−

15 X11

f9 = k+
5 X1 X7 − k−

5 X9 + k8 X4 X7 + k6 X2 X7 + k7 X3 X7

f10 = k+
13 X5 X7 − (k−

13 + k14) X10

f11 = k+
15 X7 X8 − (k−

15 + k16) X11

f12 = k+
11 X7 X14 − (k−

11 + k12) X12

f13 = k12 X12 − ϕ(T ) X13

f14 = −k+
11 X7 X14 + k−

11 X12 + ϕ(T ) X13
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The rate of protein misfolding ϕ(T ) with respect to temperature T has
been investigated experimentally in [13, 14], and a mathematical expression
for it has been proposed in [18]. We have adapted the formula in [18] to
obtain the following misfolding rate per second:

ϕ(T ) = (1 − 0.4

eT−37
) · 0.8401033733 · 10−6 · 1.4T−37 s−1,

where T is the temperature of the environment in Celsius degrees, with the
formula being valid for 37 ≤ T ≤ 45.

The following result gives three mass-conservation relations for our model.

Theorem 3.1. There exists K1, K2, K3 ≥ 0 such that:

(i) X1(t) + 2 X2(t) + 3 X3(t) + 3 X4(t) + X5(t) + X9(t) = K1,

(ii) X4(t) + X6(t) = K2,

(iii) X13(t) + X14(t) + X12(t) = K3,

for all t ≥ 0.

Proof. We only prove here part (ii), as the others may be proved analogously.
For this, note that from equations (4) and (6), it follows that

d(X4 + X6)

dt
= (f4 + f6)(X1, . . . , X14, κ, t) = 0,

i.e., (X4 + X6)(t) is a constant function.

The steady states of the model (1)-(14) satisfy the following algebraic
relations, where xi is the numerical value of Xi in the steady state, for all

8



1 ≤ i ≤ 14.

0 = −k+
2 x1 x2 + k−

2 x3 − k+
5 x1 x7 + k−

5 x9 + 2 k8 x4 x7 + k6 x2 x7

−ϕ(T ) x1 + k14 x10 + 2 k7 x3 x7 − 2 k+
1 x2

1 + 2 k−
1 x2 (15)

0 = −k+
2 x1 x2 + k+

2 x3 − k6 x2 x7 + k+
1 x2

1 − k−
1 x2 (16)

0 = −k+
3 x3 x6 + k+

2 x1 x2 − k−
2 x3 + k−

3 x4 − k7 x3 x7 (17)

0 = k+
3 x3 x6 − k−

3 x4 − k8 x4 x7 (18)

0 = ϕ(T ) x1 − k+
13 x5 x7 + k−

13 x10 (19)

0 = −k+
3 x3 x6 + k−

3 x4 + k8 x4 x7 (20)

0 = −k+
5 x1 x7 + k−

5 x9 − k+
11 x7 x14 + k−

11 x12 − k8 x4 x7 − k6 x2 x7

−k+
13 x5 x7 + (k−

13 + k14) x10 − (ϕ(T ) + k9) x7 − k+
15 x7 x8 − k7 x3 x7

+(k−
15 + 2 k16) x11 + k12 x12 (21)

0 = k4 x4 + ϕ(T ) x7 − k+
15 x7 x8 + k−

15 x11 (22)

0 = k+
5 x1 x7 − k−

5 x9 + k8 x4 x7 + k6 x2 x7 + k7 x3 x7 (23)

0 = k+
13 x5 x7 − (k−

13 + k14) x10 (24)

0 = k+
15 x7 x8 − (k−

15 + k16) x11 (25)

0 = k+
11 x7 x14 − (k−

11 + k12) x12 (26)

0 = k12 x12 − ϕ(T ) x13 (27)

0 = −k+
11 x7 x14 + k−

11 x12 + ϕ(T ) x13 (28)

It follows from Theorem 3.1 that only eleven of the relations above are in-
dependent. E.g., relations (15)-(17), (19), (21)-(27) are independent. The
system consisting of the corresponding differential equations is called the
reduced system of (1)-(14).

3.3 Fitting the model to experimental data

The experimental data available for the parameter fit is from [10] and reflects
the level of DNA binding, i.e., variable X4 in our model, for various time
points up to 4 hours, with continuous heat shock at 42 ◦C. Additionally, we
require that the initial value of the variables of the model is a steady state
for temperature set to 37 ◦C. This is a natural condition since the model is
supposed to reflect the reaction to temperatures raised above 37 ◦C.

Mathematically, the problem we need to solve is one of global optimiza-
tion, as formulated below. For each 17-tuple κ of positive numerical values
for all kinetic constants, and for each 14-tuple α of positive initial values for
all variables in the model, the function X4(t) is uniquely defined for a fixed
temperature T. We denote the value of this function at time point τ , with
parameters κ and α by xT

4 (κ, α, τ). Note that this property holds for all the
other variables in the model and it is valid in general for any mathemat-
ical model based on ordinary differential equations (one calls such models
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deterministic). We denote the set of experimental data in [10] by

En = {(ti, ri) | ti, ri > 0, 1 ≤ i ≤ N},

where N ≥ 1 is the number of observations, ti is the time point of each
observation and ri is the value of the reading.

With this setup, we can now formulate our optimization problem as fol-
lows: find κ ∈ R17

+ and α ∈ R14
+ such that:

(i) f(κ, α) = 1
N

∑N
i=1(x

42
4 (κ, α, ti) − ri)

2 is minimal and

(ii) α is a steady state of the model for T = 37 and parameter values given
by κ.

The function f(κ, α) is a cost function (in this case least mean squares),
indicating numerically how the function xT

4 (κ, α, t), t ≥ 0, compares with the
experimental data.

Note that in our optimization problem, not all 31 variables (the compo-
nents of κ and α) are independent. On one hand, we have the three algebraic
relations given by Theorem 3.1. On the other hand, we have eleven more
independent algebraic relations given by the steady state equations (15)-
(17), (19), (21)-(27). Consequently, we have 17 independent variables in our
optimization problem.

Given the high degree of the system (1)-(14), finding the analytical form of
the minimum points of f(κ, α) is very challenging. This is a typical problem
when the system of equations is non-linear. Adding to the difficulty of the
problem is the fact that the eleven independent steady state equations cannot
be solved analytically, given their high overall degree.

Since an analytical solution to the model fitting problem is often in-
tractable, the practical approach to such problems is to give a numerical
simulation of a solution. Several methods exist for this, see [2, 21]. The
trade-off with all these methods is that typically they offer an estimate of
a local optimum, with no guarantee of it being a global optimum.

Obtaining a numerical estimation of a local optimum for (i) is not difficult.
However, such a solution may not satisfy (ii). To solve this problem, for a
given local optimum (κ0, α0) ∈ R17

+ × R14
+ one may numerically estimate a

steady state α1 ∈ R14
+ for T = 37. Then the pair (κ0, α1) satisfies (ii).

Unfortunately, (κ0, α1) may not be close to a local optimum of the cost
function in (i).

Another approach is to replace the algebraic relations implicitly given
by (ii) with an optimization problem similar to that in (i). Formally, we
replace all algebraic relations Ri = 0, 1 ≤ i ≤ 11, given by (ii) with the
condition that

g(κ, α) =
1

M

M∑
j=1

R2
i (κ, α, δj)

10



Figure 1: The continuous line shows a numerical estimation of function X4(t),
standing for DNA binding, for the initial data in Table 1 and the parameter
values in Table 2. With crossed points we indicated the experimental data
of [10].

is minimal, where 0 < δ1 < · · · < δM are some arbitrary (but fixed) time
points. Our problem thus becomes one of optimization with cost function
(f, g), with respect to the order relation (a, b) ≤ (c, d) if and only if a ≤ c
and b ≤ d. The numerical values in Table 2 give one solution to this problem
obtained based on Copasi [8]. The plot in Figure 1 shows the time evolution
of function X4(t) up to t = 4 hours, with the experimental data of [10]
indicated with crosses.

The solution in Table 2 has been compared with a number of other avail-
able experimental data (such as behavior at 41 ◦C and at 43 ◦C), as well
as against qualitative, non-numerical data. The results were satisfactory
and better than those of previous models reported in the literature, such as
[18, 22]. For details on the model validation analysis we refer to [19].

Note that the steady state of the system of differential equations (1)-
(14), for the initial values in Table 1 and the parameter values in Table 2
is asymptotically stable. To prove it, it is enough to consider its associated
Jacobian:
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J(t) =


∂f1/∂X1 ∂f1/∂X2 . . . ∂f1/∂X14

∂f2/∂X1 ∂f2/∂X2 . . . ∂f2/∂X14
...

...
...

∂f14/∂X1 ∂f14/∂X2 . . . ∂f14/∂X14


As it is well-known, see [28, 24], a steady state is asymptotically stable if

and only if all eigenvalues of the Jacobian at the steady state have negative
real parts. A numerical estimation done with Copasi [8] shows that the steady
state for T = 42, see Table 1, is indeed asymptotically stable.

4 Sensitivity analysis

Sensitivity analysis is a method to estimate the changes brought into the
system through small changes in the parameters of the model. In this way
one may estimate both the robustness of the model against small changes
in the model, as well as identify possibilities for bringing a certain desired
changed in the system. E.g., one question that is often asked of a biochemical
model is what changes should be done to the model so that the new steady
state satisfies certain properties. In our case we are interested in changing
some of the parameters of the model so that the level of mfp in the new steady
state of the system is smaller than in the standard model, thus presumably
making it easier for the cell to cope with the heat shock. We also analyze a
scenario in which we are interested in increasing the level of mfp in the new
steady state, thus increasing the chances of the cell not being able to cope
with the heat shock. Such a scenario is especially meaningful in relation with
cancer cells that exhibit the properties of an excited cell, with increased levels
of hsp, see [3, 15, 16, 27]. In this section we follow in part a presentation of
sensitivity analysis due to [26].

We consider the partial derivatives of the solution of the system with
respect to the parameters of the system. These are called first-order lo-
cal concentration sensitivity coefficients. Second- or higher-order sensitivity
analysis considering the simultaneous change of two or more parameters is
also possible. If we denote X(t, κ) = (X1(t, κ), X2(t, κ), . . . , X14(t, κ)) the
solution of the system (1)-(14) with respect to the parameter vector κ, then
the concentration sensitivity coefficients are the time functions ∂Xi/∂κj(t),
for all 1 ≤ i ≤ 14, 1 ≤ j ≤ 17. Differentiating the system (1)-(14) with
respect to κj yields the following set of sensitivity equations:

d

dt

∂X

κj

= J(t)
∂X

∂κj

+
∂f(t)

∂κj

, for all 1 ≤ j ≤ 17, (29)

where ∂X/∂κj = (∂X1/∂κj, . . . , ∂X14/∂κj) is the component-wise vector of
partial derivatives, f = (f1, . . . , f14) is the model function in (1)-(14), and
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J(t) is the corresponding Jacobian. The initial condition for the system (29)
is that ∂X/∂κj(0) = 0, for all 1 ≤ j ≤ 17.

The solution of the system (29) can be numerically integrated, thus ob-
taining a numerical approximation of the time evolution of the sensitivity
coefficients. Very often however, the focus is on sensitivity analysis around
steady states. If the considered steady state is asymptotically stable, then
one may consider the limit limt→∞(∂X/∂κj)(t), called stationary sensitivity
coefficients. They reflect the dependency of the steady state on the param-
eters of the model. Mathematically, they are given by a set of algebraic
equations obtained from (29) by setting d/dt(∂X/κj) = 0. We then obtain
the following algebraic equations:(

∂X
∂κj

)
= −J−1Fj, for all 1 ≤ j ≤ 17, (30)

where J is the value of the Jacobian at the steady state and Fj is the j-th
column of the matrix F = (∂fr/∂κs)r,s computed at the steady state.

When used for comparing the relative effect of a parameter change in two
or more variables, the sensitivity coefficients must have the same physical
dimension or be dimensionless, see [26]. Most often, one simply considers
the matrix S ′ of (dimensionless) normalized (also called scaled) sensitivity
coefficients:

S ′
ij =

κj

Xi(t, κ)
· ∂Xi(t, κ)

∂κj

=
∂ln Xi(t, κ)

∂ln κj

Numerical estimations of the normalized sensitivity coefficients for a steady
state may be obtained, e.g. with Copasi. For X14 (standing for the level of
mfp in the model), the most significant (with the largest module) sensitivity
coefficients are the following:

◦ ∂ln(X14)/∂ln(T ) = 14.24, ◦ ∂ln(X14)/∂ln(k6) = 0.16,
◦ ∂ln(X14)/∂ln(k+

1 ) = −0.16, ◦ ∂ln(X14)/∂ln(k9) = 0.15,
◦ ∂ln(X14)/∂ln(k+

2 ) = −0.16, ◦ ∂ln(X14)/∂ln(k+
11) = −0.99,

◦ ∂ln(X14)/∂ln(k+
5 ) = 0.49, ◦ ∂ln(X14)/∂ln(k−

11) = 0.24,
◦ ∂ln(X14)/∂ln(k−

5 ) = −0.49, ◦ ∂ln(X14)/∂ln(k12) = −0.24.

These coefficients being most significant is consistent with the biological
intuition that the level of mfp in the model is most dependant on the temper-
ature (parameter T ), on the rate of mfp being sequestered by hsp (parameters
k+

11 and k−
11) and the rate of protein refolding (parameter k12). However, the

sensitivity coefficients also reveal less intuitive, but significant dependencies
such as the one on the reaction rate of hsf being sequestered by hsp (param-
eters k+

5 and k−
5 ), on the rate of dissipation of hsf dimers (parameter k6), or

on the rate of dimer- and trimer-formation (parameters k+
1 and k+

2 ).
Note that the sensitivity coefficients reflect the changes in the steady state

for small changes in the parameter. E.g., increasing the temperature from
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42 with 0.1% yields an increase in the level of mfp with 1.43%, roughly as
predicted by ∂ln(X14)/∂ln(T ) = 14.24. An increase of the temperature from
42 with 10% yields however an increase in the level of mfp of 311.93%.

A similar sensitivity analysis may also be performed with respect to the
initial conditions, see [26]. If we denote by X(0) = X(0, κ), the initial values
of the vector X, for parameters κ, then the initial concentration sensitivity
coefficients are obtained by differentiating system (1)-(14) with respect to
X(0):

d

dt

∂X

∂X(0)
= J(t)

∂X

∂X(0)
(t), (31)

with the initial condition that ∂X/∂X(0)(0) is the identity matrix. It follows
then that the initial concentration sensitivity matrix is given by the following
matrix exponential:

∂X

∂X(0)
(t) = eJ(t) =

∞∑
k=0

J(t)k

k!
.

Similarly as for the parameter-based sensitivity coefficients, it is often
useful to consider the normalized, dimensionless coefficients

∂Xi

∂X(0)
j

(t) · X(0)
j(t)

Xi(t)
=

∂ln(Xi)

∂ ln(X(0)
j)

.

A numerical estimation of the initial concentration sensitivity coefficient
of mfp around the steady state given in Table 2 for T = 42, shows that all
are negligible except for the following two coefficients: ∂ln(X14)/∂ln(X

(0)
9 ) =

−0.497748 and ∂ln(X14)/∂ln(X
(0)
13 ) = 0.99. While the biological significance

of the dependency of mfp on the initial level of prot is obvious, its dependency
on the initial level of hsp: hsf is perhaps not. Moreover, it turns out that
several other variables have a significant dependency on the initial level of
hsp: hsf:

◦ ∂ln(X1)/∂ln(X9(0)) = 0.49, ◦ ∂ln(X6)/∂ln(X9(0)) = −0.04,
◦ ∂ln(X2)/∂ln(X9(0)) = 0.49, ◦ ∂ln(X7)/∂ln(X9(0)) = 0.49,
◦ ∂ln(X3)/∂ln(X9(0)) = 1.04, ◦ ∂ln(X9)/∂ln(X9(0)) = 0.99,
◦ ∂ln(X4)/∂ln(X9(0)) = 0.49, ◦ ∂ln(X14)/∂ln(X9(0)) = −0.49,
◦ ∂ln(X10)/∂ln(X9(0)) = 0.49, ◦ ∂ln(X11)/∂ln(X9(0)) = 0.49,

E.g., increasing X
(0)
9 by 1% increases the steady state values of X7 by

0.49% and decreases the level of X14 by 0.49%. Increasing X
(0)
9 by 10%

increases the steady state values of X7 by 4.85% and decreases the level of
X14 by 4.63%.

The biological interpretation of this significant dependency of the model
on the initial level of hsp: hsf is based on two arguments. On one hand, the
most significant part (about two thirds) of the initial available molecules of

14



hsp in our model are present in bonds with hsf. On the other hand, the vast
majority of hsf molecules are initially bound to hsp. Thus, changes in the
initial level of hsp: hsf have an immediate influence on the two main drivers
of the heat shock response: hsp and hsf. Interestingly, the dependency of the
model on the initial levels of either hsp or hsf is negligible.
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