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Abstract

Decision making with interdependent multiple criteria is normal in standard busi-
ness decision making; in mcdm theory the standard assumption is to assume that
the criteria are independent, which makes optimal mcdm solutions less useful than
they could be. In this paper we provide a short survey of methods that are both
dealing with and making use of the interdependence of multiple criteria.
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1 Introduction

There has been a growing interest and activity in the area of multiple criteria de-
cision making (MCDM), especially in the last 35 years. Modeling and optimiza-
tion methods have been developed in both crisp and fuzzy environments. The
overwhelming majority of approaches for finding best compromise solutions to
MCDM problems do not make use of the interdependences among the objectives.
However, as has been pointed out by Carlsson [1], in modeling real world prob-
lems (especially in management sciences) we often encounter MCDM problems
with interdependent objectives. In this paper we provide a short survey of meth-
ods (for a longer survey see [39]) that are both dealing with and making use of the
interdependence of multiple criteria. Interdependence is a fairly obvious concept:
consider a decision problem, in which we have to find a x∗ ∈ X such that three
different criteria c1, c2 and c3 all are satisfied, when c1 and c2 are supportive of
each others, c2 and c3 are conflicting, and c1 and c3 again are supportive of each
others (with respect to some directions). Unless it is obvious, the choice of an op-
timal decision alternative will become a very complex process with an increasing
number of criteria.

2 Measures of interdependence

In this Section we review some measures of interdependences between the objec-
tives, in order to provide for a better understanding of the decision problem, and
to find effective and more correct solutions to multiple objective programming
(MOP) problems. It is well known that there does not exist any concept of opti-
mal solution universally accepted and valid for any multiobjective problem [37].
Delgado et al [32] provided a unified framework to use fuzzy sets and possibil-
ity theory in multicriteria decision and multiobjective programming. Felix [33]
presented a novel theory for multiple attribute decision making based on fuzzy
relations between objectives, in which the interactive structure of objectives is in-
ferred and represented explicitely. Carlsson [1] used the fuzzy Pareto optimal set
of nondominated alternatives as a basis for an OWA-type operator [36] for finding
a best compromise solution to MCDM problems with interdependent criteria.
Combining the results of [1, 2, 32, 33, 37, 36, 38] we provided a new method
for finding a compromise solution to fuzzy and crisp multiple objective program-
ming problems in [3, 4, 6, 7] by using explicitely the interdependences among the
objectives.
In multiple objective programs, application functions are established to measure
the degree of fulfillment of the decision maker’s requirements (achievement of
goals, nearness to an ideal point, satisfaction, etc.) about the objective functions
(see e.g. [32, 38]) and extensively used in the process of finding ”good compro-
mise” solutions. In [3] generalizing the principle of application function to fuzzy
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multiple objective programs (FMOP) with interdependent objectives, we defined
a large family of application functions for FMOP in order to provide for a better
understanding of the decision problem, and to find effective and more correct so-
lutions. In [5] we defined interdependencies among the objectives of FMOP by
using fuzzy if-then rules. In [6] we demonstrated that the use of interdependences
among objectives of a MOP in the definition of the application functions provides
for more correct solutions and faster convergence.

Example 2.1. Consider the following problem with multiple objectives

max
x∈X

{
f1(x), . . . , fk(x)

}
(1)

where fi(x) = 〈ci, x〉 = ci1x1 + · · ·+ cinxn and ||ci|| = 1, i = 1, . . . , k.

Definition 2.1. [6] Let fi(x) = 〈ci, x〉 and fj(x) = 〈cj, x〉 be two objective
functions of (1). Then the measure of conflict between fi and fj , denoted by
κ(fi, fj), is defined by

κ(fi, fj) =
1− 〈ci, cj〉
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3 The linear case

If the objective functions are linear then their derivates are constant. So if two
objectives are parallel and growing in the same direction then they support each
others, otherwise we can globally measure only the conflict between them. Consider
the following problem with multiple objectives

max
x∈X

{
f1(x), . . . , fk(x)

}
(3)

where fi(x) =< ci, x >= ci1x1 + · · · + cinxn and ||ci|| = 1, i = 1, . . . , k.

Definition 3.1 Let fi(x) =< ci, x > and fj(x) =< cj, x > be two objective func-
tions of (3). Then the measure of conflict between fi and fj, denoted by κ(fi, fj), is
defined by

κ(fi, fj) =
1− < ci, cj >

2
.

We illustrate the meaning of the measure of conflict by a biobjective two-dimensional
decision problem

max
x∈X

{
α(x), β(x)

}
where α(x) =< n, x > and β(x) =< m, x >.

Figure 3: The measure of conflict between α and β is |n||m| cos(n,m).

The bigger the angle between the lines α and β the bigger the degree of conflict
between them.

If κ(α, β) = 1/2 and the set of feasible solutions is a convex polyhedron in IRn then
α and β attend their independent maximum at neighbour vertexes of X.

If κ(α, β) = 0 and the set of feasible solutions is a convex polyhedron subset of IRn

then α and β attend their independent maximum at the same vertex of X.

Definition 3.2 The complexity of the problem (3) is defined as

Ω =

∑k
i,j κ(fi, fj)

2
.

It is clear that Ω =0 iff all the objectives are parallel, i.e. we have a single objective
problem.
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Figure 1: The measure of conflict between α and β is calculated from 〈n,m〉.
We illustrate the meaning of the measure of conflict by a biobjective two-dimensional
decision problem

max
x∈X

{
α(x), β(x)

}
where α(x) = 〈n, x〉 and β(x) = 〈m, x〉. The bigger the angle between the lines
α and β the bigger the degree of conflict between them.
If κ(α, β) = 1/2 and the set of feasible solutions is a convex polyhedron in Rn

then α and β attend their independent maximum at neighbour vertexes of X . It is
clear that we we increase the first objective function in its gradient direction then
the value of the second objective function will not be affected (and vica versa). It is
why we say that in this case α and β are independent in their gradient directions.
If κ(α, β) = 0 and the set of feasible solutions is a convex polyhedron subset of
Rn then α and β attend their independent maximum at the same vertex of X .
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Figure 4: κ(α, β) = 1/2 - the case of perpendicular objectives.

Figure 5: κ(α, β) = 0 - the case of parallel objectives.

Remark 3.1 Let fi(x) =< ci, x > and fj(x) =< cj, x > with ci != cj. If

signcir = sign∂rfi(x) = sign∂rfj(x) = signcjr,

for some r, then fi ↑ fj with respect to directions xr. This information can be useful
in the construction of a scalarizing function, when we search for a nondominated
solution being closest to an ideal point in a given metric.

4 Constructing the scalarizing function

Following [Zim78, Del90] we introduce an application

hi : IR → [0, 1]

such that hi(t) measures the degree of fulfillment of the decision maker’s require-
ments about the i-th objective by the value t. In other words, with the notation
of Hi(x) = hi(f(x)), Hi(x) may be considered as the degree of membership of x
in the fuzzy set ”good solutions” for the i-th objective. Then a ”good compromise
solution” to (1) may be defined as an x ∈ X being ”as good as possible” for the
whole set of objectives. Taking into consideration the nature of Hi(.), i = 1, . . . k,
it is quite reasonable to look for such a kind of solution by means of the following
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Figure 2: κ(α, β) = 1/2 - the case of perpendicular objectives.
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Figure 4: κ(α, β) = 1/2 - the case of perpendicular objectives.

Figure 5: κ(α, β) = 0 - the case of parallel objectives.

Remark 3.1 Let fi(x) =< ci, x > and fj(x) =< cj, x > with ci != cj. If

signcir = sign∂rfi(x) = sign∂rfj(x) = signcjr,

for some r, then fi ↑ fj with respect to directions xr. This information can be useful
in the construction of a scalarizing function, when we search for a nondominated
solution being closest to an ideal point in a given metric.

4 Constructing the scalarizing function

Following [Zim78, Del90] we introduce an application

hi : IR → [0, 1]

such that hi(t) measures the degree of fulfillment of the decision maker’s require-
ments about the i-th objective by the value t. In other words, with the notation
of Hi(x) = hi(f(x)), Hi(x) may be considered as the degree of membership of x
in the fuzzy set ”good solutions” for the i-th objective. Then a ”good compromise
solution” to (1) may be defined as an x ∈ X being ”as good as possible” for the
whole set of objectives. Taking into consideration the nature of Hi(.), i = 1, . . . k,
it is quite reasonable to look for such a kind of solution by means of the following
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Figure 3: κ(α, β) = 0 - the case of parallel objectives.

n

m

!
"

Figure 6: κ(α, β) = 1 - the case of opposite objectives.

auxiliary problem

max
x∈X

{
H1(x), . . . , Hk(x)

}
(4)

As max
{
H1(x), . . . , Hk(x)

}
may be interpreted as a synthetical notation of a conjuc-

tion statement (maximize jointly all objectives) and Hi(x) ∈ [0, 1], it is reasonable
to use a t-norm T [Sch63] to represent the connective AND. In this way (3) turns
into the single-objective problem

max
x∈X

T (H1(x), . . . , Hk(x)).

There exist several ways to introduce application functions [Kap90]. Usually, the
authors consider increasing membership functions (the bigger is better) of the form

hi(t) =


1 if t ≥ Mi

vi(t) if mi ≤ t ≤ Mi

0 if t ≤ mi

(5)

where mi := minx∈X fi(x) is the independent mimimum and Mi := maxx∈X fi(x) is
the independent maximum of the i-th criterion.
As it has been stated before, our idea is to use explicitely the interdependences in
the solution method. To do so, first we define Hi by

Hi(x) =


1 if fi(x) ≥ Mi

1− Mi − fi(x)

Mi −mi

if mi ≤ fi(x) ≤ Mi

0 if fi(x) ≤ mi

i.e. all membership functions are defined to be linear.

Then from (2) we compute ∆(fi) for i = 1, . . . , k, and we change the shapes of Hi

according to the value of ∆(fi) as follows

(1) If ∆(fi) = 0 then we do not change the shape.
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Figure 4: κ(α, β) = 1 - the case of opposite objectives.

Definition 2.2. The complexity of the problem (1) is defined as

Ω =

∑k
i,j κ(fi, fj)

2
.
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It is clear that Ω = 0 iff all the objectives are parallel, i.e. we have a single
objective problem.

These principles have appeared to be useful in the construction of a scalarizing
function, when we search for a nondominated solution being closest to an ideal
point in a given metric.

In [7, 8] we analyzed multiple objective programming problems with additive
interdependences. In [9, 10, 13, 14, 15, 16] we considered multiple objective
programming problems with compound interdependences, i.e. the case when the
states of some chosen objective are attained through supportive or inhibitory feed-
backs from several other objectives. MOP problems with independent objectives
(i.e. when the cause-effect relations between the decision variables and the ob-
jectives are completely known) will be treated as special cases of the MOP in
which we have interdependent objectives. In [12] we considered biobjective deci-
sion problems with interdependent objectives. First we stated biobjective decision
problems with independent objectives and by introducing additive linear interde-
pendences between the objective functions we explain the behavior of compro-
mise solutions.

3 Linear Interdependences in MOP
A typical statement of an independent MOP is

max
x∈X

{
f1(x), . . . , fk(x)

}
(2)

where fi is the i-th objective function, x is the decision variable, andX is a subset,
usually defined by functional inequalities. However, as has been shown by Felix
[40] there are management issues and negotiation problems, in which one often
encounters the necessity to formulate MOP models with interdependent objective
functions, in such a way that the values of the objective functions are determined
not only by the decision variables but also by the values of one or more other
objective functions. Suppose now that the objectives of (2) are interdependent,
and the value of an objective function is determined by a linear combination of
the values of other objectives functions. That is

f ′i(x) = fi(x) +
k∑

j=1, j 6=i

αijfj(x), 1 ≤ i ≤ k (3)

or, in matrix form
f ′1(x)
f ′2(x)

...
f ′3(x)

 =


1 α12 . . . α1k

α21 1 . . . α2k
...

...
...

...
αk1 αk2 . . . 1




f1(x)
f2(x)

...
fk(x)


4



where αij is a real numbers denoting the grade of interdependency between fi and
fj: If αij > 0 then we say that fi is supported by fj; if αij < 0 then we say that fi

is hindered by fj; if αij = 0 then we say that fi is independent from fj .
In such cases, i.e. when the feed-backs from the objectives are directly propor-
tional to their independent values, then we say that the objectives are linearly
interdependent. The matrix of interdependences, (αij), denoted by I(f1, . . . , fk),
is called the interdependency matrix of (2). It is clear that if αij = 0, ∀i 6= j, i.e.

I(f1, . . . , fk) =


1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 0 . . . 1


then we have an MOP problem with independent objective functions.
To explain the issue more exactly, consider a three-objective problem with linearly
interdependent objective functions

max
x∈X

{
f1(x), f2(x), f3(x)

}
(4)

Taking into consideration that the objectives are linearly interdependent, the inter-
dependent values of the objectives can be expressed by

f ′1(x) = f1(x) + α12f2(x) + α13f3(x)

f ′2(x) = f2(x) + α21f1(x) + α23f3(x)

f ′3(x) = f3(x) + α31f1(x) + α32f2(x)

That is  f ′1(x)
f ′2(x)
f ′3(x)

 =

 1 α12 α13

α21 1 α23

α31 α32 1

 f1(x)
f2(x)
f3(x)


For example, depending on the values of αij we can have the following simple
linear interdependences among the objectives of (4)

• if α12 = 0 then we say that f1 is independent from f2;

• if α12 > 0 then we say that f2 unilaterally supports f1;

• if if α12 < 0 then we say that f2 hinders f1;

• if α12 > 0 and α21 > 0 then we say that f1 and f2 mutually support each
others;

• if α12 < 0 and α21 < 0 then we say that f1 and f2 are conflicting;

• if α12 + α21 = 0 then we say that f1 are f2 are in a trade-off relation.
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It is clear, for example, that if f2 unilaterally supports f1 then the bigger the value
of f2 (supporting objective function) the bigger its support to f1 (supported objec-
tive function).

Example 3.1. To illustrate our ideas consider the following simple decision prob-
lem.

max{x, 1− x}, subject to x ∈ [0, 1] (5)

Choosing the minimum-norm to aggregate the values of objective functions this
problem has a unique solution x∗ = 1/2 and the optimal values of the objective
functions are (0.500, 0.500). Suppose that for example f1 is unilaterally supported
by f2 on the whole decision space [0, 1] and the degree of support is given by

f ′1(x) = f1(x) + 1/2f2(x) = x+ 1/2(1− x) = 1/2 + x/2

Then (5) turns into the following problem

max{1/2 + x/2, 1− x}
x ∈ [0, 1]

Choosing the minimum-norm to aggregate the values of objective functions this
problem has a unique solution x∗ = 1/3 and the optimal values of the objective
functions are (0.667, 0.667).

4 Optimization under fuzzy if-then rules
Suppose we are given a mathematical programming problem in which the func-
tional relationship between the decision variables and the objective function is
not completely known. Our knowledge-base consists of a block of fuzzy if-then
rules, where the antecedent part of the rules contains some linguistic values of
the decision variables, and the consequence part consists of a linguistic value of
the objective function. Between 1998 and 2003 we introduced [17, 18, 19, 20]
a novel statement of (multiple objective) fuzzy mathematical programming prob-
lems and provided a method for findig a fair solution to these problems, namely
we suggested the use of Tsukamoto’s fuzzy reasoning method to determine the
crisp functional relationship between the objective function and the decision vari-
ables, and solve the resulting (usually nonlinear) programming problem to find a
fair optimal solution to the original fuzzy problem.
The rules represent our knowledge-base for the fuzzy optimization problem. The
fuzzy partitions for lingusitic variables will not ususally satisfy ε-completeness,
normality and convexity. In many cases we have only a few (and contradictory)
rules. Therefore, we can not make any preselection procedure to remove the rules
which do not play any role in the optimization problem. All rules should be con-
sidered when we derive the crisp values of the objective function.
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We have chosen Tsukamoto’s fuzzy reasoning scheme, because the individual rule
outputs are crisp numbers, and therefore, the functional relationship between the
input vector y and the system output f(y) can be relatively easily identified (the
only thing we have to do is to perform inversion operations).

Example 4.1. Consider the optimization problem [19]

min f(x); subject to {x1 + x2 = 1/2, 0 ≤ x1, x2 ≤ 1}, (6)

and f(x) is given linguistically as

<1(x) : if x1 is small and x2 is small then f(x) is small,
<2(x) : if x1 is small and x2 is big then f(x) is big,

and the universe of discourse for the linguistic value of f is also the unit interval
[0, 1]. We will compute the firing levels of the rules by the product t-norm. Let the
membership functions in the rule-base < be defined by

small(t) = 1− t, big(t) = t, t ∈ [0, 1].

Let (y1, y2) be an input vector to the fuzzy system. Then the firing levels of the
rules are

α1 = small(y1)× small(y2) = (1− y1)(1− y2),

α2 = small(y1)× big(y2) = (1− y1)y2,

It is clear that if y1 = 1 then no rule applies because α1 = α2 = 0. So we can
exclude the value y1 = 1 from the set of feasible solutions. The individual rule
outputs are (see Figure 5)

z1 = 1− (1− y1)(1− y2), z2 = (1− y1)y2,

and, therefore, the overall system output, interpreted as the crisp value of f at y
is

f(y) :=
(1− y1)(1− y2)(1− (1− y1)(1− y2)) + (1− y1)y2(1− y1)y2

(1− y1)(1− y2) + (1− y1)y2

=

y1 + y2 − 2y1y2

Thus our original fuzzy problem

min f(x); subject to {(<1(x),<2(x)) | x ∈ X},
turns into the following crisp nonlinear mathematical programming problem

(y1 + y2 − 2y1y2)→ min

subject to {y1 + y2 = 1/2, 0 ≤ y1 < 1, 0 ≤ y2 ≤ 1}.
which has the optimal solution y∗1 = y∗2 = 1/4 and its optimal value is f(y∗) =
3/8.
It is clear that if there were no other constraints on the crisp values of x1 and x2

then the optimal solution to (6) would be y∗1 = y∗2 = 0 with f(y∗) = 0.
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Fig. 5. Illustration of Example 1.

It is clear that if y1 = 1 then no rule applies because !1 = !2 = 0. So we can exclude the value y1 = 1 from
the set of feasible solutions. The individual rule outputs are (see Fig. 5)

z1 = 1− (1− y1)(1− y2); z2 = (1− y1)y2;

and, therefore, the overall system output, interpreted as the crisp value of f at y is

f(y) :=
(1− y1)(1− y2)(1− (1− y1)(1− y2)) + (1− y1)y2(1− y1)y2

(1− y1)(1− y2) + (1− y1)y2
= y1 + y2 − 2y1y2:

Thus, our original fuzzy problem

minf(x) subject to {(R1(x);R2(x)) | x∈X };

turns into the following crisp nonlinear mathematical programming problem:

(y1 + y2 − 2y1y2)→min

subject to {y1 + y2 = 1=2; 06y1 ¡ 1; 06y261}

which has the optimal solution y∗1 =y
∗
2 = 1=4 and its optimal value is f(y

∗)= 3=8.
It is clear that if there were no other constraints on the crisp values of x1 and x2 then the optimal solution

to (13) would be y∗1 =y
∗
2 = 0 with f(y

∗)= 0.

Example 1 clearly shows that we cannot just choose the rule with the smallest consequence part (the !rst
rule) and !re it with the maximal !ring level (!1 = 1) at y∗ ∈ [0; 1], and take y∗=(0; 0) as an optimal solution
to (10).
The rules represent our knowledge-base for the fuzzy optimization problem. The fuzzy partitions for

linguistic variables will not usually satisfy "-completeness, normality and convexity. In many cases we
have only a few (and contradictory) rules. Therefore, we can not make any preselection procedure to re-
move the rules which do not play any role in the optimization problem. All rules should be considered when
we derive the crisp values of the objective function.
We have chosen Tsukamoto’s fuzzy reasoning scheme, because the individual rule outputs are crisp numbers,

and therefore, the functional relationship between the input vector y and the system output f(y) can be
relatively easily identi!ed (the only thing we have to do is to perform inversion operations).

Example 2. Consider the problem

max
X
G; (14)

Figure 5: Takagi and Sugeno fuzzy reasoning method for Example 1.

5 Consensus reaching with interdependent utilities
In [11] we showed how the concept of interdependency can be applied to an n-
party single-issue negotiation problem in which the negotiators cooperatively face
a common problem or in which t he parties’s interests are not diametrically op-
posed (variable-sum bargaining situations).
Negotiations arise from a variety of different types of disputes. Now we focuse
on an n-party, single-issue negotiation in which individuals are in conflict because
they want different things, but must settle for the same thing. The resolution of
negotiations requires parties to reach a join decision about a settlement. Potential
settlements consist of different combinations of values for the issue explicitly or
implicitly under negotiation.
In a simple n-party, single-issue negotiation problem, each negotiator judges the
utility of potential settlements. Judgments of utility are usually assumed to be a
function of the values of the issue (independent utilities). Let ui(x) represent the
judgment by the i-th negotiator of the utility of the potential settlement x ∈ [0, 1].
The reference points, zero and one, indicate the two possible extreme settlements
of the issue.

1

1 1

1

u1(x) u2(x)

x x

1

1 1

1

h1(x) h2(x)

m1 M1 u1(x) u2(x)m2 M2

It should be noted that so far we have considered only pairwise interdependences between
the objectives, i.e. when the feedback from f2 to f1 depends only on the value of f2, but
in real life cases we usually have compound interdependences (cf. [6, 8]), i.e. when the
feedback from f2 to f1 can depend not only on the value of f2, but also on the values of f1

(self feed-back) and/or f3.

4 Consensus reaching with interdependent utilities

Negotiations arise from a variety of different types of disputes. For simplicity, we focuse on
an n-party, single-issue negotiation in which individuals are in conflict because they want
different things, but must settle for the same thing. The resolution of negotiations requires
parties to reach a join decision about a settlement. Potential settlements consist of different
combinations of values for the issue explicitly or implicitly under negotiation.

In a simple n-party, single-issue negotiation problem, each negotiator judges the utility
of potential settlements. Classically, judgments of utility are assumed to be a function of
the values of the issue (independent utilities). Let ui(x) represent the judgment by the i-th
negotiator of the utility of the potential settlement x ∈ [0, 1]. The reference points, zero
and one, indicate the two possible extreme settlements of the issue.

Fig. 7 Linear utility functions.
To have a uniform (monoton increasing) presentation for utility functions ui(x), we

introduce application functions
hi: IR→ [0, 1]

such that hi(ui(x)) measures the degree of satisfaction of the i-th party with the utility
value ui(x) for a settlement x ∈ [0, 1], i = 1, . . . , n.

Usually, the application functions are of the form (the more the better)

hi(t) =


1 if t ≥Mi

vi(t) if mi ≤ t ≤Mi

0 if t ≤ mi

where mi denotes the reservation level (which represents the minimal requirement about the
issue), Mi stands for the desired level on the issue and vi is a monoton increasing function.

Fig. 8 Linear application functions.
Negotiations consist of a ”dance” involving a sequence of proposals and counterpropos-

als, offers and counteroffers. The uncertainty and cognitive complexity entailed in most ne-
gotiations prevent the parties from leaping to a joint agreement on their first move. Instead,
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Figure 6: Linear utility functions.

To have a uniform (monoton increasing) presentation for utility functions ui(x),
we introduce application functions hi : R → [0, 1], such that hi(ui(x)) measures
the degree of satisfaction of the i-th party with the utility value ui(x) for a settle-
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ment x ∈ [0, 1], i = 1, . . . , n. Usually, the application functions are of the form
(the more the better)

hi(t) =


1 if t ≥Mi

vi(t) if mi ≤ t ≤Mi

0 if t ≤ mi

wheremi denotes the reservation level (which represents the minimal requirement
about the issue), Mi stands for the desired level on the issue and vi is a monoton
increasing function.

1

1 1

1

u1(x) u2(x)

x x

1

1 1

1

h1(x) h2(x)

m1 M1 u1(x) u2(x)m2 M2

It should be noted that so far we have considered only pairwise interdependences between
the objectives, i.e. when the feedback from f2 to f1 depends only on the value of f2, but
in real life cases we usually have compound interdependences (cf. [6, 8]), i.e. when the
feedback from f2 to f1 can depend not only on the value of f2, but also on the values of f1

(self feed-back) and/or f3.

4 Consensus reaching with interdependent utilities

Negotiations arise from a variety of different types of disputes. For simplicity, we focuse on
an n-party, single-issue negotiation in which individuals are in conflict because they want
different things, but must settle for the same thing. The resolution of negotiations requires
parties to reach a join decision about a settlement. Potential settlements consist of different
combinations of values for the issue explicitly or implicitly under negotiation.

In a simple n-party, single-issue negotiation problem, each negotiator judges the utility
of potential settlements. Classically, judgments of utility are assumed to be a function of
the values of the issue (independent utilities). Let ui(x) represent the judgment by the i-th
negotiator of the utility of the potential settlement x ∈ [0, 1]. The reference points, zero
and one, indicate the two possible extreme settlements of the issue.

Fig. 7 Linear utility functions.
To have a uniform (monoton increasing) presentation for utility functions ui(x), we

introduce application functions
hi: IR→ [0, 1]

such that hi(ui(x)) measures the degree of satisfaction of the i-th party with the utility
value ui(x) for a settlement x ∈ [0, 1], i = 1, . . . , n.

Usually, the application functions are of the form (the more the better)

hi(t) =


1 if t ≥Mi

vi(t) if mi ≤ t ≤Mi

0 if t ≤ mi

where mi denotes the reservation level (which represents the minimal requirement about the
issue), Mi stands for the desired level on the issue and vi is a monoton increasing function.

Fig. 8 Linear application functions.
Negotiations consist of a ”dance” involving a sequence of proposals and counterpropos-

als, offers and counteroffers. The uncertainty and cognitive complexity entailed in most ne-
gotiations prevent the parties from leaping to a joint agreement on their first move. Instead,
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Figure 7: Linear application functions.

Negotiations consist of a ”dance” involving a sequence of proposals and coun-
terproposals, offers and counteroffers. The uncertainty and cognitive complexity
entailed in most negotiations prevent the parties from leaping to a joint agree-
ment on their first move. Instead, negotiations tend to proceed incrementally and
cautiously with the parties, attempting to ”feel their way along” to a settlement,
unsure of when the level of concessions they offer meets the other’s minimum
reservation level, and hoping not to be taken advantage of.
The resolution of negotiations ordinarily requires settlement of differences by mu-
tual concessions. For disputes involving multiple issues, two fundamental strate-
gies of concession can be identified. The first consists of compromise - agreeing
to a value intermediate between each negotiator’s initial bargaining positions for
each issue under dispute. The second can be described as horsetrading - the par-
ties agree to trade-offs such that each obtains what he or she bargains for on certain
issues, in exchange for granting the other what he or she wants on other issues.
There are two main approaches to the classification of negotiations ([34, 35]):
Distributive bargaining (DB) is commonly identified as involving the division of
resources; it refers to situations in which there is a fixed supply of some resource,
and one’s gain is the other’s loss. DB appears typically in the form of a single-
issue negotiation, such as bargaining for a used car. Any reduction in the price
of the car removes money from the pocket of the salesman, while any increase in
the price paid removes money from the pocket of the buyer. This is also known as
a win-lose situation. DB can also be applied to multi-issue negotiations wherein
each issue is handled singularly. In DB the issues are assumed to be areas in which
the parties are in conflict. As a technique, the function of DB is to resolve pure
conflicts of interest in a fixed-sum negotiation.
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Integrative bargaining (IB) refers to situations in which the negotiators coopera-
tively face a common problem or in which the parties’ interests are not diamet-
rically opposed. These constitute variable-sum bargaining situations. IB is the
system of activities which is instrumental to the attainment of objectives which
are not in fundamental conflict with those of the other party and which therefore
can be integrated to some degree (win-win situation). IB may occur in a multi-
issue negotiation; however, negotiators in multi-issue negotiations often bargain
in a distributive manner. The IB approach attempts to steer the parties toward
problem solving and away from the traditional zero-sum horse trading.
Suppose now that we have a 3-party single-issue integrative bargaining situations
[11] in which we want to find a good compromise settlement.
Suppose that the first party is being supported by the others until it reaches the
level β12 and β13, respectively.

1

1
h1(x)

m1 M1 u1(x) 1

1
h1(x)

m1 M1 u1(x)!13!12

negotiations tend to proceed incrementally and cautiously with the parties, attempting to
”feel their way along” to a settlement, unsure of when the level of concessions they offer
meets the other’s minimum reservation level, and hoping not to be taken advantage of.

The resolution of negotiations ordinarily requires settlement of differences by mutual
concessions. For disputes involving multiple issues, two fundamental strategies of concession
can be identified. The first consists of compromise - agreeing to a value intermediate between
each negotiator’s initial bargaining positions for each issue under dispute. The second can
be described as horsetrading - the parties agree to trade-offs such that each obtains what
he or she bargains for on certain issues, in exchange for granting the other what he or she
wants on other issues.

There are two main approaches to the classification of negotiations ([20, 22]):
Distributive bargaining (DB) is commonly identified as involving the division of re-

sources; it refers to situations in which there is a fixed supply of some resource, and one’s
gain is the other’s loss. DB appears typically in the form of a single-issue negotiation, such
as bargaining for a used car. Any reduction in the price of the car removes money from
the pocket of the salesman, while any increase in the price paid removes money from the
pocket of the buyer. This is also known as a win-lose situation. DB can also be applied
to multi-issue negotiations wherein each issue is handled singularly. In DB the issues are
assumed to be areas in which the parties are in conflict. As a technique, the function of
DB is to resolve pure conflicts of interest in a fixed-sum negotiation.

Integrative bargaining (IB) refers to situations in which the negotiators cooperatively
face a common problem or in which the parties’ interests are not diametrically opposed.
These constitute variable-sum bargaining situations. IB is the system of activities which
is instrumental to the attainment of objectives which are not in fundamental conflict with
those of the other party and which therefore can be integrated to some degree (win-win
situation). IB may occur in a multi-issue negotiation; however, negotiators in multi-issue
negotiations often bargain in a distributive manner. The IB approach attempts to steer the
parties toward problem solving and away from the traditional zero-sum horse trading.

Suppose now that we have a 3-party single-issue integrative bargaining situations in
which we want to find a good compromise settlement.

Suppose that the first party is being supported by the others until it reaches the level
β12 and β13, respectively.

Fig. 9 Feed-backs from the second and third parties.
In general, the benchmark βij denotes the level until the i-th party is being supported

by the j-th party for i, j = 1, 2, 3. Any negotiated settlement (α1, α2, α3) will satisfy the
following condition (see fig. 10)

m1 ≤ β12 ∧ β13 ≤ α1 ≤ β12 ∨ β13 ≤ M1,

m2 ≤ β21 ∧ β23 ≤ α2 ≤ β21 ∨ β23 ≤ M2,

m3 ≤ β32 ∧ β31 ≤ α3 ≤ β31 ∨ β32 ≤ M3,
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Figure 8: Feed-backs from the second and third parties.

In general, the benchmark βij denotes the level until the i-th party is being sup-
ported by the j-th party for i, j = 1, 2, 3. Any negotiated settlement (α1, α2, α3)
will satisfy the following condition (see fig. 10)

m1 ≤ β12 ∧ β13 ≤ α1 ≤ β12 ∨ β13 ≤M1,

m2 ≤ β21 ∧ β23 ≤ α2 ≤ β21 ∨ β23 ≤M2,

m3 ≤ β32 ∧ β31 ≤ α3 ≤ β31 ∨ β32 ≤M3,

Let us define the overall satisfaction of the group, α, with a negotiated settlement
(α1, α2, α3) by the minimum operator, i.e.

α = α1 ∧ α2 ∧ α3

It is clear that α satisfies the following inequalities

min
i,j
{βij} ≤ α ≤ max

i,j
{βij}

because from none of the parties are able to get more than max{βij}, but each
party can reach at least the level min{βij}. If for certain i and j the benchmark
level βij is given in such a way that βij < mi then it means that even the minimal
wish of the i-th party is absolutely unacceptable for the j-th party.
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Let us define the overall satisfaction of the group, α, with a negotiated settlement (α1, α2, α3)
by the minimum operator, i.e.

α = α1 ∧ α2 ∧ α3

It is clear that α satisfies the following inequalities

min
i,j

{βij} ≤ α ≤ max
i,j

{βij}

because from none of the parties are able to get more than max{βij}, but each party can
reach at least the level min{βij}.

If for certain i and j the benchmark level βij is given in such a way that βij < mi then
it means that even the minimal wish of the i-th party is absolutely unacceptable for the
j-th party.

Fig. 10 The efficient frontier for the negotiation problem.
If for certain i all the benchmark levels satisfy the condition

βij < mi, j #= i (6)

then we say that the other two parties form a coalition againts the i-th party. However,
this coalition (which is usually temporal) can result in overall conflict if (6) holds for all
parties. In this case the negotiation dance will result in a settlement which is absolutely
not acceptable by any parties.

The bencmarks βij and βji are usually determined in a preliminaries between the i-th
and j-th parties before the group meeting starts.

5 Summary and Conclusions

We have introduced a class of negotiation problems in which it can be shown that we have
multiple interdependent objectives, and in which negotiaitons become fatally deadlocked
unless the interdependences are understood and resolved as part of the process.

In order to deal with the interdependences we have introduced methods for both additive
linear and additive nonlinear interdependences, and shown how the complexities growing
from the interdependences can be dealt with rather effectively. We have also shown how
consensus can be found in negotiation problems when working with interdependent utilities

9

Figure 9: The efficient frontier for the negotiation problem.

If for certain i all the benchmark levels satisfy the condition

βij < mi, j 6= i (7)

then we say that the other two parties form a coalition againts the i-th party. How-
ever, this coalition (which is usually temporal) can result in overall conflict if (7)
holds for all parties. In this case the negotiation dance will result in a settlement
which is absolutely not acceptable by any parties.
The bencmarks βij and βji are usually determined in a preliminaries between the
i-th and j-th parties before the group meeting starts.

6 Extensions
In 1997 Östermark [27] considered the interdependence concept in a dynamic set-
ting. He showed that the approach can be naturally extended to temporal cases.
Then he applied the temporal concept to describe goal conflicts in a multiperiod
firm model in which the concept of static interdependence would fail. Then he
generalized static membership function introduced in [6] to a dynamic member-
ship function for both multiobjective programming and fuzzy multiobjective pro-
gramming problems. In 2002 Ehrgott and Nickel [25] determined the number of
objectives which are necessary to prove Pareto optimality for a given point.
In 2003 Liu, Da and Chen [28] generalized the concept of objectives interdepen-
dence introduced in [3, 6] to multidimensional problems based on the gradients
of the objectives. Their novel interdependence concept reflected both the relation-
ship and the degrees of the objectives support or conflict. Then the application
functions are constructed based on the interdependence grades of the objectives,
and they are aggregated by entropy regularization procedure to solve the multiob-
jective programming problems. The concept of interdependence has been used
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by many authors, e..g. Chang, Cheng and Chen (2007) [21] when they built
a fuzzy-based military officer performance appraisal system; Jain, Ramamurthy
and Sundaram (2006) [22] when they examined the effectiveness of visual in-
teractive modeling in the context of multiple-criteria group decisions; Gal and
Hanne (2006) [23] when they explained the role of nonessential objectives within
network approaches for MCDM; Angilella et al. (2004) [24] when assessing non-
additive utility for multicriteria decision aid; Bistline et al. (1998) [26] when they
introduced an interactive decision support system for solving real time schedul-
ing problems considering customer and job priorities with schedule interruptions;
Myung and Bien (2003) [29] when they designed a fuzzy multiobjective controller
based on the eligibility method; Lee and Kuo [30] (1998) when they suggested a
new approach to requirements trade-off analysis for complex systems; Tang and
Wang (!997) [31] when they introduced an interactive approach based on a genetic
algorithm for a type of quadratic programming problems with fuzzy objectives and
resources,
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Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 978-952-12-2074-6
ISSN 1239-1891


